富集金属的植物

合集下载

5种植物对重金属的吸收与富集作用

5种植物对重金属的吸收与富集作用

5种植物对重金属的吸收与富集作用唐欢欢;曹学章;李小青;张赶年【摘要】根据野外试验采样调查研究,通过5种植物对江西定南县钨矿废渣地土壤的重金属含量的吸收试验,定量分析矿区狗牙根(Cynodondactylon)、弯叶画眉草(Eragrostiscurvula)、百喜草(Paspalumnotatum)、多花木兰(Indigoferaamblyantha)、高羊茅(Festucaarundinacea)5种草本植物对钨矿废渣地重金属As、Zn、Cu的吸收与富集作用各有特点.结果表明:①钨矿废渣地受到As、Zn、Cu的污染严重,狗牙根等植物对As、Zn、Cu作用均有着不同程度的富集;②不同植物类型对重金属吸收与富集作用因重金属种类、植物类型和部位的不同而各异,植物根部对As和Cu的富集作用比根部以上(地上部分)突出,而对Zn相反;③多花木兰地上部分生物量最大,对污染土壤的生物净化能力比其他植物更显著.【期刊名称】《科学技术与工程》【年(卷),期】2015(015)015【总页数】5页(P103-106,110)【关键词】土壤;重金属;迁移系数;富集系数;生物量【作者】唐欢欢;曹学章;李小青;张赶年【作者单位】南京信息工程大学地理与遥感学院,南京210044;环保部南京环境科学研究所,南京210042;南京信息工程大学地理与遥感学院,南京210044;南京信息工程大学地理与遥感学院,南京210044【正文语种】中文【中图分类】X131.3近年来,随着工农业生产的快速发展,环境中重金属污染日趋严重。

研究表明,在所有的重金属污染中,矿山的开采对环境造成的污染最为严重[1]。

矿山开采会直接导致植被大规模破坏,产生的废水、废弃矿石以及尾矿砂等固体废弃物,占据着大量土地面积,是污染矿区周边环境的主要原因[2]。

矿山开采不仅破坏周边植被,污染当地土壤和下游河流,且土壤中有害重金属累积到一定的程度,会对土壤-植物系统产生危害,导致土壤的退化,影响农作物产量和品质,还会通过径流和淋洗作用污染地表水和地下水,恶化水文环境,危及人类的健康甚至生命[3—7]。

超累积植物——精选推荐

超累积植物——精选推荐

超累积植物超累积植物,也叫超富集植物,是指能够超量吸收重⾦属并将其运移到地上部的植物。

⽬前.世界范围内已经发现的超富集植物有400多种。

我国开展这⽅⾯的⼯作较晚.到⽇前为⽌,中国的科技⼯作者陆续发现了As的超富集植物蜈蚣草和⼤叶井⼝边草、Cd的超富集植物宝⼭堇菜、Mn的超富集植物商陆、Zn的超富集植物东南景天以及Cu的超富集植物海州⾹薷和鸭跖草。

例如,⽺齿类铁⾓蕨、野⽣苋和⼗字花科植物天蓝褐蓝菜对镉的富集能⼒强;紫叶花苕能富集铅和锌;蒿属和芥菜对铅的富集作⽤明显;在镍污染的⼟壤中可种植⼗字花科和庭芥属植物;在铜污染⼟壤中可种植酸模草,其植株含铜可达1.850mg/g。

此外,研究发现,植物对重⾦属的吸收与电渗滤有关。

因此,向植物根系通直流电能加强植物对重⾦属的吸收,向污染⼟壤施硫酸盐和磷酸盐能提⾼植物枝⼲部分对铬、镉、镍、锌和铜的富集系数。

⼀、超富集植物特点1、对⾼浓度的⾦属有较强的忍耐性;2、可累积相当⾼浓度的重⾦属;3、⽣长速度较快;4、较⾼的⽜物量;5、发达的根系。

⼆、植物修复技术我国由于矿⼭开采、⾦属冶炼、化肥使⽤等原因,遭受重⾦属污染的⼟地⾯积⼗分惊⼈,中国科学院⼀项研究显⽰,⽬前中国受镉、砷、铬、铅等重⾦属污染的耕地⾯积近两千万公顷,约占耕地总⾯积的1/5,全国每年因重⾦属污染⽽减产粮⾷⼀千多万吨,也造成了部分农产品重⾦属超标,影响⾷品安全。

环境被破坏或污染之后,传统的修复⽅法⼀般是⼯程、物理和化学法,往往成本较⾼,对环境⼲扰⼤。

近20多年来,⼈们开始研究利⽤⽣物修复⽅法,也就是利⽤⽣物的降解和转化作⽤来清除环境中的污染物。

这其中应⽤⽐较多有植物修复和微⽣物修复技术。

植物修复技术是⼀种以植物忍耐、分解或超量积累某些化学物质的⽣理功能为基础,利⽤植物及其共存微⽣物体系来吸收、降解、挥发和富集环境中污染物的治理技术。

与传统修复⽅法相⽐,该技术成本低、过程简单,且环境友好,适⽤于空⽓、⼟壤和⽔体污染,特别是在重⾦属污染治理⽅⾯。

土壤修复常用富集重金属的植物介绍

土壤修复常用富集重金属的植物介绍

与普通植物相比,学术界认为,超富集植物一般应具备4个基本特征:首先,临界含量特征,即植物地上部如茎或叶重金属含量应达到一定的临界含量标准,如锌、锰为10 000毫克/千克;铅、铜、镍、钴、砷均为1 000毫克/千克;镉为100毫克/千克;金为1毫克/千克。

其次,转移特征,即植物地上部重金属含量大于根部重金属含量。

第三,耐性特征,即植物对重金属具有较强的耐性。

其中对于人为控制试验条件下的植物来说,是指试验中与对照相比,植物茎、叶、籽、实等地上部分的干重没有下降。

对于在自然污染状态下生长的植物来说,是指植物的生长从长相来看没有表现出明显的毒害症状。

第四,富集系数特征,即植物地上部富集系数(定义:指某种元素或化合物在生物体内的浓度与其在的环境中的浓度的比值)大于1。

一般来讲,植物体内重金属含量随土壤中含量的增加而提高。

世界上已发现超富集或具有超富集性质的植物多达几百种,涉及十字花科、凤尾蕨科、菊科、景天科、商陆科、堇菜科、禾本科、豆科、大戟科等。

在我国,科研人员已经发现了蜈蚣草、东南景天、龙葵、宝山堇菜、商陆、圆锥南芥、李氏禾等砷、锌、镉、锰、铅、铬等超富集植物,转移系数(translocation factor)是地上部元素的含量与地下部同种元素含量的比值,即:转运系数﹦地上部植物中元素含量/地下部植物中元素含量。

用来评价植物将重金属从地下向地上的运输和富集能力。

转移系数越大,则重金属从根系向地上器官转运能力越强。

滇白前调查,表明其地上部中含Zn、Pb 和Cd 平均为(11 043±3 537)、(1 546±1 044)和(391±196)mg·kg -1 ,富集系数(地上部和土壤金属质量分数之比)分别为0.35、0.08 和1.05,转运系数(地上部和根中金属质量分数之比)均超过1,均值分别为8.21、3.90 和8.36。

野外调查数据表明,滇白前是一种Pb/Zn/Cd 共超富集植物。

超富集植物

超富集植物

表 1.2 超富集植物Table1.2HyPeraccumulators表1.3常见高生物量耐性植物[19]骆永明•金属污染土壤的植物修复[J].土壤,1999 , 5:261 —280.[201施俊法•化学定时炸弹的克星:植物修复技术[J].国土资源情报,2001 , (4):39242.[21] 聂俊华,刘秀梅,王庆仁.营养元素N、P、K对Pb超富集植物吸收能力的影响口].农业工程学报,2004,20(5):262~265.[22] 张晓岭.N' PK肥料对土壤中cd、Pb形态变化及吸附解吸的影响田].武汉:华中农业大学,2003.15~42[15] SUDCH ,HUANGHZH.The Phytoremediation poteniial of oilseedrape (B.juncea) as a hyPeraceumulator for cadmium contaminated soil[J].China Environrnental Scienee,2002,22(l):45~48(in Chi nese).[16] WANG J Q ,ZHANG B R ,SU D CH.Selection and aeeumulation characteristics ofoilseed rapes for phytoremediati on of cadmium con tam in ated soil[J].Jo urnal of Hebei North Un iversity ,2005,25(l):58-61 (in Chinese).[17] CHEN Y. H,LlxD,LIU H Y,etal.The potential of India mustard(BrassicajunceaLJfor phytoremediati on of Pb-c on tam in ated soils with the aid of EDTA additi on[ J].Jo urnal of Nanji ng Agrieultural University ,2002,25(4):15 一18(in Chinese).[18] 张守文,等.油菜对pb污染土壤的修复效应研究[J].西北植物学报,2009, 29(1):0122-0121 土壤Cd污染状况简介Cd是生物生长发育过程的非必需元素,也是自然界中对动、植物及人体危害性最大的重金属种类之一,连同Hg、As、cr、Pb被称为土壤中的“五毒元素”(Rajmakrishnan et al.,1995陈志良等,2001)。

重金属超富集植物研究现状与进展

重金属超富集植物研究现状与进展

2019.12目前,重金属造成的环境污染已经成为了世界性问题。

在我国,根据环境保护部发布的全国土壤污染状况调查公报显示[1],全国土壤环境状况总体不容乐观,部分地区土壤污染较重,工矿业废弃地土壤环境问题突出,其中重金属污染由于其危害性大、具有隐蔽性长期性、不易治理等特点,成为土壤污染治理的重点和难点。

为了减少重金属污染对环境生态系统的污染,必须对已污染土地进行治理修复。

国内外开展了多种土壤污染治理技术,包括化学原位钝化修复技术、植物修复技术以及农艺调控技术等。

其中植物修复技术是种修复成本低、对环境二次污染小、能较大面积种植的新型绿色土壤污染治理技术,其核心技术在于超富集植物的筛选[2]。

在污染土壤种植超富集植物来吸收重金属,随后收割植物以达到去除土壤中污染物。

目前已经发现了400多种超富集植物可以吸收提取土壤中重金属。

本文介绍了大部分超富集植物吸收富集重金属的生理生态学进展。

1 超富集植物的概念和类型1.1 植物修复技术的定义植物修复一般是指利用绿色植物的生命代谢活动来转移、转换或固定土壤环境中的重金属元素, 使其有效态含量减少或生物毒性降低, 从而达到污染环境净化或部分恢复的过程[3]。

其中,超富集植物描述了许多属于远缘家族的植物,它们具有在含金属土壤上生长并在体内积累极高量重金属的能力,远远超过大多数的水平物种。

因此在植物修复重金属土壤中具有重要地位。

1.2 超富集植物的特征特性目前,比较公认的将超富集植物与相关的非超富集类群区分开来的三个基本标志是:1)植物体内能够积累10-500倍某种或几种重金属[4];2)植物吸收的重金属大多分布在地上部分,更快的根移位到茎叶,尤其是叶子中浓度比非超积累物种中的浓度高100-1000倍[5];3)具有一定的耐受性,有更强的解毒和隔离叶子中重金属能力,在重金属污染土壤中能正常生长,不会出现毒害作用[6]。

例如,具有超过以下叶面浓度(干重)的植物:镉(Cd),硒(Se)和铊(Ti)的液面浓度超过100 mg/kg;砷(As),铬(Cr),钴(Co),铜(Cu),镍(Ni)和稀土元素浓度为1000mg/kg;锌(Zn)含量为10000mg/kg;在污染环境生长的样品中锰(Mn)含量为10000mg/kg,同时能够成功完成其生命周期。

重金属超累积植物

重金属超累积植物

超累积植物
目前,已发现400多种植物能够超积累各种重金属。

如半卡马菊、多花鼠鞭草、布氏香芥、塞贝山榄(俗称蓝汁)、杨树、苎麻、月季、油菜、印度芥菜、遏蓝菜、酸模、海州香薷、鸭跖草、密毛蕨、蜈蚣草、大叶井口边草、粉叶蕨、牡蒿、剑叶凤尾蕨、羽叶鬼针草、紫花苜蓿、银合欢、空心莲子草、东南景天、北美车前、北美鬼针草、北美独行菜、一年蓬、裸柱菊、细叶芹、芥子草白麻、普通豚草、颠茄等。

这些植物大多在当地土生土长,可富集镍、镉、铜、钴、锰、铅、硒、砷、锌等元素,净化被这些金属污染的土壤。

苎麻基地遏蓝菜
苋科植物
蜈蚣草
一些超累积植物能同时积累多种重金属,如羊蕨属植物和具有富集重金属特性的苋科植物对土壤中重金属的吸收率达到100%。

在以硫酸盐和磷酸盐为肥
料的情况下,遏蓝菜属的一些栽培变种的茎杆对重金属具有较强的富集能力,苎麻以及一些藻类藻类对重金属具有较强的吸收能力。

因此,利用超累积植物处理重金属污染区是一种比较理想的方法。

已发现的超富集植物
部分重金属的超累积植物mg/kg。

应用于重金属污染土壤植物修复中的植物种类

应用于重金属污染土壤植物修复中的植物种类

应用于重金属污染土壤植物修复中的植物种类在重金属污染土壤植物修复中,有多种植物种类被广泛应用。

这些植物主要通过吸收、富集和转化重金属来降低土壤中的重金属含量。

以下是一些常见的植物种类:1. 印度芥菜:这种植物能够吸收铅、镉、锌等重金属,并将其储存在叶片和根部。

印度芥菜生长迅速,生物量大,因此具有较高的修复效率。

2. 柳树:柳树对多种重金属具有较高的耐受性和富集能力,如铅、镉、铜等。

柳树生长迅速,根系发达,可以吸收大量的重金属。

3. 杨树:杨树对铅、镉等重金属具有较强的富集能力,可以用于修复重金属污染的土壤。

杨树生长迅速,生物量大,可以持续吸收和富集重金属。

4. 芦苇:芦苇是一种常见的水生植物,可以用于修复受重金属污染的湿地和水体。

芦苇对铅、镉等重金属具有较强的吸收和富集能力。

5. 紫云英:紫云英是一种草本植物,对铅、锌等重金属具有较强的富集能力。

紫云英可以作为土壤改良剂使用,提高土壤质量,降低重金属含量。

6. 狗牙根草:狗牙根草是一种常见的草坪草种,对铅、镉等重金属具有较强的耐受性和富集能力。

狗牙根草可以用于修复受重金属污染的土壤和水体。

7. 苎麻:苎麻对铅、锌等重金属具有较强的富集能力,可以用于修复受重金属污染的土壤。

苎麻生长迅速,生物量大,可以持续吸收和富集重金属。

8. 狼尾草:狼尾草对多种重金属具有较高的耐受性和富集能力,可以用于修复受重金属污染的土壤和水体。

狼尾草生长迅速,根系发达,可以吸收大量的重金属。

除了上述植物种类外,还有多种其他植物也被用于重金属污染土壤的植物修复中,如向日葵、油菜等。

这些植物种类具有不同的特点和优势,可以根据具体情况选择适合的植物种类进行修复。

重金属超富集植物特征

重金属超富集植物特征

重金属超富集植物特征重金属超富集植物是指能够吸收和富集土壤中重金属离子的植物。

它们通常具有一些特征,使它们能够在污染土壤中存活并吸收大量的重金属。

本文将介绍重金属超富集植物的特征,并探讨其应用和意义。

重金属超富集植物的特征主要包括以下几个方面:1.嗜重金属生长环境:重金属超富集植物通常能够在高浓度的重金属污染土壤中存活并生长。

它们对于高浓度的重金属离子具有较高的耐受性,能够忍受土壤中重金属离子对其生长和发育的影响。

2.物种特异性:不同的植物对不同的重金属具有不同的富集能力。

一些植物对某种特定的重金属具有高度的富集能力,而对其他重金属则没有富集能力。

这种物种特异性使得不同的植物能够在不同的重金属污染环境中发挥作用。

3.根系吸收机制:重金属超富集植物通常通过其根系吸收土壤中的重金属离子。

这些植物的根系具有一定的特殊结构,能够增加吸收面积和吸收能力。

同时,它们的根系也具有一定的选择性,可以选择性地吸收特定的重金属离子。

4.生理代谢调控:重金属超富集植物能够通过调控其生理代谢过程来应对重金属污染。

它们可以通过调节根系分泌物的产生和分泌量来影响土壤中重金属离子的活动性。

此外,它们还可以通过调节自身的酶系统和产生抗氧化物质来减轻重金属对植物细胞的损害。

5.富集效应:重金属超富集植物能够富集土壤中的重金属离子,并将其转移到地上部分。

这种富集效应可以通过根系吸收和转运、韧皮部和木质部吸收和转运以及叶片吸收等方式实现。

通过富集重金属离子,这些植物能够将污染物从土壤中清除,起到修复污染土壤的作用。

重金属超富集植物具有重要的应用和意义。

首先,它们可以用于修复和治理重金属污染土壤。

这些植物能够将土壤中的重金属离子吸收并富集在地上部分,达到减轻土壤重金属污染程度的目的。

其次,它们可以作为生物指示器来评估土壤中重金属污染的程度和范围。

通过调查和研究重金属超富集植物的分布情况,可以得出土壤中重金属污染的差异和分布规律。

此外,重金属超富集植物还可以作为重金属的生物监测器,用来监测和预警环境中的重金属污染。

重金属富集植物

重金属富集植物

鉴于此,本研究以白音诺尔铅锌矿区自然植物为研究对象,探讨植物重金属富 集机制,并进行适应性物种筛选试验,从中筛选出抗性较强,适应当地生境的优良 品种:以期为铅锌矿山及其它类地区的生态恢复与植被重建提供种质材料与一定的 理论基础。 1.2国内外研究进展 1.2.1 重金属对植物细胞结构的影响 重金属破坏植物细胞超微结构ll】,魏海英12】研究发现,经过Cd,Pb胁迫7天后, 大羽醉叶绿体的外膜破裂甚至完全消失:有的高浓度培养中叶绿体完全解体;线粒 体外膜断裂或消失;细胞核遭到破坏,染色质凝聚,核质解体;在Cd浓度为100mg/kg 时内质网断裂呈片段状同时在Pb的培养液中出现大量黑色颗粒。徐勤松等13,4】发现 Cd、Cr对水花生叶片超微结构的损伤作用表现为叶绿体解体;线粒体峭突膨胀和 空泡化;细胞核变形,染色质凝集和核质解体,核膜破裂。李荣春等15一】对Cd、Pb 及其复合污染对烤烟叶片细胞亚显微结构的影响进行了研究,发现Cd损伤诱变烟 叶叶肉细胞的亚显微结构,具体表现为叶绿体类囊体肿胀或解体,基粒片层紊乱甚 至消失,类囊体空泡化;细胞核出现明显变形,较严重者则表现出核中央出现较大 的空泡,核膜解体,线粒体空泡化。叶绿体含量不断下降,最终导致死亡。 1.2.2植物重金属耐性机理 植物耐性是指植物体内具有的某些特定生理机制,使其能生存于高浓度的重金 属环境中而不被伤害。一般认为,耐性具备金属排斥和金属积累两条基本途径。 2 白音诺尔铅锌矿铅超富集植物筛选及其耐性研究 金属排斥性是指植物将重金属吸收后排出体外,或阻碍重金属在植物体内的运 输。从生物体内将重金属排除,是一种很好的解毒方式,这已在许多试验中得到证 实。Niest7.8】对不同耐性植物的金属离子吸收与代谢关系进行了研究,得出植物原 生质膜能主动排出金属离子。植物还可以通过脱落老叶的方式把体内重金属离子排 出[91。大量的研究认为,有些植物可以将重金属离子大量积累在根部积,减少重金 属离子向地上部分运输,使地上部分免遭伤害,提高了植物的耐性。例如玉米处于 1000 mg/kg铅处理环境,其根部铅含量可高达1043 mg&g,而地上部分为68.8 me./ k一10J。Salt等⋯J报道,重金属胁迫条件下,Indian mustard的根部重金属含量要明显 高于地上部分。也有相关试验结果表明【l 2。,当铅浓度达到400p.g/g时,A.marina根 部可以将铅排出体外,这一过程发生在根的表皮层细胞。 金属积累包括以下几个途径:①与细胞壁结合,植物细胞壁是重金属离子进入 植物体的第一屏障,它能沉淀部分重金属,阻止重金属离子进入细胞原生质,使细 胞原生质内的其他细胞器免受伤害。彭鸣等【13】在电子显微镜下观测到,细胞壁对重 金属有沉淀作用。NishizonotHll987年发现,Athyrium yokoscens.的细胞壁中积累有 大量锌(Zn)、铜(Cu)和镉(cot),含量可达整个细胞总量的70.90%。 ②隔离并贮存在特殊器官中。重金属可以被一些超富集植物贮存在叶片表皮毛 等不影响其正常生长发育的器官中,这样可以避免重金属离子对其叶肉细胞造成直 接伤害Il习。Salt[16】通过Cd处理芥菜(Brassicajuncea)后发现,其叶片表皮毛中Cd含 量是叶片组织高53倍。 1.2.3重金属污染的植物修复技术 关于土地的治理,目前有客土法、石灰改良法、化学淋洗法等【I 71。以上方法在 改良和治理污染土壤方面均有明显效果,然而,实际应用也存在某些局限,如淋洗 法造成营养元素的淋失;客土法费用较高,适用面积很小;沉淀法虽然可以降低土 壤溶液中重金属离子的溶解度,却会导致土壤某些营养元素沉淀,从而降低土壤肥

富集金属的植物

富集金属的植物

与普通植物相比,学术界认为,超富集植物一般应具备4个基本特征:首先,临界含量特征,即植物地上部如茎或叶重金属含量应达到一定的临界含量标准,如锌、锰为10 000毫克/千克;铅、铜、镍、钴、砷均为1 000毫克/千克;镉为100毫克/千克;金为1毫克/千克。

其次,转移特征,即植物地上部重金属含量大于根部重金属含量。

第三,耐性特征,即植物对重金属具有较强的耐性。

其中对于人为控制试验条件下的植物来说,是指试验中与对照相比,植物茎、叶、籽、实等地上部分的干重没有下降。

对于在自然污染状态下生长的植物来说,是指植物的生长从长相来看没有表现出明显的毒害症状。

第四,富集系数特征,即植物地上部富集系数(定义:指某种元素或化合物在生物体内的浓度与其在的环境中的浓度的比值)大于1。

一般来讲,植物体内重金属含量随土壤中含量的增加而提高。

世界上已发现超富集或具有超富集性质的植物多达几百种,涉及十字花科、凤尾蕨科、菊科、景天科、商陆科、堇菜科、禾本科、豆科、大戟科等。

在我国,科研人员已经发现了蜈蚣草、东南景天、龙葵、宝山堇菜、商陆、圆锥南芥、李氏禾等砷、锌、镉、锰、铅、铬等超富集植物,转移系数(translocation factor)是地上部元素的含量与地下部同种元素含量的比值,即:转运系数﹦地上部植物中元素含量/地下部植物中元素含量。

用来评价植物将重金属从地下向地上的运输和富集能力。

转移系数越大,则重金属从根系向地上器官转运能力越强。

滇白前调查,表明其地上部中含Zn、Pb 和Cd 平均为(11 043±3 537)、(1 546±1 044)和(391±196)mg·kg -1 ,富集系数(地上部和土壤金属质量分数之比)分别为0.35、0.08 和1.05,转运系数(地上部和根中金属质量分数之比)均超过1,均值分别为8.21、3.90 和8.36。

野外调查数据表明,滇白前是一种Pb/Zn/Cd 共超富集植物。

生态修复常用水生植物汇总

生态修复常用水生植物汇总
1 重金属修复植物
1.1植物对重金属耐受上限
重金属离子
Hg
Cu
Cd
Zn
Pb
水车前
-
15.4
0.10
4.00
40.3
金鱼藻
1.00
7.80
5.00
-
-
水葫芦
0.06
20.0
5.00
10.0
30.2
荇菜
-
-
0.20
0.50
-
水葱
-
-
30.0
-
-
大薸
-
5.00
10.0
-
-
不同植物对同种重金属的富集能力有所不同,而同种植物对不同重金属的富集能力也不尽相同。表2 重金属富集植物及去除效果汇总
目录
重金属修复植物水生耐污植物当前存在问题
通过生态方式修复河水、净化水质,实现污染水体净化与修复的手段越来越受到普遍关注。因此,寻找高效净化水体的水生植物是生态修复的关键。 水生植物净化水体一方面是能够吸收氮磷供自身生长和代谢使用,另外多种水生植物还有很强的富集重金属的能力。 由于不同的植物对不同的重金属有其不同的耐受限度,故有必要知道其对重金属离子的耐受临界值。表1 部分水生植物对重金属的耐受上限值(mg/L)
72.90;84.43;
鸢尾
50.00,50.40
茭白
67.33;81.53;
旱伞草
CODcr50-60;总P2.47;总N15.13;
75.81;74.98;
香蒲
70.67;84.22;
茭白
82.35;53.52; 藨草 67.0来自;83.70; 香蒲
植物名称

重金属超富集植物特征

重金属超富集植物特征

重金属超富集植物特征
重金属超富集的植物被称为超富集植物。

这些植物具有特定的特征,使其能够从土壤或水体中富集和积累高浓度的重金属。

以下是一些重金属超富集植物的典型特征:
1.高耐受性:超富集植物通常对重金属具有较高的耐受性。

它们可以在高浓度的重金属环境中生存和生长,而不像其
他植物那样受到严重的毒害。

2.快速生长:一些超富集植物具有较快的生长速度,使它们
能够在相对较短的时间内富集大量的重金属。

3.高生物量:超富集植物通常具有高的生物量,这意味着它
们可以从土壤或水体中吸收和积累更多的重金属。

4.深根系:一些超富集植物具有发达的根系系统,可以在土
壤深处或含重金属较高的土层中吸收和富集重金属。

5.重金属转运机制:超富集植物具有特殊的吸收和转运机制,
使其能够高效地吸收和积累重金属。

这可能包括根壁或细
胞壁的特殊结构,以及活性转运蛋白等。

6.积累器官:超富集植物通常将重金属集中存储在特定的器
官中,如根系、茎和叶片等。

这些器官在植物体内形成重
金属富集的主要部位。

超富集植物对于修复和治理重金属污染的环境具有重要意义。

它们可以用于吸收和富集土壤和水体中的重金属,然后通过采集或收获来移除重金属。

此外,超富集植物还可以在生物矿化、
矿物富集和零废弃物农业等领域中发挥作用。

然而,在使用超富集植物进行重金属修复时,要注意潜在的环境影响和安全问题,并进行合适的监测和管理。

重金属超积累植物定义_解释说明以及概述

重金属超积累植物定义_解释说明以及概述

重金属超积累植物定义解释说明以及概述1. 引言1.1 概述重金属超积累植物是指具有高浓度吸收和富集土壤中重金属元素的植物。

通过其特殊的生理和分子机制,这些植物能够在含有较高重金属浓度的土壤中存活并大量吸收重金属元素,从而实现对环境中重金属污染物质的修复和减少。

1.2 文章结构本文将分为五个部分进行探讨。

首先,在引言部分,我们将对重金属超积累植物进行定义、解释说明以及概述。

然后,在第二部分,我们将详细介绍重金属超积累植物的基本概念、分类标准以及与环境污染之间的关系。

接着,在第三部分,我们将深入研究重金属超积累植物的特征和机制,并探讨其与土壤的相互作用。

在第四部分,我们将分析重金属超积累植物在环境修复中的应用案例,并展望其未来发展方向与应用前景。

最后,在结论部分,我们将总结重要观点,并探讨重金属超积累植物研究的意义、启示以及未来的研究方向建议。

1.3 目的本文的目的是全面阐述和解释重金属超积累植物的定义、特征、机制以及在环境修复中的应用。

通过深入研究重金属超积累植物,我们旨在增加对这一领域知识的理解,并为环境修复提供新的思路和方法。

此外,本文也希望能够引起读者对于重金属污染问题关注,并为未来相关研究提供有益信息与启示。

2. 重金属超积累植物定义2.1 重金属超积累植物的基本概念重金属超积累植物是指可以在其组织中富集和累积异常高水平的重金属元素而不受毒性影响的植物。

相比于普通植物,重金属超积累植物能够耐受并吸收土壤中较高浓度的重金属污染物质,从而使其在环境修复和污染检测领域具有广泛应用前景。

2.2 重金属超积累植物的分类标准根据实际观察和研究,科学家们将重金属超积累植物分为三类:1) 超级富集型(excluder),这类植物一般能够吸收大量土壤中的重金属,并将其富集在根部;2) 超级转运型(hyperaccumulator),这类植物除了吸收大量土壤中的重金属外,还能将其富集到地上部位达到显著水平;3) 约化型(pseudo-accumulator),这类植物具有一定程度上的重金属富集能力,但不如超级转运型植物显著。

植物种对重金属的超富集状况

植物种对重金属的超富集状况

植物种对重金属的超富集状况哎呀,今天咱们聊聊一个有趣又重要的话题,那就是植物怎么能把重金属给吸收得那么厉害。

说到重金属,大家肯定会想到铅、镉、砷这些看上去就让人毛骨悚然的东西。

可是,咱们的植物们却像是吃了什么特别的东西,竟然能把这些东西吸得干干净净,真的是太神奇了。

你想啊,重金属可不是小角色,它们藏在土壤里、空气中,随处可见。

没办法,工业化的发展总会带来一些烦人的问题。

这些重金属可不是普通的土壤污染物,它们就像是那种你试图甩掉的坏习惯,总是黏着你。

不过,嘿,植物们似乎找到了应对的办法。

它们居然能把这些有害物质转化成自己的“营养”,就像变魔术一样。

咱们就得提到一些超厉害的植物,它们被称为“超富集植物”。

这名字听起来就像是某个超级英雄的代号,实际上它们真的有超级能力。

比如,水葫芦和某些类型的草本植物,真的是把重金属吸收得炉火纯青。

就像超市打折时抢购特价商品一样,它们对重金属的偏爱简直让人瞠目结舌。

你可别以为这只是植物的“兴趣爱好”,这可是为了生存!植物通过根系吸收土壤中的营养物质,然而当营养中夹杂着重金属时,它们就变得特别“挑剔”。

那些富集的植物简直像是个“专业清理队”,它们把那些重金属当成了自家的“拿手菜”。

这样一来,土壤就能慢慢恢复健康,环境也变得清新不少。

不过,话说回来,植物虽然厉害,但它们吸收了重金属之后可不是说就能随便吃的。

你要知道,这些重金属一旦被植物吸收,就可能会累积在它们的叶子、茎或者根里。

真是“好心办坏事”,为了净化环境,结果可能还会造成新的污染。

咱们常说“搬起石头砸自己的脚”,这话可真没错。

咱们还得注意,重金属对植物的影响可不是轻轻松松就能忽视的。

有些植物在吸收了重金属后,生长就会变得缓慢,甚至停止。

这就像你心情不好时,连吃饭都没胃口,一下子就无精打采了。

更有甚者,重金属还可能引发植物的“病痛”,就像人得了重病一样,根本无法正常生长。

可见,这种超富集可不是说吸就能吸的。

咱们不能光指望植物来解决这些问题,还是得从源头下手。

重金属超富集植物及植物修复技术研究进展

重金属超富集植物及植物修复技术研究进展

重金属超富集植物及植物修复技术研究进展一、本文概述随着工业化和城市化的快速发展,重金属污染已成为全球范围内日益严重的环境问题。

重金属元素因其持久性、生物累积性和毒性,对生态环境和人类健康构成了严重威胁。

因此,探索有效的重金属污染治理和修复技术显得尤为迫切。

重金属超富集植物及其植物修复技术作为一种绿色、环保的修复方式,近年来受到了广泛关注和研究。

本文旨在概述重金属超富集植物的特征、筛选方法,以及植物修复技术的原理、应用和最新研究进展,以期为重金属污染土壤和水体的生态修复提供理论支持和实践指导。

二、重金属超富集植物概述重金属超富集植物(Heavy Metal Hyperaccumulator)是一类能在重金属污染环境中生长,并且体内重金属含量显著超过一般植物的植物种类。

这些植物通过特殊的生理机制和生物化学过程,能够在体内积累大量的重金属元素,如铜、锌、铅、镉、镍、钴等,而不会受到明显的毒害。

因此,它们对于修复重金属污染土壤和水体具有重要的应用潜力。

重金属超富集植物的特点主要包括:一是能在重金属含量较高的环境中正常生长,甚至在这些环境中表现出优于其他植物的生长特性;二是植物体内重金属含量远超一般植物,通常是普通植物的几十倍甚至几百倍;三是这些植物对重金属的积累具有选择性,即某种植物可能只对某一种或几种重金属具有较强的积累能力。

重金属超富集植物的发现和研究始于20世纪70年代,随着环境污染问题的日益严重,这一领域的研究逐渐受到重视。

全球范围内已经发现了数百种重金属超富集植物,其中包括一些著名的种类,如铜草(Thlaspi caerulescens)、东南景天(Sedum alfredii)、镍豆(Alyssum bertolonii)等。

这些植物主要分布在矿区、冶炼厂等重金属污染较为严重的地区。

重金属超富集植物在植物修复技术中发挥着核心作用。

通过种植这些植物,可以有效地将土壤或水体中的重金属元素吸收并固定在植物体内,从而降低环境中重金属的含量。

重金属超富集植物特征

重金属超富集植物特征

重金属超富集植物特征
重金属超富集植物是指能够在含有高浓度重金属的环境中生长,
并且能够将重金属从土壤中富集到其体内的植物。

这些植物通常具有
一些特征,包括:
1. 重金属耐受性:重金属超富集植物通常能够在高浓度重金属
污染土壤中存活和繁衍。

它们可以耐受高浓度的重金属离子,例如镉、铅、铜等。

2. 快速生长:这些植物通常具有较快的生长速率,能够在恶劣
的环境下迅速生长和扩散。

这使得它们能够吸收更多的重金属。

3. 强大的根系系统:重金属超富集植物通常具有发达和分布广
泛的根系系统,这有助于它们从土壤中吸收更多的重金属。

4. 多毛和多层次叶片:一些重金属超富集植物具有多毛的叶片
表面,这有助于吸附和存储重金属。

其他植物可能具有多层次的叶片
结构,可以增加吸收重金属的表面积。

5. 积累和转运能力:这些植物通常能够在其根系、茎和叶片中
积累大量的重金属。

它们通常具有特殊的转运通路和机制,将重金属
从根部吸收并转运到其他部位。

6. 高扩散能力:重金属超富集植物通常能够通过茎、叶和花朵
等部位释放和散布其体内积累的重金属。

这可以减轻植物自身的重金
属负担,同时对环境中的重金属进行去除和散布。

需要注意的是,重金属超富集植物不一定都具有以上所有特征,
不同的植物可能具有不同的特征组合。

此外,由于重金属对植物生长
和发育的不利影响,过量积累重金属的植物可能会出现形态畸变、生
理障碍等现象。

全世界已发现的重金属超富集植物有500多种

全世界已发现的重金属超富集植物有500多种

全世界已发现的重金属超富集植物有500多种,其中360多种是Ni的超富集植物。

韦朝阳,陈同斌等[16]通过野外调查和栽培实验,发现了砷超富集植物蜈蚣草。

其叶片含As可达5070 mg/kg,在含砷9 m g/kg的正常土壤中,蜈蚣草地下部和地上部对砷的生物富集系数分别高达71和80。

韦朝阳等[17]发现了另一种As的超富集植物大叶井口边草,其地上部分平均含As量为418 mg/kg,最大含As量可达694 mg/kg,生物富集系数为1.3~4.8。

杨肖娥、龙新宪等[18]发现了一种新的Zn的超富集植物东南景天,天然条件下东南景天的地上部分Zn平均含量为4515 mg/kg。

营养液培养试验表明,其地上部分含量最高值可达19674 mg/kg。

李华和姜理英[19]等研究了耐性植物海洲香薷对Cu的吸收和积累,指出虽然地上部分Cu积累水平未达到超富集植物的要求,但由于其生物量大,根系能超富集Cu,植株Cu总积累较高,可考虑将其用于Cu污染土壤的植物修复。

李红艳等[20]报道菊科植物艾蒿和滨蒿对Cu 也表现出高的富集能力,其中艾蒿地上部分的Cu含量为91-698 mg/kg,滨蒿为42~259 mg/kg。

范稚莲,莫良玉[21]在对典型矿区进行调查后发现,生长在锰矿区的狗牙根,香附子和菜蕨中Mn的含量分别达到27514,16144和11516 mg/kg,相应的富集系数为11.4,6.7和4.8。

这3种植物均达到Mn超富集植物的相关标准,是潜在的Mn 超富集植物。

柯文山等在温室砂培盆栽条件下对十字花科芸薹属5种植物芥菜,芥兰,鲁白,竹芥,甘蓝进行铅吸收和耐性的研究,认为鲁白,芥菜不仅生长快,生物量高,且其地上铅的含量超过1000 mg/kg,迁移总量和迁移率都很高,是很好的潜在修复铅污染的材料。

近期对Pb富集植物品种的筛选的研究还有,聂俊华等对生长于铅锌尾矿区的36种植物进行了筛选,以叶片叶绿素含量,株高,植株含Pb量为Pb富集植物的筛选指标进行实验筛选。

中国镉超富集植物的物种、生境特征和筛选建议

中国镉超富集植物的物种、生境特征和筛选建议

中国镉超富集植物的物种、生境特征和筛选建议
镉是一种有毒重金属,对人体健康和生态环境造成严重危害。

为了减少镉污染,科学家们一直在寻找能够高效吸收和积累镉的植物。

在中国,已经发现了一些具有超富集镉能力的植物,这些植物在修复镉污染土壤方面具有重要应用价值。

1. 物种:中国镉超富集植物主要包括:水生植物如芦苇、香蒲等;陆生植物如水稻、小麦、玉米等。

其中,芦苇是最具代表性的镉超富集植物之一,其对镉的吸收能力远高于其他植物。

2. 生境特征:镉超富集植物通常生长在镉污染严重的地区,如矿区、冶炼厂周边等。

这些地区的土壤中镉含量较高,但其他营养物质相对较少。

因此,镉超富集植物具有较强的适应性和生存能力。

3. 筛选建议:为了提高镉超富集植物在修复镉污染土壤中的应用效果,可以从以下几个方面进行筛选:
(1)选择生长速度快、生物量大的植物,以提高修复效率。

(2)选择对镉吸收能力强、耐镉性高的植物,以保证其在高浓度镉污染土壤中的存活和生长。

(3)选择对其他重金属也具有超富集能力的植物,以实现多种重金属污染土壤的修复。

(4)选择易于种植和管理的植物,以降低修复成本。

总之,中国镉超富集植物在修复镉污染土壤方面具有巨大潜力。

通过科学合理地筛选和利用这些植物,有望为解决我国重金属污染问题提供有效途径。

超积累植物名词解释

超积累植物名词解释

"超积累植物"是指一类能够在其组织中富集并高效吸收金属离子的植物。

这些植物通过其根系、茎、叶等组织,可以吸收土壤或水域中的金属元素,将其转化为可见的形态并在体内富集存储。

超积累植物对环境中的金属污染具有一定的修复作用,因此在植物修复技术和生态修复领域具有重要的应用价值。

超积累植物通常被用于修复受到重金属污染的土壤或水域环境。

它们可以通过吸收、富集和转运重金属元素,减少土壤或水域中的金属污染物浓度,从而改善受到污染的环境。

此外,超积累植物还可以作为一种生物监测工具,用于检测和监测环境中的重金属元素含量。

超积累植物的发现和利用为环境修复和生态保护提供了新的途径和方法,对于处理金属污染土壤、矿区废弃地和废水具有潜在的应用前景。

然而,需要注意的是,超积累植物本身也可能存在一定的风险,因为它们在吸收金属的过程中可能会积累大量的有毒物质,需谨慎处理以避免二次污染。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与普通植物相比,学术界认为,超富集植物一般应具备4个基本特征:首先,临界含量特征,即植物地上部如茎或叶重金属含量应达到一定的临界含量标准,如锌、锰为10 000毫克/千克;铅、铜、镍、钴、砷均为1 000毫克/千克;镉为100毫克/千克;金为1毫克/千克。

其次,转移特征,即植物地上部重金属含量大于根部重金属含量。

第三,耐性特征,即植物对重金属具有较强的耐性。

其中对于人为控制试验条件下的植物来说,是指试验中与对照相比,植物茎、叶、籽、实等地上部分的干重没有下降。

对于在自然污染状态下生长的植物来说,是指植物的生长从长相来看没有表现出明显的毒害症状。

第四,富集系数特征,即植物地上部富集系数(定义:指某种元素或化合物在生物体内的浓度与其在的环境中的浓度的比值)大于1。

一般来讲,植物体内重金属含量随土壤中含量的增加而提高。

世界上已发现超富集或具有超富集性质的植物多达几百种,涉及十字花科、凤尾蕨科、菊科、景天科、商陆科、堇菜科、禾本科、豆科、大戟科等。

在我国,科研人员已经发现了蜈蚣草、东南景天、龙葵、宝山堇菜、商陆、圆锥南芥、李氏禾等砷、锌、镉、锰、铅、铬等超富集植物,转移系数(translocation factor)是地上部元素的含量与地下部同种元素含量的比值,即:转运系数﹦地上部植物中元素含量/地下部植物中元素含量。

用来评价植物将重金属从地下向地上的运输和富集能力。

转移系数越大,则重金属从根系向地上器官转运能力越强。

滇白前调查,表明其地上部中含Zn、Pb 和Cd 平均为(11 043±3 537)、(1 546±1 044)和(391±196)mg·kg -1 ,富集系数(地上部和土壤金属质量分数之比)分别为0.35、0.08 和1.05,转运系数(地上部和根中金属质量分数之比)均超过1,均值分别为8.21、3.90 和8.36。

野外调查数据表明,滇白前是一种Pb/Zn/Cd 共超富集植物。

滇白前对Zn、Pb 富集系数小于1,主要是由于其对应土壤中Zn、Pb 质量分数太高(平均分别为(45 778±32 819)、(22 512±13 613)mg·kg -1 )所致。

李氏禾李氏禾(Leersia Hexandra Swartz)是中国境内发现的第一种铬超富集植物.通过水培实验,评价了李氏禾对水中Cr、Cu、Ni的去除潜力.结果表明,李氏禾能够有效去除水体中的Cr、Cu、Ni污染物,重金属初始浓度分别为10和20 mg·L-1的营养液,10 d后Cr浓度降低到原子吸收分光光度法检出限以下,10 d后Cu浓度降低到1.02 mg·L-1和1.25 mg·L-1,20 d后Ni浓度降低到1.10和2.14mg·L-1.收获的植物根、茎、叶中重金属含量均较高,根中重金属含量显著高于茎、叶.单株生物量的比较结果表明,含Cr培养液中生长的李氏禾生物量与对照相比无显著减少(P>0.05),含Cu、Ni营养液中生长的李氏禾生物量均显著低于对照(P<0.05),表明李氏禾对Cr的耐性强于Cu和Ni.李氏禾适宜于湿生环境中生长,能对多种重金属产生大量富集,对Cr、Cu、Ni等重金属污染水体的修复表现出较强的潜力.宝山堇菜通过野外调查和温室试验,发现并证实宝山堇菜(Viola baoshanensis)是一种Cd 超富集植物.自然条件下,宝山堇菜地上部Cd平均含量为1168 mg/kg,变化范围为465~2310 mg/kg;地下部Cd平均含量为981 mg/kg,变化范围为233~1846 mg/kg.地上与地下部Cd含量比值变化范围0.41~2.22,平均为1.32.Cd生物富集系数变化范围为0.7~5.2,平均为2.38.营养液培养试验研究表明,宝山堇菜地上部Cd含量随生长介质中Cd浓度的增加而呈线性增加.营养液Cd浓度为50 mg/L时,地上部Cd平均含量达到4825 mg/kg,在Cd浓度为30 mg/L时,生物量达到最大值;地上与地下部Cd含量的比值变化范围为1.14~2.22,平均为1.67,显示宝山堇菜不仅可以超量吸收Cd,而且可以从地下向地上部有效输送.宝山堇菜的发现将为Cd超富集植物的生理、生化、遗传和进化及其在Cd污染土壤修复方面的研究提供新的重要材料.圆锥南芥随着Cd添加浓度的增加,圆锥南芥的生物量、叶片数、直径长以及Cd含量均呈增加趋势.Cd 添加浓度为240mg kg-1时,生物量增加了137%,叶片数增加了1.02倍,直径较对照增加了130%,叶片中Cd含量达到451mg kg-1.NO3--N和NH4+-N呈先降低后升高的变化趋势,在Cd 浓度为240mg kg-1时,达最大值东南景天形态特征多年生草本;茎基部横卧,着地生根;花茎高10-20厘米,有分枝;叶互生,下部叶常脱落,条状楔形、匙形至匙状倒卵形,长1.2-3厘米,顶端钝,有时微缺,基部狭楔形,有距;蝎尾状聚伞花序花多,苞片似叶而小;花无梗,直径1厘米;萼片条状匙形,不等长,基部有距;花瓣黄山;鳞片5,匙状正方形,长1-2毫米,顶端钝截形;心皮5,卵状披针形,直立,基部合生;骨突果斜叉开。

环境作用东南景天是近年在浙江衢州、湖南郴州古老的铅锌矿区发现的一种锌、镉、铅超积累植物,能将镉、锌、铅等较多地吸收到植株的地上部,有效减轻土壤重金属污染。

东南景天不仅对土壤过量的锌、镉、铅具有强忍耐能力和超积累特性,并具有多年生、无性繁殖、生物量较大及适于刈割的特点。

同时,它适应性强,耐瘠薄、干旱及强光等恶劣生境,观赏性强,是实施植物修复与生态绿化的优良植物。

以下列举了一些常见的可作修复重金属元素污染的超富集植物。

这种植物具有很强的超富集能力,其叶片含碘量可达千分之八,能够抵受含碘量为3%的受污染环境。

它的富集能力随着生长发育不断增强,超富集特性还可以遗传给下一代。

在我国南方的湖南、广西等地大面积存在,其生长旺盛,个体高大。

紫茬苜蓿对铅有很强的富集能力,其根、茎、叶的富集能力依次为根〉茎〉叶,紫茬苜蓿的生物量很高,可大面积种植。

芥(gai)菜不仅可吸收铅,也可吸收并积累铬、镉、镍、锌和铜等重金属元素,春天时在野外大面积生长,是一种野生植物。

凤眼莲素称水葫芦,是一种浮生植物,每公顷凤眼莲 1 天可从污水中吸收银1。

25 千克,吸收金、铅、镍、镉、汞等有毒金属2。

175 千克。

除了以上这些植物,一些其它的水生和沼生植物如水浮莲、水风信子、菱角、芦苇和蒲草等都能从污水中吸收金、银、汞等多种总金属元素。

地榆达到对Cd、Cu具有超富集能力,其富集系数分别为1.78和1.06;苦荬菜对Cd、Zn的富集系数分别为2.76和1.37;白花败酱对Cd和Pb的富集系数分别为1.18和1.13。

种群爆发种群爆发(Population outbreaks ),是指动物密度比平常显著增加的现象。

合适的气候条件和食物条件、天敌控制的解除、种群内部机制等常为爆发的原因。

多种农作物害虫、森林害虫都具有突然爆发的特征,一旦发生,如果控制措施跟不上就会形成严重虫灾。

像红蜘蛛、蝗虫、松毛虫等都可能经过相当时间低密度期以后,在某一特别有利的时间突然大爆发,造成大面积虫害。

大面积单一种植易于引起虫害大爆发。

农药的滥用造成天敌减少以后也容易引起害虫大爆发。

植物也有形成严重危害的例如,贯叶金丝桃,多年生有毒杂草,欧亚大陆.1904年被带入美国加洲北部,到1944年,扩展到80万公顷.1967年,新疆北部农区小家鼠种群大发生,波及3个专区10多个县,粮食损失达1.5亿kg.小家鼠有特别强大的生殖潜能,但其潜能的发挥受到其自身种群密度和多种环境因素的制约。

种群密度的改变可导致个体极显著的生理变化和行为改变,在高密度的种群中,观察到肾上腺皮质增生,幼体胸腺萎缩和雌雄个体生殖腺的萎缩,表现出繁殖受到强烈的抑制。

加上气候、农业收成和疾病的影响,使得小家鼠种群动态十分复杂多变。

在个别年份,其数量可猛增千倍左右。

如新疆天山北麓于1967年,伊犁谷地于1970年,都曾发生过小家鼠的大暴发,造成极大的危害。

小家鼠数量的年间变化幅度也很大,并无一定周期,但并非没有规律。

如在高数量年后,一般紧接着一个或几个低数量年,而且前一年数量越高,随后的数量越低,影响越久。

根据其数量水平和危害特点,可将小家鼠的数量分为大暴发年、小暴发年、中暴发年和低数量年。

.(1)数量高各主要栖息地捕获率均超过50%。

由于夹日法的固有缺点,不能反映高密度种群的数量,所以其实际密度更高。

(2)发生早,持续期长,消退急骤两大暴发年5月份鼠密度很高,6~10月份成群危害,到下第一场雪时则突然消失。

(3)行为改变集结流窜,白天也活动,无所不食。

(4)危害烈,破坏力特强可以成片毁灭庄稼,咬毁室内各种物品,酿成地区性特大灾害。

(5)鼠个体趋小,抗逆性变弱数量中常年份小家鼠平均体重17.2g,每千克58只,大暴发年平均体重不足14g,每千克72只。

中常年份雪后小家鼠仍很活跃,在野外也能保持相当数量,大暴发年的头场雪后鼠群骤逝,表明其耐寒性极弱。

(6)生理改变生殖腺萎缩,10月上旬即全部停止繁殖,雌成鼠无一怀孕。

(7)种群崩溃大暴发后次年种群数量必降至最低点,即种群“爆炸”以后出现“崩溃”现象。

1957年,索马里蝗灾,蝗虫约160亿只,总重5万吨. 2001-2002年,锡盟发生蝗灾,造成严重损失蝗虫属直翅目,昆虫纲、蝗科。

虫体一般绿色或黄褐色。

咀嚼式口器。

后足大,适于跳跃。

不完全变态,幼虫称为“蝻”,主要以禾本科植物为食。

蝗虫种类很多,世界上共有1万余种,我国有300余种,如飞蝗、稻蝗、竹蝗,意大利蝗、蔗蝗、棉蝗等。

蝗虫是农林业的主要害虫。

人类很早就注意到严重的蝗灾往往和严重旱灾相伴而生。

我国古书上就有“旱极而蝗”的记载。

近几年来非洲几次大蝗灾也都与当地的严重干旱相联系。

造成这一现象的主要原因是,蝗虫是一种喜欢温暖干燥的昆虫,干旱的环境对它们繁殖、生长发育和存活有许多益处。

因为蝗虫将卵产在土壤中,土壤比较坚实,含水量在10%~20%时最适合它们产卵。

干旱使蝗虫大量繁殖,迅速生长,酿成灾害的缘由有两方面。

一方面,在干旱年份,由于水位下降,土壤变得比较坚实,含水量降低,且地面植被稀疏,蝗虫产卵数量大为增加,多的时候可达每平方米土中产卵4000~5000个卵块,每个卵块中有50~80粒卵,即每平方米有20万~40万粒卵。

同时,在干旱年份,河、湖水面缩小,低洼地裸露,也为蝗虫提供了更多适合产卵的场所。

另一方面,干旱环境生长的植物含水量较低,蝗虫以此为食,生长的较快,而且生殖力较高。

相反,多雨和阴湿环境对蝗虫的繁衍有许多不利影响。

相关文档
最新文档