(物理)物理万有引力定律的应用练习题含答案含解析

合集下载

高考物理-万有引力定律-专题练习(一)(含答案与解析)

高考物理-万有引力定律-专题练习(一)(含答案与解析)

高考物理专题练习(一)万有引力定律1.(多选)中俄联合火星探测器,2009年10月出发,经过3.5亿公里的漫长飞行,在2010年8月29日抵达了火星。

双方确定对火星及其卫星“火卫一”进行探测。

火卫一在火星赤道正上方运行,与火星中心的距离为9 450 km ,绕火星1周需7 h39 min 。

若其运行轨道可看作圆形轨道,万有引力常量为1122G 6.6710Nm /kg -=⨯,则由以上信息能确定的物理量是( )A .火卫一的质量B .火星的质量C .火卫一的绕行速度D .火卫一的向心加速度2.(多选)经长期观测人们在宇宙中已经发现了“双星系统”。

“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体。

如图,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做匀速圆周运动。

现测得两颗星之间的距离为L ,质量之比为12:3:2=m m ,则可知( )A .1m 、2m 做圆周运动的角速度之比为2:3B .1m 、2m 做圆周运动的线速度之比为3:2C .1m 做圆周运动的半径为2L /5D .1m 、2m 做圆周运动的向心力大小相等3.2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。

10月19日凌晨,神舟十一号飞船与天宫二号自动交会对接成功,对接时的轨道高度是393公里,比神舟十号与天宫一号对接时的轨道高了50公里,这与未来空间站的轨道高度基本相同,为我国载人航天发展战略的第三步——建造空间站做好了准备。

下列说法正确的是( )A .在近圆形轨道上运行时天宫一号的周期比天宫二号的长B .在近圆形轨道上运行时天宫一号的加速度比天宫二号的小C .天宫二号由椭圆形轨道进入近圆形轨道需要减速D .交会对接前神舟十一号的运行轨道要低于天宫二号的运行轨道4.【2017·天津市五区县高三上学期期末考试】2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。

高中物理万有引力定律的应用题20套(带答案)含解析

高中物理万有引力定律的应用题20套(带答案)含解析

高中物理万有引力定律的应用题20套(带答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用2.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。

若近似认为月球绕地球作匀速圆周运动,地球绕太阳也作匀速圆周运动,它们的绕行方向一致且轨道在同一平面内。

(1)已知地球表面处的重力加速度为g ,地球半径为R ,月心地心间的距离为r ,求月球绕地球一周的时间T m ;(2)如图是相继两次满月时,月球、地球和太阳相对位置的示意图。

已知月球绕地球运动一周的时间T m =27.4d ,地球绕太阳运动的周期T e =365d ,求地球上的观察者相继两次看到满月满月的时间间隔t 。

【答案】(1) 322m r T gR= (2)29.6 【解析】 【详解】(1)设地球的质量为M ,月球的质量为m ,地球对月球的万有引力提供月球的向心力,则222m MmG mr r T π⎛⎫=⋅ ⎪⎝⎭地球表面的物体受到的万有引力约等于重力,则02GMm m g R= 解得 322m r T gRπ= (2)相继两次满月有,月球绕地心转过的弧度比地球绕日心转过的弧度多2π,即2m e t t ωπω=+而2m mT πω=2e eT πω=解得 29.6t =天3.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R 1,周期为T 1,已知万有引力常量为G 。

万有引力定律的应用练习题含答案及解析

万有引力定律的应用练习题含答案及解析

万有引力定律的应用练习题含答案及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m的物体P置于弹簧上端,用力压到弹簧形变量为3x0处后由静止释放,从释放点上升的最大高度为4.5x0,上升过程中物体P的加速度a与弹簧的压缩量x间的关系如图中实线所示。

若在另一星球N上把完全相同的弹簧竖直固定在水平桌面上,将物体Q在弹簧上端点由静止释放,物体Q的加速度a与弹簧的压缩量x间的关系如图中虚线所示。

两星球可视为质量分布均匀的球体,星球N半径为地球半径的3倍。

忽略两星球的自转,图中两条图线与横、纵坐标轴交点坐标为已知量。

求:(1)地球表面和星球N 表面重力加速度之比; (2)地球和星球N 的质量比;(3)在星球N 上,物体Q 向下运动过程中的最大速度。

【答案】(1)2:1(2)2:9(3)0032v a x = 【解析】 【详解】(1)由图象可知,地球表面处的重力加速度为 g 1=a 0 星球N 表面处的重力加速度为 g 2=00.5a 则地球表面和星球N 表面重力加速度之比为2∶1 (2)在星球表面,有2GMmmg R = 其中,M 表示星球的质量,g 表示星球表面的重力加速度,R 表示星球的半径。

则M =2gR G因此,地球和星球N 的质量比为2∶9(3)设物体Q 的质量为m 2,弹簧的劲度系数为k 物体的加速度为0时,对物体P :mg 1=k·x 0对物体Q :m 2g 2=k ·3x 0联立解得:m 2=6m在地球上,物体P 运动的初始位置处,弹簧的弹性势能设为E p ,整个上升过程中,弹簧和物体P 组成的系统机械能守恒。

物理万有引力定律的应用题20套(带答案)

物理万有引力定律的应用题20套(带答案)

mg
对于嫦娥三号由万有引力等于向心力:
联立可得:
GMm r2
m4 T2
2r
g
4 2r3 T 2R2
(3)第一宇宙速度为沿月表运动的速度:
GMm mg mv2
R2
R
可得月球的第一宇宙速度:
v
gR
4 2r3 T 2R
9.2019 年 4 月 20 日 22 时 41 分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成 功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为 r 的匀速圆周运动。卫星的 质量为 m,地球的半径为 R,地球表面的重力加速度大小为 g,不计地球自转的影响。 求:
4 (4000 103 )2 6.67 1011
kg
11024 kg
6.2018 年 11 月,我国成功发射第 41 颗北斗导航卫星,被称为“最强北斗”。这颗卫星是 地球同步卫星,其运行周期与地球的自转周期 T 相同。已知地球的 半径为 R,地球表面的 重力加速度为 g,求该卫星的轨道半径 r。
(1)A 星体所受合力的大小 FA; (2)B 星体所受合力的大小 FB; (3)C 星体的轨道半径 RC; (4)三星体做圆周运动的周期 T.
【答案】(1) 2
Gm2 3
a2
(2)
7Gm2 a2
(3) 7 a (4)T π 4
a3 Gm
【解析】
【分析】
【详解】
(1)由万有引力定律,A 星体所受 B、C 星体引力大小为
则合力大小为
FR 4
G
mAmB r2
G
2m2 a2
FCA ,
FA 2
3G
m2 a2
(2)同上,B 星体所受 A、C 星体引力大小分别为

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34gGRρπ=(2)v =h R = 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =, 地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()()2224MmGm R h TR h π=++,解得:h R =2.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F始终与斜面平行.如果物块和斜面间的摩擦因数3μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】 【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G2MmR=mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1=gR =6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度. 【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.3.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R 1,周期为T 1,已知万有引力常量为G 。

人教版高一物理必修二 6.3 万有引力定律(含解析)

人教版高一物理必修二 6.3 万有引力定律(含解析)

人教版高一物理必修二 6.3万有引力定律(含解析)人教版高一物理必修二第六章第三节6.3万有引力定律(含解析)一、单选题1.有关物理学史,以下说法正确的是( )A.伽利略首创了将实验和逻辑推理相结合的物理学研究方法B.卡文迪许通过库仑扭秤实验总结出点电荷相互作用规律C.法拉第不仅发现电磁感应现象,而且还总结出了电磁感应定律D.开普勒在天文观测数据的基础上,总结出行星运动的规律并发现了万有引力定律【答案】A【解析】伽利略首创了将实验和逻辑推理相结合的物理学研究方法,选项A正确;库伦通过库仑扭秤实验总结出点电荷相互作用规律,选项B错误;法拉第发现了电磁感应现象,但没有总结出了电磁感应定律,是韦伯和纽曼发现了电磁感应定律,故C错误;开普勒在天文观测数据的基础上,总结出行星运动的规律,牛顿发现了万有引力定律,选项D错误;故选A.2.2018年9月7日将发生海王星冲日现象,海王星冲日是指海王星、地球和太阳几乎排列成一线,地球位于太阳与海王星之间。

此时海王星被太阳照亮的一面完全朝向地球,所以明亮而易于观察。

地球和海王星绕太阳公转的方向相同,轨迹都可近似为圆,地球一年绕太阳一周,海王星约164.8年绕太阳一周。

则A.地球的公转轨道半径比海王星的公转轨道半径大B.地球的运行速度比海王星的运行速度小C.2019年不会出现海王星冲日现象D.2017年出现过海王星冲日现象【答案】D【解析】地球的公转周期比海王星的公转周期小,根据万有引力提供向心力1 / 122224Mm G m r r T π=,可得:2T =可知地球的公转轨道半径比海王星的公转轨道半径小,故A 错误;根据万有引力提供向心力,有22Mm v G m r r=,解得:v =可知海王星的运行速度比地球的小,故B 错误; T 地=1年,则T 木=164.8年,由(ω地-ω木)·t =2π,可得距下一次海王星冲日所需时间为: 2 1.01-t πωω=≈地火年,故C 错误、D 正确。

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224T π① 2Mm G r '=m′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin Rr )T 考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.3.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v =- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用4.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期.【答案】(1) R=m M M +L, r=m Mm+L,(2)()3L G M m +【解析】(1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+两星做圆周运动时的向心力由万有引力提供,则有:2222244mM G mR Mr L T Tππ==可得 R Mr m=,又因为L R r =+ 所以可以解得:M R L M m =+,mr L M m=+; (2)根据(1)可以得到:2222244mM MG m R m L L T T M m ππ==⋅+则:2T == 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径.5.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。

万有引力习题及答案

万有引力习题及答案

【典型例题】例1、海王星的公转周期约为5.19×109s,地球的公转周期为3.16×107s,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍?例2、有一颗太阳的小行星,质量是1.0×1021kg,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。

例3、16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个观点,这四个论点目前看存在缺陷的是()A、宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动。

B、地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动。

C、天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象。

D、与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多。

例4.假设已知月球绕地球做匀速圆周运动,万有引力提供向心力,假如地球对月球的万有引力突然消失,则月球的运动情况如何?若地球对月球的万有引力突然增加或减少,月球又如何运动呢?【针对训练】1、某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球轨道半径的1/3则此卫星运行的周期大约是:()A.1-4天之间 B.4-8天之间 C.8-16天之间 D.16-20天之间2、两行星运行周期之比为1:2,其运行轨道的半长轴之比为:()A.1/2B.C.D.3、地球到太阳的距离是水星到太阳距离的2.6倍,那么地球和水星绕太阳运转的线速度之比是多少?(设地球和水星绕太阳运转的轨道是圆轨道)4.关于日心说被人们所接受的原因是()A.以地球为中心来研究天体的运动有很多无法解决的问题B.以太阳为中心,许多问题都可以解决,行星的运动的描述也变得简单了C.地球是围绕太阳转的 D.太阳总是从东面升起从西面落下5、考察太阳M的卫星甲和地球m(m<M)的卫星乙,甲到太阳中心的距离为r1,乙到地球中心的距离为r2,若甲和乙的周期相同,则:()A、r1>r2B、r1<r2C、r1=r2D、无法比较6、设月球绕地球运动的周期为27天,则地球的同步卫星到地球中心的距离r与月球中心到地球中心的距离R之比r/R为()A. 1/3B. 1/9C. 1/27D. 1/18【能力训练】1、关于公式R3 / T2=k,下列说法中正确的是()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k 值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错2、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A. 1:27B. 1:9C. 1:3D. 9:13、两颗小行星都绕太阳做圆周运动,它们的周期分别是T和3T,则()A、它们绕太阳运转的轨道半径之比是1:3B、它们绕太阳运转的轨道半径之比是1:C、它们绕太阳运转的速度之比是:1:4D、它们受太阳的引力之比是9:74、开普勒关于行星运动规律的表达式为,以下理解正确的是()A.k是一个与行星无关的常量B.R代表行星运动的轨道半径C.T代表行星运动的自传周期D.T代表行星绕太阳运动的公转周期5、关于天体的运动,以下说法正确的是()A.天体的运动与地面上物体的运动遵循不同的规律B.天体的运动是最完美、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都绕太阳运动6、关于太阳系中各行星的轨道,以下说法正确的是:()A.所有行星绕太阳运动的轨道都是椭圆B.所有行星绕太阳运动的轨道都是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同7、如果某恒星有一颗卫星,此卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的平均密度ρ=_________(万有引力常量为G)8、两颗行星的质量分别是m1,m2,它们绕太阳运转轨道的半长轴分别为R1、R2,如果m1=2m2,R1=4R2,那么,它们的运行周期之比T1:T2= 9、已知两行星绕太阳运动的半长轴之比为b,则它们的公转周期之比为多少?10、有一行星,距离太阳的平均距离是地球到太阳平均距离的8倍,则该行星绕太阳公转周期是多少年?11、地球公转运行的轨道半径R=1.49×1011m,若把地球的公转周期称为1年,土星运行的轨道半径是r=1.43×1012m,那么土星的公转周期多长?参考答案:例1. 646倍例2. 4.61年例3. ABC 例4. 略。

高中物理(新人教版)必修第二册课后习题:万有引力定律(课后习题)【含答案及解析】

高中物理(新人教版)必修第二册课后习题:万有引力定律(课后习题)【含答案及解析】

第七章万有引力与宇宙航行万有引力定律课后篇巩固提升合格考达标练1.月球在如图所示的轨道上绕地球运行,近地点、远地点受地球的万有引力分别为F1、F2,则F1、F2的大小关系是()A.F1<F2B.F1>F2C.F1=F2D.无法确定,当两物体的质量确定时,引力与物体之间的距离的二次方成反比,有F1>F2,选项B正确。

2.关于万有引力定律,下列说法正确的是()A.牛顿是在开普勒揭示的行星运动规律的基础上,发现了万有引力定律,因此万有引力定律仅适用于天体之间B.卡文迪什首先用实验比较准确地测定了引力常量G的数值C.两物体各自受到对方引力的大小不一定相等,质量大的物体受到的引力也大D.万有引力定律对质量大的物体适用,对质量小的物体不适用,A、D错误;根据物理学史可知卡文迪什首先用实验比较准确地测定了引力常量G的数值,B正确;两物体各自受到对方的引力遵循牛顿第三定律,大小相等,C错误。

3.根据万有引力定律,两个质量分别是m1和m2的物体,它们之间的距离为r时,它们之间的吸引力大,式中G是引力常量,若用国际单位制的基本单位表示G的单位应为()小为F=Gm1m2r2A.kg·m/s2B.N·kg2/m2C.m3/(s2·kg)D.m2/(s2·kg2)m、距离r、力F的基本单位分别是kg、m、kg·m/s2,根据万有引力定律,得到用国际单位制的基本单位表示G的单位为m3/(s2·kg),选项C正确。

F=Gm1m2r24.图甲是用来“显示桌(或支持)面的微小形变”的演示实验;图乙是用来“测量万有引力常量”的实验。

由图可知,两个实验共同的物理思想方法是( )A.极限的思想方法B.放大的思想方法C.控制变量的思想方法D.猜想的思想方法5.地球对月球具有相当大的引力,可它们没有靠在一起,这是因为( )A.不仅地球对月球有引力,月球对地球也有引力,这两个力大小相等,方向相反,互相抵消了B.不仅地球对月球有引力,太阳系中的其他星球对月球也有引力,这些力的合力为零C.地球对月球的引力还不算大D.地球对月球的引力不断改变月球的运动方向,使得月球围绕地球做圆周运动,作用在两个物体上,不能互相抵消,选项A 错误;地球对月球的引力提供了月球绕地球做圆周运动的向心力,从而不断改变月球的运动方向,选项B 、C 错误,D 正确。

(物理)高考必刷题物理万有引力定律的应用题含解析

(物理)高考必刷题物理万有引力定律的应用题含解析

(物理)高考必刷题物理万有引力定律的应用题含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+ (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:32GMvR.【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.3.在不久的将来,我国科学家乘坐“嫦娥N号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v0的初速度竖直上抛一物体,经过时间t1,物体回到抛出点;在月球的“两极”处仍以大小为v0的初速度竖直上抛同一物体,经过时间t2,物体回到抛出点。

万有引力练习题(含答案)

万有引力练习题(含答案)

万有引力练习题一.选择题(本题共8小题,每小题6分,共48分,在每小题给出的四个选项中,有的小题只有一个选项正确;有的小题有多个选项正确。

全部选对的得4分,选对但不全的得2分,有选错或不答的得0分。

把正确答案填到答案纸上) 1.关于万有引力的说法,正确的是( )。

A.万有引力只是宇宙中各天体之间的作用力B.万有引力是宇宙中具有质量的物体间普遍存在的相互作用力C.地球上的物体以及地球附近的物体除受到地球对它们的万有引力外还受到重力作用D.太阳对地球的万有引力大于地球对太阳的万有引力 2. 关于万有引力定律,下列说法中正确的是( )A.万有引力定律是牛顿在总结前人研究成果的基础上发现的B.万有引力定律适宜于质点间的相互作用 …C.公式中的G 是一个比例常数,是有单位的,单位是N·m 2/kg 2D.任何两个质量分布均匀的球体之间的相互作用可以用该公式来计算,r 是两球球心之间的距离3.假设行星绕恒星的运动轨道是圆,则其运行周期T 的平方与其运行轨道半径R 的三次方之比为常数,那么该常数的大小( )A.只与行星的质量有关B.只与恒星的质量有关C.与行星及恒星的质量都有关D.与恒星的质量及行星的速率有关4.设地球是半径为R 的均匀球体,质量为M ,若把质量为m 的物体放在地球的中心,则物体受到的地球的万有引力大小为( )。

A.零B.无穷大 2Mm RD.无法确定5.对于万有引力定律的表达式221rm Gm F,下列说法中正确的是( ).(A)公式中G 为引力常量,它是由实验测得的,而不是人为规定的 (B)当r 趋于零时,万有引力趋于无限大 *(C)两物体受到的引力总是大小相等的,而与m 1、m 2是否相等无关 (D)两物体受到的引力总是大小相等、方向相反,是一对平衡力6.地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为( )A. 1︰27B. 1︰9C. 1︰3D. 9︰17.火星的质量和半径分别约为地球的 110和 12,地球表面的重力加速度为g ,则火星表面的重力加速度约为( )A .0.2 gB .0.4 gC .2.5 gD .5 g8.一名宇航员来到一个星球上,如果星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受到的万有引力大小是他在地球上所受万有引力的( )。

万有引力练习题及答案详解

万有引力练习题及答案详解

万有引力练习题及答案详解单 元 自 评1.人造地球卫星环绕地球做匀速圆周运动时,以下叙述正确的是( bc ) A. 卫星的速度一定大于或等于第一宇宙速度 B.在卫星中用弹簧秤称一个物体,读数为零C.在卫星中,一个天平的两个盘上,分别放上质量不等的两个物体,天平不偏转D.在卫星中一切物体的质量都为零2.两颗靠得较近的天体组成双星,它们以两者连线上某点为圆心,做匀速圆周运动,因而不会由于相互的引力作用而被吸到一起,下面说法正确的是( )A.它们做圆周运动的角速度之比,与它们的质量之比成反比B.它们做圆周运动的线速度之比,与它们的质量之比成反比C.它们做圆周运动的向心力之比,与它们的质量之比成正比D.它们做圆周运动的半径之比,与它们的质量之比成反比3.苹果落向地球,而不是地球向上运动碰到苹果,发生这个现象的原因是( ) A.由于苹果质量小,对地球的引力小,而地球质量大,对苹果引力大造成的 B.由于地球对苹果有引力,而苹果对地球无引力造成的C.苹果与地球间的引力是大小相等的,由于地球质量极大,不可能产生明显的加速度D.以上说法都不对4.两颗人造地球卫星,质量之比m 1:m 2=1:2,轨道半径之比R 1:R 2=3:1,下面有关数据之比正确的是( )A.周期之比T 1:T 2=3:1B.线速度之比v 1:v 2=3:1C.向心力之比为F 1:F 2=1:9D.向心加速度之比a 1:a 2=1:95.已知甲、乙两行星的半径之比为a ,它们各自的第一宇宙速度之比为b ,则下列结论不正确的是( )A.甲、乙两行星的质量之比为b 2a:1B.甲、乙两行星表面的重力加速度之比为b 2:a C.甲、乙两行星各自的卫星的最小周期之比为a:b D.甲、乙两行星各自的卫星的最大角速度之比为b:a6.地球同步卫星距地面高度为h ,地球表面的重力加速度为g ,地球半径为R,地球自转的角速度为ω,那么下列表达式表示同步卫星绕地球转动的线速度的是( )A.ω)(h R v +=B.)/(h R Rg v +=C.)/(h R g R v +=D.32ωg R v =7.某一行星有一质量为m 的卫星,以半径r ,周期T 做匀速圆周运动,求: (1)行星的质量; (2)卫星的加速度;(3)若测得行星的半径恰好是卫星运行半径的1/10,则行星表面的重力加速度是多少?8.两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。

高三物理 万有引力专练含答案

高三物理 万有引力专练含答案

二、万有引力(2007北京)不久前欧洲天文学家在太阳系之外发现了一颗可能适合人类居住的行星,命名为“格利斯581c ”。

该行星的质量是地球的5倍,直径是地球的1。

5倍。

设想在该行星表面附近绕行星沿轨道运行的人造卫星的动能为1k E ,在地球表面附近绕地球沿圆轨道运行的相同质量的人造卫星的动能为2k E ,则21k k E E 为A .0.13B .0。

3C .3.33D .7.5(2007全国1)据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的6。

4倍,一个在地球表面重量为600 N 的人在这个行星表面的重量将变为960 N ,由此可推知,该行星的半径与地球半径之比约为A 。

0。

5 B2。

C.3。

2 D 。

4(2007天津)我国绕月探测工程的预先研究和工程实施已取得重要进展。

设地球、月球的质量分别为m 1、m 2,半径分别为R 1、R 2,人造地球卫星的第一宇宙速度为v ,对应的环绕周期为T ,则环绕月球表面附近圆轨道飞行的探测器的速度和周期分别为A.v R m R m 2112,T Rm R m 312321B。

v R m R m 1221,T Rm Rm 321312C. v R m R m 2112,T R m R m 321312D 。

v R m R m 1221,T R m R m 3123211.(2006北京)一飞船在某行星表面附近沿圆轨道绕该行星飞行。

认为行星是密度均匀的球体.要确定该行星的密度,只需要测量A.飞船的轨道半径B.飞船的运行速度C.飞船的运行周期D.行星的质量2。

(2005北京)已知地球质量大约是月球质量的81倍,地球半径大约是月球半径的4倍。

不考虑地球、月球自转的影响,由以上数据可推算出()A. 地球的平均密度与月球的平均密度之比约为9:8B. 地球表面重力加速度与月球表面重力加速度之比约为9:4C. 靠近地球表面沿圆轨道运行的航天器的周期与靠近月球表面沿圆轨道运行的航天器的周期之比约为8:9D。

高考必备物理万有引力定律的应用技巧全解及练习题(含答案)含解析

高考必备物理万有引力定律的应用技巧全解及练习题(含答案)含解析

高考必备物理万有引力定律的应用技巧全解及练习题( 含答案 ) 含分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间t,又已知该星球的半径为 R,己知万有引力常量为G,求:(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2因此该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞翔轨道近似为圆形,距月球表面高度为H,飞翔周期为T,月球的半径为R,引力常量为G.求:(1)嫦“娥一号”绕月飞翔时的线速度大小;(2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运转的线速度应为多大.【答案】(1)2R H(2)42R H32RHRH( 3)T GT2T R【分析】( 1) “嫦娥一号 ”绕月飞翔时的线速度大小2π(R H )v 1.T( 2 )设月球质量为M . “嫦娥一号 ”的质量为 m .Mm2H )依据牛二定律得Gm 4π (RH )2T 2(R23解得 M4π (R H ) .GT 2( 3)设绕月飞船运转的线速度为 V,飞船质量为Mm 0V 2又m 0 ,则 Gm 023M4π (R H ) .GT 2联立得 V2π RHRHT R3. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为 求:(1) 行星的质量 M ;(2) 行星表面的重力加快度g ; (3) 行星的第一宇宙速度v .【答案】 (1) ( 2) ( 3)【分析】【详解】(1)设宇宙飞船的质量为 m ,依据万有引力定律求出行星质量(2)内行星表面求出 :(3)内行星表面求出 :【点睛】此题重点抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.4.万有引力定律揭露了天体运动规律与地上物体运动规律拥有内在的一致性.(1)用弹簧测力计称量一个相关于地球静止的物体的重力,随称量地点的变化可能会有不 同结果.已知地球质量为M ,自转周期为 T ,引力常量为 G .将地球视为半径为R 、质量分布平均的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F 0.① 若在北极上空超出地面h 处称量,弹簧测力计读数为 F 1,求比值 的表达式,并就h=1.0%R 的情况算出详细数值(计算结果保存两位有效数字); ② 若在赤道表面称量,弹簧测力计读数为F 2 ,求比值的表达式.( 2)假想地球绕太阳公转的圆周轨道半径为 r 、太阳半径为 R s 和地球的半径 R 三者均减小为此刻的 1 .0%,而太阳和地球的密度平均且不变.仅考虑太阳与地球之间的互相作用, 以现实地球的 1 年为标准,计算 “假想地球 ”的 1 年将变成多长?2 3【答案】( 1) ① 0.98,②F 214R2F 0GMT( 2) “假想地球 ”的 1 年与现实地球的 1 年时间同样【分析】试题剖析:( 1)依据万有引力等于重力得出比值的表达式,并求出详细的数值.在赤道,因为万有引力的一个分力等于重力,另一个分力供给随处球自转所需的向心力,依据该规律求出比值的表达式( 2)依据万有引力供给向心力得出周期与轨道半径以及太阳半径的关系,进而进行判断.解:( 1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式 ①② 能够得出:=0.98.③由① 和③ 可得:(2)依据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为此刻的 1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍旧为 1 年.【评论】解决此题的重点知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力供给随处球自转所需的向心力.5.天文学家将相距较近、仅在相互的引力作用下运转的两颗恒星称为双星.双星系统在银河系中很广泛.利用双星系统中两颗恒星的运动特点可计算出它们的总质量.已知某双星系统中两颗恒星环绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试计算这个双星系统的总质量.(引力常量为G)【答案】【分析】设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、 r2,角速度分别为w1,w 2.依据题意有w1=w2①(1分)r1+r2=r② (1分)依据万有引力定律和牛顿定律,有G③(3分)G④(3分)联立以上各式解得⑤ (2分)依据解速度与周期的关系知⑥ (2分)联立 ③⑤⑥ 式解得(3 分)此题考察天体运动中的双星问题,两星球间的互相作使劲供给向心力,周期和角速度同样,由万有引力供给向心力列式求解6. 假定在半径为 R 的某天体上发射一颗该天体的卫星 ,若这颗卫星在距该天体表面高度为 h 的轨道做匀速圆周运动 ,周期为 T ,已知万有引力常量为 G ,求 : (1)该天体的质量是多少 ? (2)该天体的密度是多少 ?(3)该天体表面的重力加快度是多少? (4)该天体的第一宇宙速度是多少 ?【答案】 (1)4 2 (R h)3;3 (R h) 34 2 (R h)3;4 2 (R h)3GT(2)2R 3; (3)(4)RT 22GT R 2T2【分析】【剖析】( 1)卫星做匀速圆周运动,万有引力供给向心力,依据牛顿第二定律列式求解; ( 2)依据密度的定义求解天体密度;( 3)在天体表面,重力等于万有引力,列式求解;( 4)该天体的第一宇宙速度是近地卫星的环绕速度.【详解】(1)卫星做匀速圆周运动 ,万有引力供给向心力 ,依据牛顿第二定律有 :Mm22G( R h)2 =m T(R+h)解得 : M= 4 2 (R h)3①GT 2(2)天体的密度 :42(R h)3 3M GT 2 3 ( R h)ρ= =4=GT 2R 3 .V3R3(3)在天体表面 ,重力等于万有引力,故 :Mm ②mg=GR 2联立①②解得 : g=4 2 (R h)3③R 2T 2(4)该天体的第一宇宙速度是近地卫星的环绕速度 ,依据牛顿第二定律 ,有:mg=m④联立③④解得 : v= gR = 4 2( R h)3.RT 2【点睛】此题重点是明确卫星做圆周运动时,万有引力供给向心力,而地面邻近重力又等于万有引力,基础问题.v 2R24-1122,一7.地球的质量 M=5.98 × 10kg ,地球半径 R=6370km ,引力常量 G=6.67 × 10 N ·m /kg 颗绕地做圆周运动的卫星环绕速度为 v=2100m/s ,求:(1)用题中的已知量表示此卫星距地面高度 h 的表达式(2)此高度的数值为多少?(保存3 位有效数字)【答案】( 1 ) GM 7hR ( 2) h=8.41 × 10mv 2【分析】试题剖析:( 1 )万有引力供给向心力,则GM解得:hv 2R×7( 2)将( 1)中结果代入数占有 h=8.41 10m 考点:考察了万有引力定律的应用8.“嫦娥一号 ”探月卫星在空中的运动可简化为如图 5 所示的过程,卫星由地面发射后,经过发射轨道进入停靠轨道,在停靠轨道经过调速后进入地月转移轨道,再次调速后进入工 作轨道 .已知卫星在停靠轨道和工作轨道运转的半径分别为R 和 R 1,地球半径为 r ,月球半径为 r 1,地球表面重力加快度为g ,月球表面重力加快度为 .求:(1)卫星在停靠轨道上运转的线速度大小;(2)卫星在工作轨道上运转的周期.【答案】 (1) (2)【分析】(1)卫星停靠轨道是绕地球运转时,依据万有引力供给向心力:解得:卫星在停靠轨道上运转的线速度;物体在地球表面上,有,获得黄金代换 ,代入解得 ;(2)卫星在工作轨道是绕月球运转,依据万有引力供给向心力有,在月球表面上,有,得 ,联立解得:卫星在工作轨道上运转的周期.9. 侦探卫星在经过地球两极上空的圆轨道上运转,它的运转轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的状况所有都拍摄下来 ,卫星在经过赤道上空时,卫星上的拍照像机起码应拍地面上赤道圆周的弧长是多少?设地球半径为,R 地面处的重力加快度为 g,地球自转的周期为 T .4 2 ( h R) 3【答案】 lgT【分析】 【剖析】【详解】设卫星周期为 T 1 ,那么 :Mm 4 2m( R h), ①G2T 12( R h)又MmG R 2mg , ②由①②得T 12 ( h R) 3R.g设卫星上的摄像机起码能拍摄地面上赤道圆周的弧长为 l ,地球自转周期为 T ,要使卫星在一天(地球自转周期 )的时间内将赤道各处的状况全都拍摄下来,则Tl 2 R .T 1因此2 RT 14 2 (h R)3lT.Tg【点睛】摄像机只需将地球的赤道拍摄全,便能将地面各处所有拍摄下来;依据万有引力供给向心力和万有引力等于重力争出卫星周期 ;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再依据弧长与圆心角的关系求解.10. 今年 6 月 13 日,我国首颗地球同步轨道高分辨率对地观察卫星高分四号正式投入使 用,这也是世界上地球同步轨道分辨率最高的对地观察卫星.如下图,卫星,已知地球半径为R ,地球自转的周期为T ,地球表面的重力加快度为A 是地球的同步g,求:( 1)同步卫星离地面高度 h( 2)地球的密度 ρ(已知引力常量为 G)2 23g【答案】( 1) 3gR TR (2)4 24 GR【分析】【剖析】【详解】( 1)设地球质量为 M ,卫星质量为 m ,地球同步卫星到地面的高度为 h ,同步卫星所受万有引力等于向心力为G mM4 2 R hm( R h)2T2在地球表面上引力等于重力为MmGR2mg故地球同步卫星离地面的高度为h3gR 2T242R(2)依据在地球表面上引力等于重力MmGR2mg联合密度公式为gR 2MG3gV4R 3 4GR3。

万有引力习题及答案

万有引力习题及答案

【典型例题】例1、海王星的公转周期约为5.19×109s ,地球的公转周期为3.16×107s ,则海王星与太阳的平均距离约为地球与太阳的平均距离的多少倍?例2、有一颗太阳的小行星,质量是1.0×1021kg ,它的轨道半径是地球绕太阳运动半径的2.77倍,求这颗小行星绕太阳一周所需要的时间。

例3、16世纪,哥白尼根据天文观测的大量资料,经过40多年的天文观测和潜心研究,提出了“日心说”的如下四个观点,这四个论点目前看存在缺陷的是( )A 、宇宙的中心是太阳,所有行星都在绕太阳做匀速圆周运动。

B 、地球是绕太阳做匀速圆周运动的行星,月球是绕地球做匀速圆周运动的卫星,它绕地球运转的同时还跟地球一起绕太阳运动。

C 、天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象。

D 、与日地距离相比,恒星离地球都十分遥远,比日地间的距离大得多。

例4.假设已知月球绕地球做匀速圆周运动,万有引力提供向心力,假如地球对月球的万有引力突然消失,则月球的运动情况如何?若地球对月球的万有引力突然增加或减少,月球又如何运动呢?【针对训练】1、某一人造卫星绕地球做匀速圆周运动,其轨道半径为月球绕地球轨道半径的1/3则此卫星运行的周期大约是:( )A .1-4天之间B .4-8天之间C .8-16天之间D .16-20天之间2、两行星运行周期之比为1:2,其运行轨道的半长轴之比为:( )A.1/2B. 22C. 3221D.23213、地球到太阳的距离是水星到太阳距离的2.6倍,那么地球和水星绕太阳运转的线速度之比是多少?(设地球和水星绕太阳运转的轨道是圆轨道)4.关于日心说被人们所接受的原因是( )A .以地球为中心来研究天体的运动有很多无法解决的问题B .以太阳为中心,许多问题都可以解决,行星的运动的描述也变得简单了C .地球是围绕太阳转的D .太阳总是从东面升起从西面落下5、考察太阳M 的卫星甲和地球m(m<M)的卫星乙,甲到太阳中心的距离为r1,乙到地球中心的距离为r2,若甲和乙的周期相同,则:( )A 、r1>r2B 、r1<r2C 、r1=r2D 、无法比较6、设月球绕地球运动的周期为27天,则地球的同步卫星到地球中心的距离r与月球中心到地球中心的距离R 之比r/R为()A. 1/3B. 1/9C. 1/27D. 1/18【能力训练】1、关于公式R3 /T2=k,下列说法中正确的是()A.公式只适用于围绕太阳运行的行星B.不同星球的行星或卫星,k值均相等C.围绕同一星球运行的行星或卫星,k值不相等D.以上说法均错2、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A. 1:27B. 1:9C. 1:3D. 9:13、两颗小行星都绕太阳做圆周运动,它们的周期分别是T和3T,则()A、它们绕太阳运转的轨道半径之比是1:3B、它们绕太阳运转的轨道半径之比是1:39C、它们绕太阳运转的速度之比是:1:4D、它们受太阳的引力之比是9:74、开普勒关于行星运动规律的表达式为kTR23,以下理解正确的是()A.k是一个与行星无关的常量B.R代表行星运动的轨道半径C.T代表行星运动的自传周期D.T代表行星绕太阳运动的公转周期5、关于天体的运动,以下说法正确的是()A.天体的运动与地面上物体的运动遵循不同的规律B.天体的运动是最完美、和谐的匀速圆周运动C.太阳从东边升起,从西边落下,所以太阳绕地球运动D.太阳系中所有行星都绕太阳运动6、关于太阳系中各行星的轨道,以下说法正确的是:()A.所有行星绕太阳运动的轨道都是椭圆B.所有行星绕太阳运动的轨道都是圆C.不同行星绕太阳运动的椭圆轨道的半长轴是不同的D.不同的行星绕太阳运动的轨道各不相同7、如果某恒星有一颗卫星,此卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的平均密度ρ=_________(万有引力常量为G)8、两颗行星的质量分别是m1,m2,它们绕太阳运转轨道的半长轴分别为R1、R2,如果m1=2m2,R1=4R2,那么,它们的运行周期之比T1:T2=9、已知两行星绕太阳运动的半长轴之比为b,则它们的公转周期之比为多少?10、有一行星,距离太阳的平均距离是地球到太阳平均距离的8倍,则该行星绕太阳公转周期是多少年?11、地球公转运行的轨道半径R=1.49×1011m,若把地球的公转周期称为1年,土星运行的轨道半径是r=1.43×1012m,那么土星的公转周期多长?参考答案:例1. 646倍 例2. 4.61年 例3. ABC 例4. 略。

高中物理专题练习-平抛运动与圆周运动万有引力定律的应用(含答案)

高中物理专题练习-平抛运动与圆周运动万有引力定律的应用(含答案)

高中物理专题练习-平抛运动与圆周运动万有引力定律的应用(含答案)满分:100分时间:60分钟一、单项选择题(本题共6小题,每小题6分,共36分。

每小题只有一个选项符合题意。

) 1.(山东理综,14)距地面高5 m的水平直轨道上A、B两点相距2 m,在B点用细线悬挂一小球,离地高度为h,如图。

小车始终以4 m/s的速度沿轨道匀速运动,经过A点时将随车携带的小球由轨道高度自由卸下,小车运动至B点时细线被轧断,最后两球同时落地。

不计空气阻力,取重力加速度的大小g=10 m/s2。

可求得h等于()A.1.25 m B.2.25 m C.3.75 m D.4.75 m2.(浙江理综,17)如图所示为足球球门,球门宽为L。

一个球员在球门中心正前方距离球门s处高高跃起,将足球顶入球门的左下方死角(图中P点)。

球员顶球点的高度为h,足球做平抛运动(足球可看成质点,忽略空气阻力),则()A.足球位移的大小x=L24+s2B.足球初速度的大小v0=g2h(L24+s2)C.足球末速度的大小v=g2h(L24+s2)+4ghD.足球初速度的方向与球门线夹角的正切值tan θ=L 2s3.(新课标全国卷Ⅰ,18)一带有乒乓球发射机的乒乓球台如图所示。

水平台面的长和宽分别为L1和L2,中间球网高度为h。

发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h。

不计空气的作用,重力加速度大小为g。

若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是()A.L 12g6h <v <L 1g6hB.L 14gh <v <(4L 21+L 22)g6hC.L 12g 6h <v <12(4L 21+L 22)g6hD.L 14g h <v <12(4L 21+L 22)g6h4.(天津理综,4)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示。

万有引力定律练习题(含答案)

万有引力定律练习题(含答案)

万有引力定律练习题(含答案) 第七章万有引力与宇宙航行第2节万有引力定律1.下列现象中,不属于由万有引力引起的是……答案:C解析:A选项是由星球之间的万有引力作用而聚集不散,B选项是由地球的引力提供向心力,使月球绕地球做圆周运动,D选项是由地球的引力作用,使树上的果子最终落向地面。

只有C选项是电子受到原子核的吸引力而绕核旋转不离去,不是万有引力。

2.均匀小球A、B的质量分别为m、5m,球心相距为R,引力常量为G,则A球受到B球的万有引力大小是……答案:A解析:根据万有引力定律可得:F=G×m×5m/(2R)²,化简得F=G×m²/(2R²),即A球受到B球的万有引力大小为G×m²/(2R²)。

3.两个质点的距离为r时,它们间的万有引力为2F,现要使它们间的万有引力变为F,将距离变为……答案:B解析:根据万有引力定律,距离为r时,它们间的万有引力为2F,则2F=G×m×m/r²,将万有引力变为F,则F=G×m×m/r'²,联立可得:r' = 2r,即将距离变为原来的二分之一。

4.假设地球是一半径为R,质量分布均匀的球体。

已知质量分布均匀的球壳对壳内物体引力为零,地球表面处引力加速度为g。

则关于地球引力加速度a随地球球心到某点距离r的变化图像正确的是……答案:B解析:当距离大于地球半径时,根据万有引力提供重力可得加速度g'=GM/r²,范围内的球壳随距离增大,加速度变小。

当距离小于地球半径时,此时距离地心对物体没有引力,那么对其产生引力的就是半径为R的中心球体的引力,因此加速度与距离成正比,选项B正确。

之间的引力与它们的距离成反比,与它们的质量成正比D.万有引力只存在于地球和其他星球之间,不存在于地球和其他物体之间答案】A、C解析】A。

物理万有引力定律的应用题20套(带答案)及解析

物理万有引力定律的应用题20套(带答案)及解析
可得
(3)根据万有引力公式 ;可得 ,
而星球密度 ,
联立可得
8.在月球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t落回抛出点,已知该月球半径为R,万有引力常量为G,月球质量分布均匀。求:
(1)月球的密度;
(2)月球的第一宇宙速度。
【答案】(1) (2)
【解析】
【详解】
(1)根据竖直上抛运动的特点可知:
(1)试求月球表面处的重力加速度g.
(2)试求月球的质量M
(3)字航员着陆后,发射了一颗绕月球表面做匀速圆周运动的卫星,周期为T,试求月球的平均密度ρ.
【答案】(1) (2) (3)
【解析】
【详解】
(1)根据题目可得小球做平抛运动,
水平位移:v0t=L
竖直位移:h= gt2
联立可得:
(2)根据万有引力黄金代换式 ,卫星高度,用t表示所需时间,则ω0t-ωt=2π
所以 .
点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.
4.半径R=4500km的某星球上有一倾角为30o的固定斜面,一质量为1kg的小物块在力F作用下从静止开始沿斜面向上运动,力F始终与斜面平行.如果物块和斜面间的摩擦因数 ,力F随时间变化的规律如图所示(取沿斜面向上方向为正),2s末物块速度恰好又为0,引力常量 .试求:
联立得
2.如图所示,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象.已知引力常数为G.

高中物理万有引力练习题及答案解析

高中物理万有引力练习题及答案解析

高中物理万有引力练习题及答案解析一.解答题(共14小题)1.(2015春•锦州校级期中)(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即=k,k是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式.已知引力常量为G,太阳的质量为M太.(2)一均匀球体以角速度ω绕自己的对称轴自转,若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是多少?【分析】(1)行星绕太阳的运动按圆周运动处理时,此时轨道是圆,就没有半长轴了,此时=k应改为,再由万有引力作为向心力列出方程可以求得常量k 的表达式;(2)球体表面物体随球体自转做匀速圆周运动,球体有最小密度能维持该球体的稳定,不致因自转而瓦解的条件是表面的物体受到的球体的万有引力恰好提供向心力,物体的向心力用周期表示等于万有引力,再结合球体的体积公式、密度公式即可求出球体的最小密度.【解答】解:(1)因行星绕太阳作匀速圆周运动,于是轨道的半长轴a即为轨道半径r.根据万有引力定律和牛顿第二定律有G=m r于是有=即k=所以太阳系中该常量k的表达式是.(2)设位于赤道处的小块物质质量为m,物体受到的球体的万有引力恰好提供向心力,这时球体不瓦解且有最小密度,由万有引力定律结合牛顿第二定律得:GM=mω2R又因ρ=由以上两式得ρ=.所以球的最小密度是.答:(1)太阳系中该常量k的表达式是.(2)若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是.2.(2017春•德惠市校级月考)月球环绕地球运动的轨道半径为地球半径的60倍,运行周期约为27天,应用开普勒定律计算:在赤道平面内离地多高时,人造地球卫星随地球一起转动,就像停留在天空中不动一样?(R地=6400km)【分析】月球和同步卫星都绕地球做匀速圆周运动,根据开普勒第三定律列式求解即可.【解答】解:月球环绕地球运动的轨道半径为地球半径的60倍,运行周期约为27天;同步卫星的周期为1天;根据开普勒第三定律,有:解得:R月=R同==9R同由于R月=60R地,故R同=,故:h=R地==36267km.答:在赤道平面内离地36267km高时,人造地球卫星随地球一起转动,就像停留在天空中不动一样.3.(2015春•东方校级期中)地球公转运行的轨道半径R1=1.49×1011m,若把地球公转周期称为1年,那么土星运行的轨道半径R2=1.43×1012m,其周期多长?【分析】根据万有引力提供圆周运动的向心力,列式求圆周运动的周期与半径的关系然后求比值即可.【解答】解:根据万有引力提供圆周运动的向心力有:G=mr()2得卫星运动的周期:T=所以有:因此周期T2==29.7年;答:土星运行的轨道周期为29.7年.4.(2015春•浮山县校级期中)卡文迪许把他自己的实验说成是“称地球的重量”(严格地说应是“测量地球的质量”).如果已知引力常量G、地球半径R和地球表面重力加速度g,计算地球的质量M和地球的平均密度各是多少?【分析】根据地在地球表面万有引力等于重力公式先计算出地球质量,再根据密度等于质量除以体积求解.【解答】解:根据地在地球表面万有引力等于重力有:=mg解得:M=所以ρ==.答:地球的质量M和地球的平均密度各是,.5.(2017春•孝感期末)火星(如图所示)是太阳系中与地球最为类似的行星,人类对火星生命的研究在今年因“火星表面存在流动的液态水”的发现而取得了重要进展.若火星可视为均匀球体,火星表面的重力加速度为g火星半径为R,火星自转周期为T,万有引力常量为G.求:(1)火星的平均密度ρ.(2)火星的同步卫星距火星表面的高度h.【分析】(1)根据万有引力等于重力求出火星的质量,结合火星的体积求出火星的密度.(2)根据万有引力提供向心力求出火星同步卫星的轨道半径,从而得出距离火星表面的高度.【解答】解:(1)在火星表面,对质量为m的物体有①又M=②联立①②两式解得ρ=.(2)同步卫星的周期等于火星的自转周期T万有引力提供向心力,有③联立解得h=.答:(1)火星的平均密度ρ为.(2)火星的同步卫星距火星表面的高度h为.6.(2017春•蓟县期中)已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球绕地球的运转周期T1,地球的自转周期T2,地球表面的重力加速度g.某同学根据以上条件,提出一种估算地球质量M 的方法:同步卫星绕地球作圆周运动,由G==m()2h得M=(1)请判断上面的结果是否正确,并说明理由.如不正确,请给出正确的解法和结果.(2)请根据已知条件再提出两种估算地球质量的方法并解得结果.【分析】(1)根据万有引力提供向心力,列式求解,地球半径较大,不能忽略;(2)对月球或地球应用万有引力提供向心力,也可根据在地球表面重力等于向心力求解.【解答】解:(1)上面结果是错误的,地球的半径R在计算过程中不能忽略,正确解法和结果:得(2)方法一:月球绕地球做圆周运动,由得;方法二:在地面重力近似等于万有引力,由得.答:(1)上面结果是错误的,地球的半径R在计算过程中不能忽略,正确解法和结果如上所述.(2)请根据已知条件再提出两种估算地球质量的方法如上所述.7.(2017春•新余期末)我国志愿者王跃曾与俄罗斯志愿者一起进行“火星﹣500”的实验活动.假设王跃登陆火星后,测得火星的半径是地球半径的,质量是地球质量的.已知地球表面的重力加速度是g,地球的半径为R,忽略火星以及地球自转的影响,求:(1)火星表面的重力加速度g′的大小;(2)王跃登陆火星后,经测量发现火星上一昼夜的时间为t,如果要发射一颗火星的同步卫星,它正常运行时距离火星表面将有多远?【分析】(1)求一个物理量之比,我们应该把这个物理量先表示出来,在进行之比,根据万有引力等于重力,得出重力加速度的关系,根据万有引力等于重力求出火星表面的重力加速度g′的大小;(2)火星的同步卫星作匀速圆周运动的向心力由火星的万有引力提供,且运行周期与火星自转周期相同,据此求解即可.【解答】解:(1)在地球表面,万有引力与重力相等,=m0g对火星=m0g′测得火星的半径是地球半径的,质量是地球质量的,联立解得g′=g(2)火星的同步卫星作匀速圆周运动的向心力由火星的万有引力提供,且运行周期与火星自转周期相同.设卫星离火星表面的高度为h,则=m0()2(R′+h)GM′=g′R′2解出同步卫星离火星表面高度h=﹣R答:(1)火星表面的重力加速度g′的大小为g;(2)它正常运行时距离火星表面的距离为﹣R.8.(2017春•邹平县校级期中)地球的两颗人造卫星质量之比m1:m2=1:2,圆周轨道半径之比r1:r2=1:2.求:(1)线速度之比;(2)角速度之比;(3)运行周期之比;(4)向心力之比.【分析】(1)根据万有引力充当向心力,产生的效果公式可得出线速度和轨道半径的关系,可得结果;(2)根据圆周运动规律可得线速度和角速度以及半径的关系,直接利用上一小题的结论,简化过程;(3)根据圆周运动规律可得运行周期和角速度之间的关系,直接利用上一小题的结论,简化过程;(4)根据万有引力充当向心力可得向心力和质量以及半径的关系.【解答】解:设地球的质量为M,两颗人造卫星的线速度分别为V1、V2,角速度分别为ω1、ω2,运行周期分别为T1、T2,向心力分别为F1、F2;(1)根据万有引力和圆周运动规律得∴=故二者线速度之比为.(2)根据圆周运动规律v=ωr 得∴故二者角速度之比为.(3)根据圆周运动规律∴故二者运行周期之比为.(4)根据万有引力充当向心力公式∴故二者向心力之比为2:1.9.(2017春•郑州期中)我国月球探测计划“嫦娥工程”已经启动,科学家对月球的探索会越来越深入.(1)若已知地球半径为R,地球表面的重力加速度为g,月球绕地球运动的周期为T,月球绕地球的运动近似看做匀速圆周运动,试求出月球绕地球运动的轨道半径;(2)若宇航员随登月飞船登陆月球后,在月球表面高度为h的某处以速度v0水平抛出一个小球,小球飞出的水平距离为x.已知月球半径为R月,引力常量为G,试求出月球的质量M月.【分析】(1)在地球表面重力与万有引力相等,月球绕地球圆周运动的向心力由万有引力提供,据此计算月球圆周运动的半径;(2)根据平抛运动规律求得月球表面的重力加速度,再根据月球表面的重力与万有引力相等计算出月球的质量M.【解答】解:(1)设地球质量为M,月球质量为M月,根据万有引力定律及向心力公式得:…①在地球表面重力与万有引力大小相等有:…②由①②两式可解得:月球的半径为:(2)设月球表面处的重力加速度为g月,小球飞行时间为t,根据题意水平方向上有:x=v0t…④竖直方向上有:…⑤又在月球表面重力万有引力相等故有:…⑥由④⑤⑥可解得:答:(1)月球绕地球运动的轨道半径为;(2)月球的质量M月为.10.(2017春•信阳期中)如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡上另一点Q,斜面的倾角为α,已知该星球半径为R,万有引力常量为G,求:(1)该星球表面的重力加速度;(2)该星球的密度;(3)该星球的第一宇宙速度v;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T.【分析】(1)根据平抛运动规律列出水平方向和竖直方向的位移等式,结合几何关系求出重力加速度.(2)忽略地球自转的影响,根据万有引力等于重力列出等式.根据密度公式求解.(3)该星球的近地卫星的向心力由万有引力提供,该星球表面物体所受重力等于万有引力,联立方程即可求出该星球的第一宇宙速度υ【解答】解:(1)设该星球表现的重力加速度为g,根据平抛运动规律:水平方向:x=v0t竖直方向:平抛位移与水平方向的夹角的正切值得;(2)在星球表面有:,所以该星球的密度:;(3)由,可得v=,又GM=gR2,所以;(4)绕星球表面运行的卫星具有最小的周期,即:故答案为:(1);(2)该星球的密度;(3)该星球的第一宇宙速度;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期11.(2015春•长春校级期中)某行星绕太阳沿椭圆轨道运行,它的近日点A到太阳距离为r,远日点B到太阳的距离为R.若行星经过近日点时的速度为v A,求该行星经过远日点时的速度v B的大小.【分析】由开普勒第二定律行星绕太阳沿椭圆轨道运动时,它和太阳的连线在相等的时间内扫过的面积相等,在近日点与远日点各取一极短时间,利用扫过的面积相等.得等式:=,进行求解.【解答】解:根据开普勒第二定律,行星绕太阳沿椭圆轨道运动时,它和太阳的连线在相等的时间内扫过的面积相等.如图所示,分别以近日点A和远日点B为中心,取一个很短的时间△t,在该时间内扫过的面积如图中的两个曲边三角形所示.由于时间极短,可把这段时间内的运动看成匀速率运动,从而有=所以,该行星经过远日点时的速度大小为答:行星经过远日点时的速度v B的大小为:.12.(2017•四模拟)“测某星球表面的重力加速度和该星球的第一宇宙速度”的实验如图甲所示,宇航员做了如下实验:(1)在半径R=5000km的某星球表面,竖直平面内的光滑轨道由轨道AB和圆弧轨道BC组成,将质量m=0.2kg的小球,从轨道AB上高H处的某点静止滑下,用力传感器测出小球经过C点时对轨道的压力F,改变H 的大小,F随H 的变化关系如图乙所示,圆轨道的半径为0.2 m,星球表面的重力加速度为 5 m/s2.(2)第一宇宙速度与贴着星球表面做匀速圆周运动的速度相等,该星球的第一宇宙速度大小为5000 m/s.【分析】(1)小球从A到C运动的过程中,只有重力做功,机械能守恒,根据机械能守恒定律和牛顿第二定律分别列式,然后结合F﹣H图线求出圆轨道的半径和星球表面的重力加速度.(2)第一宇宙速度与贴着星球表面做匀速圆周运动的速度相等,根据万有引力等于重力求出该星球的第一宇宙速度.【解答】解:(1)小球过C点时满足又根据联立解得,由题目可知:时;时,可解得,r=0.2m(2)据可得故答案为:(1)0.2 5 (2)500013.(2017春•武邑县校级期中)某行星的质量是地球的6倍,半径是地球的1.5倍,地球的第一宇宙速度约为8m/s,地球表面处的重力加速度为10m/s2,此行星的第一宇宙速度约为32 m/s,此行星表面处的重力加速度为m/s2.【分析】本题采用比例法求解.根据万有引力等于重力,得到此行星表面处的重力加速度与地球表面处的重力加速度的比值,再求得行星表面处的重力加速度.再由v=求出行星的第一宇宙速度与地球的第一宇宙速度的比值,从而求得行星的第一宇宙速度.【解答】解:在星球表面上,根据万有引力等于向心力,有:G=mg,得:g=所以行星表面处的重力加速度与地球表面处的重力加速度之比为:==×=则行星表面处的重力加速度为:g行=g地=m/s2.由mg=m得:v=可得,行星的第一宇宙速度与地球的第一宇宙速度之比为:== =4,则得此行星的第一宇宙速度为:v行=4v地=32km/s故答案为:32,.14.(2016春•龙岩期末)已知地球半径为R,地球表面重力加速度为g,不考虑地球自转的影响.(1)试推导第一宇宙速度v1的表达式(要有详细的推导过程,只写结果不得分);(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,求卫星的运行周期T.【分析】(1)在地球表面重力和万有引力相等,万有引力提供卫星圆周运动的向心力;(2)万有引力提供卫星的向心力,和万有引力等于重力求解即可.【解答】解:(1)在地球表面有重力等于万有引力:可得:GM=gR2所以,近地卫星的向心力由万有引力提供有:所以有:=(2)距地面高度为h的卫星,轨道半径为r=R+h,根据万有引力提供向心力有:所以卫星的周期为T==答:(1)试推导第一宇宙速度v1的表达式为:;(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,卫星的运行周期T为.THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)及解析

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)及解析
6.宇航员在某星球表面以初速度v0竖直向上抛出一个物体,物体上升的最大高度为h.已知该星球的半径为R,且物体只受该星球的引力作用.求:
(1)该星球表面的重力加速度;
(2)从这个星球上发射卫星的第一宇宙速度.
【答案】(1) (2)
【解析】
本题考查竖直上抛运动和星球第一宇宙速度的计算.
(1)设该星球表面的重力加速度为g′,物体做竖直上抛运动,则
①若在北极上空高出地面h处称量,弹簧测力计读数为F1,求比值 的表达式,并就h=1.0%R的情形算出具体数值(计算结果保留两位有效数字);
②若在赤道表面称量,弹簧测力计读数为F2,求比值 的表达式.
(2)设想地球绕太阳公转的圆周轨道半径为r、太阳半径为Rs和地球的半径R三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?
在下列问题中,把星体(包括黑洞)看作是一个质量分布均匀的球体.(①②的计算结果用科学计数法表达,且保留一位有效数字;③的推导结论用字母表达)
①试估算地球的质量;
②试估算太阳表面的重力加速度;
③己知某星体演变为黑洞时的质量为M,求该星体演变为黑洞时的临界半径R.
【答案】(1)6×1024kg(2) (3)
(2)在星球表面,有
其中,M表示星球的质量,g表示星球表面的重力加速度,R表示星球的半径。则
M=
因此,地球和星球N的质量比为2∶9
(3)设物体Q的质量为m2,弹簧的劲度系数为k
物体的加速度为0时,对物体P:
mg1=k·x0
对物体Q:
m2g2=k·3x0
联立解得:m2=6m
在地球上,物体P运动的初始位置处,弹簧的弹性势能设为Ep,整个上升过程中,弹簧和物体P组成的系统机械能守恒。根据机械能守恒定律,有:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(物理)物理万有引力定律的应用练习题含答案含解析一、高中物理精讲专题测试万有引力定律的应用1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34gGRρπ=(2)v =h R = 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =, 地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()()2224MmGm R h TR h π=++,解得:h R =2.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”. 【答案】(1)02v g t = (2) 032πv RGt ρ=(3)v = 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度02v Rv gR t==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.3.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (23【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.4.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大.【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT +=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=5.探索浩瀚宇宙,发展航天事业,建设航天强国,是我国不懈追求的航天梦,我国航天事业向更深更远的太空迈进。

(1)2018年12月27日中国北斗卫星导航系统开始提供全球服务,标志着北斗系统正式迈入全球时代。

覆盖全球的北斗卫星导航系统由静止轨道卫星(即地球同步卫星)和非静止轨道卫星共35颗组成的。

卫星绕地球近似做匀速圆周运动。

已知其中一颗地球同步卫星距离地球表面的高度为h ,地球质量为M e ,地球半径为R ,引力常量为G 。

a.求该同步卫星绕地球运动的速度v 的大小;b.如图所示,O 点为地球的球心,P 点处有一颗地球同步卫星,P 点所在的虚线圆轨道为同步卫星绕地球运动的轨道。

已知h = 5.6R 。

忽略大气等一切影响因素,请论证说明要使卫星通讯覆盖全球,至少需要几颗地球同步卫星?(cos81= 0.15︒,sin810.99︒=)(2)今年年初上映的中国首部科幻电影《流浪地球》引发全球热议。

根据量子理论,每个光子动量大小h pλ=(h为普朗克常数,λ为光子的波长)。

当光照射到物体表面时将产生持续的压力。

设有一质量为m的飞行器,其帆面始终与太阳光垂直,且光帆能将太阳光全部反射。

已知引力常量为G,光速为c,太阳质量为M s,太阳单位时间辐射的总能量为E。

若以太阳光对飞行器光帆的撞击力为动力,使飞行器始终朝着远离太阳的方向运动,成为“流浪飞行器”。

请论证:随着飞行器与太阳的距离越来越远,是否需要改变光帆的最小面积s0。

(忽略其他星体对飞行器的引力)【答案】(1)a.eGMvR h=+b.至少需要3颗地球同步卫星才能覆盖全球(2)随着飞行器与太阳的距离越来越远,不需要改变光帆的最小面积s0【解析】【详解】(1)a.设卫星的质量为m。

由牛顿第二定律()2e2M m vG mR hR h=++,得eGMvR h=+b.如答图所示,设P点处地球同步卫星可以覆盖地球赤道的范围对应地心的角度为2θ,至少需要N颗地球同步卫星才能覆盖全球。

由直角三角形函数关系cosRR hθ=+,h= 5.6 R,得θ= 81°。

所以1颗地球同步卫星可以覆盖地球赤道的范围对应地心的角度为2θ = 162°360=2.22Nθ︒≥所以,N = 3,即至少需要3颗地球同步卫星才能覆盖全球(2)若使飞行器始终朝着远离太阳的方向运动,当飞行器与太阳距离为r时,光帆受到太阳光的压力F与太阳对飞行器的引力大小关系,有s2M mF Gr≥设光帆对太阳光子的力为F',根据牛顿第三定律F' =F设t∆时间内太阳光照射到光帆的光子数为n,根据动量定理:'2hF t nλ∆=设t∆时间内太阳辐射的光子数为N,则E tNchλ∆=设光帆面积为s ,24n s N r π= 当s 2=M m F Gr 时,得最小面积s 02cGM ms Eπ= 由上式可知,s 0和飞行器与太阳距离r 无关,所以随着飞行器与太阳的距离越来越远,不需要改变光帆的最小面积s 0。

6.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R 1,周期为T 1,已知万有引力常量为G 。

求: (1)行星的质量;(2)若行星的半径为R ,行星的第一宇宙速度大小;(3)研究某一个离行星很远的该行星卫星时,可以把该行星的其它卫星与行星整体作为中心天体处理。

现通过天文观测,发现离该行星很远处还有一颗卫星,其运动半径为R 2,周期为T 2,试估算靠近行星周围众多卫星的总质量。

【答案】(1)(2)(3)【解析】(1)根据万有引力提供向心力得:解得行星质量为:M=(2)由得第一宇宙速度为:(3)因为行星周围的卫星分布均匀,研究很远的卫星可把其他卫星和行星整体作为中心天体,根据万有引力提供向心力得:所以行星和其他卫星的总质量M 总=所以靠近该行星周围的众多卫星的总质量为:△M =点睛:根据万有引力提供向心力,列出等式只能求出中心体的质量.要求出行星的质量,我们可以在行星周围找一颗卫星研究,即把行星当成中心体.7.宇航员站在一星球表面上的某高处,沿水平方向抛出一小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L .若抛出时的初速度增大到2倍,则抛出点.已知两落地点在同一水平面上,该星球的半径为R ,万有引力常量为G ,求该星球的质量M .【答案】M = 【解析】 【详解】两次平抛运动,竖直方向212h gt =,水平方向0x v t =,根据勾股定理可得:2220()L h v t -=,抛出速度变为2倍:2220)(2)h v t -=,联立解得:h =,g =,在星球表面:2Mm G mg R =,解得:2M =8.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12p m m E Gr=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?【答案】(1)3M 0c 2(2)23024r M GT π=;22GM R c '=【解析】 【分析】 【详解】(1)合并后的质量亏损000(2639)623m M M M ∆=+-=根据爱因斯坦质能方程2E mc ∆=∆得合并所释放的能量203E M c ∆=(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律20202Mm G m r r Tπ⎛⎫= ⎪⎝⎭解得23024r M GT π=b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律2102Mm mv G R ⎛⎫+-= ⎪⎝⎭解得22GM R v '=因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过22GM R c '=9.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径 ()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2LL G M M π+;【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL= 同理对星2M ,有:212222M M GM R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比) 又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:ω=因为2πT ω=,所以有:T 2π=答:()1双星的轨道半径分别是211212M M L L M M M M ++,; ()2双星的运行周期是2π点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.10.双星系统一般都远离其他天体,由两颗距离较近的星体组成,在它们之间万有引力的相互作用下,绕中心连线上的某点做周期相同的匀速圆周运动.已知某双星系统中两颗星之间的距离为 r ,运行周期为 T ,引力常量为 G ,求两颗星的质量之和.【答案】2324r GTπ 【解析】 【详解】对双星系统,角速度相同,则:22122Mm GM r m r rωω== 解得:221Gm r r ω=; 222GM r r ω=;其中2Tπω=,r =r 1+r 2; 三式联立解得:2324r M m GT π+=。

相关文档
最新文档