微积分发展简史

微积分发展简史
微积分发展简史

微积分发展简史

参与人员

院系:数学科学学院 专业:

信息与计算科学

年级:2011级

日期:2012年六月一日

目录 学号 姓名

20114500 李海洲

20114502 吴亚锋

20113917 卢任之

20113919 郭 越

20111738 王心影

20114975 哈森其其格

1 中文摘要 (Ⅰ)

2 abstract (Ⅱ)

3微积分简介 (1)

4产生背景 (2)

5 酝酿时期 (3)

6发展历程 (4)

(1)牛顿的微积分 (4)

(2)莱布尼茨的微积分 (5)

(3)柯西与魏尔斯特拉斯的贡献 (6)

(4)外国其他科学家的贡献 (7)

(5)中国数学家的思想 (8)

7微积分创建的历史意义 (9)

8微积分的应用与新分支的形成 (10)

9参考文献 (11)

中文摘要:

本文以对微积分的发展有突出贡献的一些数学家为切入点,简略的介绍了微积分学的产生背景、发展过程以及其产生的重大历史意义。

关键词:

微积分;发展史;微分;积分;极限;牛顿;莱布尼茨

English Abstract :

In this paper, some mathematicians of outstanding contributions to the development of calculus as a starting point, briefly introduced the calculus background, development process and its major historical significance.

Key Words :

Calculus;History of the development;Differential;Integral;Limit;Newton;Leibniz

微积分简介

数学的历史最早可追述到与我们极其遥远的社会发展初期。也许早于文字的形成,数的思想已在人们的生活中逐渐形成,虽然经历了长期的发展后,其体系分支的庞大与应用的广泛令世人惊叹,但至今为止却没有一个人能够为数学给出一个公认的定义。

16、17世纪,资本主义社会崛起,生产力大大解放,机器化生产逐渐普及,促使科学急速发展。此时初等数学已不能满足社会的需要,于是数学进入了变量数学时期。在这一时期中,虽然出现了解析几何,概率论和射影几何等新的分支,但几乎都被微积分过分强大的光辉掩盖了。其发展之迅猛,内容之丰富,应用之广泛,使人目不暇接。

微积分的产生是数学上的伟大创造,它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。

微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。

微分是由联系到对曲线作切线的问题和函数的极大值、极小值问题而产生的。古希腊学者曾进行过作曲线切线的尝试,如阿基米德在《论螺线》中给出过确定螺线在给定点处的切线的方法;阿波罗尼奥斯在《圆锥曲线论》中讨论过圆锥曲线的切线等等。关于微分方法的第一个真正值得注意的先驱工作起源于1629年费马陈述的概念,他给定了如何确定极大值和极小值的方法。随后英国剑桥大学三一学院的教授巴罗又给出了求切线的方法,进一步推动了微分学概念的产生。

与微分学相比而言,积分学的起源则要早得多。积分概念是由求某些面积、体积和弧长引起的,古希腊数学家阿基米德在《抛物线求积法》中用穷竭法求出弓形抛物线的面积。他的数学思想中蕴含着微积分的思想,只是缺少极限的概念,但其思想实质却延伸到17世纪无限小分析领域中,预告了微积分的诞生。

十七世纪下半叶,在前人工作的基础上,英国科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作。此后柯西与魏尔斯特拉斯等人又对微积分进行了完善。

微积分的发展同时推动了天文学和物理学前进的步伐,摧毁了笼罩在天体上的神秘主义、迷信和神学。不仅如此,微积分在数学这一学科中同时又贯穿了多个分支体系,如极限、微分学、积分学、以及导数等。

产生背景

16、17世纪,资本主义社会崛起,生产力大大解放,机器化生产逐渐普及,促使科学急速发展。此时初等数学已不能满足社会的需要,于是数学进入了变量数学时期。在这一时期中,虽然出现了解析几何,概率论和射影几何等新的分支,但几乎都被微积分过分强大的光辉掩盖了。其发展之迅猛,内容之丰富,应用之广泛,使人目不暇接。

在这一阶段中,许多科学问题急待解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心和引力计算。牛顿在研究经典力学规律和万有引力定律时,遇到了一些无法解决的数学问题,而这些数学问题用欧几里德几何学和16 世纪的代数学是无法解决的,因此牛顿着手研究新的为求曲率、面积、曲线的长度、重心、最大最小值等问题的方法———流数法。

酝酿时期

近代微积分的酝酿,主要是在17世纪上半叶这半个世纪,为了理解这一酝酿的背景,我们首先来简略的回顾一下这一时期自然科学的一般形势和天文、力学等领域发生的重大事件。首先是1608年,荷兰眼镜制造商里帕席发明了望远镜,不久伽利略将他制成的第一架天文望远镜对准星空,得到了令世人惊奇不已的天文发现。望远镜的发明不仅引起了天文学的新高涨,而且推动了光学的研究。

1638年,伽利略的《关于两门新科学的对话》出版。伽利略建立了自由落体定律、动量定律等,为动力学奠定了基础;他认识到弹道的抛物线性质,并断言炮弹的最大射程应在发射角为45度时达到,等等。伽利略本人竭力倡导自然科学的数学化,他的著作激起了人们对他所确立的动力学概念与定律作精确的数学表述的巨大热情。

开普勒与旋转体体积、卡瓦列里的不可分量原理、笛卡儿“圆法”、费马求极大值与极小值的方法、巴罗“微分三角形”、沃利斯“无穷算数”等均是在微积分酝酿阶段最具有代表性的工作。

发展历程

(1)牛顿的微积分

牛顿是那个时代的科学巨人。在他之前,已有了许多积累:哥伦布发现新大陆,

哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,微积分在这样的条件下诞生是必然的。然而当时牛顿在数学方面很大程度是依靠自学的。他学习了欧几里得的《几何原本》、笛卡儿的《几何学》、沃利斯的《无穷算术》、巴罗的《数学讲义》及韦达等许多数学家的著作。其中,对牛顿具有决定性影响的要数笛卡儿的《几何学》和沃利斯的《无穷算术》,它们将牛顿迅速引导到当时数学领域的最前沿----解析几何与微积分。

牛顿对微积分问题的研究始于1664年秋,当时他反复阅读笛卡儿的《几何学》,对笛卡儿求切线的“圆法”产生兴趣并试图寻找更好的方法。就在此时,牛顿首创了小o记号用来表示x的无限小且最终趋于零的增量。

牛顿的第一个微积分短评是于1669年在《运用无限多项方程的分析学》里给出的。在这部专著里他运用了几何和分析的无穷小量,并通过二项式定理扩展了其适用性。在这篇论文中,牛顿运用了一个无穷小矩形或者面积“瞬”的概念,并且发现了曲线的面积。奥里斯姆、伽利略、笛卡尔以及其他人均通过小单元之和求出总面积,而牛顿则是从单个点的变化率求出了面积。很难确切的指出牛顿是以何种方式看待这个瞬时变化率的。对于一个彻底的经验主义者,数学是一种方法,而不是一种阐释。牛顿显然认为任何质疑运动瞬时性的企图都与形而上学有联系,因此就避免为它下定义。不过他仍然接受了这个概念,并以之作为其第二个以及更多微积分阐释的基础,这从《流数法与无穷级数》中可以看出来。

在这本书里,牛顿介绍了他特有的符号和概念。其中,他认为他的变量产生于点、直线和平面的连续运动,而不是无穷小元素的集合,这种观点也出现在《论分析》里。

牛顿把变化率称为流数,用字母上加点的“标记字母”表示;他称变化的量为流量。牛顿将自古希腊以来求解无限小问题的各种特殊技巧统一为两类普遍的算法——正、反流数术亦即微分与积分,并证明了二者的互逆关系进而将这两类运算逐步统一成一个整体。

在《曲线求积法》里,牛顿曾尝试消除无穷小量的所有痕迹。他没有将数学量视为由瞬或者很小的部分组成,而是把它们描述为连续的运动,采用最初比和最后比的方法。最初比和最后比的物理原型是初速度与末速度的数学抽象,在物体作位置移动的过程中,每一瞬间具有的速度是自明的,牛顿就是从这个客观事实出发提出了最初比和最后比的直观概念。1687 年牛顿发表了他的划时代的科学名著《自然哲学的数学原理》,流数术(即微积分) 是其三大发现之一。

牛顿继承了培根的经验主义传统,特别重视实验和归纳推理的作用,他曾断言,自然科学只能从经验事实出发解释世界。这在当时对打击经院哲学的崇尚空谈、妄称神意来歪曲自然界是起过积极作用的。

(2)莱布尼茨的微积分

莱布尼茨是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才。他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献。

1672年莱布尼茨赴巴黎,在那里接触到惠更斯等一些数学名流,引其进入了数学领域,开始微积分的创造性工作。1675 - 1676 年间,他从求曲边形面积出发得到积分的概念。1684年莱布尼茨发表了数学史上第一篇正式的微积分文献《一种求极限值和切线的新方法》。这篇文献是他自1673年以来对微积分研究的概括与成果,其中叙述了微分学的基本原理, 认为函数的无限小增量是自变量无限小变化的结果,且把这个函数的增量叫做微分,用字母d表示,并得到广泛使用。还给出了和、差、积、商及乘幂的微分法则。同时包括了微分法在求切线、极大值、极小值及拐点

方面的应用。两年后,又发表了一篇积分学论文《深奥的几何与不变量及其无限的分析》,其中首次使用积分符号“∫”,初步论述了积分(或求积) 问题与微分求切线问题的互逆问题。即今天大

家熟知的牛顿- 莱布尼茨公式

()()()

b

a

f x d x F b F a

=-

?

,为我们勾画了微积分学的基本雏形和

发展蓝图。

牛顿建立微积分是从运动学的观点出发,而莱布尼兹则从几何学的角度去考虑,所创设的微积分符号远远优于牛顿的符号,并有效地促进了微积分学的发展,特别是和巴罗的“微分三角形”有密切关系,莱布尼茨称它为“特征三角形”。巴罗的微分三角形对莱布尼兹有着重要启发,对微分三角形的研究,使他意识到求切线和求积问题是一对互逆的问题。莱布尼兹第一个表达出微分和积分之间的互逆关系。将微分和积分统一起来,是微积分理论得以建立的一个重要标志。

(3)柯西与魏尔斯特拉斯的贡献

微积分学创立以后,由于运算的完整性和应用的广泛性,使微积分学成为了研究自然科学的有力工具。但微积分学中的许多概念都没有精确严密的定义,特别是对微积分的基础—无穷小概念的解释不明确,在运算中时而为零,时而非零,出现了逻辑上的困境。多方面的批评和攻击没有使数学家们放弃微积分,相反却激起了数学家们为建立微积分的严格而努力。从而也掀起了微积分乃至整个分析的严格化运动。

微积分的严格化工作经过近一个世纪的尝试,到19世纪初已开始显现成效。对分析的严密性真正有影响的先驱则是伟大的法国数学家柯西。柯西在数学上的最大贡献是在微积分中引进了极限概念,并以极限为基础建立了逻辑清晰的分析体系。这是微积分发展史上的精华,也是柯西对人类科学发展所做的巨大贡献。与此同时,柯西还在此基础上创建了复变函数的微积分理论。

柯西对定积分作了最系统的开创性工作,他把定积分定义为和的“极限”。在定积分运算之前,强调必须确立积分的存在性。他利用中值定理首先严格证明了微积分基本定理。柯西关于分析基础的最具代表性的著作是他的《分析教程》(1821)、《无穷小计算教程》(1823)以及《微分计算教程》(1829),它们以分析的严格化为目标,对微积分的一系列基本概念给出了明确的定义,在此基础上,柯西严格地表述并证明了微积分基本定理、中值定理等一系列重要定理,定义了级数的收敛性,研究了级数收敛的条件等,他的许多定义和论述已经非常接近于微积分的现代形式。柯西的工作在一定程度上澄清了在微积分基础问题上长期存在的混乱,向分析的全面严格化迈出了关键的一步。

另一位为微积分的严密性做出卓越贡献的是德国数学家魏尔斯特拉斯。魏尔斯特拉斯是一个有条理而又苦干的人,在中学教书的同时,他以惊人的毅力进行数学研究。

魏尔斯特拉斯定量地给出了极限概念的定义,这就是今天极限论中的“ε-δ”方法。魏尔斯特拉斯用他创造的这一套语言重新定义了微积分中的一系列重要概念,特别地,他引进的一致收敛性概念消除了以往微积分中不断出现的各种异议和混乱。

另外,魏尔斯特拉斯认为实数是全部分析的本源,要使分析严格化,就首先要使实数系本身严格化。而实数又可按照严密的推理归结为整数(有理数)。因此,分析的所有概念便可由整数导出。这就是魏尔斯特拉斯所倡导的“分析算术化”纲领。基于魏尔斯特拉斯在分析严格化方面的贡献,在数学史上,他获得了“现代分析之父”的称号。

通过柯西以及后来魏尔斯特拉斯的艰苦工作,数学分析的基本概念得到严格的论述.从而结束微积分二百年来思想上的混乱局面,把微积分及其推广从对几何概念,运动和直观了解的完全依赖中解放出来,并使微积分发展成为现代数学最基础最庞大的数学学科。

(4)外国其他人的贡献

在十八世纪,微积分得到进一步深入发展,这种发展与广泛的应用紧密交织在一起,刺激和推动了许多数学新分支的产生,从而形成了“分析”这样一个在观念和方法上都具有鲜明特点的数学领域。在数学史上,18世纪可以说是分析的时代,也是向现代数学过渡的重要时期。

无限小算法的推广,在英国和欧洲大陆国家是循着不同的路线进行的。英国的数学家们在剑桥、牛津、伦敦、爱丁堡等著名的大学里教授和研究牛顿的流数术,他们中的优秀代表有泰勒、麦克劳林、棣莫弗、斯特林等。

推广莱布尼茨学说的任务,在从17世纪到18世纪的过渡时期,主要是由雅各布·伯努利和约翰·伯努利担当的,他们的工作构成了现今初等微积分的大部分内容。其中,约翰给出了求未定式极限的一个定理,这个定理后由约翰的学生洛必达编入其微积分著作《无穷小分析》,现在通称为洛必达法则。此外法国数学家罗尔在其论文《任意次方程一个解法的证明》中给出了微分学的一个重要定理,也就是我们现在所说的罗尔微分中值定理。

18世纪微积分最重大的进步是由欧拉作出的。他所发表的《无限小分析引论》、《微分学》、《积分学》称得上是微积分史上里程碑式的著作,在很长时间里被当作分析课本的典范而普遍使用着。除了伯努利兄弟和欧拉,在18世纪推进微积分及其应用贡献卓著的欧陆数学家中,首先应该提到法国学派,其代表人物有克莱洛、达朗贝尔、拉格朗日、蒙日、拉普拉斯和勒让德等。在这一时期中,微积分主要在以下几个方面深入发展:积分技术与椭圆积分、微积分向多元函数的推广、无穷级数理论、函数概念的深化以及微积分严格化的尝试。这些数学家虽然不像牛顿、莱布尼茨那样创立了微积分,但他们在微积分发展史上同样功不可没,假如没有他们的奋力开发与仔细耕耘,牛顿和莱布尼茨草创的微积分领地就不可能那样春色满园,相反,也许会变得荒芜凋零。

(5)中国数学家的思想

如果将微积分的发展分为三个阶段:极限概念,求积的无限小方法,积分与微分及其互逆关系。那么最后一步是由牛顿、莱布尼兹完成的。前两阶段的工作,欧洲的大批数学家一直追朔到古希腊的阿基米德等都作出了各自的贡献。然而对于这方面的工作,古代中国是毫不逊色于西方的。极限思想在古代中国早有萌芽,甚至是古希腊数学都不能比拟的。

比如早在公元前7世纪,在我国庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。

南宋大数学家秦九韶于1274年撰写了划时代巨著《数书九章》十八卷,创举世闻

名的“大衍求一术”——增乘开方法解任意次数字(高次)方程近似解,比西方早500

多年。北宋大科学家沈括的《梦溪笔谈》独创了“隙积术”、“会圆术”和“棋局都数术”开

创了对高阶等差级数求和的研究。

特别是13世纪40年代到14世纪初,各主要(数学)领域都达到了中国古代数学

的高峰,出现了现通称贾宪三角形的“开方作法本源图”和增乘开方法、“正负开方术”、“大衍求一术”、“大衍总数术”(一次同余式组解法)、“垛积术”(高阶等差级数求和)、“招差术”(高次差内差法)、“天元术”(数字高次方程一般解法)、“四元术”(四元高

次方程组解法)、勾股数学、弧矢割圆术、组合数学、计算技术改革和珠算等都是在世

界数学史上有重要地位的杰出成果,中国古代数学有着微积分前两阶段的出色工作,其

中许多都是微积分得以创立的关键。

中国已具备了17世纪发明微积分前夕的全部内在条件,已经接近了微积分的大门。可惜中国元朝以后,八股取士制度造成了学术上的大倒退,封建统治的文化专制和盲目排外致使包括数学在内的科学水平日渐衰落,在微积分创立的最关键一步落伍了。

微积分创建的历史意义

微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。微积分学极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展。

微积分的产生和发展被誉为“近代科技文明产生的关键事件之一”,它引入了若干极其成功的,对以后许多数学家的发展起了决定性作用的思想。恩格斯称之为“17世纪自然科学的三大发明之一”,微积分的建立无论是数学还是对其他的科学以致于科技的发展都产生了巨大的影响,充分显示了数学对人认识、发展、改造世界的能力的巨大促进作用。

微积分的基本概念还涉及函数、极限、导数、无穷序列、无穷级数和连续等,运算方法主要有符号运算技巧,该技巧与初等代数和数学归纳法紧密相连。

微积分被延伸到微分方程(包括常微分方程及偏微分方程)、向量分析、变分法、复分析、时域微分和微分拓扑等领域。微分学的核心思想就是以直代曲,即在微小的邻域内,可以用一段切线段来代替曲线以简化计算过程。

积分学由定积分、不定积分理论组成,积分是微分的逆运算,定积分就是把图像无限细分,然后在进行累加,而不定积分是对已知的导数求其原函数,定积分和不定积分联系起来就是著名的牛顿——莱布尼兹公式。

著名的数学家、计算机的发明者冯.诺依曼曾说过:“微积分是近代数学中最伟大的成就,对它的重要性无论做怎样的估计都不会过分。”由此可见,微积分在近代数学发展中的作用。微积分是整个近代数学的基础,有了微积分,才有了真正意义上的近代数学。微积分是一种重要的数学思想,它反映了自然界、社会的运动变化的内在规律,它紧密的与物理学和力学联系在一起,它的产生可以说是数学发展的必然。正如恩格斯所说的:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了,而它们也就立刻产生,并且是由牛顿和莱布尼茨大体上完发的,但不是由他们发明的”。因此,微积分是近代数学发展的基础。

微积分的应用与新分支的形成

18世纪数学家们一方面努力探索能够使微积分严格化的途径,一方面又往往不顾基础问题的困难而大胆前进,大大扩展了微积分的应用范围,尤其是与力学的有机结合,已成为18世纪数学的鲜明特征之一,当时几乎所有数学家都不同程度地同时也是力学家。欧拉的名字同刚体运动与流体力学的基本方程相联系;拉格朗日最享盛名的著作是《分析力学》,它将力学变成分析的一个分支,拉普拉斯许多最重要的数学成果包含在他的五大卷《天体力学》中,这种广泛的应用成为新思想的源泉使数学本身大大受惠,一系列新数学分支在18世纪成长起来,例如常微分方程与动力系统、偏微分方程、变分法等等以及分析的扩展与更高的抽象。

小结:综上所述,微积分的创立在数学发展史上是一个重要转折,它不但成为高等数学发展的基础,也成为了众多相关科学发展的数学分析工具。毋庸置疑,随着现代科学的发展和各学科间的相互交融,微积分与数学仍将会得到进一步丰富和发展,人们也要进一步将微积分和数学的理论应用于实践,从而为人类社会作出更大的贡献。

参考文献:

【1】李文林·数学史概论北京:高等教育出版社【2】【英】斯科特·数学史桂林:广西师范大学出版社【3】【美】卡尔·B·波耶·微积分概念发展史

上海:复旦大学出版社

定积分的发展史.docx

定积分的发展史 起源 定积分的概念起源于求平面图形的面积和其他一些实际问题。定积分的思想在古代数学家的工作中,就已经有了萌芽。比如古希腊时期阿基米德在公 元前 240 年左右,就曾用求和的方法计算过抛物线弓形及其他图形的面积。 公元 263 年我国刘徽提出的割圆术,也是同一思想。在历史上,积分观念的 形成比微分要早。但是直到牛顿和莱布尼茨的工作出现之前( 17 世纪下半叶),有关定积分的种种结果还是孤立零散的,比较完整的定积分理论还未能形成, 直到牛顿 -- 莱布尼茨公式建立以后,计算问题得以解决,定积分才迅速建立 发展起来。 未来的重大进展,在微积分才开始出现,直到16 世纪。此时的卡瓦列利与 他的indivisibles方法,并通过费尔马工作,开始卡瓦列利计算度N = 9×N的积分奠定现代微积分的基础,卡瓦列利的正交公式。17世纪初巴罗提 供的第一个证明微积分基本定理。 牛顿和莱布尼茨 在一体化的重大进展是在 17 世纪独立发现的牛顿 ?? 和莱布尼茨的微积分 基本定理。定理演示了一个整合和分化之间的连接。这方面,分化比较容易 地结合起来,可以利用来计算积分。特别是微积分基本定理,允许一个要解决 的问题更广泛的类。同等重要的是,牛顿和莱布尼茨开发全面的数学

框架。由于名称的微积分,它允许精确的分析在连续域的功能。这个框架最终成为现代微积分符号积分是直接从莱布尼茨的工作。 正式积分 定积分概念的理论基础是极限。 人类得到比较明晰的极限概念,花了大约 2000 年的时间。在牛顿和莱布尼茨的时代,极限概念仍不明确。因此牛顿和莱布尼茨建立的微积分的理论基础还不十分牢靠,有些概念还比较模糊,由此引起了数学界甚至哲学界长达一个半世纪的争论,并引发了“第二次数学危机”。经过十八、十九世纪 一大批数学家的努力,特别是柯西首先成功地建立了极限理论,魏尔斯特拉斯进一步给出了现在通用的极限的定义,极限概念才完全确立,微积分才有 了坚实的基础,也才有了我们今天在教材中所见到的微积分。现代教科书 中有关定积分的定义是由黎曼给出的。 术语和符号 艾萨克牛顿以上的变量使用一个小竖线表示一体化,或放置在一个盒子里的变量,竖线是很容易混淆。或牛顿用来指示分化和方块符号打印机难以重现,所以这些符号没有被广泛采用。 1675 年戈特弗里德莱布尼茨改编的积分符号,∫,从字母S(“总结”或“总”)。 ∫符号表示的整合 ; A和 B 的下限和上限,分别一体化,定义域的融合 ; f是积,x 在区间 [a ,b] 上的变化进行评估;

微积分发展简史

微积分发展简史 一、微积分的创立 微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。 大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。这四个问题是: 1.运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动, 使瞬时变化率的研究成为必要; 2.曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等; 3.有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提 出的求函数的极大值、极小值问题; 4.当然还有千百年来人们一直在研究如何计算长度、面积、体积与 重心等问题。 第一、二、三问题导致微分的概念,第四个问题导致积分的概念。微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。开普勒(Kepler)、伽利略(Galileo)、费马(Fermat)、笛卡尔(Descartes)、卡瓦列里(Cavalieri)等学者都做出了杰出贡献。 1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以

几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。这个比较接近于微积分基本定理。 牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。可以这样说:微积分的产生是量变(先驱们的大量工作的积累)到质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。微积分基本定理的建立标志着微积分的诞生。 牛顿自1664年起开始研究微积分,钻研了伽利略、开普勒、瓦利斯(Wallis),尤其是笛卡尔的著作。1665年5月,牛顿发明“正流数术”(微分法);1666年5月,发明“饭流数术”(积分法)。1666年10月将此整理成文名为《流数简论》,此文虽未发表,却是历史上第一篇系统的微积分文献。将从古希腊依赖用无穷小的方法来解各种问题的特殊技巧统一为两类算法,正、反流数术,记微分与积分;并指出两者是互逆关系,即是一对矛盾。还应用已简历起来的统一算法,用来求曲线切线、曲率、拐点、曲线求长、求面积、求引力与引力中心等16类问题,现实了这中算法的普遍性、系统性以及强大威力。 莱布尼兹于1673年提出特征三角形(ds, dx, dy),认识到:求曲线的切线依赖于纵坐标的差值与横坐标的差值当这些差

微积分发展史

微积分发展史 摘要:本文将介绍微积分的由来以及发展过程以及他对于人类发展的重大意义。并且在文章中也会对微积分的一些基本内容和理论等进行说明和归纳 关键词:微积分,微分,积分,建立 一、微积分学的建立 微积分在如今的数学领域中占到了非常重要的地位,并且作为 一门学科,微积分是研究函数的微分、积分以及有关概念和应 用的数学分支。它的起源可以追溯到其诞生的2000多年前, 比如,古代的人用方砌圆,我国庄子的“一尺之棰,日取其半,万世不竭”,魏晋时刘徽的“割圆术”等等,都涉及到了以“直”代“曲” 的极限观念,属于微积分的朴素思想,阿基米德更可称为时微 积分学的先驱,他不仅成功地将“穷竭法”应用于求像抛物线弓 形那样复杂地曲边形地面积中,而且在求积时应用了各种微积 分学地思想。但微积分思想真正形成是在十七世纪,由牛顿总 结和发展了前人的工作,几乎同时建立了微积分的方法和理论 微积分的起源。牛顿是从物理角度建立了微积分的思想,而德 国数学家莱布尼兹从几何角度出发,独立地创立了微积分 (1675-1676)。这两位数学家总结出处理各种有关问题地一般 方法,并揭示出微分学和积分学之间的本质联系。两人各自建

立了微积分学基本定理,并给出微积分的概念、法则、公式及 其符号。这位日后的微积分学的进一步发展奠定了坚实而重要 的基础。微积分的创立,极大地推动了数学地发展,过去很多 初等数学束手无策地问题,通过运用微积分,往往引刃而解。 使得微积分学地创立成为数学发展地一个里程碑式的事件。二、微积分建立的重要意义 恩格斯曾经说过:“在一切理论成就中,未必再有什么像十七世 纪下半叶微积分的发现那样被看作人类精神的最高胜利了。如 果在某个地方我们看到人类精神的纯粹的和惟一的功绩,那就 正是在这里。”在微积分建立之前,人类基本还处于农耕文明时 期。但在微积分建立之后它为创立许多新的学科提供了源泉。 可以说微积分的建立是人类头脑最伟大的创造之一,是人类智 慧的结晶,它极大地推动了科学地进步,并且对社会也有深远 的影响。有了微积分,就有了工业革命,它是世界近代科学的 开端,同时也摧毁了笼罩在天体上的神秘主义、迷信和神学, 对社会产生了极大的影响,使人们进入了现代化的社会。这一 切都表面了微积分学的产生是人类历史上的一次空前飞跃。三、微积分理论的基本介绍和归纳 微积分学是微分学和积分学的总称。微积分学基本定理指出, 求不定积分与求导函数是互为逆运算的过程,而把上下限代入 不定积分即得到积分值,微分则是倒数值与自变量增量的乘积。 作为一种数学的思想微分就是“无限细分”,而积分就是“无限求

微积分概述

微积分概述 一、微积分的来历 早在公元前三世纪,在古希腊就出现了微积分的雏形。阿基米德在研究解决抛物弓形的面积、球和球冠面积等问题中,就隐含了近代积分的思想。到了十七世纪,有许多科学问题亟需解决,第一类是瞬时速度问题;第二类是求任意曲线的切线问题;第三类是最值问题;第四类是求曲线长、曲线所围面积等问题。十七世纪的许多著名的数学家、天文学家、物理学家都为解决以上问题做了大量的研究工作,例如费马、笛卡尔、巴罗、开普勒、伽利略等等。 十七世纪下半叶,英国大科学家牛顿和德国数学家莱布尼茨分别独立研究和完成了微积分的创立工作。他们最大的功绩就是把两个貌似毫不相关的问题联系在一起,一个是切线问题,一个是求积问题。 二、微积分的主要内容 众所周知,微积分由微分、积分组成,微分与积分互为逆运算,但是很多学生学完整本微积分,仍然对于微积分没有一个清晰的了解。下面我们通过一个例子来具体地了解微积分的主要问题。 引例:路程函数()()S S t v v t ==与速度函数,我们首先考虑匀速的情况; 上述两个图像表达的都是一个速度恒为1的匀速直线运动。我们可以根据图(1)画出图(2),也可以根据图(2)画出图(1)。这就说明一个运动的路程函数与速度函数有内在的联系。 然后,我们来考虑变速的情况:

请大家根据图(3)得出图(4)并解释运动的具体情况。 通过图(1)画出图(2)以及通过图(3)画出图(4),这个过程就是微分,即由路程函数微分可得速度函数。通过图(2)画出图(1)以及通过图(4)画出图(3)这个过程就是积分,即由速度函数积分可得路程函数。 类似的例子还有很多,通过这个例子,大家应该清楚微积分其实就是事物内部的某种规律。例如,一个运动的路程函数与速度函数的关系;一个物体体积与表面积的关系等。 所以,我们研究微积分其实就是帮助我们更好地了解世界中某些事物内部的规律变化。 三、微积分的应用 微积分在工程学、经济学、天文学、力学等许多领域都有着广泛的应用。实际上,只要有变量的问题,微积分就有其具体的应用。所以我们在大学期间要学习微积分这门课程。通过学习掌握好微积分的基本方法以后,我们在许多自然科学里能找到许多的基础应用。这是我们学习专业知识的基础。 四、微积分的基本构架 函数→极限→微分→应用 ↓ 积分→应用

微积分学习方法

《微积分》学习方法 来源:东财网院 很多同学都会认为,数学是一门比较难学的学科,有那么多的定义、公式、定理,还有图像以及各种曲线等等,总是让人头疼。所以同学们在接触微积分之前,可能就已经对它产生了心理恐惧,甚至是排斥心理。而事实并非如此,之所以会这样是因为你还没有掌握正确的学习方法。 首先,大家应该大致翻一下教科书,或者是看看目录和前言,了解学习这么课程所需具备的基础知识是什么。从第一章的内容中,大家可以了解到,微积分的起点是中学里的函数概念和解析几何。所以,如果以往的知识不牢固,或是没有接触过,那么最好找来中学的教科书复习一下。接下来,大家就接触到了极限,数列的极限以及函数的极限。大家可能会发现,极限的定义很难看懂。那是不是就能以此为借口,停顿在这里呢?当然不能,我们可以先把这个问题放一下,继续向下。实际上,极限的概念是很直观的,理解其思想即可,看不懂定义并不影响下面的学习。 接下来的部分就较为重要了,而且不能跳过。导数的概念其实也很简单,就是一个量关于另一个量的变化率。下面可能牵扯到很多导数的公式和运算技巧,很少有人会马上记住,这也不要紧,可以在平时的练习中慢慢掌握。可能有些同学喜欢解题,喜欢推导和运算,这固然是好事,但不要过度的沉浸在题海中。接触到微分,大家会发现,它和导数没有实质性的区别,只是在表达方式上有所不同,这是需要大家分清楚地。 下一个难点就是积分了。积分的数学定义可能较难理解,那么可以从图形下手,可以充分发挥想象力:为了求得曲线所围的面积,用无数小梯形去无限逼近,这也就是极限的思想。其实积分的本质就是极限。理解它的本质后,运算技巧可以暂放一下,在考试前可以集中解决运算技巧的问题。 对于多数同学来说,微积分的后半部分会更难些。对于无穷级数,同学们还是重在理解思想。多元函数微积分比前面的一元函数稍微复杂了些,但是基本的思路是一样的。最后一个难点,就是关于微分方程了。首先,要理解微分方程的有关概念以及微分方程的解,这样才能对微分方程有所识别。其次,对各种类型的微分方程,都要抓住其特征的本质,领会每一道例题中解题的方法和含义。 在学习数学的过程中,前后的连贯性较为重要,所以要注意知识点之间的衔接。但也不排除个别的情况,比如前文中说到的极限和级数。事实上很多人的亲身经历也证明了,微积分并不可怕,关键看你肯不肯下功夫。相信在大家的努力和老师的帮助下,微积分的难关是可以攻克的。 微 积 分》 的 学 习 方 法 读书好比走路。不知道去那里干什么,走起路来也没 劲儿。读书也是这样,没有目的,读起书来也没兴趣。 走路也得有方法,方法对走起路来才省劲儿。读书也 是这样,方法得当才能收到好效果。学生在校期间, 读书当然应以教科书为主,但是大学生与中小学生不

微积分发展史

微积分发展史 微积分在数学发展史上可以认为是一个伟大的成就,由于微积分的创立不仅解决了当时的一些重要的科学问题,而且由此产生了数学的一些重要分支,如微分方程、无穷级数、微分几何、变分法、复变函数等。这个伟大的成就当然首先应该归功于牛顿(Newton)和莱布尼茨(Leibniz),但是在他们创立微积分之前,微积分问题至少被17世纪十几个大数学家和几十个小数学家探索过,得出了一些有价值的结论,且具有很大启发性。牛顿和莱布尼茨是在前人的基础上将微积分发展到了高峰。 17世纪遇到了哪些问题呢?主要有四类问题。第一类是速度和加速度问题。17世纪遇到的速度和加速度问题大都是变量问题,即变速与变加速。这与17世纪以前所遇到的大量常速问题所不同,如何求速度与加速度成为当时科学家们所关心的问题。第二类是切线问题。17世纪光学是一门重要的学科,例如透镜如何设计,这涉及切线与法线。切线问题在17世纪以前虽也解决过,但只限于圆锥曲线,而切线的定义是只与曲线接触一点的直线,这种情况不能适应17世纪所遇到的复杂的曲线的切线问题,另外物体运动时在它轨迹上的运动方向也涉及切线。第三类是最大值和最小值问题。炮弹的最大射程如何求,行星运行时离开太阳的最远和最近距离如何求,都是17世纪迫切要解决的。第四类是求曲线的长、曲线围成的面积和曲面围成的体积、物体的重心、引力等。这些问题在17世纪之前个别地解决过,但必须有较好的技巧,且方法缺乏一般性。 尝试解决这四类问题在牛顿、莱布尼茨之前已经有过不少经验,罗贝瓦尔(Roberval)从炮弹的水平速度与垂直速度构成矩形的对角线出发,认为这条对角线就是炮弹的轨迹切线。牛顿的老师巴罗(Barrow),也给出了求切线的方法。17世纪开普勒(Kepler)证明了所有内接于球的,具有正方形底的正平行四面体中立方体的容积最大。当越来越接近最大体积时,相应尺寸的变化对体积的变化越来越小(就是我们现在所说的极值处的导数为0)。费马(Fermat)在1629年已经找到与现在求最大值和最小值的方法实质相同的方法。卡瓦列利(Cavalieri)在他老师伽利略(Galileo)和开普勒的影响下,并在他老师的敦促下,考查了微积分,并且获得n为正整数时的积分公式(1639年) 1634年罗贝瓦尔求出了旋轮线x=R(t-s in t),y=R(1-c os t)一个拱下的面积。他还求出了正弦曲线一个拱下的面积及它绕底旋转的体积。一些图形的重心也计算出来了。格利哥利(Gregory)在1647年算出了 以上都是一些具体的结果,在原则性的问题上,如微积分的主要特征——积分与微分互逆,也早为人们所遇到。托里拆利(Torricelli)通过特殊的例子看到了变化率问题本质上是面积问题的反问题。费马同样也在特殊的例子中知道了面积与导数的关系。格利哥利1668年证明了切线问题是面积问题的逆问题。巴罗也看到了这种关系,但他们不是没有看到其普遍意义或一般性,就是没引起重视和看到其重要性。17世纪的前三分之二的时间内,微积分的工作被困拢在一些细节问题里,作用不大的细微末节的推理使数学家们精疲力竭了。

数学史答案

一、刘徽在数学上的贡献 刘徽在数学上的贡献,主要在其《九章算术注》一书。《隋书》卷16《律历上》载:“魏陈留王景元四年刘徽注《九章》”。是知《九章算术注》完成于景元四年(263年)。《隋书》卷34《经籍志三》有《九章算术》十卷、《九章重差图》一卷,均注明系刘徽撰。后《九章重差图》失传,唐人将《九章算术注》内有关数学用于测量的《重差》一卷取出,独成一书,因其中第一个问题系测量海岛,故改名为《海岛算经》。刘徽这两个著作是我国数学史上宝贵的文献,即在世界数学史上也有一定的地位。今述其主要贡献如下: 1.极限观念与割圆术极限意识在春秋战国时已出现,实际加以应用的是刘徽。刘徽已领悟到数列极限的要谛,故能有重要创获。刘徽的杰出贡献首推他在《九章算术注》中创立的割圆术,其所用方法包含初步的极限概念和直线曲线转化的思想。刘徽建立的割圆术,是在圆内接正六边形,然后使边数逐倍增多,他说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣”。这是因为,圆内接正多边形无限多时,其周长极限即为圆周长,面积即为圆面积。他算到正192边形时,求得圆周率为3.14的近似值。他又用几何方法把它化为。后人即将3.14或叫作“徽率”。 2.关于体积计算的刘徽定理一般地说,柱体或多面体的体积计算较比容易解决,而圆锥、圆台之类的体积就难以求得。刘徽经过苦心思索,终于找到了一条途径,他分别做圆锥的外切正方锥和圆台的外切正方台,结果发现:“求圆亭(圆台)之积,亦犹方幂中求圆幂,圆面积与其外切正方形的面积之比为π∶4,由此他推得:圆台(锥)的体积与其外切正方台(锥)的体积之比,也是π∶4。很显然,如果知道了正方台(锥)的体积,即可求得圆台(锥)的体积。刘徽这个成果,看似简单,实际起着继往开来的重要作用,故有的现代数学家称之为“刘徽定理”。 3.十进小数的应用在数学计算或实际应用中总不免出现奇零小数,刘徽建立了十进分数制。他以忽为最小单位,不足忽的数,统称之为微数,开平方不尽时,根是无限小数,这又是无限现象。他说:“微数无名者以为分子,其一退以十为分母,再退以百为母,退之弥下,其分弥细,则朱幂(已经开出去的正方形面积)虽有所弃之数(未能开出的部分),不定言之也”。

第一章 微积分的发展历史简介

第一章 微积分的发展历史简介 1.1微积分的概念 微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。 基本定义 设函数0)(=x f 在],[b a 上有解,在],[b a 中任意插入若干个分点 n n x x x x x a <<<<<=-1210 把区间],[b a 分成n 个小区间 ].,[],,[],,[12110n n x x x x x x - 在每个小区间],[1i i x x -上任取一点)(1i i x i x i <<-ζζ,作函数值)(i f ζ与小区间长度的乘积x i f ?)(ζ并作出和如果不论对],[b a 怎样分法,也不论在小区间上的点i ζ怎样取法,只要当区间的长度趋于零时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数)(x f 在区间[a,b]上的定积分记作K 。 微积分的基本概念和内容包括微分学和积分学。 微分学的主要内容包括:极限理论、导数、微分等。 积分学的主要内容包括:定积分、不定积分等。 一元微分定义 设函数)(x f y =)在某区间内有定义,0x 及x x ?+0在此区间内。如果函数的增量)()(00x f x x f y -?+=?可表示为 0ox x A y +?=?(其中A 是不依赖于x ?的常数),而x o ?是比x ?高阶的无穷小,那么称函数)(x f 在点0x 是可微的,且x A ?称作函数在点0x 相应于自变量增量x ?的微分,记作dy ,即x A dy ?= 通常把自变量x 的增量x ?称为自变量的微分,记作dx ,即x dx ?=。于是函数)(x f y =的微分又可记作dx x f dy )('=。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。 几何意义 设x ?是曲线)(x f y =上的点M 的在横坐标上的增量,y ?是曲线在点M 对

微积分发展简史

微积分发展简史 参与人员 院系:数学科学学院 专业: 信息与计算科学 年级:2011级 日期:2012年六月一日 目录 学号 姓名 20114500 李海洲 20114502 吴亚锋 20113917 卢任之 20113919 郭 越 20111738 王心影 20114975 哈森其其格

1 中文摘要 (Ⅰ) 2 abstract (Ⅱ) 3微积分简介 (1) 4产生背景 (2) 5 酝酿时期 (3) 6发展历程 (4) (1)牛顿的微积分 (4) (2)莱布尼茨的微积分 (5) (3)柯西与魏尔斯特拉斯的贡献 (6) (4)外国其他科学家的贡献 (7) (5)中国数学家的思想 (8) 7微积分创建的历史意义 (9) 8微积分的应用与新分支的形成 (10) 9参考文献 (11) 中文摘要:

本文以对微积分的发展有突出贡献的一些数学家为切入点,简略的介绍了微积分学的产生背景、发展过程以及其产生的重大历史意义。 关键词: 微积分;发展史;微分;积分;极限;牛顿;莱布尼茨

English Abstract : In this paper, some mathematicians of outstanding contributions to the development of calculus as a starting point, briefly introduced the calculus background, development process and its major historical significance. Key Words : Calculus;History of the development;Differential;Integral;Limit;Newton;Leibniz

关于微积分学习的感受

学习微积分的感想和建议 班级:国际商务一班姓名:沈识宇学号:171400151 对于学习方面,以前我总觉得数学一直处于主心骨的位置,它是我从小的梦想、我的骄傲。可是自从大学以来的第一个学期,微积分却着实让我们倍受打击。成绩的不再拔尖,沉痛的打击了我的自信心。但是,通过和老师交流,与同学讨论,让我明白强中自有强中手, 而自己,并不是笨,只是有些方面自己做的不够,只要深切的去思考自己的学习方法,自己依旧有很大的进步空间。 首先我们觉得大学里的学习课后巩固很重要,光靠一周两次大课的学习,远远不够。并且,课上老师可能会因为进度问题而降得很快,很多时候我们会跟不上老师的速度,这时, 如果课后不再看老师局的例题,课上的疑问会永远得不到解答。在此情况下谈想进步是不可能的,然而课后的巩固应该从两方面着手,一方面是教学大纲上要求必须掌握的内容,这些是 考试必考内容,或许看似很简单的内容,确实解题目的最基本的基础。秋季学期的期末考,正是由于自己对基本知识忽略,在一些很简单的题目丢了分,惨痛的教训给了我们深刻的教 训,夯实基础知识,才能为考试打下良好的基础。 另一方面。是自己认为在内容掌握上的盲点和误区,这些事最容易忘记的,也是熟练度最差的。而考试不会因为这是自己认为的难点就会不考,所以认真钻研这些题目便可为自己在分数上的突破起决定性作用。

同时,复习一定要有耐心,要持之以恒。学习上最大的忌讳便是三天打鱼两天晒网,这 样的学习不会有任何收获。知识既然学习了,我们就要好好消化,不能让它成为太脑中的累赘。周期性的复习才不会使大脑一片空白,一周一次或两周一次,可以根据自己的记忆力而 定,以适合自己的为基准便可以。 复习的时候,第一,便是要克服浮躁的毛病,静心看课本。考试题目几乎都是从课本知识中发散来的,所以,复习中必须要看课本,反复看,细节很重要,特别是不被重视的基本概念和定理。力争课后复习参考题每题都过关。第二,是要制定好复习计划,针对自身情况 分配好时间,各个击破。第三,要理清知识结构网络图,从上学期到现在,我们已经学了极限、连续不连续、导数、定积分、不定积分等知识内容,然后根据知识结构网络图区发散、联想基础概念和基本定理和每个知识点的应用计算题,对本章节的内容有个清晰的思 路,这样就可以在整体上把我书本知识。从整体上把握书本知识有利于我们对于试卷中的一些基本的题目有一个宏观的把握。对于试卷中的问答题,可以从多角度去理解和把握,这样就能做到回答问题的严密性。第四,将课上老师所讲授的典型例题及做题过程中遇到的难题还有易错的题归纳整理,分析。数学中,我们很容易遇到同一个问题有不同方法的解决方法。第五,最好多看看往年真题,针对出现频率较高的题型,适当做些有针对性的模拟试题。对于自己认为薄弱的环节更要加强钻研,与同学和老师多交流,更要勇于舍弃那些偏题、怪题。

微积分的起源与发展

微积分的起源与发展 主要内容: 一、微积分为什么会产生 二、中国古代数学对微积分创立的贡献 三、对微积分理论有重要影响的重要科学家 四、微积分的现代发展 一、微积分为什么会产生 微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所着的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。 到了十七世纪,哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,这些问题也就成了促使微积分产生的因素,微积分在这样的条件下诞生是必然的。归结起来,大约有四种主要类型的问题: 第一类是研究运动的时候直接出现的,也就是求即时速度的问题。 已知物体移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为时间的函数的公式,求速度和距离。 困难在于:十七世纪所涉及的速度和加速度每时每刻都在变化。例如,计算瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬刻,移动的距离和所用的时间都是0,而0 / 0 是无意义的。但根据物理学,每个运动的物体在它运动的每一时刻必有速度,是不容怀疑的。 第二类问题是求曲线的切线的问题。 这个问题的重要性来源于好几个方面:纯几何问题、光学中研究光线通过透镜的通道问题、运动物体在它的轨迹上任意一点处的运动方向问题等。 困难在于:曲线的“切线”的定义本身就是一个没有解决的问题。 古希腊人把圆锥曲线的切线定义为“与曲线只接触于一点而且位于曲线的一边的直线”。这个定义对于十七世纪所用的较复杂的曲线已经不适应了。 第三类问题是求函数的最大值和最小值问题。 十七世纪初期,伽利略断定,在真空中以45°角发射炮弹时,射程最大。研究行星运动也涉及最大最小值问题。 困难在于:原有的初等计算方法已不适于解决研究中出现的问题。但新的方法尚无眉目。

微积分论文

“微积分”课程论文首页

微积分中的导数思想与应用 蔡淑铭 摘要:微积分在天文、力学、数学、化学、生物学、物理学、工程学和社会科学等领域都有什么样重要的作用,微积分的基本原理和思想在我们的日常生活中、学习、工作中也经常用到。一、导数在经济学中的应用导数反映函数的自变量在变化过程中,相应的函数值变化的快慢程度——变化率。如果在函数y- f(x)在某一点x_0处可导的前提下,若函数y-f(x)在某区间内每一点处都可导,则称y=f(x)在该区间内可导,记y=f'(x)为y=f(x) 在该区间内的可导函数(简称导数)。 关键词:流数术、可导、变化 1.导数的概念 导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X 在一点x 上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的 比值在Δx趋于0时的极限a如果存在,a即为在x 0处的导数,记作f'(x )或 df/dx(x )。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f(x),x?f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。 2.导数的历史沿革 2.1起源

学习微积分的心得体会

学习微积分的心得体会 微积分学习心得 学号11120472 姓名吴心怡班级七班学号11120471 姓名吴亚男班级七班时间,如同轨道上疾驰的列车,匆匆行驶,不留一点痕迹的我们的寒假就这样over掉了了。恍惚之间,我们就要开始正式上课了。我们依稀还记得,放假前,老师们说让好好复习,来学校不久便是冬季学期的期末考试了,可是,嘿嘿~~自己却不得不承认有很大一部分的时间是被荒废了的。但早早来学校,我们好好静下心来思考了一下学习的经验和方法。突然有了要好好学习的冲动,可能以前真的是我们对学习不够上心的缘故吧。 对于学习方面,以前我总觉得数学一直处于主心骨的位置,它是我从小的梦想、我的骄傲。可是自从大学以来的第一个学期,微积分却着实让我们倍受打击。成绩的不再拔尖,沉痛的打击了我的自信心。但是,通过和老师交流,与同学讨论,让我明白强中自有强中手,而自己,并不是笨,只是有些方面自己做的不够,只要深切去思考自己的学习方法,自己依旧有很大的进步空间。 首先我们觉得大学里的学习课后巩固很重要,光靠一周两次大课的学习,远远不够。并且,课上老师可能会因为进度问题而降得很快,很多时候我们会跟不上老师的速度,这时,如果课后不再看老师局的

例题,课上的疑问会永远得不到解答。在此情况下谈想进步是不可能的。 然而课后的巩固应该从两方面着手,一方面是教学大纲上要求必须掌握的内容,这些是考试必考内容,或许看似很简单的内容,确实解题目的最基本的基础。秋季学期的期末考正是由于自己对基本知识忽略,在一些很简单的题目丢了分,惨痛的教训给了哦我们深刻的教训,夯实基础知识,才能维纳最重要的考试打下良好的基础。 另一方面。是自己认为在内容掌握上的盲点和误区,这些事最容易忘记的,也是应用熟练程度最差的。而考试不会因为这是自己认为的难点就会不考,所以认真钻研这些题目便可为自己在分数上的突破起决定性作用。 同时,复习一定要有耐心,要持之以恒。学习上最大的忌讳便是三天打鱼两天晒网,这样的学习不会有任何收获。知识既然学习了,我们就要好好消化,不 能让它成为大脑中的脂肪。周期性的复习才不会使大脑一片空白,一周一次或两周一次,可以根据自己的记忆力而定,以适合自己的为基准便可以。

概述定积分的发展及应用

概述定积分的发展与应用 摘要:概述了定积分发展的三个历史阶段,讨论了定积分在各个学科中的具体应用. 关键词:分割近似; 定积分; 流数法; 应用 微积分创立是数学史上一个具有划时代意义的创举,也是人类文明的一个伟大成果.正如恩格斯评价的那样:"在一切理论成就中,未必再有什么象17世纪下半叶微积分的发明那样被当作人类精神的最高胜利了." 它是科学技术以及自然科学的各个分支中被广泛应用的最重要的数学工具; 如数学研究, 求数列极限, 证明不等式等. 而在物理方面的应用,能够说是定积分最重要的应用之一,正是因为定积分的产生和发展,才使得物理学中精确的测量计算成为可能, 如:气象,弹道的计算,运动状态的分析等都要用的到微积分. 定积分的发展大致能够分为三个阶段:古希腊数学的准备阶段,17世纪的创立阶段以及19世纪的完成阶段. 1准备阶段 主要包括17世纪中叶以前定积分思想的萌芽和先驱者们大量的探索、积累工作.这个时期随着古希腊灿烂文化的发展,数学也开始散发出它不可抵挡的魅力.整个16世纪,积分思想一直围绕着"求积问题"发展,它包括两个方面:一个是求平面图形的面积和由曲面包围的体积,一个是静力学中计算物体重心和液体压力.德国天文学家、数学家开普勒在他的名著《测量酒桶体积的新科学》一书中,认为给定的几何图形都是由无穷多个同维数的无穷小图形构成的,用某种特定的方法把这些小图形的面积或体积相加就能得到所求的面积或体积,他是第一个在求积中使用无穷小方法的数学家.17世纪中叶,法国数学家费尔玛、帕斯卡均利用了"分割求和"及无穷小的性质的观点求积.可见,利用"分割求和"及无穷小的方法,已被当时的数学家普遍采用. 2 创立阶段 主要包括17世纪下半叶牛顿、莱布尼兹的积分概念的创立和18世纪积分概念的发展.牛顿和莱布尼兹几乎同时且互相独立地进入了微积分的大门. 牛顿从1664年开始研究微积分,早期的微积分常称为"无穷小分析",其原因在于微积分建立在无穷小的概念上.当时所谓的"无穷小"并不是我们现在说的"以零为极限的变量",而是含糊不清的,从牛顿的"流数法"中可见一斑,"流数法"的主要思想是把连续变动的量称为"流量",流量的微小改变称为"瞬"即"无穷小量",将这些变量的变化率称为"流数".用小点来

微积分发展简史

微积分发展简史 微积分是17世纪发现的最具威力的数学工具,是人类思维最珍贵的成果. 正如美国当代数学家柯朗所说:“这是一门撼人心灵的智力奋斗结晶,这种奋斗已经历了两千五百年之久,它深深地扎根于人类活动的许多领域,并且只要人们认识自己和认识自然的努力一日不止,这种奋斗就将继续不已.” 恩格斯也对微积分的发现予以高度评价,认为这是“人类精神的最高胜利.” 一、微积分思想萌芽 微积分的思想萌芽,部分可以追溯到古代. 在古代希腊、中国和印度数学家的著作中,已不乏有朴素的极限思想,即无穷小过程计算特别形状的面积、体积和曲线长的例子. 在中国,公元前5世纪,战国时期名家的代表作《庄子 天下篇》中记载了惠施的一段话:“一尺之锤,日取其半,万事不竭”,是我国较早出现的极限思想. 但把极限思想运用于实践解决实际问题的典范却是魏晋时期的数学家刘徽. 他的“割圆术”开创了圆周率研究的新纪元. 刘徽首先考虑圆内接正六边形面积,接着是正十二边形面积,然后依次边数加倍,则正多边形面积愈来愈接近圆面积. 正如他说的:“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体无所失矣.”按照这种思想,计算到圆内接正192边形面积,则得圆周率的近似值为3.14. 大约两个世纪后,南北朝时期的著名科学家祖冲之(公元429-500年)祖恒父子推进和发展了刘徽的数学思想,首先算出了圆周率介于“与3.1415927之间,这是我国古代最伟大的成就之一. 其次明确提出了下面的原理:“幂势既同,则积不容异.”我们称之为“祖氏原理”,在西方称为“卡瓦利原理”,应用该原理成功地解决了刘徽未能解决的球体积问题. 欧洲古希腊时期也有极限思想,并用极限方法解决了许多实际问题. 较为重要的当数安提芬的“穷竭法”. 他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积. 但他的方法却没有被数学家接受. 后来,安提芬的穷竭法在欧多克斯那里得到补充和完善. 之后,阿基米德借助于穷竭法解决了一系列几何图形的面积、体积计算问题. 他的方法通常被称为“平衡法”,实质上是一种原始的积分法. 他将需要求积的量分成许多微小单元,再利用另一组容易计算总和的微小单元来进行比较. 但他的两组微小单元的比较是借助于力学上的杠杆平衡原理来实现的. 平衡法体现了近代积分法的基本思想,是定积分概念的雏形. 与积分学相比,微分学研究的例子相对少多了. 刺激微分学发展的主要科学问题是求曲线的切线、瞬时变化率以及求函数的极大极小值等问题. 阿基米德、阿波罗尼奥斯等均曾作过尝试,但他们都是基于静态的观点. 古代与中世纪的中国学者在天文历法研究中也曾涉及到天体运动的不均匀性及有关的极大、极小值问题,但多以惯用的数值手段(即有限差分)

数学史试题及答案

浙江师范大学成教2006学年第2学期 《数学史》考试卷(A)(式样一) 一、单项选择题(每小题2分,共26分) 1.世界上第一个把π计算到3.1415926<π<3.1415927的数学家是( B ) A.刘徽 B.祖冲之 C.阿基米德 D.卡瓦列利 2.我国元代数学著作《四元玉鉴》的作者是( C ) A.秦九韶 B.杨辉 C.朱世杰 D.贾宪 3.就微分学与积分学的起源而言( A ) A.积分学早于微分学 B.微分学早于积分学 C.积分学与微分学同期 D.不确定 4.在现存的中国古代数学著作中,最早的一部是( D ) A.《孙子算经》 B.《墨经》 C.《算数书》 D.《周髀算经》 5.发现著名公式e iθ=cosθ+i sinθ的是( D )。 A.笛卡尔 B.牛顿 C.莱布尼茨 D.欧拉 6.中国古典数学发展的顶峰时期是( D )。 A.两汉时期 B.隋唐时期 C.魏晋南北朝时期 D.宋元时期 7.最早使用“函数”(function)这一术语的数学家是( A )。 A.莱布尼茨 B.约翰·伯努利 C.雅各布·伯努利 D.欧拉 8.1834年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是( B )。 A.高斯 B.波尔查诺 C.魏尔斯特拉斯 D.柯西 9.古埃及的数学知识常常记载在(A)。 A.纸草书上 B.竹片上 C.木板上 D.泥板上

10.大数学家欧拉出生于(A ) A.瑞士 B.奥地利 C.德国 D.法国 11.首先获得四次方程一般解法的数学家是( D )。 A.塔塔利亚 B.卡当 C.费罗 D.费拉利 12.《九章算术》的“少广”章主要讨论(D)。 A.比例术 B.面积术 C.体积术 D.开方术 13.最早采用位值制记数的国家或民族是( A )。 A.美索不达米亚 B.埃及 C.阿拉伯 D.印度 二、填空题(每空1分,共28分) 14.希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,即:相容性、____完备性_______、____独立性_______。 15.在现存的中国古代数学著作中,《周髀算经》是最早的一部。卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式。 16.二项式展开式的系数图表,在中学课本中称其为____杨辉____三角,而数学史学者常常称它为_____贾宪___三角。 17.欧几里得《几何原本》全书共分13卷,包括有____5____条公理、____5____条公设。 18.两千年来有关欧几里得几何原本第五公设的争议,导致了非欧几何的诞生。 19.阿拉伯数学家花拉子米的《代数学》第一次给出了一次和二次方程的一般解法,并用__几何____方法对这一解法给出了证明。 20.在微积分方法正式发明之前,许多数学家的工作已经显示着微积分的萌芽,如开普勒的旋转体体积计算、巴罗的微分三角形方法以及瓦里士的曲线弧长的计算等。 ε-语言的数学家是维尔斯特拉斯。 21.创造并最先使用δ 22.数学家们为研究古希腊三大尺规作图难题花费了两千年的时间,1882年德国数学家林德曼证明了数π的超越性。 23.罗巴契夫斯基所建立的“非欧几何”假定过直线外一点,至少有两条直

微积分的历史发展顺序与理论发展顺序的区别

微积分的理论展开顺序与历史展开顺序的联系与区别 在本学期,我们学习了数学史,这门课让我对我们所学的数学知识有了更深度认识。尤其在微分学的知识上,我知道了微积分的理论展开顺序与历史展开顺序是有联系与区别的。对此,我将浅谈一下我的认识。 一、微积分的历史展开顺序 1.微积分的创立 解析几何是代数与几何相结合的产物,它将变量引进了数学,使运动与变化的定量表述成为可能,从而为微积分的创立搭起了舞台。微积分的思想萌芽,特别是积分学,部分可以追溯到古代。我们已经知道,面积和体积的计算自古以来一直是数学家们感兴趣的课题,在古希腊、中国和印度数学家们的著述中,不乏用无限小过程计算特殊形状的面积、体积和曲线长的例子。 在古代,刘徽撰写的《九章算术·商功》中提到:“斜解立方,得两壍堵。斜解壍堵,其一为阳马,一为鳖臑。阳马居二,鳖臑居一,不易之率也。合两鳖臑三而一,验之以棊,其形露矣。”他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。祖冲之父子总结了魏晋时期著名数学家刘徽的有关工作,提出"幂势既同则积不容异",即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖暅公理(或刘祖原理)。祖暅应用这个原理,解决了刘徽尚未解决的球体积公式。卡瓦列利运用祖暅原理求得了许多平面图形的面积和立体图形的体积,是现行中学立体几何教材求几何体积的基本雏形。 在现代,1638年伽利略《关于两门新科学的对话》中,他建立了自由落体定律、动量定律等,为动力学奠定了基础;他认识到弹道的抛物线性质,并断言炮弹的最大射程应在发射角为45°时达到,等待。伽利略本人竭力倡导自然科学的数学化,他的著作激起了人们对他所确立的动力学概念与定律作精确的数学表述的巨大热情。德国天文学家、数学家开普勒在1615年发表《测量酒桶的新立体几何》论述了圆锥曲线围绕其所在平面上某直线旋转而成的立体体积的积分法。他的方法要旨是用无数个同维无限小元素之和来确定曲变形的面积及旋转体的体积。解析几何的创始人笛卡儿和费马,都是将坐标方法引进微分学问题研究的前锋。笛卡儿在《几何学》中提出了求切线的所谓“圆法”,本质上是一种代数方法。就在同一年,费马在一份手稿中提出了求极大值与极小值的代数方法。1666年10月,牛顿著作了《流数简论》是历史上第一篇系统的微积分文献。但是《流数简论》在许多方面是不成熟的,牛顿经过研究后加以改正,最后牛顿微积分学说最早的公开表述出现在1687年出现的力学著作《自然哲学的数学原理》。 2.微积分的发展 微积分的创立,被誉为“人类精神的最高胜利”。在18世纪,微积分进一步深入发展,这种发展与广泛的应用紧密交织在一起,刺激和推动了许多数学新分支的产生,从而形成了“分析”这样一个在观念和方法上都具有鲜明特点的数学领域。在数学史上,18世纪可以说是分析的时代,也是向现代数学过渡的重要时期。 在从17世纪到18世纪的过渡时期,雅各布伯努利和约翰伯努利推广了莱布尼茨的学说。18世纪微积分最重大的进步是由欧拉作出的,他在1748年出版的《无限小分析引论》以及他随后发表的《微分学》和《积分学》是微积分史上里程碑式的著作。这三部著作包含了欧拉本人在分析领域的

相关文档
最新文档