ENVI4.5几何校正图文并茂超详细步骤

合集下载

ENVI4.5中的正射校正说明

ENVI4.5中的正射校正说明

ENVI4.5中的正射校正说明在ENVI中能对绝大多数的高分辨率影像通过严格物理模型进行正射校正。

1、概述ENVI4.5目前支持的正射校正包括两种模型:严格轨道模型(Pushbroom Sensor)和RPC有理多项式系数(Rational Polynomial Coefficient),如表1所示。

包括ALOS/PRISM、ASTER、IKONOS、OrbView-3、QuickBird、SPOT1-5、CARTOSAT-1(P5)、FORMOSAT-2、worldview-1校正模型,即将推出的ENVI4.6还将增加GeoEye-1、RADARSAT-2、KOMPSAT-2、TerraSAR-X 传感器模型。

传感器模型文件ALOS/PRISM RPC RPC文件ASTER RPC RPC文件CARTOSAT-1(P5)RPC RPC文件FORMOSAT-2Pushbroom Sensor星历参数文件(METADATA.DIM) IKONOS RPC RPC文件(_rpc.txt)OrbView-3RPC RPC文件(_metadata.pvl) QuickBird RPC RPC文件(.rpb)WorldView-1RPC RPC文件(.rpb)星历参数文件(METADATA.DIM) SPOT5 Level 1A and 1B Pushbroom Sensor表1传感器模型ENVI还具有根据星历表参数建立RPC文件来正射校正数据的功能(Map->Build RPCs)。

也可以根据地面控制点(GCP)或者外方位元素(XS, YS, ZS, Omega, Phi, and Kappa)建立RPC文件,校正一般的推扫式卫星传感器、框幅式航空相片和数码航空相片。

如图1为生成RPC文件面板。

当获得的卫星数据提供的是轨道参数,诸如ALOS PRISM and AVINIR, ASTER, CARTOSAT-1,, IKONOS, IRS-C, MOMS, QuickBird, WorldView-1,也可以利用这个功能来生成RPC文件做正射校正。

实验三envi几何校正

实验三envi几何校正
ROIs,就可以
ENVI中重采样方式主要有最邻近点法(nearest neighbor)、双线性内插法(bilinear)以及三次卷积内插法
(cubic convolution)。可根据需要选择不同的内插方法进行重采样,选择不同的采样方法效果不同。
共四十六页
三、实验
(SHÍYÀN)
步骤
界面(jièmiàn)系统介绍
共四十六页
遥感图像的几何校正目前有三种方案,即系统校正、利用控制点校正以及混合校正。
遥感数据接收后,首先由接受部门进行校正,这种校正叫系统校正,即把遥感传感器的校准数据、传感
器的位置、卫星姿态等测量值代入理论校正公式进行几何畸变校正;
利用控制点纠正,而用户(yònghù)拿到这种产品后,由于使用目的的不同或投影及比例尺不同,仍旧需要做进一步的
Load RGB,将合成图像在新建窗口中显示出来。
共四十六页
共四十六页
2.数据(shùjù)输出
(1)选择(xuǎnzé)File>> Save file as,ENVI输出数据格式如下图所示。
(2)选择主影像窗口中菜单File>>Save Image As>>image
file, 将出现下图,注意:如输出彩色图像,在 Resolution 处
如下图所示窗口,选择要校正的图像。
共四十六页
2.选择OK进入registration
parameters对话框:
图中重采样选择Bilinear,背景值
(Back ground)为0,选择输出途
径和文件名。
3、几何校正的计算模型
ENVI提供三种(sān zhǒnɡ)计算模型:
注意:要求按三种不同几何校正方法

envi4.5几何校正

envi4.5几何校正

几何校正一、实验目的通过练习掌握使用ENVI进行图形几何校正。

二、实验原理利用ENVI几何校正功能校正图形。

三、数据来源下载源:国际科学服务平台(/index.jsp)波段数:TM Band 1, TM Band 2, TM Band 3, TM Band 4, TM Band 5, TM Band 7 对应波长:0.485000, 0.560000, 0.660000, 0.830000, 1.650000, 2.215000分辨率:30 Meters投影:UTM四、实验过程1、加载待校正影像和基准影像1.jpg和bhtmref.img。

2、执行:Map->Registration->Select GCPs:Image to Image,打开如下窗口:Base Image 下选择基准影像,Warp Image 下选择待校正影像,然后点OK,打开如下窗口:接着再基准影像中选点,在待校正影像中选择对应位置的点,然后点击Add Point按钮,点数加一:重复执行此操作。

当点数达到三个及以上时,点数后的Predict按钮会变可用。

此时,在基准影像中选择一点,点Predict按钮,ENVI会在待校正影像中预测一点,不需手动选择。

还可选中Options 下的Auto Predict,此时,在基准影像中选点,ENVI会自动随时自动选择相应点。

当点数达到五个及以上时,选择Options下的Automatically Generate Tie Points…,打开下窗口,设置基准影像与待校正影像自动选择点。

选择基准影像匹配波段(本实验选择TM Band5),点击OK。

选择待校正影像匹配波段(本实验选择R),点击OK。

设置要选择点数、分区、一个小区域选择点数。

点击OK开始选点。

选择完毕后,可点击Show List,打开如下窗口,查看所选点,删除、调整误差大的点执行Options->Warp File(as Image to Map)打开如下窗口:左侧选择待校正影像,点击OK。

ENVI遥感图像处理实验教程实验三几何校正(影像、地形图)ok

ENVI遥感图像处理实验教程实验三几何校正(影像、地形图)ok

ENVI遥感图像处理实验教程实验三⼏何校正(影像、地形图)ok实验三 ENVI影像的⼏何校正本专题旨在介绍如何在ENVI中对影像进⾏地理校正,添加地理坐标,以及如何使⽤ENVI进⾏影像到影像的⼏何校正。

遥感图像的⼏何纠正是指消除影像中的⼏何形变,产⽣⼀幅符合某种地图投影或图形表达要求的新影像。

⼀般常见的⼏何纠正有从影像到地图的纠正,以及从影像到影像的纠正,后者也称为影像的配准。

遥感影像中需要改正的⼏何形变主要来⾃相机系统误差、地形起伏、地球曲率以及⼤⽓折射等。

⼏何纠正包括两个核⼼环节:⼀是像素坐标的变换,即将影像坐标转变为地图或地⾯坐标;⼆是对坐标变换后的像素亮度值进⾏重采样。

本实验将针对不同的数据源和辅助数据,提供以下⼏种校正⽅法:Image to Map⼏何校正:通过地⾯控制点对遥感图像⼏何进⾏平⾯化的过程,控制点可以是键盘输⼊、从⽮量⽂件中获取。

地形图校正就采取这种⽅法。

Image to image⼏何校正:以⼀副已经经过⼏何校正的栅格影像作为基准图,通过从两幅图像上选择同名点(GCP)来配准另⼀幅栅格影像,使相同地物出现在校正后的图像相同位置。

⼤多数⼏何校正都是利⽤此⽅法完成的。

Image to image⾃动图像配准:根据像元灰度值⾃动寻找两幅图像上的同名点,根据同名点完成两幅图像的配准过程。

当同⼀地区的两幅图像由于各⾃校正误差的影像,使得图上的相同地物不重叠时,可利⽤此⽅法进⾏调整1. 地形图的⼏何校正(1)打开并显⽰地形图从ENVI主菜单中,选择file →open image file,打开3-⼏何校正\地形图\G-48-34-a.JPG。

(2)定义坐标从ENVI主菜单栏中,选择Map →Registration →Select GCPs:Image to map。

在image to Map Registration对话框中,点击并选择New,定义⼀个坐标系从ENVI主菜单栏中,选择Map →Registration →Select GCPs: Image to Map。

ENVI软件基本操作——辐射校正、辐射定标、大气校正、几何校正

ENVI软件基本操作——辐射校正、辐射定标、大气校正、几何校正

ENVI软件基本操作——辐射校正、辐射定标、⼤⽓校正、⼏何校

辐射校正
Radiometric correction ⼀切与辐射相关的误差的校正。

⽬的:消除⼲扰,得到真实反射率的数据。

⼲扰主要有:传感器本⾝、⼤⽓、太阳⾼度⾓、地形等。

包括:辐射定标,⼤⽓纠正,地形对辐射的影响
辐射定标
DN值(Digital Number ):遥感影像像元亮度值,记录地物的灰度值。

⽆单位,是⼀个整数值,值⼤⼩与传感器的辐射分辨率、地物发射率、⼤⽓透过率和散射率等相关。

反映地物的辐射率radiance
地表反射率:地⾯反射辐射量与⼊射辐射量之⽐,表征地⾯对太阳辐射的吸收和反射能⼒。

反射率越⼤,地⾯吸收太阳辐射越少;反射率越⼩,地⾯吸收太阳辐射越多,表⽰:surface albedo
表观反射率:表观反射率就是指⼤⽓层顶的反射率,辐射定标的结果之⼀,⼤⽓层顶表观反射率,简称表观反射率,⼜称视反射率。

英⽂表⽰为:apparent reflectance
辐射定标是⽤户需要计算地物的光谱反射率或光谱辐射亮度时,或者需要对不同时间、不同传感器获取的图像进⾏⽐较时,都必须将图像的亮度灰度值转换为绝对的辐射亮度(⼤⽓外层表⾯反射率),这个过程就是辐射定标。

⽅法:实验室定标、机上/星上定标、场地定标。

不同的传感器,其辐射定标公式不同。

L=gain*DN+Bias
⼤⽓校正
Atmospheric correction 将辐射亮度或者表⾯反射率转换为地表实际反射率
⽬的:消除⼤⽓散射、吸收、反射引起的误差。

分类:统计型和物理型。

ENVI几何校正的步骤

ENVI几何校正的步骤

ENVI几何校正
本次几何校正采用的原始图像为吐鲁番盆地的TM影像和11-45-46托克逊县地形图。

首先在arcgis中完成地形图的空间纠正,然后以纠正后的地形图为参考影像,遥感影像图为待校正影像。

具体步骤如下:
1.打开参考地形图和待校正影像
2.在主菜单上选择map->Registration->select GCPs:image to image
3 .分别在两边选中参考图像(BASE)DISPLAY 1(左)和待校正影像(warp)DISPLAY 2(右)。

4. 选择控制点:
控制点的选择以配准对象为依据,选取图像上易分辨且较精细的特征点。

图像边缘一定要选取控制点,以免图像外推。

尽可能满幅均匀选取15个点以上。

(保证各点误差值在0.5以内)
如果要放弃该点选择右下脚的delete last point,或者点show
point弹出image to image gcplist窗口,从中选择你要删除的点
5.选点结束后,保存点:ground control points->file->save gcp as ASCII..
6.接下来进行校正:在ground control points.对话框中选择:options->warp file在出现的imput warp image中选中你要校正的影像,点ok进入registration parameters对话框:选择重采样方法(resampling),为(bilinear)。

7..最后的最后选择保存路径。

几何校正的具体步骤

几何校正的具体步骤

几何校正的具体步骤哎呀,说起几何校正,这可是个挺有意思的事儿!咱先来说说为啥要进行几何校正呢?就好比你拍了一张漂亮的风景照,结果发现建筑物歪了,线条不直,这多影响美观呀!在很多领域,比如地图绘制、遥感图像分析、医学成像等等,都需要让图像或者数据变得规整准确,这时候几何校正就派上用场啦。

那几何校正具体咋操作呢?一般来说,有下面这几个步骤。

第一步,准备工作得做好。

就像你要出门旅行,得先把行李收拾好一样。

首先要明确你校正的对象是什么,是一幅图像还是一组数据。

然后,得搞清楚这些图像或者数据的来源、格式、精度等信息。

比如说,你拿到一张卫星拍摄的地图,那你得知道这张地图的拍摄角度、分辨率啥的。

第二步,选择合适的校正模型。

这就好比你要去参加一个聚会,得选一套合适的衣服。

常见的校正模型有多项式模型、仿射变换模型等等。

不同的模型适用于不同的情况。

比如说,如果图像只是简单的平移、旋转和缩放,那仿射变换模型可能就够用了;要是图像变形比较复杂,可能就得用多项式模型。

第三步,采集控制点。

这可是个关键步骤!就像你搭积木,得先把基础打牢。

控制点就是那些在原始图像和标准图像中位置都能准确确定的点。

采集控制点的时候得仔细,要选那些特征明显、容易识别的点,比如道路的交叉点、建筑物的角点等等。

而且控制点的数量和分布也有讲究,一般来说,数量越多、分布越均匀,校正的效果就越好。

第四步,进行校正计算。

这一步就像是解数学题,根据你选的校正模型和采集的控制点,通过一系列的计算,得出校正参数。

这可是个技术活,得依靠专业的软件或者算法来完成。

第五步,验证校正结果。

这就好比你做完作业要检查一样,看看校正后的图像或者数据是不是达到了你的要求。

如果不满意,还得重新调整控制点或者校正模型,重新计算。

我给你讲个我自己经历的事儿吧。

有一次,我们学校组织了一个地理实践活动,要绘制校园的地图。

我们用无人机拍了好多照片,结果发现照片里的教学楼都有点歪歪斜斜的。

这可不行呀,于是我们就开始进行几何校正。

ENVI中的几何校正

ENVI中的几何校正

几何校正1.遥感图像产生几何畸变的原因地物目标发出的电磁波被卫星上所载传感器接收,这些电磁波上记录和传达了地物目标的信息,这是遥感图像成像的过程也是它的内在规律。

在这个过程中图像的几何畸变也随即产生了,其中原因很多,主要表现在以下几个方面:1. 1卫星位置和运动状态变化的影响卫星围绕地球按椭圆轨道运动,引起卫星航高和飞行速度的变化,导致图像对应产生偏离与在卫星前进方向上的位置错动。

另外,运动过程中卫星的偏航、翻滚和俯仰变化也能引起图像的畸变。

以上误差总的来说,都是因为传感器相对于地物的位置、姿态和运动速度变化产生的,属于外部误差。

此外,由于传感器本身原因产生的误差,即内部误差,这类误差一般很小,通常人们不作考虑。

1. 2地球自转的影响大多数卫星都是在轨道运行的降段接收图像,即当地球自西向东自转时,卫星自北向南运动。

这种相对运动的结果会使卫星的星下位置产生偏离,从而使所成图像产生畸变。

1. 3地球表面曲率的影响地球表面是不规则的曲面,这使卫星影像成像时像点发生移动,像元对应于地面的宽度不等。

特别是当传感器扫描角度较大时,影响更加突出。

1. 4地形起伏的影响当地形存在起伏时,使原来要反映的理想的地面点被垂直在其上的实际某高点所代替,引起图像上像点也产生相应的偏离。

1. 5大气折射的影响由于大气圈的密度是不均匀分布的,从下向上越来越小,使得整个大气圈的折射率不断变化,当地物发出的电磁波穿越大气圈时,经折射后的传播路径不再是直线而是一条曲线,从而导致传感器接收的像点发生位移。

2.进行几何校正并保证精度的必要性遥感图像几何校正的精确与否直接关系到应用遥感信息反应地表地物的地理位置和面积的精确度,关系到从图像上获取的信息准确与否,因此在选择控制点上要十分小心,尽可能提高其精度,并且要对校正结果进行反复的分析比较,必要时还要进行多次校正。

几何校正让图像上地物对应的像元出现在它应该在的地方,再通过辐射校正、影像增强等遥感图像处理技术,还图像以“本来面目”。

ENVI4.5几何校正图文并茂超详细步骤

ENVI4.5几何校正图文并茂超详细步骤

我所用的是同一块区域的一幅sport影像(具有地图信息)和一幅tm影像(清晰度比较高)Tm影像即是被校正的影像,下一步点击主菜单Map—Registtation—Slect GCPs:Image to Image即影像对影像来校正,在Base Image里选择基准影像即有地图信息的,在Warp Image里选择要校正的影像,点OK,下一步选点,选择第一个校正点:然后点击Add Point,第一个点就加上去了,下一步选第二个点:选择点不应在一个小区域里,应尽量分开然后再点Add Point加上了第二个点,下一步找第三个点然后点Add Point加上第三个点,这是预测功能就可以用了,这时点Option—Auto Predict用基准图像来预测待校正图像,预测的第四个点如图:,错了几个像素,然后在待校正图像的Zoom窗口来调节,调节后如图:,然后点击Add Point来加第四个点,类似方法再来加第五个点然后点Option—Automatically Generate TiePoint出来,一般选择靠后的波段,单击OK出现,其中Number of Tie Point指的是要找的点数,Search Window Size值越大精度越高,Minimum Correlation值越大越精确,本次设置如下:,然后点OK,这是总共找出来的点,点Option—Older Points by Error来按照像素误差从大到小来排序,排序结果如图:,这是误差最大的那个点,删除掉,将误差比较大的删除直到RMS Error值比较下为止,现在是1.370446,可以了。

下一步选择Warp File (as Image to Map),出现选择要校正的影像(tm影像)后点OK,出现,参数设置如上(tm分辨率是30m的),然后点OK,校正后的图像如下:。

Envi遥感图像几何校正

Envi遥感图像几何校正

遥感数字图像处理——几何精校正1.实验原理、目的和内容1.1.实验原理遥感图像纠正是通过计算机对图像每个像素逐个地解析纠正处理完成的,所以能够较清晰地改正线性和非线性变形误差。

几何精纠正的基本原理是回避成像的空间几何过程,直接利用地面的控制点数据对遥感图像的几何畸变本身进行数学模拟,并且认为遥感图像的总体畸变可以看做是挤压、扭曲、缩放、偏移以及更高次的基本变形的综合作用的结果。

因此,校正前后的图像相应点的坐标关系可以用一个适当的数学模型来表示。

1.2.实验目的采用图像-地图纠正法,对TM遥感图像进行几何精纠正,即把不同传感器具有几何精度的图像和地图中的相同地物元素精确地彼此匹配、叠加在一起,以满足集成的需要。

1.3.实验内容对南京市TM图像AA进行几何精纠正。

2.实验过程2.1.地图投影信息的获取进行精校正之前,应该获取标准图像的投影信息,利用ArcGIS或MapInfo软件即可查看投影类型为:GK Zone 20(Pulkovo 1942)2.2.显示需要校正的图像利用Envi导入图像,RGB合成,选择4,3,2波段即可2.3.选择控制点本实验中采用图像-地图纠正,在图像窗口中选择地面控制点(GCP),然后在地图窗口中找到同名地物点,记录点位的坐标信息(见图1)。

首先,进行图像-地图纠正,Map——Registration——Select GCPs:Image to Map。

再在Image to Map Registration窗口中,根据参照的矢量地图选择Gk Zone 20(Pulkova 1942),确定后,弹出Ground Control Points Selection窗口。

在添加地面控制点:在图像窗口中移动光标,确定GCP的位置,然后在矢量地图窗口中确定同名地物点,并将其坐标拷贝到本窗口中的地图坐标文本框中。

确认合适后,单击Add Point产生一个同名地物点。

(见图2)依次进行下去,直到数量复合要求,一般需要6个以上,并且分布均衡(图3)选取控制点完毕后进行纠正,由于选取控制点数量较少,因此使用一阶多项式的方法,重采样方法为最临近采样。

envi遥感图像处理之几何校正

envi遥感图像处理之几何校正

ENVI之几何校正
——影像到影像的配准步骤一:配准点的选取
1.打开待校正遥感影像与基准遥感影像
2.将基准影像和待校准影像在窗口中打开
3. 进行配准点的选取
1) 打开ENVI 主菜单的MAP —>Registration —>Select
GCPs:Image to Image ,启动影像到影像的校准窗口,选择基准影像和待校准影像
2) 进行对应点的选取和映射函数的次数的选取
在两幅遥感影像中选择同名点,例如山顶、小路的拐点、湖泊的边缘的拐点等,n次多项式,控制点的最少数目m = (n + 1) (n + 2)/2。

本实验中以选取一次多项式为例,按公式计算,选取一次多项式至少需要3个点来进行校准,本实验总共选取了8个点
八个点的校准情况如上图所示,总的均方根误差为0.43<1,所以校准的精度符合要求。

步骤二:遥感影像的校准
1.打开影像校准对话框:在控制点选取对话框的菜单栏中选择
Options—>Wrap File…,选择待校准的影像
2.出现校准重采样的对话框
可以进行重采样方法的选择,在Resamping中选择重采样方法:最近邻法,双向线形内插法和三次卷积内插法中选一。

最邻近法校正线形内插法
三次卷积内插法
3.至此,遥感影像到遥感影像的校正完成。

ENVI的图像配准与几何校正

ENVI的图像配准与几何校正

ENVI 的图像配准与几何校正工具允许你将图像定位到地理坐标上,并校正它们使其与基图像几何形状相匹配。

图像可以用Rotate/Flip Data 菜单项在配准以前进行旋转。

通过使用全分辨率(主图像) 和缩放窗口选择地面控制点(GCPs),来进行图像-图像和图像-地图的配准。

基图像和未校正图像的GCPs 的坐标被显示,伴随有特定纠正算法计算的误差项。

纠正用重采样、缩放和平移,多项式函数或德洛内三角测量(RST)实现。

支持的重采样方法包括最近邻、双线性和立方体卷积。

用ENVI 的多个动态覆盖能力,对基图像和纠正图像进行比较,可以快速估价配准精度。

参阅ENVI Tutorial Image Georeferencing and Registration 中有关图像配准的详细描述。

镶嵌允许多个图像插入到一个用户定义了大小和坐标的基图像中。

独立图像或多波段图像文件被输入,且放到图像或地图坐标中或用鼠标确定位置。

输出的镶嵌特征可以用图幅显示,且能进行交互式调整。

用ENVI 可以进行虚拟镶嵌,这使你不必将数据的两个副本存到磁盘上。

羽化技术能用于混合图像边界,进行无缝镶嵌。

镶嵌模板可以被存储,用于其它图像。

ENVI 配准、校正和镶嵌功能可以从ENVI 的主菜单中的Register 菜单里选择。

Select Ground Control Points (选择地面控制点)在菜单Register 里的Select Ground Control Points菜单项允许交互式选择地面控制点(GCPs),并对单一波段图像或多波段文件纠正。

这一工具允许对不同控制点和纠正项进行原形恢复和检验。

支持图像-图像和图像-地图的配准。

详细步骤参见ENVI Tutorial Image Georeferencing and Registration 中的图像配准例子。

Image-to-Image Registration (图像-图像的配准)图像-图像配准需要两幅图像均打开。

ENVI下的几何校正步骤

ENVI下的几何校正步骤

I:\forestry\mentougou\original\ms
ENVI下的几何校正步骤
在通过某种途径得到了控制点的文件坐标和地图坐标后,通过ENVI进行几何校正的步骤如下:
控制点文件保存为.txt文件或.pts文件。

1.打开图像文件
2. 从波段列表中选择波段组合顺序,并加载图像。

对灰度图像,直接点击按钮即可。

对于多光谱或彩色图像,选择好波段顺序后,点击。

我们下面以小卫星
多光谱图像为例来进行说明。

3. 选择控制点文件,检查控制点文件是否能被正确读取。

Map→Registration→Select GCPs:Image to Map。

在弹出的对话框中选择投影(坐标系统)和分辨率。

我们统一选择bj_54。

对于全色图像,分辨率为4米,对于多光谱数据,分辨率一般为32米,但少量数据也可能为36米,需要根据具体图像来确定,分辨率可以从波段列表中的Map Info可以看出。

4. 关闭控制点选择对话框。

选择刚才查看过的控制点文件
设置投影信息和分辨率
点击OK后,在弹出的对话框中选择要进行校正的影像。

点击OK后,在弹出的对话框中选择校正方法。

ENVI进行影像到影像的几何校正

ENVI进行影像到影像的几何校正

卫星影像的几何校正以具有地理参考的SPOT 4 10m全色波段为基础,进行Landsat 5 TM 30m影像的几何校正过程,其流程如图1所示。

图1 几何精校正流程目的:1、掌握利用地面控制点(GCP)进行影像到影像几何校正的方法2、影像上GCP的选取方法数据准备:bldr_tm.img 没有地理坐标的tm影像bldr_sp.img 带地理坐标的SPOT影像利用GCP进行几何校正的具体操作第一步打开并显示影像文件(1)在#1窗口中打开作为待校正图像,在#2窗口中打开作为参考图像(图2)。

图2 参考图像(左)与待校正图像(右)第二步启动几何校正模块(1)一旦两幅图像都已经显示,选择主菜单Map→Registration→Select GCPs: Image to Image,打开几何校正模块。

(2)在Image to Image Registration对话框中,选择显示SPOT影像的Display作为基准图像(Base Image),显示TM影像的Display为待校正图像(Warp Image)(图3)。

点击OK,进入采集地面控制点。

图3 指定参考图像与待校正图像第三步采集地面控制点(1)控制点工具对话框说明:图4 地面控制点工具对话框菜单命令功能Filesave GCPs to ASCII save Coefficients to ASCII restore GCPs from ASCII 保存GCP到ASCII文件保存多项式系数到ASCII文件从ASCII文件中打开GCPOptionWarp Displayed BandWarp FileWarp Displayed Band(as Image to Map) Warp File(as Image to Map)Reverse Base/Warp1st Degree(RST Only)Auto PredictLabel PointsOrder Point by Error 配准当前显示的波段①配准整个文件①校正当前显示的波段②校正整个文件②颠倒基准图像和被校正图像角色选择使用RST模型来计算误差打开/关闭自动预测点功能打开/关闭GCP标签打开/关闭根据误差从大到小对GCPs排序①当基准图像没有地理投影时选择这种配准命令;如果基准图像具有地理投影时选择此命令,得到的结果诸如投影参数、像元大小将与基准图像相同。

ENVI下的几何校正步骤

ENVI下的几何校正步骤

ENVI下的几何校正步骤
一、从ENVI中打开待校正的影像
1、首先打开ENVI软件,在文件菜单中选择“打开数据”,从硬盘中
选择待校正的图像文件;
2、双击打开待校正的图像;
3、检查图像的像素类型、尺寸和位数;
二、 Gemoetric 进行校正
1、在ENVI菜单的“功能”栏中,选择“几何校正(Gemoetric)”,
弹出“Geometric”对话框;
2、在“模型”一栏中,选择“投影”,投影系统设定为“自动”;
3、在“投影”中选择待校正影像的投影类型;
4、在“校正文件”中,选择待校正影像的校正文件;
5、在“预处理”中,选择“无”;
6、在“输出”中,选择“保存输出”;
7、点击“运行”,校正影像会被保存到指定的路径中,校正完成;
三、计算校正结果
1、在ENVI菜单中选择“几何校正(Gemoetric)”,弹出“Geometric”对话框;
2、在“模型”栏中,选择“统计”;
3、在“投影”中,设置被校正影像的投影类型;
4、在“输出”中,选择“打印结果文件”;
5、点击“运行”,在终端窗口会显示校正结果的统计信息;
四、可视化结果
1、打开校正后的影像;
2、点击“重置图像”,调整图像的比例尺;
3、可以使用影像的标记工具,设置标记点。

几何校正操作步骤(精)

几何校正操作步骤(精)

几何校正操作步骤实验目的:通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。

实验内容:ERDAS软件中图像预处理模块下的图像几何校正。

几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。

而将地图投影系统赋予图像数据的过程,称为地里参考(Geo-referencing)。

由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。

1、图像几何校正的途径ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图2-1)。

ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图2-1)。

在Set Geo-Correction Input File对话框(图1)中,需要确定校正图像,有两种选择情况:其一:首先确定来自视窗(FromViewer),然后选择显示图像视窗。

其二:首先确定来自文件(From Image File),然后选择输入图像。

2、图像几何校正的计算模型(Geometric Correction Model)ERDAS提供的图像几何校正模型有7种,具体功能如下:3、图像校正的具体过程第一步:显示图像文件(Display Image Files)首先,在ERDAS图标面板中点击Viewer图表两次,打开两个视窗(Viewer1/Viewer2),并将两个视窗平铺放置,操作过程如下:ERDAS图表面板菜单条:Session→Title Viewers然后,在Viewer1中打开需要校正的Lantsat图像:xiamen,img在Viewer2中打开作为地理参考的校正过的(图象或)矢量图层:xmdis3.shp第二步:启动几何校正模块(Geometric Correction Tool)Viewer1菜单条:Raster→Geometric Correction→打开Set Geometric Model对话框(2-2)→选择多项式几何校正模型:Polynomial→OK→同时打开Geo Correction Tools对话框(2-3)和Polynomial Model Properties对话框(4)。

ENVI几何校正及影像镶嵌.doc

ENVI几何校正及影像镶嵌.doc

Mosaickin —Pixel Based 。

定义镶嵌范围(行列号、影像拉框选3几何校正的过程:注意:儿何校正一种是影像对形像,一种是形像对地图,下面介绍的是形像对形像的配 准或几何校正。

1. 打开参考影像< base )和待校正影像:分别打开,即在displayl,display#2中扑开:2. 右:1:菜坤上选择 map->Rcgistration->sclcct GCPs : image to inwgc3 .山现WT 口 Image to Image Registration.分别在两边选中 DISPLAY 1(左).和 DISPLAY 2(右).BASE 图像捋参考图像而warp 則指待校止彩像。

选择OK!4. 玩在就可以加点了:将两边的彬像十字线然点对准到自己认为是同一地物的地力, 就可以迭样ADDPOINT 添加点了。

(PS :看不淸山別忘记放大)如果要放弃该点选择 右下牌的delete last points 或者点 &ltow point 鲜出 image to image gep list 窗 I I.从中选择 你吹1H 除的点,也可以进行其他很多操作,0 慢研究,呵呵.选好4个点后就可以 预测:把十字叉放在券考形像某个地物.点选predict 则特校正形像就会自动跳转到与鲁 考影像相对应的位置,而后再进行适当的调椎并选点。

5. 选点給柬肩,C7先把点探存」:gmund control poin (v>llk->save gep as ASCII..当然你没有选完点也町以慄存,下次就直接启用就可以:ground control |x>ints->tlle->re!;tore geps from ASCII …6. JS •、来就是进行校正了:在ground control poins 对话框中选择:optn>ns->warp file (a*i image to map )/i'Lil 现的imput warp image 中选中你要校正的影像,点ok 进入registration parameters 对话肚Ci 先点change proj 按钮,选择坐标系然后更改彖索的大小.如果本身就是你所滿要大小则不用改了笊后选择匝采样方法(resampling ).一般都是选耳収线性的(bilinear ),绘后的报后选择保 存路径就OK T原文地址:envi 影像镶嵌/色彩平衡(包括:将以像兀为基础的图像或应用地理坐标系的图像镶嵌起来两种方式)1)基于pixel :将以像元为基础的图像镶嵌起来,Map envi dataavmosai cdv06_2. img,dv06 3・ img操作步骤:选择 Map —Mosaicking —Pixel Based,打开 Pixel Based Mosaic 镶嵌界面。

ENVI4.5监督分类图文并茂超详细操作步骤

ENVI4.5监督分类图文并茂超详细操作步骤

单击file—Open Image File打开图像,我的是TM7波段图像,加载5、4、3波段。

根据lay 选样本,OverLay—Region Of Interesting森林灌木、草地裸地耕地沙地其他(如水体、阴影之类的)选样本在Zoon放大窗口里选,这样可以选的更精确一些。

左键下点,右键结束因光谱值有差异,不在同一片地方选样本再在另一片地方选一下样本:正常情况下是通过别的方式选样本,如:野外调查或波峰影像上选样本,本次因条件限制就直接在图上选了。

选的差不多了,就选第二种灌木、草地样本,点的New Region按钮,选法一样,直至六类都选完:样本选完后验证样本对不对,静不精确点的Options后出现的下来菜单,选倒数第二个Compute ROI Separability点击后出现上面的对话框,选择我所要分类的图像,单击“OK”。

出现下面的对话框:,点击Select All Iterm选择全部的可分离性的样本,然后点击“OK”,出来下表:在这个表里,凡是最后的那个数值大于1.8的就说明符合要求,由此看出第一个是不符合要求的,应该是选的时候有问题(估计主要问题是灌木没有选好),按要求有问题就应该重新选,不过灌木和森林容易混淆,不容易选对,就不再重新选样本了。

只列出修改方法:在上面的对话框里选择森林,然后点击Goto,浏览每一个样本,将不好的样本删掉,再重新选一遍,然后再重新计算,直到达到要求为止。

上面是定量的评价,还有一个是定性的看:单击File,然后点击Export ROIs to Visualizer会出现,然后点击“OK”,出现,也是一样全选,点击“OK”出现n-D可视化对话框,,然后点击1、2、3、4、5、6,全选后,,单击Start,会出现一动态变化的样本聚类情况,在此只截一张图定性的看样本是否选的好,就看那个样本集中的程度,越高代表样本越好。

下面就可以分类了:点击主菜单的Classification—Supervised—Maximum Likelihood(最大似然发),出现,单击OK,出现此对话框设置如下:按着Shift全选样本,给输出分类文件命名并选择存储位置,然后点击OK输出,可用波段列表里会多出一个如图,在其上右键然后单击Load Band to New Display在新窗口加载分类图像如下:对分类图的后后处理(改名字、改颜色、分类后处理):单击Overlay—Classification叠加分类图选择分类文件点OK,勾选样本前面的On可以叠加相应的分类,如:改名字:选择每一个分类,然后去掉后面的像素数,修改完毕点OK,然后单击Edit,选择第二个即将选择的类别并到其他类别里面去,出现下面的对话框,选Zoom,在On前面勾选即被归并的类别,点击颜色即要归并入的类别,然后在Zoom里左键画线,单击第一次一次右键闭合选择某一区域,再单击一次右键及可把此区域分错类别才分类并入另一类别里如:错分成林地的草地变回成了草地。

ENVI图像几何校正

ENVI图像几何校正

ENVI图像⼏何校正⼏何校正有以下⼏个⽅法: 1. 利⽤卫星⾃带的地理定位⽂件进⾏⼏何校正 主要是由于他们重返周期短,空间分辨率较低的卫星数据,如AVHRR、MDOIS、SeaWiFS等,地⾯控制点的选择有相当的难度。

我们可以⽤卫星⾃带的地理定位⽂件进⾏⼏何校正,矫正精度主要受地理定位⽂件影响。

在Toolbox中,选择GeometricCorrection/Georeference by Sensor/<选择传感器>,可以启动矫正。

2.Image to image ⼏何校正 以⼀幅没有经过⼏何校正的栅格⽂件或者已经经过⼏何校正的栅格⽂件作为基准图,通过从两幅图像上选择通明殿来配准另外⼀幅栅格⽂件,使相同地物出现在校正后的图像相同位置。

(需要在ENVI classic 中完成) Map/Registration/Select GCPs/Image to Image. 3.Image to Map ⼏何校正 通过地⾯控制点对遥感影像⼏何进⾏平⾯化的过程,控制点可以是键盘输⼊,从⽮量⽂件中获取或者从栅格⽂件中获取,地形图矫正就可以采⽤此⽅法。

Toolbox/Geometric Correction/Registration/Registration:Image to Map。

4. Image to Image ⾃动图像配准 根据像元灰度值或者地物特征⾃动寻找两幅图像上的同名点,根据同名点完成两幅图像的配置过程。

当同⼀地区的两幅图像,由于各⾃校正误差的影响使得图上的相同地物不重叠时,可以利⽤此⽅法进⾏调整。

Toolbox/Geometric Correction/Registration/Registration:Image to Image. 5.Image Registration Workflow 流程化⼯具 将具有不同坐标系、不同地理位置的图像配准到同⼀坐标系下,使图像中相同地理位置包含相同的地物。

ENVI下的几何校正步骤

ENVI下的几何校正步骤

I:\forestry\me ntougou'origi nal\msENVI下的几何校正步骤在通过某种途径得到了控制点的文件坐标和地图坐标后,通过ENVI 下:控制点文件保存为.txt文件或.pts文件。

1•打开图像文件进行几何校正的步骤如Load2.从波段列表中选择波段组合顺序,并加载图像。

对灰度图像,直接点击按钮。

我们下面以小卫星即可。

对于多光谱或彩色图像,选择好波段顺序后,点击多光谱图像为例来进行说明。

W -俳犧餃^lur H 辛〉i^l<^^lur H 辛和兔^薄 IE 蛊棘須MapZRegisfraHon 2se-ecf ° Map fo Gcps 」mage art-F Y FT 严w iL-zcTrKiT谥nowrrT「anyfrmlTf WM占着2TlnQ arfrF 亦;lE i -E i .「一IraHll I n f rrt^Cp-T:一£|»更= 扌1:.=1岌二密■云审M a>'5=*i K ・a.14i d >-ll i ;m p ・A M H y \r o 匸a R m c-arpF FtmIhM lbaSmtge龍*=J T ,c•“二l F F J J i r H C □斗 r.+nr “ -l E l sr -T l v,q ・3A * C OORILTIILE n as i f A 5-I I 口」『-—1Cusbom&a IMap PFOIB&Dns- 「击逹口 Je-etibsr- L 苣史兰弓口■:)暫 T 一nr*t ItEJKO514-5-n -h m F n F m E ar E A B-「n hl r-!rnt-duzcuel ■□*I在弹出的对话框中选择投影(坐标系统)和分辨率。

我们统一选择bj_54 。

对于全色图像,分辨率为4 米,对于多光谱数据,分辨率一般为32 米,但少量数据也可能为36 米,需要根可以看出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我所用的是同一块区域的一幅sport影像(具有地图信息)和一幅tm影像(清晰度比较高)
Tm影像即是被校正的影像,下一步点击主菜单Map—Registtation—Slect GCPs:Image to Image即影像对影像来校正,
在Base Image里选择基准影像即有地图信息的,在Warp Image里选择要校正的影像,点OK
,下一步选点,
选择第一个校正点:
然后点击Add Point,第一个点就加上去了,下一步选第二个点:选择点不应在一个小区域里,应尽量分开
然后再点Add Point加上了第二个点,下一步找第三个点
然后点Add Point加上第三个点,这
是预测功能就可以用了,这时点
Option—Auto Predict用基准图像来预测待校正图像,预测的第四个点如图:
,错了几个像素,然后在待校正图像的Zoom窗口来调节,调节后如图:
,然后点击Add Point来加第四个点,类似方法再来加第五个点
然后点Option—Automatically Generate Tie
Point出来,一般选择靠后的波段
,单击OK出现
,其中Number of Tie Point指的是要找的点数,Search Window Size值越大精度越高,Minimum Correlation值越大越精确,本次设置
如下:,然后点OK,这是总共找出来的点

点Option—Older Points by Error来按照像素误差从大到小来排序,排序结果如图:
,这是误差最大的那个点
,删除掉,将误差比较大的删除直到
RMS Error值比较下为止,现在是1.370446,可以了。

下一步选择Warp File (as Image to Map),出现
选择要校正的影像(tm影像)后点OK,
出现
,参数设置如上(tm分辨率是30m的),然后点OK,校正后的图像如下:。

相关文档
最新文档