LTE网络结构协议栈及物理层
LTE 物理层解析
Extended cyclic prefix DwPTS GP UpPTS
0
3
10
3
8
“D”代表此子帧用于 下行传输,“U” 代表
此子帧用于上行传输, “S”是由DwPTS、GP 和UpPTS组成的特殊 子帧。
1
9
4
8
3 1 OFDM
2
10
3
1 OFDM symbols
9
2 symbols
3
11
2
10
LTE物理信道
下行物理信道
信道类型 PDSCH(Physical Downlink Shared Channel ) PBCH (Physical Broadcast Channel)
功能 承载下行业务数据 承载广播信息
下行Unicast/MBSFN子帧,控制区 域与数据区域进行时分;
下行MBSFN专用载波子帧中不存在 控制区域,即控制区域OFDM符号数 目为0;
上行常规子帧中控制区域与数据区域 进行频分
控制区域
数据区域
下行Unicast/MBSFN子帧
控制区域与数据区域进行 时分
控制区域OFDM符号数目可 配置
PHY
逻辑信道和传输信道的映射功能 HARQ 传输格式选择 UE内部逻辑信道之间优先级调度功能 UE间根据优先级动态调度功能
S1接口
协议栈
用户平面接口位于E-NodeB 和S-GW之间,传输网络层 建立在IP传输之上, UDP/IP之上的GTP-U用来 携带用户平面的PDU。
S1控制平面接口位于ENodeB和MME之间,传输 网络层是利用IP传输,这点 类似于用户平面;为了可靠 的传输信令消息,在IP曾之 上添加了SCTP;应用层的 信令协议为S1-AP。
lte协议栈
lte协议栈LTE(Long Term Evolution)是第四代移动通信网络(4G)的一种技术标准,其协议栈是指在LTE网络中用于实现通信功能的一系列协议。
LTE协议栈包括物理层、数据链路层、网络层和应用层等组成部分,下面将对LTE协议栈的各个层进行介绍。
物理层是整个协议栈的最底层,主要负责对无线信号的调制解调、信道编码和解码等任务。
其具体功能包括无线信号调制解调、功率控制、调度和调制解调器功耗管理等。
物理层的设计需要考虑带宽、频率复用、多天线技术等因素,以提供高吞吐量和低时延的通信性能。
数据链路层负责将物理层传输的信号分割成较小的数据单元,并提供数据传输的可靠性和安全性保证。
其主要功能包括信道编码与解码、错误检测和纠错、调度和资源分配、混合自动重传请求(HARQ)等。
数据链路层还负责和物理层之间的协作,以确保数据的可靠交付和高效传输。
网络层是实现网络互连和路由功能的层,其主要任务是将数据传输到目标终端设备。
网络层的功能包括寻址与路由、移动性管理、IP数据包的分组交换和转发等。
在LTE中,网络层采用IP协议作为基础,支持IPv4和IPv6两种寻址方式,以适应不同的网络需求和应用场景。
应用层是整个协议栈的最上层,其主要任务是提供各种高层服务和功能。
应用层的协议包括HTTP、FTP、DNS等,用于实现互联网接入、内容下载和域名解析等功能。
此外,应用层也支持多媒体业务的传输和处理,如语音通话、视频流媒体等。
除了以上四个主要层次外,LTE协议栈还包括安全层和控制层。
安全层用于提供通信的保密性、完整性和认证等安全功能,以防止数据泄露和网络攻击。
控制层则负责网络的管理和控制功能,包括寻呼、接入控制、呼叫建立和释放等。
总之,LTE协议栈是实现LTE网络功能的核心部分,其各个层次之间密切协作,共同实现数据的传输和处理。
物理层提供无线信号的调制解调和信道编码解码等功能,数据链路层负责对数据进行分割和编码纠错,网络层实现数据的路由和转发,应用层提供各种高层服务和功能。
LTE网络架构和协议栈
LTE网络架构和协议栈随着移动通信技术的不断发展,LTE(Long Term Evolution)成为4G移动通信的主流技术。
LTE网络架构和协议栈是构建LTE系统的核心组成部分,下面将对LTE网络架构和协议栈进行详细介绍。
一、LTE网络架构LTE网络架构由两部分组成:E-UTRAN(Evolved UMTS Terrestrial Radio Access Network)和EPC(Evolved Packet Core)。
1. E-UTRAN(Evolved UMTS Terrestrial Radio Access Network)E-UTRAN是LTE系统的无线接入网络,包括基站和与之相连的核心网。
基站被称为eNodeB,负责无线信号的传输和接收。
eNodeB通过X2接口相连,用于基站之间的信号传输和协同。
与核心网的连接通过S1接口实现,包括控制面和用户面的传输。
2. EPC(Evolved Packet Core)EPC是LTE系统的核心网络,负责用户数据的传输和控制信息的处理。
EPC由三个主要组成部分构成:MME(Mobility Management Entity)、SGW(Serving Gateway)和PGW(Packet Data Network Gateway)。
MME负责移动性管理和控制平面的处理;SGW负责用户数据的传输;PGW连接到外部数据网络,负责数据分组的处理和路由。
二、LTE协议栈LTE协议栈由各种协议组成,实现系统中不同层次之间的通信和控制。
LTE协议栈按照OSI(Open Systems Interconnection)参考模型分为七层,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
1. 物理层物理层负责数据的传输和调制解调。
LTE使用OFDM(Orthogonal Frequency Division Multiplexing)技术进行信号的调制和解调,以提高传输效率和抗干扰性能。
lte协议栈
lte协议栈LTE协议栈。
LTE(Long Term Evolution)是第四代移动通信技术,其协议栈是支撑LTE网络正常运行的基础。
LTE协议栈由不同层次的协议组成,包括物理层、数据链路层、网络层和应用层。
本文将对LTE协议栈的各个部分进行详细介绍。
首先,物理层是LTE协议栈的最底层,负责无线信号的调制解调和传输。
在物理层,LTE使用正交频分复用(OFDM)技术来实现高速数据传输。
物理层还包括MIMO(Multiple-Input Multiple-Output)技术,可以提高信号传输的稳定性和速度。
此外,物理层还包括了无线信道的管理和调度功能,确保数据的高效传输。
其次,数据链路层负责数据的分组、传输和错误检测。
在LTE协议栈中,数据链路层包括了MAC(Medium Access Control)层和RLC(Radio Link Control)层。
MAC层负责对数据进行调度和管理,确保不同用户之间的公平竞争和高效传输。
而RLC层则负责数据的分段和重组,以及错误检测和纠正。
数据链路层的工作是保证数据的可靠传输和高效利用无线资源。
接下来是网络层,网络层负责数据的路由和转发。
LTE协议栈中的网络层包括了RRC(Radio Resource Control)层和PDCP(Packet Data Convergence Protocol)层。
RRC层负责无线资源的管理和控制,包括小区搜索、切换和功率控制等功能。
PDCP层则负责数据的压缩和加密,以及数据的传输和重组。
网络层的工作是确保数据在LTE网络中的顺利传输和处理。
最后是应用层,应用层负责用户数据的处理和交互。
在LTE协议栈中,应用层包括了IP(Internet Protocol)层和TCP/UDP(Transmission Control Protocol/User Datagram Protocol)层。
IP层负责数据的路由和转发,确保数据能够在LTE网络和外部网络之间进行传输。
LTE E-UTRAN物理层介绍
LTE物理资源结构
One downlink slot Tslot
RE(Resource Element)为最小的资源单
位,时域上为一个符号,频域上为一个子 载波。
DL N symb OFDM symbols
DL RB k N RB N sc 1
RB(Resource Block)为业务信道资源分
LTE物理层概述
复用与信道编码
LTE中传输块的信道编码方案为Turbo编码,编码速率为R=1/3,它由两个8状 态子编码器和一个Turbo码内部交织器构成。 在Turbo编码中使用栅格终止(Trellis Termination)方案。在Turbo编码 之前,传输块被分割成多个段,每段的大小要与最大信息块大小6144bit保 持一致。使用24bit长的循环冗余校验(Cyclic Redundancy Check,CRC)来 支持错误检测。
REG(资源元组)示意图 1Tx or 2Tx configured l=0 l=1 l=2 k = 83
RS
REG
RBG用于业务信道的资源分配
4Tx configured l=0 l=1 l=2
一个RBG是一组RB组成
分组的大小和系统带宽有关 System Bandwidth
DL N RB
One slot, Tslot=15360Ts
30720Ts
Subframe #0 One subframe, 30720Ts DwPTS GP
Subframe #2
Subframe #3
Subframe #4
Subframe #5
Subframe #7
Subframe #8
LTE协议栈范文
LTE协议栈范文LTE(Long-Term Evolution)是一种移动通信技术,其核心是LTE协议栈。
LTE协议栈是一种用于将数据在LTE网络中传输的软件框架,由多个协议层组成,每个层都有不同的功能并负责不同的任务。
下面将详细介绍LTE协议栈的各个层次及其功能。
1. 物理层(Physical Layer):物理层是协议栈的最底层,负责将数据从发送端传输到接收端。
主要功能包括无线传输信道管理、调制解调和编码解码等。
物理层中的子层包括无线射频接口、射频前端控制和多输入多输出(MIMO)等,用于实现无线信号的传输。
2. 数据链路层(Data Link Layer):数据链路层负责将物理层传输的数据划分为数据块,并进行差错检测、纠错和重复消除等处理。
数据链路层中的子层包括逻辑信道控制、无线链路控制和适配层等,用于处理无线链路的建立与管理。
3. 网络层(Network Layer):网络层主要负责数据的路由和转发。
它使用IP协议来处理数据包的寻址和路由选择,并实现与其他网络的连接。
网络层中的子层包括协议无关传输和移动管理等,用于实现数据包的传输和移动性管理。
4. 传输层(Transport Layer):传输层负责确保数据的可靠传输和流量控制。
它提供数据分段和重组、错误恢复、拥塞控制等功能,以确保数据的完整性和高效传输。
传输层中的子层包括传输控制协议(TCP)和用户数据报协议(UDP)等,用于处理应用层数据的传输。
5. 会话层(Session Layer):会话层负责建立、管理和终止通信会话。
它提供会话控制和同步等功能,以确保通信双方的协同工作。
会话层中的子层包括会话控制和会话描述等,用于实现会话的建立和管理。
6. 表示层(Presentation Layer):表示层负责数据的格式转换、压缩和加密等处理。
它将应用层数据转换为网络传输的格式,并重新转换接收到的数据为应用层可理解的数据。
表示层中的子层包括数据转换和数据加密等,用于处理数据的格式和安全性。
(完整版)LTE介绍与网络架构
L TE介绍与网络架构1、什么是L TE?LTE(Long Term Evolution,长期演进)是由3GPP(The 3rd Generation Partnership Project,第三代合作伙伴计划)组织制定的UMTS(Universal Mobile Telecommunications System ,通用移动通信系统)技术标准的长期演进。
LTE不是一种技术标准,而是一个协议组织,现在一般常说的LTE是TD-LTE和FDD-LTE 网络制式的统称。
现在的LTE在严格意义上其还未达到4G的标准也称为3.9G。
只有升级版的LTE Advaced才满足国际电信联盟对4G的要求。
2、基本词汇MME:Mobile Managenment Etity——移动管理实体S-GW:Serving GateWay,服务网关P-GW:PDN GateWay,PDN网关E-UTRAN:Evolved Universal Terrestrial Radio Access NetworkEPC:Evlved Packet Core,演进分组核心网RRC:Radio Resource Control 是指无线资源控制PDCP:Packet Data Convergence Protocol,分组数据汇聚协议RLC:Radio Link Control,无限链路控制层协议PHY: Physical Layer Protocol 物理层协议OFDM:Orthogonal Frequency Division Multiple,正交频分多址MIMO:Multiple-Input Multiple Output,多路输入多路输出3、L TE架构相比原有的23G网络结构,主要体现在扁平化和IP化两方面。
➢扁平化:主要体现在没有BSC/RNC节点,原有BSC/RNC的节点功能由ENODEB承担;➢IP化:各网元之前的链接为全IP链路,组网更加灵活。
LTE网络结构协议栈及物理层
NAS信令 NAS信令安全 AS 安全控制 3GPP无线网络的网间移动信令 idle状态UE的可达性(包括寻呼信号重传的控制和执行) 跟踪区列表管理 P-GW 和 S-GW 的选择 切换中需要改变MME时的MME选择 切换到2G或3GPP网络时的SGSN选择 漫游 鉴权 包括专用承载建立的承载管理功能 支持ETW传输
eNB
RRC PDCP RLC MAC PHY
MME NAS
UE
eNode-B
MME
UE NAS
RRC
PDCP
RLC
PDCP 子层执行的M功A能C:
加密和完整性保护
PHY
控制面协议架构
NAS 子层执行的功能: 认证、鉴权 安全控制 Idle 模式移动性处理 Idle 模式寻呼发起
eNB
MME
H-FDD:
上行传输和下行传输在不同的载波频段上进行;
基站/终端在不同的时间进行信道的发送/接收或者接收/发送 ;
H-FDD与FDD的差别在于终端不允许同时进行信号的发送与接收,即H-FDD基 站与FDD基站相同,但是H-FDD终端相对FDD终端可以简化,只保留一套收发信 机并节省双工器的成本。
ENodeB功能
具有现3GPP Node B全部和RNC大部分功能,包括:
无线资源管理:无线承载控制、无线接纳控制、连接移动性控制、上下 行链路的动态资源分配(即调度)等功能 IP头压缩和用户数据流的加密 当从提供给UE的信息无法获知到MME的路由信息时,选择UE附着的 MME 路由用户面数据到S-GW 调度和传输从MME发起的寻呼消息 调度和传输从MME或O&M发起的广播信息 用于移动性和调度的测量和测量上报的配置 调度和传输从MME发起的ETWS(即地震和海啸预警系统)消息
LTE知识点梳理(一):网络架构及协议修改版
L T E知识点梳理(一):网络架构及协议修改版本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March目录LTE知识点梳理(一):LTE网络架构及协议 (3)1.1 移动通信系统的发展 (3)1.2 LTE概述 (4)1.2.1 LTE的主要技术特点 (4)1.2.2 LTE设计目标 (5)1.3 LTE网络架构 (5)1.3.1 E-UTRAN(接入网) (5)1.3.2 EPC核心网 (7)1.3.3 LTE网络特点 (8)1.4 LTE无线接口协议栈 (8)1.4.1 LTE协议栈的三层 (9)1.4.2 LTE协议栈的两个面: (9)1.4.3 协议栈架构 (10)1.5网络接口 (11)LTE知识点梳理(一):LTE网络架构及协议1.1 移动通信系统的发展在学习LTE技术之前,我们需要简单了解一下移动通信系统的发展过程,第一代移动通信技术(1G)是指采用蜂窝技术组网、仅支持模拟语音通信的移动电话标准,其制定于上世纪 80 年代,主要采用的是模拟技术和频分多址技术。
第二代移动通信技术(2G)区别于第一代,使用了数字传输取代模拟传输,根据其特点主要分为两大类,分别是起源于欧洲基于TDMA的GSM系统和起源于美国基于CDMA技术的IS95系统。
在技术的不断推进下,又出现了以GPRS、CDMA20001X为特征的2G升级版2.5G,它的业务包括了语音业务、低速数据业务。
第三代移动通信技术(3G)的最大特点是在数据传输中使用分组交取代了电路交换,电路交换使手机与手机之间进行语音等数据传输,而分组交换则将语音等转换为数字格式并通过互联网进行包括语音、视频和其他多媒体内容在内的数据包传输。
高度数据业务则是3G的主要特征,它能够在全球范围内更好地实现无线漫游,并处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务。
LTE 物理层
注 :U表示用于上行传输时隙,S表示包含DwPTS、GP以及UpPTS的特殊子 帧,D表示用于下行传输的时隙。
下行物理信道有:
① PDSCH传输用户数据; ② PDCCH传输与特定PDSCH相关的控制和配置信息 (HARQ信令、功控命令、RB分配、AMC配置); ③ PBCH传输小区广播信息; ④ PMCH传输多媒体广播业务; ⑤ PCFICH传输用于控制信道(PDCCH)的OFDM符号个 数; ⑥ PHICH传输HARQ ACK/NACK
由于最小TTI是1ms,而RB为0.5ms为单位,则映 射的时候,VRB和PRB也是成对映射的。
集中式虚拟资源块 LVRB –> 直接映射到物理资源 块上; 分布式虚拟资源块 DVRB –> 按照函数关系映射到 物理资源块上,在一个子帧中的两个时隙上虚拟到 物理资源块的映射是不同的。 一个时隙里面可以同时进行LVRB和DVRB的传输。 eNode B可以分配多个VRB给一个UE。
在下行方向采用基于循环前缀(Cyclic Prefix,CP) 的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM) 在上行方向上采用基于循环前缀的单载波频分多址 (Single Carrier—Frequency Division Multiplexing Access,SC-FDMA)
主讲人:蔡俊
物理层概述 帧结构 下行物理信道
E-UTRA无线接口协议结构
物理层与层2的媒体接入控制 (Media Access Control,MAC)子层和层3的无线资源控制(Radio Resource Control,RRC)层具有接口。其中的圆 圈表示不同层/子层间的服务接入点(Service Access Point,SAP)。物理层向MAC层提供传输信 道(Transport Channel)。MAC提供不同的逻辑信 道给层2的无线链路控制(Radio Link Control, RLC)子层。
LTE物理过程系统框图及物理层简单介绍范文
一般下行过程详细流程图1:LTE 的一般下行过程的详细流程图1是我根据LTE 物理层协议专门画的LTE 的一般下行过程的详细流程。
旨在让大家明白物理层是怎么工作的。
有以下两点说明:1、 上行过程很相似,只是上行中UE 的能力比较小,调度信息等是基站通过下行控制信息指定的。
36.302中可以看到如图2所示的一些较详细信息,是上行过程的部分流程。
Node B UEError图2:上行共享信道的物理模型2、 这里是一般下行过程,是下行共享信道的整个物理过程,下行还有控制信道、广播信道等。
那些的过程可能只有其中的部分。
或者还有些没有提到的。
详细内容可以参考36.212.和36.302.3、 本人水平有限,难免有错误和遗漏,发现请指出。
下面详细点介绍图1中的相关内容。
分成4个部分:1、红色所示的物理信道与调制(36.211);2、蓝色所示的复用与信道编码(36.212);3、橙色所示的物理层测量(36.214);以及物理层过程相关内容(36.213)。
四个部分的关系如图3所示。
物理信道与调制(36.211)直接与最下面的空中接口交互信息。
是离发射端和接收端最近的。
然后复用与信道编码(36.212)是在211的上面一点点。
可以认为有一个逻辑信道,在这部分要做信道编码等,与211有个映射关系。
213是高层和最后发射端的一个联系着。
高层通过213给陆玲辉编辑于2010年4月10日星期六211发命令等。
214是高层为了获得信道等信息而设置的。
To/From Higher Layers图3、物理层协议间以及与高层间关系1、211物理信道与调制:该部分包括图1中的红色部分。
物理信道有很多种,如下表1和2中的红色部分就是部分物理信道。
表1、下行传输信道与物理信道映射表2、上行传输信道和物理信道的映射表1和2就是212中的,是上/下行传输信道和物理信道的映射关系。
在我画的图中就是第四点数控复用部分提到的映射到物理信道。
可以看到,有好几种传输信道对应几种物理信道。
LTE--网络架构和协议栈
LTE--⽹络架构和协议栈⼀、LTE⽹络参考模型整个TD-LTE系统由3部分组成:核⼼⽹(EPC,Evolved Packet Core),接⼊⽹(eNodeB),⽤户设备(UE)UE:全称是User Equipment,⽤户设备,就是指⽤户的⼿机,或者是其他可以利⽤LTE上⽹的设备。
eNB:是eNodeB的简写,它为⽤户提供空中接⼝(air interface),⽤户设备可以通过⽆线连接到eNB,也就是我们常说的基站,然后基站再通过有线连接到运营商的核⼼⽹。
在这⾥注意,我们所说的⽆线通信,仅仅只是⼿机和基站这⼀段是⽆线的,其他部分例如基站与核⼼⽹的连接,基站与基站之间互相的连接,核⼼⽹中各设备的连接全部都是有线连接的。
⼀台基站(eNB)要接受很多台UE的接⼊,所以eNB要负责管理UE,包括资源分配,调度,管理接⼊策略等等。
MME:Mobility Management Entity的缩写,提供:NAS 信令传输,⽤户鉴权与漫游管理(S6a),移动性管理,EPS承载管理。
移动性管理主要是有寻呼,TAI管理和切换。
S-GW:Serving Gateway,负责本地⽹络⽤户数据处理部分。
P-GW:PDN Gateway,负责⽤户数据包与其他⽹络的处理。
是PDN Gateway的缩写,其中PDN是Packet Data Network 的缩写,通俗地讲,可以理解为互联⽹,这是整个LTE架构与互联⽹的接⼝处,所以UE如果想访问互联⽹就必须途径P-GW实体, 从另外⼀⽅⾯说,如果想通过P-GW⽽访问互联⽹的话,必须要有IP地址,所以P-GW负责了UE的IP地址的分配⼯作,同时提供IP路由和转发的功能。
此外,为了使互联⽹的各种业务能够分配给不同的承载,P-GW提供针对每⼀个SDF和每⼀个⽤户的包过滤功能。
(也就是说在P-GW处,进出的每⼀个包属于哪个级别的SDF和哪⼀个⽤户都已经被匹配好了。
这⾥的SDF是服务数据流Service Data Flow的缩写,意思就是P-GW能区分每⼀个⽤户的不同服务的数据包,从⽽映射到不同的承载上去。
LTE帧结构和协议10512
LTE帧结构和协议10512LTE(Long Term Evolution,即长期演进)是第四代移动通信技术,其帧结构和协议是保证数据传输效率和可靠性的基础。
本文将介绍LTE的帧结构和协议,涵盖以下内容:1.帧结构2.物理层协议3.链路层协议4.网络层协议1.帧结构:在LTE中,常用的帧结构有1毫秒(ms)和0.5毫秒(ms)两种。
1毫秒帧结构通常用于下行链路,0.5毫秒帧结构通常用于上行链路。
每个子帧内部的OFDM符号,则是由12个正交频分复用(OFDM)符号和2个导频符号组成。
2.物理层协议:2.1小区搜寻过程LTE终端设备在连入网络之前,需要执行小区搜寻过程。
该过程包括寻找小区、同步小区、测量与探测等步骤。
2.2建立连接在建立连接过程中,LTE终端设备需要与基站进行初始接入,共享小区信息并进行系统分配。
2.3传输信道LTE中的传输信道分为控制信道和数据信道,其中控制信道用于传输控制信息,数据信道用于传输用户数据。
常用的控制信道有物理下行共享信道(PDSCH)和物理随机接入信道(PRACH),常用的数据信道有物理上行共享信道(PUSCH)和物理下行共享信道(PDSCH)。
3.链路层协议:3.1链路建立链路建立过程中,UE(User Equipment,用户设备)与eNodeB (Evolved Node B,演进基站)进行协商,建立信道的分配与配置。
3.2链路保持链路保持过程中,UE与eNodeB之间的数据传输保持稳定。
3.3链路释放链路释放过程中,UE与eNodeB之间的连接被终止。
4.网络层协议:4.1 移动接入层协议(Mobile Access Layer Protocol,MAP)MAP协议用于LTE终端设备与核心网络之间进行通信,包括位置管理、移动性管理和呼叫控制等功能。
4.2 会话管理协议(Session Management Protocol,SMP)SMP协议用于建立和维护终端设备之间的会话,包括会话建立、会话维持和会话释放等功能。
LTE网络结构协议栈及物理层
LTE网络结构协议栈及物理层LTE(Long Term Evolution)是第四代移动通信技术,为了满足日益增长的数据需求和提供更高的速率、更低的时延,LTE采用了全新的网络结构和协议栈。
本文将介绍LTE网络的结构、协议栈及物理层。
一、LTE网络结构LTE网络结构包括用户终端设备(UE)、基站(eNodeB)、核心网(EPC)和公共网(Internet)四个部分。
UE是移动设备,eNodeB是用于无线接入的基站,EPC则是支持核心网络功能的节点。
UE与eNodeB之间通过无线接口建立连接,提供无线接入服务。
eNodeB负责对无线资源进行管理和调度,以及用户数据的传输。
而EPC则是核心网络,包括MME(Mobility Management Entity)、SGW (Serving Gateway)和PGW(Packet Data Network Gateway)等网络节点,负责用户移动性管理、用户数据传输和连接到公共网。
二、LTE协议栈LTE协议栈分为两个层次:控制面协议栈(CP)和用户面协议栈(UP)。
CP负责控制信令的传输和处理,UP处理用户数据的传输。
协议栈分为PHY(物理层)、MAC(介质访问控制层)、RLC(无线链路控制层)、PDCP(包隧道协议层)和RRC(无线资源控制层)五个层次。
- 物理层(PHY):是协议栈的最底层,负责将用户数据以比特流的形式传输到空中介质中,并接收从空中介质中接收到的数据。
物理层对数据进行编码、调制和解调,实现无线传输。
- 介质访问控制层(MAC):负责管理无线资源,包括分配资源、管理调度和处理数据的传输。
MAC层通过无线帧的分配来实现用户数据的传输控制。
- 无线链路控制层(RLC):负责对用户数据进行分段、确认和相关的传输协议。
RLC层提供不同的服务质量,如可靠传输和非可靠传输。
- 包隧道协议层(PDCP):负责对用户数据进行压缩和解压缩,以减小无线传输时的带宽占用。
LTE网络结构和协议
– 更小的TTI满足用户面和控制面的时延;共享信道支持在多个用户间同时传
2
输数据;用户面延迟小于5ms,控制面延迟小于100ms;
3 4
– 采用OFDM,MIMO等先进技术支持更高的用户传输速率;下行最大 速率可达100Mbits/s,上行最大速率可达50Mbits/s
– 下行频谱效率可达HSDPA的3~4倍;上行频谱效率可达 HSUPA 的2~3倍;
MME
MME是核心网唯一控制平面的设备,主要功能有: •移动性管理
附着/去附着、跟踪区更新、切换和寻呼、清除用户等。例如:将寻呼消息发送 到eNodeB;跟踪区域的列表管理(UE的IDLE模式和ACTIVE模式);在3GPP访问网 络之间移动时,CN节点之间的信令传输;MME选择,MME改变带来的切换; •接入控制 MME通过鉴权功能实现网络和用户之间的相互鉴权和密钥协商,确保用户请求的业 务 在当前网络可用。鉴权包括对用户的IMSI(国际移动用户识别码)和GUTI的校 验。MME能够根据需要给用户重新分配GUTI,GUTI作为临时用户标识,可以在空 口保护用户标识IMSI的安全性,类似于UMTS网络中TMSI或P-TMSI的作用。 •会话管理 对建立会话所必须的承载的管理,默认承载和专用承载。另外,在与pre-R8网络 (即包含Gn/Gp SGSN的2G/3G网络)互通时,由于两个系统中承载参数不一样, MME还要能将SAE承载与GPRS网络中的PDP上下文之间进行相互映射,保证两个系 统中会话的连续性。
和发送功能;
• 用于移动性和调度的测量和测量报告配 E-UTRAN 置功能。
• 基于AMBR和MBR的上行承载级速率整 型。
• 上行传输层数据包的分类标示。
E-UTRAN
无线资源管理—无线承载控制、无线许可控制,上行和下行资源动态分配/调度; 根 据用户QoS签约信息,进行上行和下行的承载级别的速率调整,对承载级别的准入控制; 寻呼消息的调度与传输;系统广播消息的调度与传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H-FDD:
上行传输和下行传输在不同的载波频段上进行;
基站/终端在不同的时间进行信道的发送/接收或者接收/发送 ;
H-FDD与FDD的差别在于终端不允许同时进行信号的发送与接收,即H-FDD基 站与FDD基站相同,但是H-FDD终端相对FDD终端可以简化,只保留一套收发信 机并节省双工器的成本。
物理信道 一系列资源粒子(RE)的集合,用于承载源于高层的信息
物理信号 一系列资源粒子(RE)的集合,这些RE不承载任何源于高层的信息
上行物理信道
PUSCH——QPSK, 16QAM, 64QAM PUCCH——QPSK, 16QAM, 64QAM PRACH——QPSK
上行物理信号
eNB 功能:
无线资源管理 IP头压缩和用户数据流加密 UE附着时的MME选择 用户面数据向S-GW的路由 寻呼消息和广播信息的调度
和发送 移动性测量和测量报告的配
置
MME 功能: 分发寻呼信息给eNB 安全控制 空闲状态的移动性管理 SAE 承载控制 非接入层(NAS)信令的加密及完整性 保护
NAS
RRC PDCP RLC MAC
RRC 子层执行的功能: 广播 寻呼 链接管理 无线承载控制 移动性 UE测量上报和控制
PHY
UE
eNode-B
MME
用户面协议架构
UE PDCP RLC MAC PHY
UE
eNB PDCP RLC MAC PHY
eNode-B
SAE Gateway
MME
Active Resource Blocks
DC carrier (downlink only)
Channel edge
Resource block
Channel edge
双工方式
FDD:
上行传输和下行传输在不同的载波频段上进行;
TDD:
上行传输和下行传输在相同的载波频段上进行; 基站/终端在不同的时间进行信道的发送/接收或者接收/发送 ;
ENodeB功能
具有现3GPP Node B全部和RNC大部分功能,包括:
无线资源管理:无线承载控制、无线接纳控制、连接移动性控制、上下 行链路的动态资源分配(即调度)等功能 IP头压缩和用户数据流的加密 当从提供给UE的信息无法获知到MME的路由信息时,选择UE附着的 MME 路由用户面数据到S-GW 调度和传输从MME发起的寻呼消息 调度和传输从MME或O&M发起的广播信息 用于移动性和调度的测量和测量上报的配置 调度和传输从MME发起的ETWS(即地震和海啸预警系统)消息
常规CP
0
1
2
3
4
5
6
采用常规CP的时隙结构
扩展CP
下行OFDM符号; 上行DFT-S-OFDM块
0
1
2
3
4
5
采用扩展CP的时隙结构
帧结构
TDD帧结构 --- 帧结构类型2,适用于TDD
一个长度为10ms的无线帧由2个长度为5ms的半帧构成
1个无线帧 Tf = 307200 Ts = 10 ms 1个半帧 153600 TS = 5 ms
FDD
half-duplex FDD
TDD
fDL
fDL
fDL/UL
fUL
fUL
物理资源概念
子帧
无线帧
时隙-slot
物理资源
Ts 1 15000 2048秒
OFDM符号
基本时间 单位
天线端口
接收机用来区分资源在 空间上的差别,包括三 类天线端口: CRS: 天线端口0~3 MBSFN:天线端口4 DRS: 天线端口5
第二个OFDM符号 (1/2个公共天线端口)
控制信道单元(CCE)
第二个OFDM符号 (4个公共天线端口)
36RE,9REG组成
PDCCH调度CCE
第三个OFDM符号
物理资源概念
RBG (Resource Block Group)
为业务信道资源分配的资源单位,由一组RB组成,分组大小与系统带宽 有关
LTE的MME功能与网关功能分离,实现如下控制功能:
NAS信令 NAS信令安全 AS 安全控制 3GPP无线网络的网间移动信令 idle状态UE的可达性(包括寻呼信号重传的控制和执行) 跟踪区列表管理 P-GW 和 S-GW 的选择 切换中需要改变MME时的MME选择 切换到2G或3GPP网络时的SGSN选择 漫游 鉴权 包括专用承载建立的承载管理功能 支持ETW传输
RB ( Resource Block) 业务信道的资源单位,时域上为1个时 隙,频域上为12个子载波
PRB(physical RB) PRB的时域大小为一个时隙,即0.5ms。 PRB的大小和下行数据的最小载荷相匹 配。
VRB(virtual RB)
频率/子载波(序号k)
物理资源概念
资源单元组 (REG)
3
8
8
3 1 OFDM
9
2 symbols
10
1
3
7
2 OFDM
8
2
symbols
9
1
-
-
-
-
-
-
物理资源概念
1个子帧 = 1ms = 14个OFDM符号 (常规CP)
1个时隙 = 0.5ms = 7个OFDM符 号(常规CP)
l=0 k=0
时间/OFDM符号(序号l)
RE (Resource Element) 最小的资源单位,时域上为1个符号, 频域上为1个子载波 用 (k, l) 标记
天线端口0-5
帧结构
FDD帧结构 --- 帧结构类型1,适用于FDD
一个长度为10ms的无线帧由10个长度为1ms的子帧构成;
每个子帧由两个长度为0.5ms的时隙构成;
0.5ms 时隙
10ms无线帧
子帧0 子帧1 子帧2 子帧3 子帧4 子帧5 子帧6 子帧7 子帧8 子帧9
1ms子帧 最小TTI
• 物理下行共享信道(PDSCH) – 传输数据块
• 物理广播信道(PBCH) – 传递UE接入系统所必需的系统信息,如带宽,天线数目等
LTE网络结构、协议栈及物理层
该部分内容重点:
– LTE协议栈结构 – LTE资源的基本概念 – LTE上下行物理信道的映射作用和配置 – LTE信号的概念、作用和配置 – LTE的L2
LTE全网架构
GERAN
SGSN
UTRAN S3
HSS
S6a
S1-MME
MME
LTE-Uu
UE
E-UTRAN
S10 S1-U
下行物理信号
同步信号(Synchronization Signal) Zadoff-Chu, Pseudo sequence
参考信号(Reference Signal) PN码(信道估计)
下行物理信道功能概述
• 物理下行控制信道(PDCCH) – 用于指示PDSCH相关的传输格式,资源分配,HARQ信息等
立)
下行分组数据缓存和 上下行传输层数据 RRC功能
寻呼控制
寻呼支持
包标记
资源调度
切换控制
数据包路由和转发 上下行业务级计费、 无线资源管理(含
上下行传输层数据 门控
小区间)
包标记
基于聚合最大比特 无线接入控制许可
基于用户的计费、 速率(AMBR)的下 接入移动性管理
统计
行速率控制
合法侦听
MME功能
S4 S11
S5
Serving Gateway
S8
S7即Gx
S9
PCRF
Rx+
PDN Gateway
SGi Operator's IP Services
(e.g. IMS, PSS etc.)
LTE 网络构架
EPC EPS
E-UTRAN Uu
MME / S-GW MME / S-GW
S1
eNode B
DwPTS、GP、UpPTS长度配置
Configuration
0 1 2 3 4 5 6 7 8
Normal cyclic prefix DwPTS GP UpPTS
3
10
9
4
1 OFDM
10
3 symbols
11
2
12
1
3
9
9
3 2 OFDM
10
2 symbols
11
1
Extended cyclic prefix DwPTS GP UpPTS
X2 eNode B
X2 X2
eNode B
E-UTRAN中只有一种网元——eNode B 演进分组核心网——EPC 演进分组系统——EPS
移动性管理 服务网关
MME/SGW 与 eNode B的接口
RNC
Node B
eNode B
+=
eNode B间的接口
E-UTRAN 和 EPC的功能划分
信道带宽与传输带宽配置有如下对应关系:
信道带宽
1.4 3 5 10 15 20
传输带宽配置(RB
数目)
6 15 25 50 75 100
Channel Bandwidth [MHz]
Transmission Bandwidth Configuration [RB] Transmission Bandwidth [RB]
Switch-point periodicity
0 1234567 89
0
5 ms
D SUUUDSU UU
1
5 ms
D SUUDDSU UD