恒转矩 恒功率
变频调速三相异步电动机恒转矩及恒功率特性的控制(精)

(EXPLOSION-PROOFELECTRICMACHINE)防爆电机
变频调速三相异步电动机恒转矩及恒功率特性的控制
振宇
电机股份,(154002)
摘要阐述变频调速三相异步电动机在低频(f<50Hz)时的恒转矩特性及高频(f>50Hz)时的恒功率特性的控制。
年第3期(总第112期)
防爆电机(EXPLOSION-PROOFELECTRICMACHINE) 2002
2002年9月30日出版
由于X10+X20 =2 f(L10+L20 ,考虑f1较高时(接近额定时),(X10+X20 ) R1
则有:
Tmax=C(
U12
)f1
(3)
3恒功率特性的控制
电动机输出功率:
===TeU1e2U1e1Te max
()f1e
U1f1U1e=f1e
当恒转矩负载时,有
U1U1e
f1=f1e=K
由式1可知
U1
=4 44Kw1N1 m=C mf1
(5)
f eTe
由此可知,如果能保证U1 f1=K,K为常数,则可保持在调整过程中电动机的功率恒定。
值得注意的是:电动机在额定频率以下调速时,受磁路饱和的限制,实现恒功率调速是不可行的;另一方面电动机在高于额定频率以上调速时,要实现理想的恒功率调速也是困难的。因为要满足式(7)规定的条件,定子电压必将与1成正比升高,电动机的绝缘寿命、铁损、温升都将是恒功率调速的障碍。故变频调速系统大都作为恒转矩调速系统来使用。
Keywords Variable frequencyadjustable speed,Constanttorquecharacteristic,Con stantoutputcharacteristic,Control.
变频器选型原则和注意事项

变频器选型原则和注意事项变频器的正确选择对于控制系统的正常运行是非常关键的。
选择变频器时必须要充分了解变频器所驱动的负载特性。
人们在实践中常将生产机械分为三种类型: 恒转矩负载、恒功率负载和风机、水泵负载。
1、恒转矩负载负载转矩TL与转速n无关,任何转速下TL总保持恒定或基本恒定。
例如传送带、搅拌机,挤压机等摩擦类负载以及吊车、提升机等位能负载都属于恒转矩负载。
变频器拖动恒转矩性质的负载时,低速下的转矩要足够大,并且有足够的过载能力。
如果需要在低速下稳速运行,应该考虑标准异步电动机的散热能力,避免电动机的温升过高。
2、功率负载机床主轴和轧机、造纸机、塑料薄膜生产线中的卷取机、开卷机等要求的转矩,大体与转速成反比,这就是所谓的恒功率负载。
负载的恒功率性质应该是就一定的速度变化范围而言的。
当速度很低时,受机械强度的限制,TL 不可能无限增大,在低速下转变为恒转矩性质。
负载的恒功率区和恒转矩区对传动方案的选择有很大的影响。
电动机在恒磁通调速时,最大允许输出转矩不变,属于恒转矩调速;而在弱磁调速时,最大允许输出转矩与速度成反比,属于恒功率调速。
如果电动机的恒转矩和恒功率调速的范围与负载的恒转矩和恒功率范围相一致时,即所谓“匹配”的情况下,电动机的容量和变频器的容量均最小。
3、平方转距负载在各种风机、水泵、油泵中,随叶轮的转动,空气或液体在一定的速度范围内所产生的阻力大致与速度n的2次方成正比。
随着转速的减小,转矩按转速的2 次方减小。
这种负载所需的功率与速度的3 次方成正比。
当所需风量、流量减小时,利用变频器通过调速的方式来调节风量、流量,可以大幅度地节约电能。
由于高速时所需功率随转速增长过快,与速度的三次方成正比,所以通常不应使风机、泵类负载超工频运行。
1、根据负载特性选择变频器。
如负载为恒转矩负载可选择西门子MMV/MDV,MM420/MM440 变频器,ABB公司ACS400系列变频器等;如负载为风机、泵类负载可选择西门子ECO 、MM430变频器,ABB公司ACS800系列变频器等。
变频器和电机如何选择

变频器和电机如何选择1.1恒转矩负载负载转矩tl与转速n无关,任何转速下tl总保持恒定或基本恒定。
例如传送带、搅拌机,挤压机等摩擦类负载以及吊车、提升机等位能负载都属于恒转矩负载。
变频器拖动恒转矩性质的负载时,低速下的转矩要足够大,并且有足够的过载能力。
如果需要在低速下稳速运行,应该考虑标准异步电动机的散热能力,避免电动机的温升过高。
1.2恒功率负载机床主轴和轧机、造纸机、塑料薄膜生产线中的卷取机、开卷机等要求的转矩,大体与转速成反比,这就是所谓的恒功率负载。
负载的恒功率性质应该是就一定的速度变化范围而言的。
当速度很低时,受机械强度的限制,tl不可能无限增大,在低速下转变为恒转矩性质。
负载的恒功率区和恒转矩区对传动方案的选择有很大的影响。
电动机在恒磁通调速时,最大允许输出转矩不变,属于恒转矩调速;而在弱磁调速时,最大允许输出转矩与速度成反比,属于恒功率调速。
如果电动机的恒转矩和恒功率调速的范围与负载的恒转矩和恒功率范围相一致时,即所谓“匹配”的情况下,电动机的容量和变频器的容量均最小。
1.3风机、泵类负载在各种风机、水泵、油泵中,随叶轮的转动,空气或液体在一定的速度范围内所产生的阻力大致与速度n的2次方成正比。
随着转速的减小,转矩按转速的2次方减小。
这种负载所需的功率与速度的3次方成正比。
当所需风量、流量减小时,利用变频器通过调速的方式来调节风量、流量,可以大幅度地节约电能。
由于高速时所需功率随转速增长过快,与速度的三次方成正比,所以通常不应使风机、泵类负载超工频运行。
用户可以根据自己的实际工艺要求和运用场合选择不同类型的变频器。
在选择变频器时因注意以下几点注意事项:选择变频器时应以实际电机电流值作为变频器选择的依据,电机的额定功率只能作为参考。
另外,应充分考虑变频器的输出含有丰富的高次谐波,会使电动机的功率因数和效率变坏。
因此,用变频器给电动机供电与用工频电网供电相比较,电动机的电流会增加10%而温升会增加20%左右。
变频器中的频率、电压、转速、电流、功率,转矩的关系

变频器中的频率、电压、转速、电流、功率,转矩的关系异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。
频率下降时电压V也成比例下降,这个问题已在回答4说明。
V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择。
频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。
因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。
可以采用各种方法实现,有自动进行的方法、选择V/f模式或调整电位器等方法。
一、引言随着变频调速技术的发展,变频器调速已成为交流调速的主流,在化纤、纺织、钢铁、机械、造纸等行业得到广泛的应用。
由于通用变频器一般采用V/f控制,即变压变频(VVVF)方式调速,因此,变频器在使用前正确地设定其压频比,对保证变频器的正常工作至关重要。
变频器的压频比由变频器的基准电压与基准频率两项功能参数的比值决定,即基准电压/基准频率=压频比。
基准电压与基准频率参数的设定,不仅与电动机的额定电压与额定频率有关(电机的压频比为电机的额定电压与额定频率之比),而且还必须考虑负载的机械特性。
对于普通异步电机在一般调速应用时,其基准电压与基准频率按出厂值设定(基准电压380V,基准频率50Hz),即满足使用要求。
但对于某些行业使用的较特殊的电机,就必须根据实际情况重新设定基准电压与基准频率的参数。
由于变频器使用说明书以及有关书籍中没有对这两个参数作详细介绍,因此正确的设定该参数对于不少使用者来说,并非很容易的事。
1负载特性1恒转矩负载特性2离心式通风机型负载特性3直线型负载特性4恒功率负载特性

1负载特性1恒转矩负载特性2离心式通风机型负载特性3直线型负载特性4恒功率负载特性2稳定运行条件:1机械特性曲线与负载特性曲线有交点2干扰使转速上升,干扰消除后Tm-Tl《0,与之相反3限制直流电动机启动电流的方法:1降压启动2在电枢回路内串接外加电阻启动。
4调速特性:1改变电枢电路外串联电阻Rad 2改变电动机电枢供电电压U 3改变电动机主磁通fai5制动特性:1反馈制动2反击制动3能耗制动6电动机启动要求:1足够大的启动转矩,保证生产机械能正常启动2启动电流越小越好3要求启动平滑4启动设备安全可靠,力求结构简单,操作方便.5启动过程中功率损耗越小越好7降压启动方法1电阻或电抗器降压启动2星角降压启动3自耦变压器降压启动8接触器1交流接触器2直流接触器接触器由触头,灭弧装置,铁芯,线圈组成.9继电器分为1电流继电器2电压继电器3中间继电器4热继电器10保护装置有1短路电流的保护装置2长期过载保护装置3零压保护4零励磁保护.11选择电动机三项基本原则:1发热2过载能力3启动能力12三种工作制1连续工作制2短时工作制3重复短时工作制13三相鼠笼点击调速:1变频调速2变极调速14三相鼠笼电机在同电压下空载启动比满载启动转矩:相投15静态技术指标:1静差变2调速范围3调速平滑性16动态技术指标1最大超掉量2过渡过程时间3震动次数3.3 一台他励直流电动机所拖动的负载转矩T L=常数,当电枢电压或电枢附加电阻改变时,能否改变其运行其运行状态下电枢电流的大小?为什么?这个拖动系统中哪些要发生变化?T=K tφI a u=E+I a R a当电枢电压或电枢附加电阻改变时,电枢电流大小不变.转速n与电动机的电动势都发生改变.3.4一台他励直流电动机在稳态下运行时,电枢反电势E=E1,如负载转矩T L=常数,外加电压和电枢电路中的电阻均不变,问减弱励磁使转速上升到新的稳态值后,电枢反电势将如何变化? 是大于,小于还是等于E1?T=I a K tφ, φ减弱,T是常数,I a增大.根据E N=U N-I a R a ,所以E N减小.,小于E1.3.11为什么直流电动机直接启动时启动电流很大?电动机在未启动前n=0,E=0,而R a很小,所以将电动机直接接入电网并施加额定电压时,启动电流将很大.I st=U N/R a3.12他励直流电动机直接启动过程中有哪些要求?如何实现?他励直流电动机直接启动过程中的要求是1 启动电流不要过大,2不要有过大的转矩.可以通过两种方法来实现电动机的启动一是降压启动.二是在电枢回路内串接外加电阻启动.3.13 直流他励电动机启动时,为什么一定要先把励磁电流加上?若忘了先合励磁绕阻的电源开关就把电枢电源接通,这是会产生什么现象(试从T L=0 和T L=T N两种情况加以分析)?当电动机运行在额定转速下,若突然将励磁绕阻断开,此时又将出现什么情况?直流他励电动机启动时,一定要先把励磁电流加上使因为主磁极靠外电源产生磁场.如果忘了先合励磁绕阻的电源开关就把电枢电源接通,T L=0时理论上电动机转速将趋近于无限大,引起飞车, T L=T N时将使电动机电流大大增加而严重过载.3.15 一台直流他励电动机,其额定数据如下:P N=2.2KW,U N=U f=110V,n N=1500r/min, ηN=0.8,R a=0.4Ω, R f=82.7Ω。
变频器中的频率、电压、转速、电流、功率的关系

步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
这种控制方式多用于风机、泵类节能型变频器。
频率下降时电压 V 也成比例下降,这个问题已在回答4 说明。
V 与 f 的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM) 中存有几种特性,可以用开关或标度盘进行选择。
频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。
因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩 ,这种补偿称增强起动。
可以采用各种方法实现,有自动进行的方法、选择V/f 模式或调整电位器等方法。
一、引言随着变频调速技术的发展,变频器调速已成为交流调速的主流,在化纤、纺织、钢铁、机械、造纸等行业得到广泛的应用。
由于通用变频器一般采用V/f 控制,即变压变频(VVVF )方式调速,因此,变频器在使用前正确地设定其压频比,对保证变频器的正常工作至关重要。
变频器的压频比由变频器的基准电压与基准频率两项功能参数的比值决定,即基准电压 / 基准频率 = 压频比。
基准电压与基准频率参数的设定,不仅与电动机的额定电压与额定频率有关(电机的压频比为电机的额定电压与额定频率之比),而且还必须考虑负载的机械特性。
对于普通异步电机在一般调速应用时,其基准电压与基准频率按出厂值设定(基准电压 380V ,基准频率 50Hz ),即满足使用要求。
但对于某些行业使用的较特殊的电机,就必须根据实际情况重新设定基准电压与基准频率的参数。
由于变频器使用说明书以及有关书籍中没有对这两个参数作详细介绍,因此正确的设定该参数对于不少使用者来说,并非很容易的事。
为此,本文结合变频调速的基本控制方式及负载的机械特性与基准电压、基准频率参数的关系,列举实例,详细说明基准电压与基准频率参数的设定方法。
变频器和电机匹配方法

变频器和电机匹配方法变频器的正确选择对于控制系统的正常运行是非常关键的。
选择变频器时必须要充分了解变频器所驱动的负载特性。
人们在实践中常将生产机械分为三种类型:恒转矩负载、恒功率负载和风机、水泵负载。
1.1 恒转矩负载负载转矩TL与转速n无关,任何转速下TL总保持恒定或基本恒定。
例如传送带、搅拌机,挤压机等摩擦类负载以及吊车、提升机等位能负载都属于恒转矩负载。
变频器拖动恒转矩性质的负载时,低速下的转矩要足够大,并且有足够的过载能力。
如果需要在低速下稳速运行,应该考虑标准异步电动机的散热能力,避免电动机的温升过高。
1.2 恒功率负载机床主轴和轧机、造纸机、塑料薄膜生产线中的卷取机、开卷机等要求的转矩,大体与转速成反比,这就是所谓的恒功率负载。
负载的恒功率性质应该是就一定的速度变化范围而言的。
当速度很低时,受机械强度的限制,TL不可能无限增大,在低速下转变为恒转矩性质。
负载的恒功率区和恒转矩区对传动方案的选择有很大的影响。
电动机在恒磁通调速时,最大允许输出转矩不变,属于恒转矩调速;而在弱磁调速时,最大允许输出转矩与速度成反比,属于恒功率调速。
如果电动机的恒转矩和恒功率调速的范围与负载的恒转矩和恒功率范围相一致时,即所谓“匹配”的情况下,电动机的容量和变频器的容量均最小。
1.3 风机、泵类负载在各种风机、水泵、油泵中,随叶轮的转动,空气或液体在一定的速度范围内所产生的阻力大致与速度n的2次方成正比。
随着转速的减小,转矩按转速的2次方减小。
这种负载所需的功率与速度的3次方成正比。
当所需风量、流量减小时,利用变频器通过调速的方式来调节风量、流量,可以大幅度地节约电能。
由于高速时所需功率随转速增长过快,与速度的三次方成正比,所以通常不应使风机、泵类负载超工频运行。
用户可以根据自己的实际工艺要求和运用场合选择不同类型的变频器。
在选择变频器时因注意以下几点注意事项:选择变频器时应以实际电机电流值作为变频器选择的依据,电机的额定功率只能作为参考。
《电力拖动自动控制系统》参考答案

《电力拖动自动控制系统》参考答案:第一章一、填空题:1.答案:静止可控整流器直流斩波器2.答案:调速范围静差率.3.答案:恒转矩、恒功率4.答案:脉冲宽度调制二、判断题:答案:1.×、2. √、三、问答题:1.答案:生产机械的转速n与其对应的负载转矩T L的关系。
1.阻转矩负载特性;2.位转矩负载特性;3.转矩随转速变化而改变的负载特性,通风机型、恒功率、转矩与转速成比例;4.转矩随位置变化的负载特性。
2.答案:放大器的放大系数K p,供电电网电压,参数变化时系统有调节作用。
电压负反馈系统实际上只是一个自动调压系统,只有被反馈环包围部分参数变化时有调节作用。
3.答案:U d减少,转速n不变、U d增加。
4.答案:生产机械要求电动机提供的最高转速和最低转速之比叫做调速范围。
当系统在某一转速下运行时,负载由理想空载增加到额定值时所对应的转速降落与理想空载转速之比,称作转差率。
静态速降值一定,如果对静差率要求越严,值越小时,允许的调速范围就越小。
5.答案:反馈控制系统的作用是:抵抗扰动,服从给定。
系统能有效地抑制一切被负反馈环所包围的前向通道上的扰动作用。
但完全服从给定作用。
反馈控制系统所能抑制的只是被反馈环包围的前向通道上的扰动。
可见,测速发电机的励磁量发生变化时,系统无能为力。
6.答案:采用比例积分调节器的闭环调速系统是无静差调速系统。
积分控制可以使系统在无静差的情况下保持恒速运行,原因是积分调节器的输出包含了输入偏差量的全部历史。
可以实现无静差调速。
四、计算题:1.答案:开环系统的稳态速降:354.33r/min;满足调速要求所允许的稳态速降:8.33r/min;闭环系统的开环放大系数:41.542.答案:42.5N•M,3.41N•M3.答案:T=62.92N•M,n=920r/min,cosФ=0.784.答案:α=0。
时n0=2119r/min, α=30。
时n0=1824r/min,α=31.1。
直流电机调速公式

直流电机调速公式
直流电机的调速公式为:E=Cφn,其中E是电枢绕组中的感应电动势,近似等于电机的外加电枢电压;C是与电机结构有关的常数;φ是电机励磁磁通;n是电机转速。
另外,直流电机调速的方法有两种:恒转矩调速和恒功率调速。
恒转矩调速是在气隙磁通恒定下调整电枢电压U,就可以调整直流电机的转速n;而恒功率调速是在电枢电压U恒定下调整气隙磁通Φ,同样可以调整电机的转速n。
以上内容仅供参考,如需更多信息,建议查阅直流电机相关书籍或咨询专业人士。
变频调速控制系统(5)

8
第一节 机车牵引运行方式 二、具有转矩和速度双闭环控制的交流传动系统
铁路牵引传动要求在宽广的速度范围内,对每个速度点 都能提供合适的力矩值。所以速度和转矩值被认为是系统的 被调量,并被取为闭环控制的反馈信号。 转速闭环系统的关键是如何提高系统的动态性能,来适 应机车牵引时的较大负载变化和速度变化。
其中 U10=Kf1+U0 , U0 则是考虑零速度附近对定子绕组电阻压降的补 偿。; ΔU1表示电流反馈控制的影响——由电流反馈闭环控制。
28
第二节 转差频率控制系统
(1)生成电机控制变量 (a)恒转矩起动阶段 电流反馈控制环节包括生成电流给定值 I1* 的 I1 函数发生 器和电流调节器,而电流实际值可用电流传感器测得。 如果给定电流 I1* 大于电机的实际电流,则增加ΔUl;反 之,则使ΔU1减少。 在Ul的组成中,U10所占的比重较大,以保证电压与频率 的线性关系。而在进入方波以后,逆变器的输出电压保持恒 值,电流反馈控制将不再产生影响。
f2 = KU12 S = 常数 Tf1 = KU f1
2 1
23
第二节 转差频率控制系统
(3)恒电压、降功率区(自然特性区)——U1=C,f2=C 在该区段因为 f2 的提高受最小允许的转矩过载能力的限 制,当f2达到允许的最大值后就不再增加,进入降功率运行方 式。由式(2—50)可知,当U1=C,f2=C时,T ∝1/f12。
6
第一节 机车牵引运行方式 一、机车牵引运行方式
(2)恒功率区 逆变器输出电压U1已达到限制电压而保持恒定,进入恒 功率运行。在恒电压下,随着供电频率的增加使牵引电动机 产生磁场削弱的效果,此时牵引力随机车速度(供电频率) 的增加成反比下降。 (3)降功率区(自然特性区) 由于转差频率 f2 的提高受最小允许的转矩余量的限制而 保持恒定,并在恒电压下降功率运行方式。
恒功率-恒转矩

恒功率和恒转矩恒功率和恒转矩是在电机变频调速时用到的,对于调压调速不适用,我们的电机基频是50Hz,频率往下调时,电机的扭矩可以保持恒定的,频率往上调整时,电机的功率可以保持恒定,这时扭矩是要减小的,大约每提高10Hz,扭矩下降20%,基本上到80Hz可以使用,以前都是调整到80Hz,现在由于技术的发展,可以增加到100Hz。
变频器使用的是开关电路来进行通断进行的一种等效变频,所以不能升电压,而只能取0~100% 之间的数值变频的基础在于V/f=常数所以当f=50 或60,这时的功率是额定功率,至于到底是50 还是60,这个看所在地的供电频率,中国是50Hz ,美国是60Hz )*有些电机为了获得更好的低频效果,可能基础频率低于50Hz小于50时,V按比例增长,处于恒转距大于50 时,不能在维持电流不变的基础上提升电压,于是处于恒功率状态,由P=UI 可知,电流将减小,转矩将下降是不是“这么简单”,不要凭借想象,靠的是事实,工程师不是靠“好像”这个单词吃饭我上面提到的第一句话,这是为什么存在恒转矩和恒功率的根本原因,只要这点不变,目前任何方法制造的变频器都无法超出基频运行在恒转矩。
下面我对这点进行详细的解释,让楼主能有所理解电动机为什么能实现调速,有个公式:n=60f/p, 这个是同步电机的公式,针对广泛采用的异步电机,公式变为n=60f(1-S)/p其中S =转差率、p =磁极对数、n =转速可以看出,想调整n,也就是调速,可以调节3个参数,既然我们讨论的是变频器,那自然调节的主要是f 了。
在S、p 一定的情况下,转速正比于频率,由于这种对应关系,你可以把转速快理解为频率高,或者反过来。
E = 4.44fN ①这个是电机学基础公式,其中E=定子每相电动势有效值,f=定子供电频率,也就是变频器输出给它的,N =电机每相绕线札数,①二定子磁通如果理论分析起来,严格讲我打的符号不够标准,因为不知道怎么在论坛实现脚标,但是不影响我们讨论这个问题。
风机转速与变频器频率的关系

风机采用变频电机时提高转速,风压如何变化采用变频器来调节风机转速调节风量的,一般有恒功率和恒转矩两种形式。
如果是恒功率的,转速提高,风量必然增大,风压则减小。
如果是恒转矩的,转速提高,风量增大,风压也会提高(对于同一风机)。
当变频器调速到大于50Hz频率时,电机的输出转矩将降低通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。
因此在额定频率之下的调速称为恒转矩调速。
(T=Te,P<=Pe)变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。
当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。
举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。
因此在额定频率之上的调速称为恒功率调速.(P=Ue*Ie)变频器50Hz以上的应用情况大家知道,对一个特定的电机来说,其额定电压和额定电流是不变的。
如变频器和电机额定值都是:15kW/380V/30A,电机可以工作在50Hz以上。
当转速为50Hz时,变频器的输出电压为380V,电流为30A。
这时如果增大输出频率到60Hz,变频器的最大输出电压电流还只能为380V/30A,很显然输出功率不变,所以我们称之为恒功率调速。
这时的转矩情况怎样呢?因为P=wT(w;角速度,T:转矩),因为P不变,w增加了,所以转矩会相应减小。
我们还可以再换一个角度来看:电机的定子电压U=E+I*R(I为电流,R为电子电阻,E为感应电势)可以看出,U,I不变时,E也不变.而E=k*f*X(k:常数;f:频率;X:磁通),所以当f由50-->60Hz时,X会相应减小;对于电机来说T=K*I*X(K:常数;I:电流;X:磁通),因此转矩T会跟着磁通X减小而减小。
同时,小于50Hz时,由于I*R很小,所以U/f=E/f不变时,磁通(X)为常数。
转矩T和电流成正比。
这也就是为什么通常用变频器的过流能力来描述其过载(转矩)能力,并称为恒转矩调速(额定电流不变-->最大转矩不变)。
机械负载分类说明

用变频器给电动机供电与用工频电网供电相比较,电动机的电流会增加10%而温升会增加20%左右。所以在选择电动机和变频器时,应适当留有余量,以防止温升过高,影响电动机的使用寿命。
高环境温度、高开关频率、高海拔高度等,此时会引起变频器的降容,变频器需放大一档选择。 变频器驱动同步电动机时,与工频电源相比,会降低输出容量10%~20%,变频器的连续输出电流要大于同步电动机额定电流与同步牵入电流的标称值的乘积。
恒功率负载
机床主轴和轧机、造纸机、塑料薄膜生产线中的卷取机、开卷机等要求的转矩,大体与转速成反比,这就是所谓的恒功率负载。负载的恒功率性质应该是就一定的速度变化范围而言的。当速度很低时,受机械强度的限制,TL 不可能无限增大,在低速下转变为恒转矩性质。负载的恒功率区和恒转矩区对传动方案的选择有很大的影响。电动机在恒磁通调速时,最大允许输出转矩不变,属于恒转矩调速;而在弱磁调速时,最大允许输出转矩与速度成反比,属于恒功率调速。如果电动机的恒转矩和恒功率调速的范围与负载的恒转矩和恒功率范围相一致时,即所谓“匹配”的情况下,电动机的容量和变频器的容量均最小。
●
●
自动仓库(行走)
●
●
送料器
●
●
流体机械
泵类
●
●
风机
●
●
压缩机
●
●
●
齿轮泵
●
●
●
金
属
加
工
冲床
●
●
拉丝机
●
●
离心铸造机
●
●
车床
●
●
●
磨床
●
●
电路板钻孔机
●
●
电
梯
电梯
●
他励直流电动机的调速可分为恒转矩调速和恒功率调速

4.2.1 直流电机无级调速及调速特性 他励电动机的转速公式:
U I a ( Ra Rs ) n Ce
电气调速方法:1)电枢回路串电阻调速;
2)调压调速;
3)调磁调速。
他励直流电动机的调速
• 2、降低电压调速
n0 n01 nN n02 n 1
n
A’ A B C
UN
P PL
T TL
Ia IN
电机得到了充分利用。 在高于最低转速时: 电机未被充分利用。
n N nmax
TN TL max
PL P TL T
Ia IN
他励直流电动机的调速
• 5、风机型负载与两种调速方式的配合
由于负载转矩随转速的升高而增大,为了使电动机在最 高转速时(所需的转矩最大)能满足负载的需要,应使
功率负载 。 3)对于泵与风机类负载,三种调速方式都不 十分合适,但采用电枢串电阻和降压调速比弱 磁调速合适一些。
4.2 直流电机无级调速
4.2.2 晶闸管-电机直流传动控制系统
分类: 按结构的不同: 按静态误差的不同: 单闭环直流调速系统 双闭环直流调速系统 可逆系统 无静差直流调速系统 有静差直流调速系统
他励直流电动机的调速
n02
• 3、减弱磁通调速 n
C
B A TL
n
I a1
I aN
ia
ia
n2 n01 n1 n0 nN
A’
2 1 N
n1
n t
nN
Tem t=0
他励直流电动机的调速
• 优点:
由于在电流较小的励磁回路中进行调节,因而 控制方便,能量损耗小,设备简单,调速平滑性好。 经济性比较好。
变频器变频器选型原则

变频器变频器选型原则[变频器]变频器选型原则随着变频调速技术的成熟,控制芯片和模块的硬件水平不断提高,变频器成本的不断下降。
这就使得变频器的应用也就越来越广泛,和其它调速方式相比,变频调速以其极高的性价比得到了普遍认可,成为电机调速领域的主力军。
变频器的恰当挑选对于控制系统的正常运转就是非常关键的。
挑选变频器时必须必须充份介绍变频器所驱动的功率特性。
人们在实践中常将生产机械分成三种类型:恒转矩功率、恒功率功率和平方转距功率。
2.1恒转矩负载功率转矩tl与输出功率n毫无关系,任何输出功率之下tl总维持恒定或基本恒定。
比如传送带、搅拌机,挤压机等摩擦类功率以及吊车、提升机等位能够功率都属恒转矩功率。
变频器拖曳恒转矩性质的功率时,低速下的转矩必须足够多小,并且存有足够多的负载能力。
如果须要在低速下稳速运转,必须考量标准异步电动机的散热器能力,防止电动机的梅再升过低。
2.2恒功率负载机床主轴和轧机、造纸机、塑料薄膜生产线中的进料机、首篇机等建议的转矩,大体与输出功率成反比,这就是所谓的恒功率功率。
功率的恒功率性质必须就是就一定的速度变化范围而言的。
当速度很低时,受到机械强度的管制,tl不可能将无穷减小,在低速下转型为恒转矩性质。
功率的恒功率区和恒转矩区对传动方案的挑选存有非常大的影响。
电动机在恒磁通变频时,最小容许输入转矩维持不变,属恒转矩变频;而在强磁变频时,最小容许输入转矩与速度成反比,属恒功率变频。
如果电动机的恒转矩和恒功率变频的范围与功率的恒转矩和恒功率范围相一致时,即为所谓“相匹配”的情况下,电动机的容量和变频器的容量均最轻。
2.3平方转距负载在各种风机、水泵、油泵中,随其叶轮的旋转,空气或液体在一定的速度范围内所产生的阻力大致与速度n的2次方成正比。
随着输出功率的增大,转矩按输出功率的2次方增大。
这种功率所需的功率与速度的3次方成正比。
当所须要风量、流量增大时,利用变频器通过变频的方式去调节风量、流量,可以大幅度地节约电能。
电机的恒功率和恒转矩的区别

电机的恒功率和恒转矩的区别出厂设计的电机,都是按照在工频电压下(380V,50HZ)的给定下,所得到的额定转速值,如果在实际工况当中,没有达到380V,比如说只有300V,50HZ,那么这是一个欠压的情况,肯定是不能达到额定的转速值,因为按照这个电机的设计,50HZ的频率下,一定要有380V的电压来励磁,如今没有在额定电压下,没有达到应有的磁场强度,磁通偏小,那么肯定会影响速度的,不能因为60f/p这个公式来看速度的变化。
又比如说在380V的40HZ的输入的情况下,根据公式E=K*F*Q,E不变,f降低了,那么Q磁通变大了,这是一种过压的情况,过大的励磁,磁通在长时间下,会使电机发热并有可能烧毁的。
所以说磁通这个值不能过大,这个值是根据电机在设计的时候就决定了其承载磁通能力。
通常在恒转矩调速时(50HZ以下),此时的磁通为额定磁通,也称为满磁,如果电压/频率变大,则会超过这个磁通值,造成电机发热。
下面说恒转矩调速和恒功率调速恒转矩调速,就是说让磁通保持一个不变的值,V/F=Q(磁通)是一个不变的值,为什么叫恒转矩调速,就是说负载的转矩是个定值,要求电机输出的转矩值也是个定值,看公式:T=K*I*Q,如今Q不变,那么电机输出转矩就和I成正比,因为Q这个值通过铭牌就可以计算出来的V(额定电压)/50HZ,所以在Q确定且不变的情况下,线圈的额定电流(不论有无负载,最大通过电流)确定的情况下,该电机能输出的最大力矩也就能够确定(也就能确定电机能带动多大转矩的恒负载),所以电机的过流能力就体现了电机的过载(转矩)能力。
在恒转矩调速下,也只需要通过变频器向电机输送经过调制的一定频率的电压(这个比是磁通,是个定值),负载的转矩也是个定值,那么N一定,T一定,输入的功率P也就定了。
如果F增大,转速N增大,那么功率P也就变大了,因为转矩T是不会因为速度增大而变大的(这个也叫恒转矩负载,如传送带。
恒转矩负载的特点是负载转矩与转速无关,任何转速下转矩总保持恒定或基本恒定。
电机中变频器的恒功率和恒转矩的含义分别是什么

电机中变频器的恒功率和恒转矩的含义分别是什么?变频器的用途十分广泛,不论是在家用电器中,还是工业设备上,都能见到它的存在。
但对于变频器具体起到的作用及功能,可能大家也不是很了解,下面小编给广大客户讲解一下电机中变频器的恒功率和恒转矩的含义分别是什么,两者之间有哪些不同,以及如何对恒转矩调速和恒功率调速?一、恒功率和恒转矩的含义:恒功率是指电机输出功率基本不变,转速升高的时候,扭矩越来越小;而恒转矩是指电机输出扭矩基本不变,输出功率会随转速变化而变化。
直流电机或变频电机都有这两种特性,恒转矩是低速时特性(基频以下),恒功率是高速时特性(基频以上)。
变频机电的恒转矩是指变频电机一定的频率范围内输出的转矩是恒定的,一般指50Hz以下是恒转矩,超过50Hz以后变成恒功率;变频器的频率上升,在超过电机额定功率的时候电机的转矩相应下降。
二、恒功率和恒转矩的区别:恒功率一般应用于小型负载,为了在小负荷应用时对变频器输出功率的保护增加了此功能,这项功能在实际应用中是具有科学性的。
举个例子,部分短时工作制的负载如电钻、刮板输送机等其启动时工作特性本身类似恒功率,开始时静摩擦力大但转速低,其工作稳定后基本还是工作制恒转矩方式下,前者电钻恒功率表现较为明显,这里可理解为很少会用的恒功率。
变频器输出F/V特性也就是负载力矩输出方式基本分有两种:常数关系(对应恒转矩方式),指数关系(对应风机类负载方式),并不是分为恒功率和恒转矩。
恒转矩方式的定义是其力矩(输出电流决定)大小决定于负载固有的特性,跟其输出频率无太大关系,指数关系(指数一般大于1)其转矩同频率的关系为平方、立方等(也有小数)的关系,表示为频率高也就是负载速度快时其转矩相应的增大,如风机、泵等。
三、变频器在变频调速中的恒功率和恒转矩是如何实现的?恒转矩调速:让磁通保持一个不变的值,V/F=Q(磁通)是一个不变的值。
恒转矩调速因负载的转矩是个定值,要求电机输出的转矩值也是个定值,看公式:T=K*I*Q,如今Q不变,所以电机输出转矩就和I成正比,而Q这个值通过铭牌就可以计算出来的V(额定电压)/50HZ,故而在Q确定且不变的情况下,线圈的额定电流(不论有无负载,最大通过电流)确定的情况下,该电机能输出的最大力矩也就能够确定(也就能确定电机能带动多大转矩的恒负载),且电机的过流能力就体现了电机的过载(转矩)能力。
电机的tn曲线时电机的控制模式

电机的tn曲线时电机的控制模式电机的TN曲线与电机的控制模式1. 电机的TN曲线概念及重要性在电机控制领域,TN曲线是一种很重要的概念。
TN曲线是指以转矩T 为横坐标,以转速 N 为纵坐标所绘制的曲线。
通过观察和分析TN 曲线,我们可以了解电机在不同负载下的转矩输出和转速特性,进而选择合适的电机控制模式,实现对电机性能的优化调节。
2. 电机的TN曲线对控制模式的影响在电机的控制过程中,TN曲线对控制模式起着至关重要的作用。
根据电机的TN曲线特性,可以选择不同的控制模式,包括恒功率控制、恒转矩控制和恒速控制等。
3. 恒功率控制模式在恒功率控制模式下,电机的输出功率保持不变,通过对电流和电压的调节,使得电机在不同负载下能够以相对恒定的功率输出。
在TN 曲线上表现为一条水平的直线,说明转矩和转速成反比的关系。
这种控制模式在需要稳定输出功率的场合非常有用。
4. 恒转矩控制模式恒转矩控制模式下,电机的转矩保持恒定,通过对电流和电压的控制,使得电机在不同负载下保持相同的转矩输出。
在TN曲线上表现为一条垂直的直线,说明在任何转速下都能输出相同的转矩。
这种控制模式在需要有力的驱动和负载时非常有效。
5. 恒速控制模式在恒速控制模式下,电机的转速保持恒定,通过对电流和电压的调节,使得电机在不同负载下能够保持相同的转速。
在TN曲线上表现为一条水平的直线,说明在任何转矩下都能稳定输出相同的转速。
这种控制模式在需要稳定转速输出的场合非常实用。
6. 个人观点和理解在实际的电机控制中,根据电机的TN曲线特性选择合适的控制模式非常重要。
不同的控制模式在不同的场合下有着各自的优劣势,通过合理的选择可以实现电机性能的最优化。
不同控制模式之间也可以相互切换,以适应复杂多变的工作环境。
总结综合来看,电机的TN曲线对电机控制模式起着至关重要的作用。
恒功率控制、恒转矩控制和恒速控制都是常见的控制模式,根据电机的实际工作需求和TN曲线特性选择合适的控制模式可以实现电机性能的最优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
负载的恒功率区和恒转矩区对传动方案的选择有影响,电动机在恒磁通调速时,最大容许输出转矩不变,属于恒转矩调速;而在弱磁调速时,最大容许输出转矩与速度成反比,属于恒功率调速。如果电动机的恒转矩和恒功率调速的范围与负载的恒转矩和恒功率范围相一致时,即所谓"匹配"的情况下,电动机的容量和变频器的容量均最小。这一点从直流电机特性来理解更容易。
变频器输出F/V特性也就是负载力矩输出方式基本分有两种:常数关系(对应恒转矩方式),指数关系(对应风机类负载方式),并不是分为恒功率和恒转矩。恒转矩方式意思是其力矩(输出电流决定)大小决定于负载固有的特性,跟其输出频率无太大关系,指数关系(指数一般大于1!)其转矩同频率的关系为平方、立方等(也有小数)的关系,意思是频率高也就是负载速度快时,其转矩相应的增大了,如风机,泵等。
恒转矩调速是指负Βιβλιοθήκη 转矩保持不变,但对转速有不同的要求;恒功率调速是指负载功率保持不变,但对转速有不同的要求.这与电机的额定输出功率和转矩无关,只是要用负载的转矩和功率来选择电动机和变频器.
恒转矩负载的特点是负载转矩与转速无关,任何转速下转矩总保持恒定或基本恒定。应用的场合比如传送带、搅拌机,挤压机等摩擦类负载以及吊车、提升机等位能负载。
有没有转矩随着转速的增加而降低的情况呢,有,但少,就是开始时说的电钻的启动,也有的是因为输出功率有限,为了保护电源器件强制调整,这就是楼主说的恒转矩,很少用的,希望你能理解。
都是在恒速下运行的,恒功率在负载比较轻的场合为多用,恒转矩则多用在重负载。
电机恒功率和恒转矩是用在电机调速中的性能指标;
除了上述两类负载一般还有风机、泵类负载,他的特点是转矩和速度的2次方成正比。随着转速的减小,转矩按转速的2次方减小。这种负载所需的功率与速度的3次方成正比。
同楼上说的差不多,恒功率一般应用于小型负载,早些时候变频器没有恒功率一说的,但为了小负荷应用时对变频器输出功率件的保护增加了此功能,但这功能在有的应用中是科学的。如:部分短时工作制的负载,如电钻,刮板输送机等其启动时工作特性本身类似恒功率,开始时静摩擦力大,但转速低,但到其工作稳定后基本还是工作制恒转矩方式下,前者电钻恒功率表现较明显。意思是很少会用的恒功率。
恒功率调速是指电机低速时输出转矩大,高速时输出转矩小,即输出功率是恒定的;
恒转矩调速是指电机高速、低速时输出转矩一样大,即高速时输出功率大,低速时输出功率小。