光纤通信的应用与发展趋势
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤通信的应用与发展趋势
【摘要】随着科学技术的日益更新,通讯事业的逐步发展。光纤通信时代已经到来。光纤通信一直是推动整个通信网络发展的基本动力之一,是现代电信网络的基础。光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。本文介绍了现代光纤通信系统的特点、基本组成,光纤通信系统的应用及光纤通信系统发展趋势
【关键字】光纤;光纤通信系统;应用;发展趋势
1.前言
1966年,美籍华人高锟(C.K.1cao)和霍克哈姆(C.A.Hockham)发表论文,预见了低损耗的光纤能够用于通信,敲开了光纤通信的大门,引起了人们的重视。1970年,美国康宁公司首次研制成功损耗为20dB/km的光纤,与此同时GaAlAs-GaAs双异质结半导体激光器实现了室温下连续运转,光纤通信时代由此开始。光纤通信系统的传输容量从1980年到2000年增加了近一万倍.传输速度在过去的10年中大约提高了100倍,光纤的衰减系数在1550nm的最小值已经做到0.16db/km,接近理论极限值0.15db/km,这使得光纤能够广泛用于通信系统。光纤通信是以很高频率(1014Hz数量级)的光波作为载波、以光纤作为传输介质的通信。随着光纤通信技术的不断进步,其在通信领域的地位越来越重要,逐步成为现代通信系统中不可或缺的组成部分。
2.光纤通信系统
2.1光纤通信的特点
光纤通信与电通信的主要差异:一是以很高频率的光波作为载波传输信号;二是用光导纤维构成的光缆作为传输线路。
光纤通信之所以能够飞速发展,是由于它具有以下的突出优点所决定:
(1)传输频带宽,通信容量大
由信息理论知道,载波频率越高通信容量越大,因目前使用的光波频率
比微波频率高104~105倍,所以通信容量约可增加104~105倍。
(2)损耗低,中继距离远
(石英)光纤,要减少光纤损耗,主要是靠提目前使用的光纤均为SiO
2
玻璃介质的纯度极高,所以高玻璃纤维的纯度来达到。由于目前制成的SiO
2
光纤的损耗极低,在光波长λ=1.55μm附近,损耗有最低点,为0.2 dB/km,已接近理论极限值。
由于光纤的损耗低,因此中继距离可以很长,在通信线路中可以减少中继站的数量,降低成本并且提高了通信质量。例如,对于400Mbit/s速率的信号,光纤通信系统无中继传输距离达到70km以上,而同样速率的同轴电缆通信系统,无中继距离仅为几千米(中同轴电缆为4.5km,小同轴电缆为2km)
图-2.1.1光纤的损耗特性曲线-损耗谱
(3)抗电磁干扰能力强
光纤原材料是由石英制成的绝缘体材料,只传光,不导电,不受电磁场的作用,不易被腐蚀,而且绝缘性好。因此光纤的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电、电离层的变化和太阳黑子活动的干扰,也不受人为的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用(4)无串音干扰,保密性好
在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。
(5)工作性能可靠
一个系统的可靠性与组成该系统的设备数量有关。设备越多,发生故障的机会越大。因为光纤系统不像电缆系统那样需要几十个放大器,包含的设备数量较少,可靠性自然也就高,加上光纤设备的寿命都很长,无故障工作时间达50万~75万小时,其中寿命最短的是光发射机中的激光器,最低寿命也在10万小时以上。所以光纤通信系统的工作性能是非常可靠的。
除以上特点之外,光纤还具有径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长等优点。所以光纤通信系统不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。
2.2光纤通信系统的原理
所谓光纤通信,就是在发送端首先要把传送的信息(如语音)变成电信号,然后经调制器调制到激光器发出的激光束上,使光的强度随着电信号的幅度或频率的变化而变化,并通过光纤传送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调器解调后恢复原信息。然而,由于目前技术水平所限,对光波进行频率调制与相位调制等仍局限在实验室内,尚未达到实用化水平,因此目前大都采用强度调制与直接检波方式。又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。
基本的光纤通信系统是由数据源、光发送端、光学信道和光接收机组成。数据可以是数字,声音,图像等各种信号的数字化。光发送机和调制器则负责将信号转变成适合于在光纤上传输的光信号,先后用过的光波窗口有0.85、1.31和1.55光学信道包括最基本的光纤,还有中继放大器EDFA等:而光学接收机则接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的
话音、图像、数据等信息。
2.3 光纤通信的基本组成
光纤通信系统的基本组成框图如图-2.3.1所示
图-2.3.1 光纤通信系统组成图
(1)PCM电端机
在光纤通信系统中,光纤中传输的是二进制光脉冲“0”码和“1。码,它由二进制数字信号对光源进行通断调制而产生。而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM,即脉冲编码调制。这种电的数字信号称为数字基带信号,由PCM电端机产生。
(2)光发信机
光发信机是实现电/光转换的光端机。它由光源、驱动器和调制器组成。其功能是将来自于PCM电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。电端机就是常规的电子通信设备。
(3)光中继器
光中继器由光检测器、光源和判决再生电路组成。它的作用有两个:—是补偿光信号在光纤中传输时受到的衰减;二是对波形失真的脉冲近行整形。
(4)光收信机
光收信机是实现光/电转换的光端机。它由光检测器和光放大器组成。其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端机去。
(5)光纤连接器、耦合器等无源器件
由于光纤或光缆的长度受光纤拉制工艺和光缆施工条件的限制,且光纤的拉制长度也是有限度的,因此一条光纤线路可能存在多根光纤相连接的问题。