高一数学余弦定理公式
正余弦定理公式大全
正余弦定理公式大全正弦定理和余弦定理是解三角形的两个重要定理,它们在三角形的边和角之间建立了重要的关系,对于解决三角形的边和角问题有着重要的作用。
下面将详细介绍正弦定理和余弦定理的公式以及它们的应用。
1. 正弦定理公式。
在△ABC中,a、b、c分别为三角形的边长,A、B、C分别为三角形的内角,则正弦定理公式可以表示为:a/sinA = b/sinB = c/sinC = 2R。
其中,R为三角形外接圆半径。
正弦定理的应用非常广泛,可以用来求解三角形的边长或者角度。
通过正弦定理,我们可以很容易地求解出三角形的各个边长或者角度大小,是解决三角形问题的重要工具之一。
2. 余弦定理公式。
在△ABC中,a、b、c分别为三角形的边长,A、B、C分别为三角形的内角,则余弦定理公式可以表示为:a² = b² + c² 2bccosA。
b² = a² + c² 2accosB。
c² = a² + b² 2abcosC。
余弦定理的应用也非常广泛,可以用来求解三角形的边长或者角度。
与正弦定理相比,余弦定理在某些情况下更加方便和实用,尤其是当我们已知三角形的三边长时,可以直接使用余弦定理来求解三角形的各个角度大小。
3. 正余弦定理的综合应用。
正弦定理和余弦定理是解决三角形问题的重要工具,它们可以相互结合,应用于各种不同的三角形问题中。
通过灵活运用正弦定理和余弦定理,我们可以解决各种不同类型的三角形问题,包括求解三角形的边长、角度大小,以及判断三角形的形状等。
在实际问题中,正弦定理和余弦定理常常需要结合其他几何知识和技巧来解决问题,因此在运用正弦定理和余弦定理时,需要灵活运用,结合具体问题来选择合适的方法和步骤,以便更加高效地解决问题。
总结。
正弦定理和余弦定理是解决三角形问题的重要工具,它们建立了三角形的边和角之间的重要关系,可以帮助我们求解各种不同类型的三角形问题。
高中数学正弦余弦公式大全
正弦定理和余弦定理一:基础知识理解1 .正弦定理分类内容定理===2 R ( R 是△ ABC 外接圆的半径 )变形公式① a = 2 R sin _ A , b = 2 R sin _ B , c = 2 R sin _ C ,② sin A ∶ sin B ∶ sin C =a ∶ b ∶ c ,③ sin A =,sin B =,sin C =解决的问题① 已知两角和任一边,求其他两边和另一角,② 已知两边和其中一边的对角,求另一边的对角2 .余弦定理分类内容定理在△ ABC 中,有 a 2 = b 2 + c 2 -2 bc cos _ A ;b 2 = a 2 +c 2 -2 ac cos _ B ; c 2 = a 2 + b 2 -2 ab cos _ C 变形公式cos A =;cos B =;cos C =解决的问题① 已知三边,求各角;② 已知两边和它们的夹角,求第三边和其他两个角3 .三角形中常用的面积公式( 1 ) S = ah ( h 表示边 a 上的高 );( 2 ) S = bc sin A = ac sin B = ab sin C ;( 3 ) S = r ( a + b + c )( r 为三角形的内切圆半径 ).二:基础知识应用演练1 .( 2012·广东高考 ) 在△ ABC 中,若∠ A = 60°,∠ B = 45°, BC = 3 ,则 AC =()A . 4B . 22 .在△ ABC 中, a =, b = 1 , c = 2 ,则 A 等于 ()A . 30°B . 45°C . 60°D . 75°3 .( 教材习题改编 ) 在△ ABC 中,若 a = 18 , b = 24 , A = 45°,则此三角形有 ()A .无解B .两解C .一解D .解的个数不确定4 .( 2012·陕西高考 ) 在△ ABC 中,角 A , B , C 所对边的长分别为 a , b , c .若 a = 2 , B =, c = 2 ,则 b = ________.5 .△ ABC 中, B = 120°, AC = 7 , AB = 5 ,则△ ABC 的面积为________ .解析:1 选B 由正弦定理得:=,即=,所以 AC = × =2 .2 选C ∵ cos A ===,又∵ 0°< A <180°,∴ A =60°.3 选B ∵ =,∴ sin B = sin A = sin 45°,∴ sinB = .又∵ a < b ,∴ B 有两个.4 由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B =4+12-2×2×2 × =4,所以 b =2.答案:25、解析:设 BC = x ,由余弦定理得49=25+ x 2 -10 x cos 120°,整理得 x 2+5 x -24=0,即 x =3.因此 S △ ABC = AB × BC ×sin B = ×3×5× = . 答案:小结: ( 1 ) 在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ ABC 中,A > B ⇔ a > b ⇔ sin A >sin B .( 2 ) 在△ ABC 中,已知 a 、 b 和 A 时,解的情况如下:A 为锐角 A 为钝角或直角图形关系式 a = b sin A b sin A < a < b a ≥ b a > b解的个数一解两解一解一解三、典型题型精讲(1)利用正弦、余弦定理解三角形[例1] ( 2012·浙江高考 ) 在△ ABC 中,内角 A , B , C 的对边分别为 a , b ,c ,且 b sin A = a cos B .( 1 ) 求角 B 的大小; ( 2 ) 若 b = 3 , sin C = 2sin A ,求 a , c 的值.解析: ( 1 ) 由 b sin A = a cos B 及正弦定理=,得sinB = cos B ,所以tan B =,所以 B = .(2) 由 sin C =2sin A 及=,得 c = 2 a . 由 b =3 及余弦定理 b 2 = a 2 + c 2 -2 ac cos B ,得 9= a 2 + c 2 - ac . 所以 a =, c =2 .思考一下:在本例 ( 2 ) 的条件下,试求角 A 的大小.方法小结:1 .应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2 .已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.试题变式演练 1 .△ ABC 的三个内角 A , B , C 所对的边分别为 a , b , c , a sin A sin B + b cos 2 A = a .( 1 ) 求;( 2 ) 若 c 2 = b 2 + a 2 ,求 B .解: ( 1 ) 由正弦定理得,sin 2 A sin B +sin B cos 2 A = sin A ,即 sin B ( sin 2 A +cos 2 A ) = sin A .故 sin B = sin A ,所以= .( 2 ) 由余弦定理和 c 2 = b 2 + a 2 ,得 cos B = .由 (1) 知 b 2 = 2 a 2 ,故 c 2 =(2+ ) a 2 . 可得 cos 2 B =,又 cos B >0,故 cos B =,所以 B =45°.(2)利用正弦、余弦定理判定三角形的形状[例2] 在△ ABC 中 a , b , c 分别为内角 A , B , C 的对边,且2 a sin A =( 2 b + c ) sin B +( 2 c + b ) sin C .( 1 ) 求 A 的大小;( 2 ) 若sin B + sin C = 1 ,试判断△ ABC 的形状.[ 解析 ] ( 1 ) 由已知,根据正弦定理得 2 a 2 = ( 2 b + c ) · b + ( 2 c + b ) c ,即a 2 = b 2 + c 2 + bc .由余弦定理得 a 2 = b 2 + c 2 -2 bc cos A ,故 cos A =-,∵ 0< A <180°,∴ A =120°.(2) 由 (1) 得 sin 2 A =sin 2 B +sin 2 C +sin B sin C =又 sin B +sin C =1,解得 sin B =sin C = .∵ 0°< B <60°,0°< C <60°,故 B = C ,∴△ ABC 是等腰的钝角三角形.方法小结:依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:( 1 ) 利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;( 2 ) 利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用 A + B + C =π这个结论.[注意] 在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.试题变式演练 ( 2012·安徽名校模拟 ) 已知△ ABC 的三个内角 A , B , C 所对的边分别为 a , b , c ,向量 m =( 4 ,- 1 ), n =,且m · n = .( 1 ) 求角 A 的大小;( 2 ) 若 b + c = 2 a = 2 ,试判断△ ABC 的形状.解:( 1 ) ∵ m = ( 4,-1 ) , n =,∴ m · n =4cos 2 -cos 2 A =4·- ( 2cos 2 A -1 ) =-2cos 2 A +2cos A +3.又∵ m · n =,∴ -2cos 2 A +2cos A +3=,解得 cos A =. ∵ 0< A < π ,∴ A = .(2) 在△ ABC 中, a 2 = b 2 + c 2 -2 bc cos A ,且 a =,∴ ( ) 2 =b 2 +c 2 -2 bc ·= b 2 + c 2 -bc . ①又∵ b + c =2 ,∴ b =2 - c ,代入① 式整理得 c 2 - 2 c +3=0,解得 c =,∴ b =,于是 a = b = c =,即△ ABC 为等边三角形.(3)与三角形面积有关的问题[例3] ( 2012·新课标全国卷 ) 已知 a , b , c 分别为△ ABC 三个内角 A , B ,C 的对边, a cos C + a sin C - b - c = 0.( 1 ) 求 A ;( 2 ) 若 a = 2 ,△ ABC 的面积为,求 b , c .[ 解 ] ( 1 ) 由 a cos C + a sin C - b - c =0及正弦定理得sin A cos C + sin A sin C -sin B -sin C =0.因为 B =π- A - C ,所以 sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin = . 又0< A <π,故 A = .( 2 ) △ ABC 的面积 S = bc sin A =,故 bc =4.而 a 2 = b 2 + c 2 -2 bc cos A ,故 b 2 + c 2 =8. 解得 b = c =2.方法小结:1 .正弦定理和余弦定理并不是孤立的.解题时要根据具体题目合理选用,有时还需要交替使用.2 .在解决三角形问题中,面积公式 S = ab sin C = bc sin A = ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理结合应用.试题变式演练 ( 2012·江西重点中学联考 ) 在△ ABC 中, cos 2 A = cos 2 A -cos A .( 1 ) 求角 A 的大小;( 2 ) 若 a = 3 , sin B = 2sin C ,求 S △ ABC .解: ( 1 ) 由已知得 ( 2cos 2 A -1 ) =cos 2 A -cos A ,则cos A = .因为0< A <π,所以 A = .( 2 ) 由=,可得==2,即 b = 2 c .所以cos A ===,解得 c =, b =2 ,所以 S △ ABC = bc sin A = ×2 × × = .课后强化与提高练习(基础篇-必会题)1 .在△ ABC 中, a 、 b 分别是角 A 、 B 所对的边,条件“ a < b ”是使“cosA >cosB ”成立的 ()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2 .( 2012·泉州模拟 ) 在△ ABC 中, a , b , c 分别是角 A , B , C 所对的边.若 A =, b = 1 ,△ ABC 的面积为,则 a 的值为 ()A . 1B . 23 .( 2013·“江南十校”联考 ) 在△ ABC 中,角 A , B , C 所对的边分别为 a , b ,c ,已知 a = 2 , c = 2 , 1 +=,则 C =()A . 30°B . 45°C . 45°或135°D . 60°4 .( 2012·陕西高考 ) 在△ ABC 中,角 A , B , C 所对边的长分别为 a , b , c ,若 a 2 + b 2 = 2 c 2 ,则cos C 的最小值为 ()D .-5 .( 2012·上海高考 ) 在△ ABC 中,若sin 2 A + sin 2 B <sin 2 C ,则△ ABC 的形状是 ()A .锐角三角形B .直角三角形C .钝角三角形D .不能确定6 .在△ ABC 中,角 A 、 B 、 C 所对的边分别是 a 、 b 、 c .若 b = 2 a sin B ,则角 A 的大小为________ .解析:由正弦定理得sin B =2sin A sin B ,∵ sin B ≠0,7 .在△ ABC 中,若 a = 3 , b =, A =,则 C 的大小为________ .8 .( 2012·北京西城期末 ) 在△ ABC 中,三个内角 A , B , C 的对边分别为 a ,b ,c .若 b = 2 , B =, sin C =,则 c = ________ ; a = ________.9 .( 2012·北京高考 ) 在△ ABC 中,若 a = 2 , b + c = 7 , cos B =-,则 b = ________.10 .△ ABC 的内角 A , B , C 的对边分别为 a , b , c , a sin A + c sin C -a sin C =b sin B .( 1 ) 求 B ;( 2 ) 若 A = 75°, b = 2 ,求 a , c .11 .( 2013·北京朝阳统考 ) 在锐角三角形 ABC 中, a , b , c 分别为内角 A , B ,C 所对的边,且满足 a - 2 b sin A = 0.( 1 ) 求角 B 的大小;( 2 ) 若 a + c = 5 ,且 a > c , b =,求 ·的值.12 .( 2012·山东高考 ) 在△ ABC 中,内角 A , B , C 所对的边分别为 a , b ,c ,已知sin B ( tan A + tan C )= tan A tan C .( 1 ) 求证: a , b , c 成等比数列;( 2 ) 若 a = 1 , c = 2 ,求△ ABC 的面积 S .课后强化与提高练习(提高篇-选做题)1 .( 2012·湖北高考 ) 设△ ABC 的内角 A , B , C 所对的边分别为 a , b , c .若三边的长为连续的三个正整数,且 A > B > C , 3 b = 20 a cos A ,则sin A ∶ sin B ∶ sin C 为 ()A .4 ∶ 3 ∶ 2B .5 ∶ 6 ∶ 7C .5 ∶ 4 ∶ 3D .6 ∶ 5 ∶ 42 .( 2012·长春调研 ) 在△ ABC 中,角 A , B , C 的对边分别为 a , b , c ,已知4sin 2 - cos 2 C =,且 a + b = 5 , c =,则△ ABC 的面积为________ .3 .在△ ABC 中,角 A , B , C 的对边分别为 a , b , c ,且满足 ( 2 b - c ) cos A - a cos C = 0.( 1 ) 求角 A 的大小;( 2 ) 若 a =, S △ ABC =,试判断△ ABC 的形状,并说明理由.选做题1 .已知 a , b , c 分别是△ ABC 的三个内角 A , B , C 所对的边.若 a = 1 ,b =, A + C = 2 B ,则sin C = ________.2 .在△ ABC 中, a = 2 b cos C ,则这个三角形一定是 ()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形3 .在△ ABC 中,角 A , B , C 所对的边分别为 a , b , c ,已知cos 2 C =- .( 1 ) 求sin C 的值;( 2 ) 当 a = 2 , 2sin A = sin C 时,求 b 及 c 的长.4 .设△ ABC 的内角 A , B , C 所对的边长分别为 a , b , c ,且cos B =, b = 2.( 1 ) 当 A = 30°时,求 a 的值;( 2 ) 当△ ABC 的面积为3时,求 a + c 的值.课后强化与提高练习(基础篇-必会题)解析1 解析:选C a < b ⇔ A < B ⇔ cos A >cos B .2 解析:选D 由已知得 bc sin A = ×1× c ×sin =,解得 c = 2 ,则由余弦定理可得 a 2 = 4 + 1 - 2×2×1×cos =3 ⇒ a = .3 解析:选B 由1 +=和正弦定理得 cos A sin B +sin A cos B=2sin C cos A ,即 sin C =2sin C cos A ,所以 cos A =,则 A =60°. 由正弦定理得=,则 sin C =,又 c < a ,则 C <60°,故 C =45°.4 解析:选 C 由余弦定理得 a 2 + b 2 - c 2 =2 ab cos C ,又 c 2 =( a 2 + b 2 ),得 2 ab cos C = ( a 2 + b 2 ),即 cos C =≥ = .6 解析:选 C 由正弦定理得 a 2 + b 2 < c 2 ,所以 cos C =<0,所以 C 是钝角,故△ ABC 是钝角三角形.∴ sin A =,∴ A =30°或 A =150°. 答案:30°或 150°7 解析:由正弦定理可知 sin B ===,所以 B =或 ( 舍去 ),所以 C =π - A - B =π --= . 答案:8 解析:根据正弦定理得=,则 c ==2 ,再由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B ,即 a 2 - 4 a -12=0,( a +2)( a -6)=0,解得 a =6 或 a =-2( 舍去 ).答案:2 69 解析:根据余弦定理代入 b 2 =4+(7- b ) 2 -2×2×(7- b )× ,解得b =4. 答案:410 解:(1) 由正弦定理得 a 2 + c 2 - ac = b 2 . 由余弦定理得 b 2 = a 2 +c 2 -2 ac cos B .故cos B =,因此 B =45°.(2)sin A =sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°= .故 a = b × ==1+, c = b × =2×= .1 1 解:(1) 因为 a -2 b sin A =0,所以 sin A -2sin B sin A =0,因为sin A ≠0,所以 sin B = . 又 B 为锐角,所以 B = .( 2 ) 由 ( 1 ) 可知, B = .因为 b = .根据余弦定理,得7= a 2 + c 2 -2 ac cos ,整理,得 ( a + c ) 2 - 3 ac =7.由已知 a + c =5,得 ac =6.又 a > c ,故 a =3, c =2.于是cos A ===,所以 ·=| |·| |cos A = cb cos A=2× × =1.12 解: ( 1 ) 证明:在△ ABC 中,由于sin B ( tan A +tan C ) =tan A tan C ,所以sin B = ·,因此sin B ( sin A cos C +cos A sin C ) =sin A sin C ,所以 sin B sin( A + C )=sin A sin C .又 A + B + C =π ,所以 sin( A + C )=sin B ,因此 sin 2 B =sin A sin C .由正弦定理得 b 2 = ac ,即 a , b , c 成等比数列.( 2 ) 因为 a =1, c =2,所以 b =,由余弦定理得cos B ===,因为0< B <π,所以sin B ==,故△ ABC 的面积 S = ac sin B = ×1×2× = .课后强化与提高练习(提高篇-选做题)解析1 解析:选D 由题意可得 a > b > c ,且为连续正整数,设 c = n , b = n +1,a = n +2 ( n >1,且n ∈ N * ) ,则由余弦定理可得3 ( n +1 ) =20 ( n +2 ) ·,化简得7 n 2 -13 n -60=0,n ∈ N * ,解得 n =4,由正弦定理可得sin A ∶ sin B ∶ sin C =a ∶ b ∶ c =6 ∶ 5 ∶ 4.2 解析:因为4sin 2 -cos 2 C =,所以2[1-cos( A + B )]-2cos 2 C +1=,2+2cos C -2cos 2 C +1=,cos 2 C -cos C +=0,解得cos C = .根据余弦定理有cos C ==,ab = a 2 + b 2 -7 , 3 ab = a 2 + b 2 +2 ab -7= ( a + b ) 2 -7=25-7=18,ab =6,所以△ ABC 的面积 S △ ABC = ab sin C = ×6× =.答案:3 解: ( 1 ) 法一:由 ( 2 b - c ) cos A - a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0,∴ 2sin B cos A -sin( A + C )=0,sin B (2cos A -1)=0. ∵ 0< B < π ,∴ sin B ≠0,∴ cos A =. ∵ 0< A < π ,∴ A= .法二:由 (2 b - c )cos A - a cos C =0,及余弦定理,得 (2 b - c )·- a ·=0,整理,得 b 2 + c 2 - a 2 = bc ,∴ cos A ==,∵ 0<A < π ,∴ A = .(2) ∵ S △ ABC = bc sin A =,即 bc sin =,∴ bc =3,①∵ a 2 = b 2 + c 2 -2 bc cos A , a =, A =,∴ b 2 + c 2 =6,② 由①② 得 b = c =,∴△ ABC 为等边三角形.选择题解析1 解析:在△ ABC 中, A + C =2 B ,∴ B =60°. 又∵ sin A ==,∴ A =30°或 150°( 舍 ),∴ C =90°,∴ sin C =1.答案:12 解析:选A 法一: ( 化边为角 ) 由正弦定理知:sin A =2sin B cos C ,又 A =π -( B + C ),∴ sin A =sin( B + C )=2sin B cos C .∴ sin B cos C +cos B sin C =2sin B cos C ,∴ sin B cos C -cos B sin C =0,∴ sin ( B - C ) =0.又∵ B 、 C 为三角形内角,∴ B = C .法二: ( 化角为边 ) 由余弦定理知cos C =,∴ a =2 b ·=,∴ a 2 = a 2 + b 2 - c 2 ,∴ b 2 = c 2 ,∴ b = c .3 解: ( 1 ) 因为cos 2 C =1-2sin 2 C =-,且0< C <π,所以sin C = .( 2 ) 当 a =2 , 2sin A =sin C 时,由正弦定理=,得 c =4.由cos 2 C =2cos 2 C -1=-,及0< C <π得cos C =± .由余弦定理 c 2 = a 2 + b 2 -2 ab cos C ,得 b 2 ± b -12=0,解得 b =或2 ,所以或4 解: ( 1 ) 因为cos B =,所以sin B = .由正弦定理=,可得=,所以 a = .( 2 ) 因为△ ABC 的面积 S = ac ·sin B ,sin B =,所以 ac =3, ac =10.由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B ,得4= a 2 + c 2 - ac = a 2 + c 2 -16,即 a 2 + c 2 =20.所以 ( a + c ) 2 - 2 ac =20, ( a + c ) 2 =40.所以 a + c =2 .。
高一数学 余弦定理公式
正弦、余弦定理 解斜三角形建构知识网络1.三角形基本公式:(1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC,cos2C =sin 2B A +, sin 2C =cos 2B A +(2)面积公式:S=21absinC=21bcsinA=21casinBS= pr =))()((c p b p a p p --- (其中p=2cb a ++, r 为内切圆半径)(3)射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A 2.正弦定理:2sin sin sin a b cR A B C===外 证明:由三角形面积111sin sin sin 222S ab C bc A ac B ===得sin sin sin a b c A B C==画出三角形的外接圆及直径易得:2sin sin sin a b cR A B C===3.余弦定理:a 2=b 2+c 2-2bccosA , 222cos 2b c a A bc+-=;证明:如图ΔABC 中,sin ,cos ,cos CH b A AH b A BH c b A ===-22222222sin (cos )2cos a CH BH b A c b A b c bc A=+=+-=+-当A 、B 是钝角时,类似可证。
正弦、余弦定理可用向量方法证明。
要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题. 4.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角;有三种情况:bsinA<a<b 时有两解;a=bsinA 或a=b 时有 解;a<bsinA 时无解。
5.利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
高一数学公式总结_高一数学公式整理
高一数学公式总结_高一数学公式整理高一数学公式正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py直棱柱侧面积s=c_h斜棱柱侧面积s=c_h正棱锥侧面积s=1/2c_h正棱台侧面积s=1/2(c+c)h圆台侧面积s=1/2(c+c)l=pi(r+r)l球的表面积s=4pi_r2圆柱侧面积s=c_h=2pi_h圆锥侧面积s=1/2_c_l=pi_r_l弧长公式l=a_ra是圆心角的弧度数r0扇形面积公式s=1/2_l_r锥体体积公式v=1/3_s_h圆锥体体积公式v=1/3_pi_r2h斜棱柱体积v=sl注:其中,s是直截面面积,l是侧棱长柱体体积公式v=s_h圆柱体v=pi_r2h<<<高一和差化积公式2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB <<<高一某些数列前n项和公式1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3<<<高一圆的公式1、圆体积=4/3(pi)(r^3)2、面积=(pi)(r^2)3、周长=2(pi)r4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】<<<高一数学椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
正弦定理和余弦定理
正弦定理和余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则有正弦定理和余弦定理:正弦定理:a/sinA = b/sinB = c/sinC = 2R余弦定理:a^2 = b^2 + c^2 - 2bccosA;b^2 = c^2 + a^2 - 2cacosB;c^2 = a^2 + b^2 - 2abcosC可以通过变形得到以下公式:cosA = (b^2 + c^2 - a^2) / 2bc;cosB = (c^2 + a^2 - b^2) / 2ac;cosC = (a^2 + b^2 - c^2) / 2ab同时还有以下关系:a = 2RsinA;b = 2RsinB;c = 2RsinCa:b:c =asinB = bsinA;bsinC = csinB;asinC = csinAABC的面积S = absinC = bcsinA = acsinB = r其中r为三角形内切圆半径,可以通过S = (a + b + c)r得到。
选择题:1.在△ABC中,已知a = 2,b = 6,A = 45°,则满足条件的三角形有2个。
2.在△ABC中,A = 60°,AB = 2,且△ABC的面积为3,则BC的长为3.3.已知在△ABC中,a = x,b = 2,B = 45°,若三角形有两解,则x的取值范围是2<x<22.4.已知锐角三角形的边长分别为1,3,x,则x的取值范围是(8,10)。
注:原文中存在格式错误,已经进行修正。
整理得2c=b+bc,因为c≠0,所以等式两边同时除以c,得到2=c+b,解得c=2/(b+1)。
在△ABC中,已知内角A、B、C所对的边分别为a、b、c,且△ABC的面积为315,b-c=2,cosA=1/4,求a的值。
解析:由cosA=1/4,得到sinA=√15/4,S△ABC=bcsinA=bc*√15/4=315,因此bc=24.又因为b-c=2,所以b^2-2bc+c^2=4,联立解得b^2+c^2=52.由余弦定理得,a=b+c-2bccosA=52-2*24*(1/4)=64,因此a=8.在△ABC中,已知内角A、B、C所对的边分别为a、b、c,且A=π/4,b^2-a^2=c^2/2.1)求tanC的值;2)若△ABC的面积为3,求b的值。
高中数学余弦定理
高中数学余弦定理余弦定理是高中数学的一个核心内容,也是三角函数的一个重要应用。
余弦定理描述了三角形中一边的平方与另外两边及其夹角的余弦值之间的关系。
对于任何一个三角形,余弦定理都可以给出以下公式:c² = a² + b² - 2abcos(C)其中,a、b和c分别代表三角形的三边长度,C是a和b之间的夹角。
余弦定理的应用范围非常广泛,无论是解三角形、解决实际问题,还是在数学竞赛中,它都是一个重要的工具。
一、解三角形余弦定理可以用来确定三角形的形状和大小。
例如,如果我们知道三角形的三边长a、b和c,以及角A、B和C的度数,我们可以用余弦定理来计算角C的度数。
公式如下:cos(C) = (a² + b² - c²) / (2ab)二、解决实际问题余弦定理也被广泛应用于解决实际问题。
例如,在物理学中,余弦定理可以用来解决与力的合成和分解相关的问题;在地理学中,余弦定理可以用来计算地球上两点之间的距离;在经济学中,余弦定理可以用来计算投资组合的风险和回报。
三、数学竞赛在数学竞赛中,余弦定理也是一个重要的考点。
例如,一些几何问题可能需要使用余弦定理来解决;在一些代数问题中,余弦定理也可能是一个关键的工具。
余弦定理是高中数学的一个重要内容,它不仅在数学中有广泛的应用,也在其他领域中有重要的应用价值。
通过学习和理解余弦定理,我们可以更好地理解和解决各种问题。
一、引言在中国的教育体系中,数学一直是核心学科,特别是在高中阶段,数学的学习对学生的学习生涯和未来的学术成就具有重大影响。
因此,如何设计有效且吸引人的数学课程,帮助学生理解和掌握数学知识,是所有教育工作者都应的问题。
在本文中,我们将探讨如何利用APOS 理论来设计高中数学定理的教学,并以余弦定理为例进行具体阐述。
二、APOS理论概述APOS理论是由美国学者杜宾斯基提出的一种学习理论,它强调学习过程中学生的主动性和实践性。
高中数学知识点总结正弦定理与余弦定理
高中数学知识点总结正弦定理与余弦定理正弦定理与余弦定理是高中数学中的重要知识点,用于求解不规则三角形的边长和角度。
本文将对这两个定理进行详细总结与讲解。
一、正弦定理1.1 定义正弦定理是指在任意三角形中,三条边与其对应的角的正弦值之间的关系。
设三角形的三边分别为a、b、c,对应的角度为A、B、C,则正弦定理的表达式为:a/sinA = b/sinB = c/sinC1.2 推导我们通过利用三角形的面积公式S=1/2 * a * b * sinC,并将其转换为对角线的形式,可以得到正弦定理的推导过程。
1.3 应用正弦定理可以用于求解不规则三角形的边长和角度。
当我们已知三条边或者两条边和夹角时,可以利用正弦定理求解未知的边长或者角度。
二、余弦定理2.1 定义余弦定理是指在任意三角形中,三条边和它们对应的角之间的关系。
设三角形的三边分别为a、b、c,对应的角度为A、B、C,则余弦定理的表达式为:c^2 = a^2 + b^2 - 2ab * cosC2.2 推导我们可以通过利用向量的几何关系,将余弦定理的表达式推导出来。
这个过程较为繁琐,这里就不做详细讲解。
2.3 应用余弦定理可以用于求解不规则三角形的边长和角度。
当我们已知三条边或者两条边和夹角时,可以利用余弦定理求解未知的边长或者角度。
三、正弦定理与余弦定理的比较3.1 适用范围正弦定理适用于任意三角形,而余弦定理只适用于任意三角形,不能用于直角三角形。
3.2 计算难度正弦定理的计算相对简单,只需要记住一个公式,而余弦定理的计算稍复杂,需要使用开方和乘法等运算。
3.3 精度误差由于余弦定理中涉及到平方运算,可能会带来一定的误差,而正弦定理中没有涉及到平方运算,计算结果更加准确。
3.4 应用场景正弦定理在计算不规则三角形的边长和角度时较为常用,尤其适用于已知两边和夹角的情况。
而余弦定理在计算不规则三角形的边长和角度时同样常用,特别适用于已知三边的情况。
余弦定理与正弦定理-用余弦定理、正弦定理解三角形(第三课时)高一数学(北师大版2019必修第二册)
变式 1.(2011 年上海)在相距 2 千米的 A,B 两点处测量目标 C,
若∠CAB=75°,∠CBA=60°,求 A,C 两点之间的距离.
解:由条件知:C=180°-75°-60°=45°, 由正弦定理得sAinCB=sAinBC, 即siAn6C0°=sin245°. 解得 AC= 6.
例2:在△ABC 中,若 2cosBsinA=sin ,试判断CABC 的形 状.
2.余弦定理
a2= b2+c2-2bccos A ,b2= a2+c2-2accos B ,c2
= a2+b2-2abcos C .余弦定理可以变形:cos A
b2+c2-a2
a2+c2-b2
a2+b2-c2
= 2bc ,cos B= 2ac ,cos C= 2ab .
3.三角形中常用的面积公式
(1)S=12ah(h 表示边 a 上的高);
2
2
整理,得4cos2 C 4cos C 1 0,解得cos C 1 , 2
0 C 180,C 60.
(2)由余弦定理得c2 a2 b2 2abcos C,
即7=a2+b2-ab,∴7=(a+b)2-3ab, 由条件a+b=5,得7=25-3ab,ab=6,
SABC
1 2
absin
b=2,a=x,如 c 有两组解,则 x 的取值范围是
.
解 : 当 asinB< b< a 时 , 三 角 形 ABC 有 两 组 解 . 又 b=2, B=60°, a=x, 如 果 三 角 形 ABC 有 两 组 解 ,
那 么 x 应 满 足 xsin60°< 2< x, 即 2< x< 4
3
,
10
余弦定理公式及变形公式
余弦定理公式及变形公式好的,以下是为您生成的关于“余弦定理公式及变形公式”的文章:在咱们学习数学的这趟奇妙旅程中,余弦定理就像是一把神奇的钥匙,能帮咱们打开好多难题的大门。
先来说说余弦定理的基本公式吧,对于一个三角形,假设三条边分别是a、b、c,对应的角分别是A、B、C,那么余弦定理的公式就是:a² = b² + c² - 2bc·cosA,b² = a² + c² - 2ac·cosB,c² = a² + b² - 2ab·cosC。
就拿我之前给学生讲题的时候遇到的一个例子来说。
有一次,课堂上我出了这样一道题:一个三角形,两条边分别是 3 和 4,它们夹角的余弦值是 1/8 ,让大家求第三条边。
同学们一开始都有点懵,不知道从哪儿下手。
我就引导他们,这时候余弦定理就派上用场啦!根据余弦定理 a² = b² + c² - 2bc·cosA,咱们把数值代入进去,就得到 a² = 3² + 4² - 2×3×4×(1/8) ,经过计算,就能得出 a 的值。
再来说说余弦定理的变形公式。
通过基本公式进行一些推导和变换,咱们能得到好多有用的变形。
比如 cosA = (b² + c² - a²) / (2bc),cosB = (a² + c² - b²) / (2ac),cosC = (a² + b² - c²) / (2ab) 。
这些变形公式在解题的时候可好用啦。
有一回,我带学生们做练习题,有一道题是只知道三角形的三条边的长度,让求其中一个角的余弦值。
这时候,用变形公式就能轻松解决。
直接把边的长度代入变形公式,就能算出角的余弦值。
余弦定理正弦定理正弦定理高一数学系列_1
2
2
sin A sin C
同理,过点B
作与CBBiblioteka 垂直的单位向量m,可得
b sin B
c sin C
.
因 abc. 此 sin A sin B sinC
钝角三角形情形:如图示,在钝角△ABC 中,过点A 作与AC 垂直的单位向量j ,则
j与AB的夹角为A ,j与BC的夹角为 C .
2
2
B
AC CB AB j ( AC CB) j AB
53
解:由cos A 4 ,得 sin A 3 .
5
5
∴由正弦定理,得a bsin A
3
3 5
6
.
sin B
35
2
又B ,∴C 2 A,∴ sin C sin( 2 A) 4 3 3 .
3
3
3
5
∴ c b sin C
34
33 10 4
33 .
sin B
3
5
2
随01堂检测
4.在ABC中,若cos2 B a c ,试判断ABC的形状. 2 2c
解:cos2 B 1+ cos B = a c
2
2
2c
1+ cos B a c =1+ a
c
c
cos B a 即 a2 c2 b2 a
c
2ac
c
得a2 c2 b2 =2a2即a2 b2 =c2
2 3 3 2
3 2
1. 2
∵c
a,∴C
A,
∴C
30,于是B
30,∴b
c
2
3 3
.
(2)由三角形内角和定理,得 B 60.
高一数学中如何运用正弦定理和余弦定理
高一数学中如何运用正弦定理和余弦定理在高一数学的学习中,正弦定理和余弦定理是解决三角形问题的重要工具。
它们不仅在数学领域有着广泛的应用,在实际生活中的测量、建筑、导航等方面也具有重要意义。
接下来,让我们一起深入探讨如何巧妙地运用这两个定理。
首先,我们来了解一下正弦定理。
正弦定理的表达式为:$\frac{a}{\sin A} =\frac{b}{\sin B} =\frac{c}{\sin C}$,其中$a$、$b$、$c$分别为三角形的三条边,$A$、$B$、$C$分别为它们所对应的角。
正弦定理主要用于以下几种情况:一是已知三角形的两角和一边,求其他两边和一角。
例如,已知角$A$、$B$和边$a$,我们可以先通过三角形内角和为$180^{\circ}$求出角$C$,然后利用正弦定理$\frac{a}{\sin A} =\frac{b}{\sin B}$求出边$b$,再用$\frac{a}{\sin A} =\frac{c}{\sin C}$求出边$c$。
二是已知两边和其中一边的对角,求另一边的对角。
假设已知边$a$、$b$和角$A$,通过正弦定理$\frac{a}{\sin A} =\frac{b}{\sin B}$,可以求出角$B$。
但需要注意的是,这种情况下可能会出现一解、两解或无解的情况。
当角$A$为锐角时,若$a < b\sin A$,则无解;若$a = b\sin A$,则有一解;若$b\sin A < a < b$,则有两解;若$a \geq b$,则有一解。
当角$A$为钝角或直角时,若$a > b$,则有一解;若$a \leq b$,则无解。
接下来,我们再看看余弦定理。
余弦定理的表达式有两个:$a^2= b^2 + c^2 2bc\cos A$,$b^2 = a^2 + c^2 2ac\cos B$,$c^2 =a^2 + b^2 2ab\cos C$。
余弦定理常用于以下几种情形:一是已知三角形的三边,求三个角。
高中余弦定理公式大全
高中余弦定理公式大全高中余弦定理公式是三角学中的重要定理之一,用于求解三角形的边长或角度。
它是基于三角形的三条边之间的关系而得出的。
余弦定理公式可以表示为:c = a + b - 2ab cos(C)其中,a、b、c 分别表示三角形的三条边的长度,C 表示夹在 a 和 b 之间的角的大小。
在使用余弦定理时,需要注意以下几点:1. 余弦定理适用于任意三角形,不仅仅是直角三角形。
2. 当 C 是直角时,余弦定理可以简化为勾股定理:c = a + b。
3. 当 C 是锐角时,cos(C) 大于 0;当 C 是钝角时,cos(C) 小于 0;当 C 是180度时,cos(C) 等于 -1。
这个性质可以用来判断三角形是锐角三角形、钝角三角形还是直角三角形。
4. 余弦定理也可以用来求解三角形的角度,当已知三边长度 a、b、c 时,可以通过余弦定理反解出角度 C 的大小。
除了上述提到的余弦定理公式,高中三角学中还有一些类似的公式,如正弦定理和正切定理。
这些公式在解决不同类型的三角形问题时都有其特定的应用。
正弦定理公式可以表示为:a/sin(A) = b/sin(B) = c/sin(C)其中,a、b、c 分别表示三角形的三条边的长度,A、B、C 分别表示与对应边相对的角的大小。
正切定理公式可以表示为:tan(A) = a/b, tan(B) = b/a其中,a、b 分别表示三角形的两条边的长度,A、B 分别表示与对应边相对的角的大小。
这些定理的掌握和运用可以帮助我们更好地理解和解决三角形相关的数学问题,例如求解三角形的边长、角度或者判断三角形的形状。
正弦定理余弦定理知识点
正弦定理余弦定理知识点正弦定理和余弦定理是三角形中常用的公式。
1.三角形中常用的公式包括:角度和公式A+B+C=π;海伦公式S=√(p(p-a)(p-b)(p-c)),其中 p=(a+b+c)/2;正弦定理a/sinA=b/sinB=c/sinC=2R,其中 R 为外接圆半径;余弦定理a²=b²+c²-2bccosA,b²=a²+c²-2accosB,c²=a²+b²-2abcosC。
2.三角形中的边角不等关系:A>B⟺a>b,a+b>c,a-b<c。
3.正弦定理可用于以下情况:①已知两角和任一边,求其他两边及一角;②已知两边和其中一边对角,求另一边的对角;③几何作图时,存在多种情况。
4.已知两边和其中一边的对角解三角形的情况:(1)A为锐角,有一解;(2)A为锐角或钝角,当a>b时有一解。
5.余弦定理可用于以下情况:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边。
6.三角形面积公式为 S=1/2absinC=1/2bcsinA=1/2casinB。
在解题时,可以利用正弦定理或余弦定理判断三角形的形状,从中找到三角形中的边角关系,判断出三角形的形状。
例如,在△ABC 中已知 acosB=bcosA,利用扩充的正弦定理可以得到 sin(A-B)=0,因此 A=B,即△ABC 为等腰三角形。
练题:1.在△ABC 中,若 XXX2bcosBcosC,可判断三角形的形状。
2.在△ABC 中,已知 atanB=btanA,可判断三角形的形状。
3.已知△ABC 中,有 cosA+2cosCsinB=2,可判断三角形的形状。
解:由题意可得tanA=1,tanB=2,tanC=3则tan(A+B)=tan(180°-C)=tanC=-3tan(A+B)+tanC=-3+3=0又因为A、B、C为锐角,所以A+B+C=180°而tan(A+B+C)=\frac{tan(A+B)+tanC}{1-tan(A+B)tanC}=0所以A+B+C=180°综上所述,A+B+C=180°.3.在三角形ABC中,a、b、c分别为角A、B、C的对边。
正余弦定理公式大全
正余弦定理公式大全正弦定理和余弦定理是解三角形问题时经常用到的重要公式。
它们可以帮助我们求解三角形的各种边长和角度,是初中数学和高中数学中不可或缺的知识点。
下面将详细介绍正弦定理和余弦定理的公式及应用。
1. 正弦定理。
正弦定理是指在任意三角形ABC中,有以下公式成立:$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$。
其中,a、b、c分别为三角形ABC的三条边的长度,A、B、C分别为对应的三个内角的大小,R为三角形外接圆的半径。
正弦定理的应用,利用正弦定理可以求解三角形的各种边长和角度,尤其适用于已知两边和夹角的情况。
2. 余弦定理。
余弦定理是指在任意三角形ABC中,有以下公式成立:$a^2 = b^2 + c^2 2bc\cos A$。
$b^2 = a^2 + c^2 2ac\cos B$。
$c^2 = a^2 + b^2 2ab\cos C$。
其中,a、b、c分别为三角形ABC的三条边的长度,A、B、C分别为对应的三个内角的大小。
余弦定理的应用,利用余弦定理可以求解三角形的各种边长和角度,尤其适用于已知三边或两边一角的情况。
3. 正弦定理和余弦定理的关系。
正弦定理和余弦定理是解三角形问题的重要工具,它们之间有着密切的联系。
在一些特殊情况下,正弦定理和余弦定理可以相互转化,从而更灵活地应用于解题过程中。
4. 举例说明。
接下来通过具体的例题来说明正弦定理和余弦定理的应用。
例题1,已知三角形ABC中,AB=5,AC=7,BC=8,求∠A、∠B、∠C的大小。
解:利用余弦定理可得:$\cos A = \frac{b^2 + c^2 a^2}{2bc} = \frac{7^2 + 8^2 5^2}{2 \times 7 \times 8} = \frac{33}{56}$。
$\cos B = \frac{a^2 + c^2 b^2}{2ac} = \frac{5^2 + 7^2 8^2}{2 \times 5 \times 7} = \frac{9}{35}$。
三角函数正余弦定理公式大全
三角函数正余弦定理公式大全高中数学定理公式非常多,所以一定需要总结归纳。
为了让同学们对三角函数有个更深的记忆。
下面是由小编为大家整理的“三角函数正余弦定理公式大全”,仅供参考,欢迎大家阅读。
三角函数余弦定理公式大全余弦定理对于边长为a、b、c而相应角为A、B、C的三角形,有:a^2 = b^2 + c^2 - 2bc·cosAb^2 = a^2 + c^2 - 2ac·cosBc^2 = a^2 + b^2 - 2ab·cosC也可表示为:cosC=(a^2 +b^2 -c^2)/ 2abcosB=(a^2 +c^2 -b^2)/ 2accosA=(c^2 +b^2 -a^2)/ 2bc这个定理也可以通过把三角形分为两个直角三角形来证明。
如果这个角不是两条边的夹角,那么三角形可能不是唯一的(边-边-角)。
要小心余弦定理的这种歧义情况。
延伸定理:第一余弦定理(任意三角形射影定理)设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有a=b·cos C+c·cos B,b=c·cos A+a·cos C,c=a·cos B+b·cos A 三角函数正弦定理公式正弦定理对于边长为 a, b和 c而相应角为 A, B和 C的三角形,有:sinA / a = sinB / b = sinC/c也可表示为:a/sinA=b/sinB=c/sinC=2R变形:a=2RsinA,b=2RsinB,c=2RsinC其中R是三角形的外接圆半径。
它可以通过把三角形分为两个直角三角形并使用上述正弦的定义来证明。
在这个定理中出现的公共数 (sinA)/a是通过 A, B和 C三点的圆的直径的倒数。
正弦定理用于在一个三角形中(1)已知两个角和一个边求未知边和角(2)已知两边及其一边的对角求其他角和边的问题。
上面的推论是三角测量中常见情况,也是很容易就掌握的要领。
余弦定理公式sina
余弦定理公式sina
余弦定理公式sina是三角形中一种重要的公式,它可以用来计算三角形中某一边的长度。
该公式的表达式为:
a =
b +
c - 2bc*cosA
其中,a表示三角形中的某一边,b和c分别表示另外两条边,A表示夹在b和c之间的角度。
在使用该公式时,需要先将已知的两条边和夹角代入公式中,然后求解未知边的长度。
由于cos函数的取值范围为[-1,1],所以当A等于180度时,cos A等于-1,此时a=b+c-2bc*(-1),即
a=b+c+2bc。
这就是三角形中常用的勾股定理。
需要注意的是,当夹角A为锐角时,cos A的取值范围为
(0,1),此时a小于b+c,即a的长度小于另外两条边的长度之和,而当夹角A为钝角时,cos A的取值范围为(-1,0),此时a大于
b+c,即a的长度大于另外两条边的长度之和,此时不存在三角形。
总之,在使用余弦定理公式sina时,需要注意夹角的取值范围,以免计算出错误的结果。
- 1 -。
高中数学余弦定理的定义公式及证法
高中数学余弦定理的定义公式及证法这个世界上有两样东西是带不走的:一个是藏在心里的梦想,一个是在脑子里读的书。
你好,我是宇通!分享最新的学习方法、教育信息、笔记等。
每天都是。
欢迎大家关注!宇通为学生整理了高中数学中余弦定理的定义公式和证明方法,包括:余弦定理的定义,平面几何中余弦定理的证明方法,余弦定理的数学应用。
让我们一起来学习吧。
余弦定理三角形任何一条边的平方等于其他两条边的平方之和减去这两条边与它们之间夹角的余弦的乘积。
即在三角形ABC中,已知AB=c,BC=a,CA=b,则有:a2=b2+c2-2bccosAb2=a2+c2-2accosBc2=a2+b2-2abcosC余弦定理平面几何证法在任意△ABC中,做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得:AC2=AD2+DC2b2=(sinB*c)2+(a-cosB*c)2b2=(sinB*c)2+a2-2ac*cosB+(cosB*c)2b2=(sinB^2+cosB^2)*c2-2ac*cosB+a2b2=c2+a2-2ac*cosB余弦定理数学应用余弦定理是解三角形中的一个重要定理,可应用于以下两种需求:当三角形的两条边及其夹角已知时,可以用余弦定理求出已知角的对边。
当三角形的三条边已知时,可以用余弦定理求出三角形的三个内角。
余弦定理求边如果已知三角形的两条边及其夹角,就可以用余弦定理求出已知角的对边。
最后,我欢迎你们参加由我和清北学生发起的帮助该地区学生的活动。
今日读者可免费领取《直击高考漏洞》一书,从出卷人角度揭秘高考试题,有效率的规划剩余时间的复习内容,并附赠《逆向学习法》视频课程,逆向学习法这个视频课,揭示了普通学生如何运用逆向思维学习法省时省力,快速成为学霸的成功秘笈,其实很多孩子并不是没有能力取得高分,而是从一开始选择的道路就不对,一定要从根源解决问题:。
正余弦定理公式总结
正余弦定理公式总结1.正弦定理正弦定理是根据三角形的三个边和对应的角之间的关系建立的公式。
对于任意一个三角形ABC,其三个边长分别为a、b、c,对应的内角分别为A、B、C,则正弦定理的公式如下:a/sinA = b/sinB = c/sinC = 2R其中R为三角形外接圆的半径。
正弦定理可以用于求解以下问题:-已知三个边长,求三个内角;-已知两个边长和一个内角,求第三个边长;-已知两个内角和一个边长,求第三个内角;-已知两个边长和一个夹角,求另外两个夹角。
2.余弦定理余弦定理是根据三角形的一个边和与之相关的两个角之间的关系建立的公式。
对于任意一个三角形ABC,其三个边长分别为a、b、c,对应的内角分别为A、B、C,则余弦定理的公式如下:c^2 = a^2 + b^2 - 2abcosCa^2 = b^2 + c^2 - 2bccosAb^2 = a^2 + c^2 - 2accosB余弦定理可以用于求解以下问题:-已知三个边长,求三个内角;-已知两个边长和一个夹角,求第三个边长;-已知一个边长和两个夹角,求第二个边长;-已知一个边长和一个夹角以及另一个边长,求第二个夹角。
3.面积法面积法是根据三角形的一个边和与之相关的两个角之间的关系建立的公式。
对于任意一个三角形ABC,其三个边长分别为a、b、c,对应的内角分别为A、B、C,则面积公式如下:S = (1/2)ab*sinCS = (1/2)bc*sinAS = (1/2)ca*sinB面积法可以用于求解以下问题:-已知三个边长,求三角形的面积;-已知两个边长和一个夹角,求三角形的面积;-已知一个边长和两个夹角,求三角形的面积。
总结:正余弦定理是解决三角形相关问题的重要工具,可以通过已知的边长和角度求解未知的边长和角度,或者通过已知的边长和角度求解三角形的面积。
正弦定理适用于已知三边或两边一角的情况,而余弦定理适用于已知两边一角或已知三边的情况。
余弦定理内容以及解析
余弦定理定义及公式余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理。
是勾股定理在一般三角形情形下的推广。
a²=b²+c²-2bccosA余弦定理证明如上图所示,△ABC,在c上做高,根据射影定理,可得到:将等式同乘以c得到:运用同样的方式可以得到:将两式相加:向量证明正弦定理和余弦定理正弦定理a/sinA=b/sinB=c/sinC=2R(1)已知三角形的两角与一边,解三角形(2)已知三角形的两边和其中一边所对的角,解三角形(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值在△DEF中有余弦定理:DE2=DF2+EF2-2DF•EFcos∠DFE.拓展到空间,类比三角形的余弦定理,在斜三棱柱ABC-A1B1C1的中ABB1A1与BCC1B1所成的二面角的平面角为θ,则得到的类似的关系式是_____.答案:.解析:由平面和空间中几何量的对应关系,和已知条件可写出类比结论解:平面中的点、线、面分别对应空间中的线、面、体,平面中的长度对应空间中的面积,平面中线线的夹角,对应空间中的面面的夹角故答案为:证明如下:如图斜三棱柱ABC-A1B1C1设侧棱长为a做面EFG垂直于侧棱AA1、BB1、CC1,则∠EFG=θ又∵在△EFG中,根据余弦定理得:EG2=EF2+FG2-2EF•FG•COSθ等式两边同时乘以a2,可得答案故答案为:类比余弦定理,在△DEF中有余弦定理:DE2=DF2+EF2-2DF•EF∠DFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱ABC-A1B1C1BC的3个侧面面积之间的关系式(其中θ为侧面为ABB1A1与BCC1B1所成的二面角的平面角)_____.答案:S△A1C1C2=S△BB1A12+S四边形BCC1B12-2S△BB1A1•S四边形BCC1B1•cosθ解析:类比三角形的余弦定理,利用类比的方法写出斜三棱柱ABC-A1B1C1BC的3个侧面面积之间的关系式即可.解:根据题意得:S△A1C1C2=S△BB1A12+S四边形BCC1B12-2S△BB1A1•S四边形BCC1B1•cosθ.故答案为:S△A1C1C2=S△BB1A12+S四边形BCC1B12-2S△BB1A1•S四边形BCC1B1•cosθ。
高一数学公式
高一数学公式高一数学公式1正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角圆的标准方程(_-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程_2+y2+d_+ey+f=0注:d2+e2-4f0抛物线标准方程y2=2p_y2=-2p_2=2py_2=-2py直棱柱侧面积s=c_h斜棱柱侧面积s=c_h正棱锥侧面积s=1/2c_h正棱台侧面积s=1/2(c+c)h圆台侧面积s=1/2(c+c)l=pi(r+r)l球的表面积s=4pi_r2圆柱侧面积s=c_h=2pi_h圆锥侧面积s=1/2_c_l=pi_r_l弧长公式l=a_ra是圆心角的弧度数r0扇形面积公式s=1/2_l_r锥体体积公式v=1/3_s_h圆锥体体积公式v=1/3_pi_r2h斜棱柱体积v=sl注:其中,s是直截面面积,l是侧棱长柱体体积公式v=s_h圆柱体v=pi_r2h高一数学公式2【和差化积】2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB【某些数列前n项和】1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+_+_+_+…+(2n-1)=n2 2+4+6+8+_+_+_+…+(2n)=n(n+1)_+_+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6_+23+33+43+53+63+…n3=n2(n+1)2/41_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角弧长公式 l=a_r a是圆心角的弧度数r 0 扇形面积公式 s=1/2_l_r乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b = -b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 _1+_2=-b/a _1__2=c/a 注:韦达定理高一数学公式3圆的公式1.圆体积=4/3(pi)(r )2.面积=(pi)(r )3.周长=2(pi)r4.圆的标准方程(_-a)2+(y-b)2=r2【(a,b)是圆心坐标】5.圆的一般方程_2+y2+d_+ey+f=0【d2+e2-4f 0】椭圆公式1.椭圆周长公式:l=2πb+4(a-b)2.椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.3.椭圆面积公式:s=πab4.椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积.以上椭圆周长.面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来.高一数学公式大全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦、余弦定理 解斜三角形建构知识网络1.三角形基本公式:(1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC,cos2C =sin 2B A +, sin 2C =cos 2B A +(2)面积公式:S=21absinC=21bcsinA=21casinBS= pr =))()((c p b p a p p --- (其中p=2cb a ++, r 为内切圆半径)(3)射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A 2.正弦定理:2sin sin sin a b cR A B C===外 证明:由三角形面积111sin sin sin 222S ab C bc A ac B ===得sin sin sin a b c A B C==画出三角形的外接圆及直径易得:2sin sin sin a b cR A B C===3.余弦定理:a 2=b 2+c 2-2bccosA , 222cos 2b c aA bc+-=;证明:如图ΔABC 中,sin ,cos ,cos CH b A AH b A BH c b A ===-22222222sin (cos )2cos a CH BH b A c b A b c bc A=+=+-=+-当A 、B 是钝角时,类似可证。
正弦、余弦定理可用向量方法证明。
要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题. 4.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角;有三种情况:bsinA<a<b 时有两解;a=bsinA 或a=b 时有 解;a<bsinA 时无解。
5.利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
6.熟练掌握实际问题向解斜三角形类型的转化,能在应用题中抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;提高运用所学知识解决实际问题的能力双基题目练练手B1.(2006山东)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知,3,13A a b π===,则c = ( )B.2C.31-D.32.在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A.223 B.233 C.23D.33 3.(2002年上海)在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形4. (2006全国Ⅰ)用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为 ( )A. 285cm B. 2610cm C. 2355cm D. 220cm5.(2006全国Ⅱ)已知ABC V 的三个内角A 、B 、C 成等差数列,且AB=1,BC=4,则边BC 上的中线AD 的长为_________.6.(2006春上海)在△ABC 中,已知5,8==AC BC ,三角形面积为12,则=C 2cos .◆答案:; 3.由2cos B sin A =sin C 得ac b c a 222-+×a =c ,∴a =b .4.组成边长6,7,7时面积最大;5.3; 6.257 四、经典例题做一做【例1】(2006天津)如图,在ABC ∆中,2AC =,1BC =,43cos =C . (1)求AB 的值; (2)求()C A +2sin 的值. 解(Ⅰ): 由余弦定理,2222..cos AB AC BC AC BC C =+- 341221 2.4=+-⨯⨯⨯= ∴ 2.AB =(Ⅱ)解:由3cos 4C =,且0,C π<<得 27sin 1cos .C C =-=由正弦定理:,sin sin AB BCC A= 解得sin 14sin 8BC C A AB ==。
所以,52cos 8A =。
由倍角公式sin 2sin 2cos 16A A A =⋅=, 且29cos 212sin 16A A =-=,故 ()sin 2sin 2cos cos 2sin 8A C A C A C +=+=. ◆提炼方法:已知两边夹角,用余弦定理,由三角函数值求三角函数值时要注意“三角形内角”的限制.【例2】在ΔABC 中,已知a=3,b=2,B=45°,求A,C 及边c .解:由正弦定理得:sinA=23245sin 3sin =⋅=οb B a ,因为B=45°<90°且b<a, 所以有两解A=60°或A=120°(1)当A=60°时,C=180°-(A+B)=75°, c=22645sin 75sin 2sin sin +=⋅=οοB Cb , (2)当A=120°时,C=180°-(A+B)=15 °,c=22645sin 15sin 2sin sin -=⋅=οοBCb ◆提炼方法:已知两边和其中一边的对角解三角形问题,用正弦定理求解,必需注意解的情况的讨论.【例3】(2006上海)如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救 甲船立即前往救援,同时把消息告知在甲船的南偏西30ο,相距10海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B 处救援(角度精确到1︒)[解] 连接BC,由余弦定理得BC 2=202+102-2×20×10COS120°=700于是,BC=107∵710120sin 20sin ︒=ACB , ∴sin ∠ACB=73,∵∠ACB<90° ∴∠ACB=41°∴乙船应朝北偏东71°方向沿直线前往B 处救援思路点拨:把实际问题转化为解斜三角形问题,在问题中构造出三角形,标出已知量、未知量,确定解三角形的方法;【例4】已知⊙O 的半径为R ,,在它的内接三角形ABC 中,有()()B b aC A R sin 2sin sin 222-=-成立,求△ABC 面积S 的最大值.解:由已知条件得()()()b a BR B A R -=-2sin 2sin sin2222.即有 2222b ab c a -=-,又 222cos 222=-+=ab c b a C ∴ 4π=c .34A B π+=∴ B A R ab C ab S sin sin 44242sin 212⋅===222232sin sin()4222sin (cos sin )22(sin 21cos 2)2[2sin(2)1]24R A A R A A A RA A R A ππ=-=+=+-=-+当32,()428A AB πππ-===即时, 2max 212R S +=.◆思路方法:1.边角互化是解三角形问题常用的手段.一般有两种思路:一是边化角;二是角化边。
2.三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.【研讨.欣赏】(2006江西)如图,已知△ABC 是边长为1的正三角形, M 、N 分别是边AB 、AC 上的点,线段MN 经过△ABC 的中心G .设2()33MGA ππαα∠=≤≤. (1) 试将△AGM 、△AGN 的面积(分别记为1S 与2S )表示为α的函数; (2) 求221211y S S =+的最大值与最小值. 解:(1)因为G 为边长为1的正三角形ABC 的中心, 所以233,.3236AG MAG π=⨯=∠= 由正弦定理,sinsin()66GM GA πππα=--3,6sin()6GM πα=+得11sin sin ().26(3cot )12sin()6S GM GA ααπαα=⋅⋅==++则或3,,sinsin()6sin()666GN GA GN πππαα==--又得21sin sin()().26(3cot )12sin()6S GN GA απαπαα=⋅⋅-==--则或2222221211144(2)sin ()sin ()72(3cot ).sin 66y S S ππαααα⎡⎤=+=++-=+⎢⎥⎣⎦因为233ππα≤≤,所以当233ππαα==或时,y 的最大值max 240y =; 当2πα=时, y 的最小值min 216y =.提炼总结以为师1.掌握三角形中的的基本公式和正余弦定理; 2.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);3.利用余弦定理,可以解决以下两类问题:(1) 已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
4.边角互化是解三角形的重要手段.正弦、余弦定理 解斜三角形【选择题】1.(2004浙江)在△ABC 中,“A >30°”是“sin A >21”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件2.(2004全国Ⅳ)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为23,那么b 等于 ( ) A.231++3C.232+ +3 3..下列条件中,△ABC 是锐角三角形的是 ( )+cos A =51 B.AB ·BC >0 +tan B +tan C >0=3,c =33,B =30°4.(2006全国Ⅰ)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B = ( )A.14 B. 34C. 4D. 3【填空题】5.(2004春上海)在ABC ∆中,c b a 、、分别是A ∠、B ∠、C ∠所对的边。
若ο105=∠A ,ο45=∠B ,22=b , 则=c __________6.在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是_______.练习简答:; 1.在△ABC 中,A >30°⇒0<sin A <1sin A >21;sin A >21⇒30°<A <150°⇒A >30°答案:B2. 2b =a +c .平方得a 2+c 2=4b 2-2ac .由S=21ac sin30°=41ac =23,得ac =6.∴a 2+c 2=4b 2-12.得cos B =acb c a 2222-+=6212422⨯--b b =442-b =23,解得b =1+3.答案:B3.由tan A +tan B +tan C=tan A tan B tan C >0,A 、B 、C 都为锐角.答案:C; 6.若c 最大,由cos C >0.得c <5.又c >b -a =1,∴1<c <5.【解答题】7.(2004春北京)在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、c 成等比数列,且a 2-c 2=ac -bc ,求∠A 的大小及cBb sin 的值. 剖析:因给出的是a 、b 、c 之间的等量关系,要求∠A ,需找∠A 与三边的关系,故可用余弦定理.由b 2=ac 可变形为c b 2=a ,再用正弦定理可求cBb sin 的值.解法一:∵a 、b 、c 成等比数列,∴b 2=ac . 又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc . 在△ABC 中,由余弦定理得cos A =bc a c b 2222-+=bc bc 2=21,∴∠A =60°.在△ABC 中,由正弦定理得sin B =aAb sin ,∵b 2=ac ,∠A =60°,∴acb c B b ︒=60sin sin 2=sin60°=23. 解法二:在△ABC 中,由面积公式得21bc sin A =21ac sin B . ∵b 2=ac ,∠A =60°,∴bc sin A =b 2sin B . ∴cBb sin =sin A =23.评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理.8.(2005春北京)在△ABC 中,sin A +cos A =22,AC =2,AB =3,求tan A 的值和△ABC 的面积. 解法一:∵sin A +cos A =2cos (A -45°)=22, ∴cos (A -45°)=21. 又0°<A <180°,∴A -45°=60°,A =105°. ∴tan A =tan (45°+60°)=3131-+=-2-3.∴sin A =sin105°=sin (45°+60°) =sin45°cos60°+cos45°sin60°=462+. ∴S △ABC =21AC ·AB sin A=21·2·3·462+=43(2+6). 解法二:∵sin A +cos A =22, ①∴(sin A +cos A )2=21.∴2sin A cos A =-21. ∵0°<A <180°,∴sin A >0,cos A <0. ∴90°<A <180°.∵(sin A -cos A )2=1-2sin A cos A =23, ∴sin A -cos A =26.②①+②得sin A =462+. ①-②得cos A =462-. ∴tan A =A Acos sin =462+·624-=-2-3.(以下同解法一)9. (2004全国Ⅱ)已知锐角△ABC 中,sin (A +B )=53,sin (A -B )=51. (1)求证:tan A =2tan B ;(2)设AB =3,求AB 边上的高.剖析:有两角的和与差联想到两角和与差的正弦公式,结合图形,以(1)为铺垫,解决(2). (1)证明:∵sin (A +B )=53,sin (A -B )=51, ∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A B A B A B A tan tan 51sin cos 52cos sin ⇒⎪⎪⎩⎪⎪⎨⎧==⇒=2. ∴tan A =2tan B . (2)解:2π<A +B <π,∴sin (A +B )=53. ∴tan (A +B )=-43, 即B A B A tan tan 1tan tan -+=-43.将tan A =2tan B 代入上式整理得2tan 2B -4tan B -1=0,解得tan B =262±(负值舍去).得tan B =262+,∴tan A =2tan B =2+6. 设AB 边上的高为CD ,则AB =AD +DB =A CD tan +B CDtan =623+CD .由AB =3得CD =2+6,所以AB 边上的高为2+6.评述:本题主要考查三角函数概念,两角和与差的公式以及应用,分析和计算能力.10. 在△ABC 中,sin A =CB CB cos cos sin sin ++,判断这个三角形的形状.分析:判断一个三角形的形状,可由三个内角的关系确定,亦可由三边的关系确定.采用后一种方法解答本题,就必须“化角为边”.解:应用正弦定理、余弦定理,可得a =abcb a ca b ac cb 22222222-++-++,所以 22222222c a b a b c b c c b+-+-+=+,化简得a 2=b 2+c 2.所以△ABC 是直角三角形.评述:恒等变形是学好数学的基本功,变形的方向是关键.若考虑三内角的关系,本题可以从已知条件推出cos A =0.【探索题】已知A 、B 、C 是△ABC 的三个内角,y =cot A +)(C B A A-+cos cos sin 2.(1)若任意交换两个角的位置,y 的值是否变化试证明你的结论. (2)求y 的最小值.解:(1)∵y =cot A +[][])()()(C B C B C B -++-+-cos πcos πsin 2=cot A +)()()(C B C B C B -++-+cos cos sin 2=cot A +CB CB C B sin sin sin cos cos sin +=cot A +cot B +cot C ,∴任意交换两个角的位置,y 的值不变化. (2)∵cos (B -C )≤1,∴y ≥cot A +A A cos 1sin 2+=2tan 22tan 12A A-+2tan 2A =21(cot 2A +3tan 2A )≥2cot 2tan 3A A ⋅=3. 故当A =B =C =3π时,y min =3. 评述:本题的第(1)问是一道结论开放型题,y 的表达式的表面不对称性显示了问题的有趣之处.第(2)问实际上是一道常见题:在△ABC 中,求证:cot A +cot B +cot C ≥3.可由三数的均值不等式结合cot A +cot B +cot C =cot A cot B cot C 来证.。