磁路与铁心线圈(21)

合集下载

磁路与磁路的欧姆定律

磁路与磁路的欧姆定律
4、铁磁材料分类: ①硬磁材料:不易磁化,不易退磁。 ②软磁材料:易磁化,易退磁。 ③矩磁材料:很易磁化,很难退磁。
1、什么是电路
知识回顾
电流流通的路径
2、电路欧姆定律、电阻定律?
3、磁感应强度的公式?
二、磁路
1、概念:磁通所通过的路径称为磁路。 有分支磁路
无分支磁路
2、磁路组成:线圈、铁芯物质做 成的芯子。
4.导磁 系数μ
描述导磁能力大小的物理量。通常使用相对导磁系数 r
r
0
无量纲
0
真空导磁系数
#
8-1
第一节 磁路的基本概念和定律
二、磁路的基本定律 安培环路定律 磁磁路欧路姆欧定姆律定律基尔霍夫定律 安培环路定律 磁路欧姆定律
安培环磁路与 安路定电培欧路律环姆类H磁路定似d路定,安律磁l欧律路培磁姆安也环I路定有培路欧各律环磁定种沿在姆路路律定任这定定欧律磁一闭律律姆路闭合磁定欧合路路律姆路径欧定径内姆律各,H定电的律流线的积代分数等和于包围 磁路欧姆定律
例题:铸钢圆环上绕有线圈800匝,通有2A电流,环
平均周长为0.5m,截面积3.25×10-4m2,求线
圈磁动势、磁阻和磁通。(硅钢片的磁导率 为7500H/m
Fm NI
Rm
l S
Fm Rm
几点说明:
1. 磁阻Rm 的大小取决于磁路的尺寸和材料的磁导率。
l Rm S
2. 很大,但不是常数,因此 Rm 也不是常数。所以磁
#
8-3 三、交流电磁铁
铁心
交流电磁铁也是一种电磁器件,结构 形式与直流电磁铁类似。在工业部 门应用极为广泛。如冶金工业中用 于提放钢材的电磁吊车;夹持工件 的电磁工作台;传递动力的电磁离 合器;液压传动中的电磁阀;交流 接触器及接触器等。

磁路与铁芯线圈电路(共14张PPT)

磁路与铁芯线圈电路(共14张PPT)
Φ=BS 磁通Φ又表示穿过某一截面S的磁力线根数,磁感应强度 B在数值上可以看成与磁场方向相垂直的单位面积所通过的 磁通,故又称磁通密度。磁通的国际单位为韦伯(Wb).
第3页,共14页。
3.磁场强度 磁场强度沿任一闭合路径l的线积分等于此闭合路径所包围的
电流的代数和。磁场强度 H的国际单位是安培/米( A/m)。 它的方向与磁感应强度B的方向相同。 4.磁导率
解 :(1)由变压比的公式,可以求出副边的匝数为 N2U U1 2N1232601100180
(2)由有功功率公式P2=U2I2cosφ,灯泡是纯电阻负载, cosφ=1,可求得副边电流.11A 36
由变流公式,可求得原边电流为
I1 I2N N1 2 1.1111180000.18
【例4-1】 有一台电压为220/36 V的降压变压器,副边接一盏36 V、40 W的灯泡,试求:(1)若变压器的原边绕组N1=1100匝,副边绕组匝
的,线圈总是装 在铁芯上。开关电器中 数应是多少?(2)灯泡点亮后,原、副边的电流各为多少?
F=NI =Σ I
电磁铁的衔铁上还装有弹簧 铁芯线圈可以通入直流电来励磁(如电磁铁),产生的磁通是恒定的,在线圈和铁芯中不会感应出电动势来,在一定的电压下,线圈中的电流
上式中线圈匝数与电流乘积称为磁通势,用字母F表示,即
F=NI 磁通势的单位是安培(A)。联立上面几个式子,则有
铁损主要由两部分组成 (1)涡流损耗 (2)磁滞损耗
HS NI L/ S
如果线圈中的铁芯换上导磁性能差的非磁性材料,而磁通势 c时,减小电流使H由Hm逐渐减小,B将
磁感应强度B与垂直于磁力线方向的面积S的乘积称为穿过该面的磁通Φ,即
第4章 磁路与铁芯线圈电路

磁路与铁芯线圈(电磁铁)课件

磁路与铁芯线圈(电磁铁)课件
压力传感器
利用磁路与铁芯线圈检测压力,实现物理量 的测量。
05
磁路与铁芯线圈(电磁铁)的未来发展
磁路与铁芯线圈(电磁铁)的发展趋势
技术创新
随着科技的不断进步,磁路与铁 芯线圈(电磁铁)的设计和制造将 更加精密和高效,以满足不断变
化的应用需求。
环保与节能
随着环保意识的提高,磁路与铁 芯线圈(电磁铁)将更加注重节能 和环保,采用更高效的材料和设
计,降低能耗和资源消耗。
智能化与自动化
磁路与铁芯线圈(电磁铁)将与物 联网、人工智能等先进技术结合 ,实现智能化控制和自动化生产
,提高生产效率和产品质量。
磁路与铁芯线圈(电磁铁)的未来挑战
技术瓶颈
随着应用领域的不断拓展,磁路与铁芯线圈(电磁铁)面临的技术瓶 颈也日益突出,需要不断突破和创新。
市场竞争
隔离变压器
利用磁路与铁芯线圈产生磁场 ,实现电路的隔离。
自耦变压器
利用磁路与铁芯线圈产生磁场 ,实现电路的自动控制。
在传感器中的应用
磁性传感器
利用磁路与铁芯线圈检测磁场,实现物理量 的测量。
位置传感器
利用磁路与铁芯线圈检测位置,实现物理量 的测量。
电流传感器
利用磁路与铁芯线圈检测电流,实现物理量 的测量。
磁场通过铁芯得到增 强。
铁芯线圈的应用
01
02
03
04
直流电机
利用铁芯线圈产生磁场,驱动 转子旋转。
变压器
通过改变铁芯线圈的匝数实现 电压变换。
继电器
利用铁芯线圈控制电路的通断 。
传感器
检测磁场变化,实现非电量到 电量的Байду номын сангаас换。
03
磁路与铁芯线圈(电磁铁)的设计

第六章磁路及铁芯线圈电路-文档资料

第六章磁路及铁芯线圈电路-文档资料


0
H 0H

B B0
6-1 磁路和磁路的基本知识
例:环形线圈如图,其中媒质是均匀的,
磁导率为,试计算线圈内部各点的磁感
应强度。
解:半径为x处各点的磁场强度为

NI Hx
lx
故相应点磁感应强度为
I
Bx Hx NI
lx
N匝
x Hx
S
由上例可见,磁场内某点的磁场强度 H 只与电流大小、线
磁性物质的磁导率不是常数,随H 而变。
磁化曲线
H
B,
有磁性物质存在时,与 I 不成正比。
B
磁性物质的磁化曲线在磁路计算上极

为重要,其为非线性曲线,实际中通过
实验得出。
O
B 和 与H的关系
H
6-2 铁磁性物质及其磁化
3. 磁滞性
磁滞性:磁性材料中磁感应强度B的变化总是滞后于
外磁场变化的性质。
磁通由磁通势产生,磁通势的单位是安[培]。
6-1 磁路和磁路的基本知识
五、磁导率
表示磁场媒质磁性的物理量,衡量物质的导磁能力。
磁导率 的单位:亨/米(H/m)
真空的磁导率为常数,用 0表示,有:
0 4π107H/m
相对磁导率 r: 任一种物质的磁导率 和真空的磁导率0的比值。
r
(4) 根据下式求出磁通势( NI )
n
NI Hili i1
6-3 磁路的基本定律
例1:一个具有闭合的均匀的铁心线圈,其匝数为300, 铁心中的磁感应强度为 0.9T,磁路的平均长度为 45cm,试求: (1)铁心材料为铸铁时线圈中的电 流; (2)铁心材料为硅钢片时线圈中的电流。
通所需要的磁通势F=NI , 确定线圈匝数和励磁电流。

磁路与铁芯线圈(电磁铁)课件

磁路与铁芯线圈(电磁铁)课件

稀土永磁材料
如钕铁硼、钐钴等,具有高剩磁 、高磁能积和稳定的化学性质, 广泛应用于电机、发电机和变压
器等领域。
铁氧体磁性材料
成本低、稳定性好,主要用于制 作电磁铁、磁力离合器等。
纳米磁性材料
具有超顺磁性、高矫顽力等特点 ,在磁记录、磁流体等领域有广
阔的应用前景。
新型电磁铁的设计与应用
微型化设计
随着微电子技术的发展,电磁铁的尺寸越来越小,性能更加优异,可应用于微型电机、传感器等领域 。
2023 WORK SUMMARY
磁路与铁芯线圈(电磁 铁)课件
REPORTING
目录
• 磁路的基本概念 • 铁芯线圈的工作原理 • 电磁铁的应用 • 磁路与铁芯线圈的设计 • 磁路与铁芯线圈的实验研究 • 磁路与铁芯线圈的发展趋势
PART 01
磁路的基本概念
磁场与磁力线
磁场
磁力作用的空间,由磁体或电流 产生。
铁芯形成磁路,使磁场得以集中并通过。磁路中的磁阻会影响磁场的强度和分布 。
电磁感应与电动势
法拉第电磁感应定律
当磁场发生变化时,会在导体中产生 电动势,电动势的大小与磁通量变化 碍引起感 应电流的磁通量的变化。
PART 03
电磁铁的应用
直流电磁铁
总结词
利用直流电产生稳定磁场
使用不同材料的铁芯,研究其对磁场的影响。
电磁铁的应用实验
电磁吸力实验
通过电磁铁吸合不同质量的物体 ,观察吸力与电流、匝数的关系

电磁继电器实验
利用电磁铁控制电路的通断,实现 自动控制功能。
电磁感应实验
通过电磁感应现象,研究线圈中感 应电动势的产生和变化。
PART 06
磁路与铁芯线圈的发展趋 势

第十三章 磁路和铁芯线圈

第十三章 磁路和铁芯线圈
《电路分析基础》
P37-8 第13章 磁路和铁心线圈
1.磁通连续性原理
磁通连续性原理是磁场的一个基本性质,其内容是: 在磁场中,磁感应强度对任意闭合面的面积分恒等于零。
由于磁感应强度线总是闭合的空间曲线,显然,穿进 任一闭合面的磁通恒等于穿出此面的磁通。上式成立与磁 场中的介质的分布无关。
2.安培环路定律 安培环路定律(Ampere’s circuital law)是磁场又一基本 性质。其内容是:在磁场中,磁场强度沿任意闭合路径的 线积分等于穿过该路径所包围的全部电流的代数和。 同样应该指出,上式成立与磁场中的介质的分布无关。
铁磁物质铁、镍、钴以及铁氧体(又称铁淦氧)等都是构 成磁路的主要材料,它们的磁导率都比较大,且与所在磁场 的强弱以及该物质的磁状态的历史有关,其磁导率不是常量。 本节讨论铁磁物质的磁化过程。
铁磁物质的磁化性质一般由磁化曲线。磁路中的磁场是 由电流产生的。电流愈大,磁场强度就愈大。感应强度相当 于电流在真空中所产生的磁场和物质磁化后的附加磁场的叠 加,所以,曲线表明了物质的磁化效应。
《电路分析基础》
P37-7 第13章 磁路和铁心线圈
在国际单位制(SI)中,由后面介绍的安培环路定律可 知,磁场强度的单位是安/米,符号为A/m。
磁导率(permeability)是反映物质导磁能力或物质被磁 化能力的物理量。定义为
B H
它的单位在国际单位制中是亨/米,符号为H/m。为了 比较物质的导磁率,选用真空作为比较的基准。实验指出, 真空的导磁率是常数。把其它物质的磁导率与真空磁导率 的比称作该物质的相对磁导率。 大多数铁磁材料的磁导率不是常数,所以,在磁路中 磁场强度和磁感应强度的关系为非线性关系。 二、磁场的基本性质
Um Hl

电工与电子技术第五章-磁路与铁芯线圈电路

电工与电子技术第五章-磁路与铁芯线圈电路
B
要使剩磁消失,通常需进 行反向磁化。将 B=0时的 H 值称为 矫顽磁力 Hc, (见图中3和6所对应的 点。)
1
2 3 O 4 6
H 5
磁性物质的分类
根据滞回曲线和磁化曲线的不同,大致分成三类: (1)软磁材料 其矫顽磁力较 小,磁滞回线 较窄。(铁心)
B
(2)永磁材料 其矫顽磁力较 大,磁滞回线 较宽。(磁铁)
磁感应强度 B 的大小及方向:
电流强度为 I 长度为 l 的电流元,在磁场中将受 到磁力的作用。实验发现,力的大小不仅与电流 元 I· l 的大小有关,还与其方向有关。 当 l 的方向与 B 的方向垂直时电流元受力为最大 F = F max ,此时规定,磁场的大小
Fmax B 的单位为特斯拉(T) B I l 磁场的方向,由 I l 、B 和 F 三个矢量成右旋系的
一、电磁关系
铁心如图所示, 磁动势 F = iN 产生 的磁通绝大多数通过铁 心而闭合,这部分磁通 称为工作磁通Φ。 u
i e eσ
N
Φ
Φσ
此外还有一少部分通过空气等非磁性材料而 闭合,这部分磁通称为漏磁通,用Φσ 表示。 这两个磁通在线圈中产生感应电动势e和eσ 。 e为主磁电动势,eσ 为漏磁电动势。
d di e N L dt dt
二、线圈两端的电压与电流之间的函数关系
据KVL有:
u iR e e
N i u
Φ Φσ
di iR e (L ) dt di iR L (e) dt
e eσ
u R u u 当 u U m sin t伏 为正弦量时,
H B/
工程上常根据安培环路定律来确定磁场与电流 的关系

磁路及交流铁心线圈

磁路及交流铁心线圈

1.磁路的欧姆定律
式中
为磁阻,
2.磁路基尔霍夫第一定律
3.磁路基尔霍夫第二定律
为磁导。
二、交流铁芯线圈
励磁电流为直流时,称为直流铁心线圈(如直流电磁铁、 直流继电器的线圈),当励磁电流为交流时,称为交流铁心线 圈(如交流电机、变压器的线圈)。
i
+
– e
u –
e+–+
N
主磁通 :通过铁心闭合的 磁通。 与i不是线性关系。
O
到饱和值,这种现象称为磁 饱和性。从图中还可看出B 和H不成正比,所以磁性材 料的μ不是常数。
H
磁性材料的磁化曲线
(3)磁滞特性 若将磁性材料进行周期性磁化,磁感应强度 B随磁场强
度H 变化的曲线称为磁滞回线,如图所示。
从图中可见,当 H 已减到零 时, B 并未回到零值,而等于 Br 。这种磁感应强度滞后于磁场
磁路及交流铁心线圈
一、磁路及其基本定律
(一)磁路的概念 磁力线所通过的路径称为磁路。磁路主要由具有良好导 磁性能的磁性材料构成,如:硅钢片,铸铁等。
i1
u1 e1Βιβλιοθήκη N1N2e2
当线圈(通常被称为励磁线圈或励磁绕组)中通入电 流(通常被称为励磁电流)时,在线圈周围会形成磁场, 由于铁心的导磁性能比空气要好得多,所以绝大部分的磁 通将在铁心内通过,我们称它为主磁通或工作磁通;同时 有少量磁通会通过空气交链,我们称它为漏磁通,工程中 通常忽略不计。主磁通和漏磁通所通过的路径分别称为主 磁路和漏磁路。

3. 磁场强度H 磁场强度是计算磁场时所用的一个物理量,它也是个 矢量,根据安培环环路定理,沿任意闭合路径,磁场强度 的线积分等于该回路所包围的导体电流的代数和。

汽车电工电子基础 2常用电磁元件的认识

汽车电工电子基础  2常用电磁元件的认识

多电器设备如变压器、电磁铁、继电器、电动机等均
用铁磁材料来构成磁路。磁路的欧姆定律
是分析
磁路的基础。由于铁磁材料的磁阻不是常数,故它常
用于定性分析。
3 含有铁芯线圈的交流电路的主磁通
。这表
明当线圈匝数N 及电源频率f 为一定时,主磁通的幅值
Φm由励磁线圈外的电压有效值U 确定,与铁芯的材料
及尺寸无关。
图2-8 单相变压器的负载运行示意图
I1 N2 1 I2 N1 k
U1 E1 N1 k U2 E2 N2
3)阻抗变换
图2-8 变压器的阻抗变换作用
ZL
U1 I1
kU2 I2
k2 U2 I2
k2
ZL
k
2. 变压器的损耗与额定值
1)变压器的损耗和效率
损耗
铜损: 铁损: 主要包括磁滞损耗和涡流损耗
6 电磁铁是利用通电的铁芯线圈产生的电磁力或力矩吸 引衔铁或保持某种工件于固定位置,通过将电磁能转 化为机械能来实现各种控制的一种电器。电磁铁在汽 车上应用广泛,如汽车电喇叭发声、汽油泵进出油阀 的启闭、ABS油阀等都是由电磁铁来控制的。
37 继电器是自动控制电路中常用的一种元件,是用较小 的电流来控制较大电流的一种自动开关,在电路中起 着自动操作、自动调节、安全保护等作用。电磁式继 电器成本较低,便于控制执行部件,因此在汽车电路 中被广泛采用。
1. 开磁路点火线圈
图2-12 传统点火线圈的磁路
磁路的上、下部分从空气中 通过,漏磁较多。
图2-11 点火线圈结构示意图
2. 闭磁路点火线圈
铁芯形成闭合磁路,具有漏磁少、 转换效率高、体积小、质量轻、易 散热等优点。
图2-13 闭磁路点火线圈

知识点:2.铁心线圈电路-教学文稿

知识点:2.铁心线圈电路-教学文稿

采用软磁性材料做铁心可以减少磁滞损耗。
Pe:涡流损耗: 与铁心的截面积、电源频率、磁感应强度有关。
采用顺磁场方向的硅钢片叠成的铁心可以减少涡流损耗。
三、知识深化
1.将交流铁心线圈接到与其额定电压值相等的直流电压上,会产生什么现象? 感抗XL以及与PFe对应的等效电阻RFe将不存在 线圈电流U/RCu将很大,以至烧坏线圈。
在线圈中产生感应电动势
产生交变磁通
电流与磁通方向符合右手螺旋法则
二、知识准备
(二)交流铁芯线圈电路
1.基本电磁关系
Φ i
根据基尔霍夫电压定律,铁芯线圈的电压平衡方程式为u
Φ
e
u uR (e ) (e )
d u e N
假设
Φm
d
sin
t
t
Φ :漏磁通,
很小;
R:线圈电阻,
很小,
e
则 u NΦm cos t 2 fNΦm cos t
二、知识准备
(二)交流铁芯线圈电路
1.基本电磁关系
最大值 Um 2 fNΦ m
有效值
Φ i
Φ
ue
e
反映了交流铁芯线圈电路的基本电磁关系,它是分析计算交流磁 路的重要依据。
二、知识准备
(二)交流铁芯线圈电路
2、功率损耗
铜损:Pcu =I2Rcu
P=Pcu+
Pfe
铁损:PFe = Ph+备
(二)交流铁芯线圈电路
将交流铁芯线圈接到交流电源上,即形成交流铁芯线圈电路。由于线圈中通过 交流电流,在线圈和铁芯中将产生感应电动势。为了减小涡流损耗,所以交流铁芯线 圈的铁芯应该是叠片状。
二、知识准备
(二)交流铁芯线圈电路

磁路定理

磁路定理

磁路定理
磁路:电工设计中常要计算磁路中各处的磁场。

磁路中铁磁质的很大,磁化束缚电流比励磁电流大得多,磁场大大加强,磁力线特别密集,磁力线几乎平行于界面,漏到外面的磁通量很小很小,磁力线集中在铁磁材料中。

磁感应线B(磁力线)集中的通路叫磁路。

我们应用磁感应线B(磁力线)是闭合曲线以及磁通连续定理和安培环路定律,可得到一个分析和计算磁场的有力工具—磁路定理。

磁路定理:在截面积为S、长为l,磁导率为的铁环上绕以紧密的线圈N匝,设线圈中通有电流I,依据安培环路定律:

与欧姆定律对比:I在稳恒电路中无论导线粗细电流强度均相等;在磁路中无论铁芯截面积大小磁感应通量均相等。

电路与磁路相对比:
电路:
磁路:(磁阻)
(:磁动势,磁通势,磁化力、安匝数)
磁路的特点:(1)对于串接的铁磁质应用安培环路定律:
,即:闭合磁路的磁动势等于各磁路上磁位降落之和。

(2) 对于并接的铁磁质应用安培环路定律:
,,
令:则:
即:
又即:
,即:总磁阻的倒数等于分支磁路磁阻的倒数和。

电磁铁磁力与铁芯移动距离的关系

电磁铁磁力与铁芯移动距离的关系

电磁铁磁力与铁芯移动距离的关系
电磁铁是一种利用电磁感应原理工作的装置。

当电流通过线圈时,会产生磁场,从而吸引铁芯。

电磁铁的磁力与铁芯的移动距离之间存在一定的关系。

1. 磁力与距离的关系
电磁铁的磁力与铁芯移动距离成反比。

随着铁芯与线圈之间的距离增加,磁力会迅速减小。

当距离足够远时,磁力将变得很小,甚至可以忽略不计。

2. 磁力与电流强度的关系
电磁铁的磁力与通过线圈的电流强度成正比。

增加电流强度可以提高磁力,从而增加吸引铁芯的能力。

但是,过高的电流会导致线圈发热,甚至可能烧毁线圈。

3. 磁力与匝数的关系
电磁铁的磁力与线圈的匝数成正比。

增加线圈的匝数可以提高磁力,但同时也会增加电阻,导致需要更大的电流来维持相同的磁力。

4. 磁力与磁路长度的关系
电磁铁的磁力与磁路长度成反比。

磁路长度越短,磁力越大。

因此,在设计电磁铁时,应尽量缩短磁路长度,以提高磁力。

5. 磁力与材料的关系
电磁铁的磁力还与线圈和铁芯的材料有关。

使用高磁导率材料可以
提高磁力,而使用低磁导率材料会降低磁力。

通过对上述因素的调节和优化,可以设计出满足特定需求的电磁铁,并控制其磁力与铁芯的移动距离之间的关系。

第6章 磁路与铁心线圈电路

第6章 磁路与铁心线圈电路

第六章磁路与铁心线圈电路★主要内容1、磁场的基本物理量2、磁性材料的磁性能3、磁路及其基本定律4、交流铁心线圈电路5、变压器★教学目的和要求1、理解描述磁场性质的四个有关物理量(磁感应强度、磁通、磁导率和磁场强度)的意义,并熟记它们的单位和符号,了解铁磁材料的磁化、磁滞的物理意义,掌握铁磁材料磁滞回线的概念,了解两类铁磁质的磁性能(磁滞回线的不同特点)和用途。

2、了解磁路的基本概念;了解交流铁心线圈电路的基本电磁关系,掌握交流铁芯线圈端电压与线圈磁通的关系(U≈E=4.44NfΦm)。

3、了解变压器的基本构造、工作原理、绕组的同极性端,掌握理想变压器的三种变换特性,并能利用这些特性对含有变压器的电路进行熟练地计算。

★学时数:6学时★重难点重点:①磁路基本定律、交流铁心线圈;②变压器的三个主要作用难点:①交流铁心线圈电路分析;②变压器与负载的关系★本章作业布置:课本习题P197—199页,6.1.4,6.3.2,6.3.4,6.3.5,6.3.6第六章 磁路与铁心线圈电路本章学习变压器的工作原理。

变压器是一种利用磁路传送电能,实现电压、电流和阻抗变换的重要设备。

§6.1 磁路及其分析方法在电机、变压器及各种铁磁元件中常用铁磁材料做成一定形状的铁心,铁心的磁导率比周围空气或其他物质高得多,因此铁心线圈中电流产生的磁通绝大部分经过铁心而闭合,这种人为造成的磁通闭合路径,称为磁路。

如图7.3-1和图6.1-1分别表示四极直流电机和交流接触器的磁路。

+-一、磁场的基本物理量这部分内容在普物中已基本讲过,这里简单复习一下。

电磁学中已讲过了,电流会产生磁场,通有电流的线圈内部及周围都有磁场存在。

在变压器、电动机等电工设备中,为了用较小的电流产生较强的磁场,通常把线圈绕在铁磁材料制成的铁心上。

由于铁磁性材料的导磁性能比非磁性材料好的多,因此,当线圈中有电流流过时,产生的磁通,绝大部分集中在铁心中,沿铁心面闭合,这部分铁心中的磁通称为主磁通,用Φ表示。

《电机与变压器》(1)磁路、变压器的用途、结构和类型

《电机与变压器》(1)磁路、变压器的用途、结构和类型

电机与变压器
1. 磁路的基本物理量
线圈通电后使铁芯磁化,形成铁芯磁路。 Φ u i
磁通Φ
(1) 磁通 通过磁路横截面的磁力线总量称 为磁通,用“Φ”来表示。单位是 韦伯[Wb]。
均匀磁场中,磁通Φ等于磁感应强度B与垂直于磁场方向 的面积S的乘积,即: BS 磁通是标量。其大小反映了与磁场相垂直的某个截面上 的磁场强弱情况。磁通的国际单位制中还有较小的单位称 为麦克斯韦[Mx],韦伯和麦克斯韦之间的换算关系为:
电机与变压器
(4) 磁场强度
磁场强度也是表征磁场中某点强弱和方向的物理量,用大 写字母“H”表示。H也是矢量,H的方向也是置于磁场中该 点小磁针N极的指向。 磁感应强度是描述磁路介 磁场强度和磁 质的磁场某点强弱和方向的 感应强度有何 物理量,与介质的导磁率有 区别和联系? 关;磁场强度是描述电流的 磁场强弱和方向的物理量。 与介质的导磁率无关。它们之间的联系为:
发电厂 10.5kV

降压
仪器 36V
降压
电机与变压器
2.变压器的基本结构和工作原理
1). 变压器的基本结构
用硅钢片压制成的变压 器铁芯。变压器的磁路部 分
S N1 N2 u20
i10 A u1 X
Φ
a x
|ZL|
与电源相接的 一次侧绕组。
与负载相接的 二次侧绕组。
变压器的电路部分
变压器的主体结构是由铁芯和绕组两大部分构成的。变 压器的绕组与绕组之间、绕组与铁芯之间均相互绝缘。
H B

[A/m]
磁场强度H的单位有安每米和安每厘米,二者之间的换算 关系为: 1A/m=10-2A/cm
电机与变压器
2. 磁路欧姆定律
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=195+1440=1635 A 线圈匝数为 N=NI/I=1635
结论
若要得到相等的磁感应强度,采用磁导率高的铁 心材料,可使线圈的用铜量大为降低(I降低)。
若线圈中通有同样大小的励磁电流,要得到相等 的磁通,采用磁导率高的铁心材料,可使铁心的用铁 量大为降低(S降低)。
当磁路中含有空气隙时,由于其磁阻较大,要得 到相等的磁感应强度,必须增大励磁电流(线圈匝数 一定)。
在交流磁通的作用下,铁心内的这两种损耗合
称铁损△PFe。铁损差不多与铁心内磁感应强度的最
大值Bm 的平方成正比,故Bm 不宜选得过大。
30
又因为 U 4.44 fNBm S
当U一定时,为什么N不能太小?
涡流有有害的一面,但在另外一些场合下也 有有利的一面。对其有害的一面应尽可能地加以 限制,而对其有利的一面则应充分地加以利用。
二、磁饱和性
把磁性材料放入磁场强度为H的磁场(常由线圈的
励磁电流产生),会受到强烈的磁化。开始磁感应强
度B与H近似成正比增加,而后随着H的增加,B的增加
缓慢下来,最后达到饱和值。
10
B
bB
a
BJ
B, B
B0
0 磁化曲线
O
H
B和与H的关系
注 当有磁性物质存在时
B与H不成比例,与I也不成比例。
三、磁滞性
X0
QFe I2
等效电路的阻抗模为 | Z0 |
R
2 0
X02
U I
34
例:有一交流铁心线圈,电源电压U=220V,电路
中电流I=4A,功率表读数P=100W,频率f=50Hz,漏
磁通和线圈上的电压降可忽略不计,
试求(1)铁心线圈的功率因数
(2)铁心线圈的等效电阻和感抗
解: (1) cos P 100 0.114
当铁心线圈中通有交变电流(大小和方向都变化) 时,铁心就受到交变磁化,电流变化时,B随H而变化, 当H已减到零值时,但B未回到零,这种磁感应强度滞 后于磁场强度变化的性质称磁性物质的磁滞性。 11
B
1
2
剩磁:当线圈中电流减到零
3
O
6
(H=0),铁心在磁化时所 H 获的磁性还未完全消失,这
5 4
时铁心中所保留的磁感应强 度称为剩磁感应强度Br。
但铁心中仍有能量的损耗和能量的储放。因此可将 这个理想的铁心线圈交流电路用具有电阻R0和感抗 X0的一段电路来等效代替。其电路如图所示。
33
φ i R Xσ
u uR uσ u/
i R Xσ
uR uσ
u
u/
R0 X0
其中电阻R0是和铁心中能量损耗(铁损)相应的
等效电阻,其值为
R0
PFe I2
感抗X0是和铁心中能量的储放(与电源发 生能量互换)相应的等效感抗,其值为
29
涡流损耗也要引起铁心发热。为了减小涡流损耗,
在顺磁场方向铁心可由彼此绝缘的硅钢叠成,这样就 可以限制涡流只能在较小的截面内流通。此外,通常 所用的硅钢片中含有少量的硅(0.8~4.8%),因而电阻 率较大,这也可以使涡流减小。
由此可见
PFe Ph Pe Bm2
所以,在铁心线圈电路中Bm不能取的太大。(为什 么?一)般取0.8-1.2T。

磁路的平均长度为 l=((10+15)/2) =39.2cm
查铸钢的磁化曲线,当B=0.9T 时,
于是
H1=500A/m H1 l1=195A
空气隙中的磁场强度为
H0=B0/ 0=0.9/(4 x 10-7)=7.2 x 105A/m
18
H0=7.2 x 105 x 0.2 x 10-2=1440A 总磁通势为 NI=(H l)=H1 l1+H0
第6章 磁 路与铁心线圈电路
1返回
目录
6.1 磁路及其分析方法 6.2 交流铁心线圈电路 6.3 变压器 6.4 电磁铁
返回
2
6.1 磁路及其分析方法 ——6.1.1 磁场的基本物理量
磁场的特性可用磁感应强度、磁通、磁场强 度、磁导率等几个物理量表示。
一、磁感应强度
与磁场方向相垂直的单位面积上通过的磁通(磁
例如,利用涡流的热效应来冶炼金属,利用 涡流和磁场相互作用而产生电磁力的原理来制造 感应式仪器、滑差电机及涡流测距器等。
从上述可知,铁心线圈交流电路的有功功率为 P=UIcos=I2R+ △PFe
31
6.2.4 等效电路 铁心线圈交流电路也 i 可用等效电路进行分析, 所谓等效电路,就是用 一个不含铁心的交流电 路来等效代替它。
20
6.2.1 电磁关系
铁心如图所示,如果在铁心上 绕有N匝线圈,并在线圈两端
iN
Φ
加上电压u,则在线圈中就会
产生电流 i,磁动势F=Ni产生 u
的磁通绝大多数通过铁心而闭
e eσ
Φσ
合,这部分磁通称为工作磁通
Φ。
此外还有一少部分通过空气等非磁性材料而闭 合,这部分磁通称为漏磁通,用Φσ表示。
这两个磁通分别在线圈中产生感应电动势e和 eσ。e为主磁电动势,eσ为漏磁电动势。
或麦克斯韦Mx 1Wb=108Mx
4
三、磁场强度
磁场强度是计算磁场所用的物理量,其大小为磁 感应强度和导磁率之比。
H
B
H的单位:安/米
的单位:亨/米
矢量
安培环路定律(全电流定律):
磁场中任何闭合回路磁场强度的线积分,等于通过 这个闭合路径内电流的代数和,即
5
Hdl I
I2 I1
电流方向和磁场强度的方向
19
6.2 交流铁心线圈电路
铁心线圈分为两种:
1.直流铁心线圈电路
2.交流铁心线圈电路
直流铁心线圈通直流来励磁(如直流电机的励磁 线圈、电磁吸盘及各种直流电器的线圈)。因为 励磁是直交流流,铁则心产线生圈的通磁交通流是来恒励定磁的,在线圈和 铁心(中如不交会流感电应机出、电变动压势器来及,各在种一交定流的电电器压U下, 线圈的电线流圈I)只。与其线电圈压的、R有电关流,等P关也系只与直I2R流有关, 所以不分同析,直下流面铁我心们线就圈来比讨较论简之单。。本课不讨论。
二、磁路的欧姆定律
对于环形线圈 NI Hl B l l
S
NI l
F Rm
S
磁路的 欧姆定律
说明
F=NI为磁通势
Rm为磁阻
l为磁路的平均长度 S为磁路的截面积
14
磁路与电路对照
I
I N
磁路
+
E U R 电路
_
磁通势F
磁通
磁感应强度B 磁阻Rm
l
Rm S
电动势E 电流I 电流密度J 电阻R
UI 220 4
(2)铁心线圈的等效阻抗为
Z/
U 220 55
等效电阻和感抗分别为
I4
R/
R
R0
P I2
100 42
6.25
R0
X/ X X0 Z/ 2 R /2 552 6.252 54.6 X0
35
作业:P214习题6.1.6
36
6.3 变压器
变压器的功能:变电压、变电流、变阻抗
•真空中的磁导率为常数
0 4 10 7 H / m
8
Байду номын сангаас
•一般材料的磁导率 和真空磁导率 0 的比值,称为 该物质的相对磁导率 r
r
0

r
H 0H
B B0
r 1非磁性材料 r 1磁性材料
9
—— 6.1.2 磁性材料的磁性能
磁性材料的磁性能
高导磁性、磁饱和性、磁滞性、非线性
一、高导磁性
指磁性材料的磁导率很高, r>>1,使其具有 被强烈磁化(呈现磁性)的特性。
磁滞回线
根据磁性能,磁性材料又可分为三种: 软磁材料(磁滞回线窄长。常用做磁头、磁心等)、 永磁材料(磁滞回线宽。常用做永久磁铁)、 矩磁材料(磁滞回线接近矩形。可用做记忆元件)。
12
—— 6.1.3 磁路的分析方法 一、磁路
i
u1
u2
线圈
铁心
线圈通入电流后,产生磁通,分主磁通和
漏磁通Φσ 。
13
在交变磁场中,铁磁材料要反复磁化,就产生了
类似摩擦发热的能量损耗,我们称之为磁滞损耗。 可以证明,交变磁化一周在铁心的单位体积内所产
生的磁滞损耗能量与磁滞回线所包围的面积成正比。
这里有一个经验公式:
26
Ph VfK h Bmn
这是一个经验公式。 n的取值范围在1.5到2.5 之间,一般取2。
从上式可以看出,磁滞损耗与磁感应强度的平 方成正比,也与频率和铁心的体积成正比。
l x=2 x是半径为x的圆周长
Hx是半径 x 处的磁场强度
F=NI即线圈匝数与电流的乘积,称磁通势
单位为安[培](A)
7
四、磁导率
磁导率 是一个用来表示磁场媒质磁性和衡量物质导
磁能力的物理量。
讨论
磁场内某一点的磁场强度H与有关吗?
Bx
H x
NI lx
Hx
NI lx
由上两式可知,磁场内某一点的H只与电流大小、 线圈匝数及该点的几何位置有关,而与 无关
磁滞损耗要引起铁心发热。为了减小磁滞损 耗,应选用磁滞回线狭小的磁性材料制造铁心。 硅钢就是变压器和电机中常用的铁心材料,其 磁滞损耗较小。
27
么么么么方面
• Sds绝对是假的
② 涡流损耗 由涡流所产生的铁损称为涡流损耗△Pe
φ i
当线圈中通有交流电时,它所产生的磁通也是 交变的。因此,不仅要在线圈中产生感应电动势, 而且在铁心内也要产生感应电动势和感应电流。这 种感应电流称为涡流,它在垂直于磁通方向的平面 内环流着。
相关文档
最新文档