国内典型煤气化优缺点.
煤气化技术对比
B. 水煤浆气化对煤质要求 a)GE 水煤浆气化对煤质适应性较广。除褐煤、泥煤及热值低于 22940kJ/kg,灰熔点高于 1350℃的煤不太适用外,其他粘结性煤,含灰量较 高的煤,石油焦,烟煤均可作原料。 b)煤中灰含量对消耗指标的影响,煤中的灰含量增加会增加氧气的消 耗,同时也增加每 m3(标)(CO+H2)气体的煤消耗量,一般煤中灰含量从 20%(wt)降到 6%(wt),可节省 5%无灰干基煤消耗,节省氧气消耗 10% 左右。 c)煤的灰熔点,由于气化炉内操作温度一般在煤的灰熔点 T3 以上通常 要高 50~100℃,鉴于炉内耐火材料承受耐高温的限制,要求煤的灰熔点 T3 不要超过 1350℃,如果煤的性质较好,而灰熔点较高一些,可采取加助熔剂 如石灰石,石灰粉等把灰熔点降下来,以保护炉内耐火材料使用寿命。 d)煤的可磨性,煤的可磨性是指煤可磨碎的难易程度,通常用哈氏指 数(Hardgrove Index)来表示。 一般希望哈氏指数大,这样的煤磨煤所消耗的功就小,可节省能量。 e)煤的成浆性,水煤浆气化炉是将煤制成煤浆送入气化炉,故对煤的 成浆性很重要,例如褐煤成浆性很差就不宜选作原料,在选用原料煤时除正 常工业分析,一定要进行成浆试验,制成煤浆浓度最好在 60%(wt)以上。 浓度越高,耗氧量越少。 C. GE 水煤浆气化的三种不同流程 根据气化后工序加工不同产品的要求,加压水煤浆气化有三种工艺流 程,激冷流程,废锅流程和废锅激冷联合流程。对于合成氨生产多采用激冷 流程,这样气化炉出来的粗煤气,直接用水激冷,被激冷后的粗煤气含有较 多水蒸气,可直接送入变换系统而不需再补加蒸汽,因无废锅投资较少。如 对产品气用作燃气透平循环联合发电工程则多采用废锅流程,副产高压蒸汽 用于蒸汽透平发电机组。对产品气用作羟基合成气并生产甲醇仅需要对粗煤 气进行部分变换,通常采用废锅和激冷联合流程。亦称半废锅流程即从气化 炉出来粗煤气经辐射废锅冷却到 700℃左右,然后用水激冷到所需要的温度, 使粗煤气显热产生的蒸汽能满足后工序部分变换的要求。
煤气化技术的发展和趋势
煤气化技术简介及发展趋势现在煤化工在全国发展的很火,特别是煤制烯烃、煤制气、煤制油等等发展的过快过多,煤气化技术也是五花八门,许多煤气化技术专利商把自己的技术介绍的是世界上最好,没有一点毛病,完美无瑕,其实没有哪一个气化技术是万能的,哪一个气化炉都不是万能炉,都有利弊,煤炭的适应性,工艺要求,投资规模,地质水质条件,产品规模、技术成熟性等等,下面简单介绍一下煤化工气化技术的一些情况。
煤气化是煤化工的龙头,也是煤化工的技术含量较高,主要投资较大,占整个煤化工投资40--50%, 煤气化技术是指把经过适当处理的煤送入反应器如气化炉内,在一定的温度和压力下,通过氧化剂(空气或氧气和蒸气)以一定的流动方式(移动床、硫化床或携带床)转化成气体,得到粗制水煤汽,通过后续脱硫脱碳等工艺可以得到精制一氧化碳气和氢气。
煤炭气化是指煤在特定的设备内,在一定温度及压力下使煤中有机质与气化剂(如蒸汽/空气或氧气等)发生一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程。
煤炭气化时,必须具备三个条件,即气化炉、气化剂、供给热量,三者缺一不可。
气化过程发生的反应包括煤的热解、气化和燃烧反应。
煤的热解是指煤从固相变为气、固、液三相产物的过程。
煤的气化和燃烧反应则包括两种反应类型,即非均相气-固反应和均相的气相反应。
不同的气化工艺对原料的性质要求有所不同,因此在选择煤气化工艺时,考虑气化用煤的特性及其影响极为重要。
气化用煤的性质主要包括煤的反应性、粘结性、结渣性、热稳定性、机械强度、粒度组成以及水分、灰分和硫分含量等。
按不同“技术工艺方式”分类煤炭气化工艺可按压力、气化剂、气化过程供热方式等分类,常用的是按气化炉内煤料与气化剂的接触方式区分,主要有:固定床气化在气化过程中,煤由气化炉顶部加入,气化剂由气化炉底部加入,煤料与气化剂逆流接触,相对于气体的上升速度而言,煤料下降速度很慢,甚至可视为固定不动,因此称之为固定床气化;而实际上,煤料在气化过程中是以很慢的速度向下移动的,比较准确的称其为移动床气化。
具有自主知识产权的三种煤气化技术对比_王洪营
·29·
表 2 不同气化工艺的优缺点对比
项目 进料方式
优点
缺点
水煤浆进料
进料方便,对泵要求低气化炉压力可以提高至 6. 5 MPa 或 8. 7MPa,降低后工段压缩功; 合成气中水汽 比较高,后序变换工段可以不加蒸汽
由于物料中含水,需要消耗气化热使水变成高温蒸 汽,增加各种消耗
干粉进料 喷嘴个数
气化效率高,反应温度高; 残炭量低; 合成气有效气 成分高
1 技术及业绩简介
1. 1 多喷嘴对置式水煤浆气化技术 多喷嘴对置式水煤浆气化技术是由华东理工大
学和兖矿集团共同开发的新型水煤浆气化技术。其 特点为: 采用水煤浆进料方式,四个对置式喷嘴进 料,气化炉采用耐火砖隔热形式,出气化室合成气体
与渣采用冷激流程与渣水处理工艺[1]。 自山东华鲁恒升多喷嘴气化炉于 2005 年投运
三种气化技术各有其优点,用户及使用业绩也 气化技术。在企业选择气化技术时,一定要根据自
在不断增加。单从气化炉反应反面考虑,粉煤气化 身情况,从产品及规模、原料煤种,自身资源,环境保
具有其优势,但如果考虑原料介质输送所消耗的功, 护,投资等综合多方面情况考虑,选择出适合自己的
第 9 期( 上)
王洪营等: 具有自主知识产权的三种煤气化技术对比
WANG Hong - ying ,YANG Yue - jing ,YANG Guo - dong ,GU Zhao - hui
( Henan XLX Fertilizer Co. Ltd ,Xinxiang 453731 ,China)
Abstract: The coal gasification technology that possess independent intellectual property mainly includes
几种常用煤气化技术的优缺点
几种煤气化技术介绍煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。
一 Texaco水煤浆加压气化技术德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。
Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石(助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。
其优点如下:(1)适用于加压下(中、高压)气化,成功的工业化气化压力一般在4.0MPa 和6.5Mpa。
在较高气化压力下,可以降低合成气压缩能耗。
(2)气化炉进料稳定,由于气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。
便于气化炉的负荷调节,使装置具有较大的操作弹性。
(3)工艺技术成熟可靠,设备国产化率高。
同等生产规模,装置投资少。
该技术的缺点是:(1)由于气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。
对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。
而且,煤种的选择面也受到了限制,不能实现原料采购本地化。
(2)烧嘴的使用寿命短,停车更换烧嘴频繁(一般45~60天更换一次),为稳定后工序生产必须设置备用炉。
无形中就增加了建设投资。
浅谈煤气化工艺的优缺点
浅谈煤气化工艺的优缺点摘要:本文主要介绍了Texaco、Shell、GSP三个主要的煤气化工艺的原理及优缺点。
关键词:Texaco Shell GSP 原理优缺点一、引言我国煤炭资源相对丰富,而煤化工属“两高一资”产业,其发展必然受到资源、环境和产业政策等制约,因此煤化工发展必须采用新技术,开发新产品。
煤气化技术成熟,只需确定气化技术路线与气化炉配置。
本文主要介绍了Texaco、Shell、GSP三个主要的煤气化工艺。
二、反应原理Texaco气化工艺:采用两相并流型气化炉,氧气和煤浆通过特制的喷嘴混合喷入气化炉,在炉内水煤浆和氧气发生不完全反应产生水煤气,其反应释放的能量可维持气化炉在煤灰熔点温度以上,以满足液态排渣的需要。
Shell气化工艺:煤气化在高温加压条件下进行,煤粉、氧气及蒸汽并流进入气化炉,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理化学过程。
由于气化炉内温度很高,在有氧存在的条件下,以燃烧反应为主,在氧化反应完后进入到气化反应阶段,最终形成以CO和H2为主的煤气离开气化炉。
GSP气化工艺:GSP连续气化炉是在高温加压条件下进行,几根煤粉输送管均匀分布进入最外环隙,并在通道内盘旋,使粉煤旋转喷出。
给煤管末端与喷嘴顶端相切,在喷嘴外形成一个相当均匀的粉煤层,与气化介质混合后在气化室中进行气化,反应完后最终形成CO和H2为主的煤气进入激冷室。
三、主要工艺指标对比四、工艺技术优缺点4.1优点Texaco气化工艺:可用于气化的原料范围比较宽;工艺技术成熟,流程简单,过程控制安全可靠,运转效率高,操作性好,可靠程度高;碳转化率高,可达95%以上;合成气质量好,用途广;可供选择的气化压力范围宽(2.6-8.5Mpa),为满足多种下游工艺提供条件,即节省了中间压缩工序,也降低了能耗;单台炉投煤量选择范围大,根据气化压力等级及炉径的不同,单炉投煤量一般在400-2200t/d左右;气化过程污染少,环保性能好。
几种常用煤气化技术的优缺点
几种煤气化技术介绍煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。
一Texaco水煤浆加压气化技术德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。
Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石<助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。
其优点如下:<1)适用于加压下<中、高压)气化,成功的工业化气化压力一般在 4.0MPa 和6.5Mpa。
在较高气化压力下,可以降低合成气压缩能耗。
<2)气化炉进料稳定,因为气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。
便于气化炉的负荷调节,使装置具有较大的操作弹性。
<3)工艺技术成熟可靠,设备国产化率高。
同等生产规模,装置投资少。
该技术的缺点是:<1)因为气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。
对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。
而且,煤种的选择面也受到了限制,不能实现原料采购本地化。
<2)烧嘴的使用寿命短,停车更换烧嘴频繁<一般45~60天更换一次),为稳定后工序生产必须设置备用炉。
浅析煤气化技术的特点及应用
浅析煤气化技术的特点及应用摘要:随着我国社会经济的飞速发展,煤炭资源在我国的能源结构中占有重要地位。
而煤炭资源的充沛使得煤气化技术发展和研究的前景十分广阔。
与此同时随着煤气化技术的进一步完善与普及,煤气化逐渐成为我国发展中的重要化工产业。
通过对煤气化技术的特点及其应用进行分析,能够更好的优化我国的能源结构,满足社会经济发展的需要。
基于此,本文针对我国煤气化技术发展的必要性进行了探讨,分析了我国煤气化技术及其特点。
关键词:煤气化技术;特点;应用引言:现阶段,我国合成氨和甲醇工业发展较为成熟,在实际生产中使用的能源主要是煤,焦炉气和天然气等。
而从现阶段我国的能源特点来看,我国的能源特点主要表现是缺油少气,而煤炭资源的总量和储备较为丰富。
这样的特点在很大程度上决定了煤炭资源在我国合成氨与甲醇工业发展过程中的主导地位。
当前,煤气化技术应用的过程中,煤气化炉的主要类型有流化床,固定床和气流床等。
针对不同的炉型,也存在多种造气方式。
在具体应用的过程中,根据不同的煤气化技术,工艺特点和实际应用也存在较大的不同。
因此,有必要进行针对性的探讨,才能更好的优化煤气化技术的应用。
一、发展煤气化技术的必要性探讨首先,在我国煤气化技术发展的过程中具有优势的先天条件。
主要体现在我国的煤炭资源,总体储量丰沛,我国的煤炭储量名列世界前茅,煤炭种类选择面较为广泛。
这样的特点以及先天优势,能够使我国煤气化技术发展过程中,根据不同的工艺流程,能够选择个性化的工艺技术进行处理[1]。
因此,丰富的煤炭资源为煤气化技术的发展与创新提供了必要的基础和前提。
其次,通过煤气化技术的创新与发展,能够积极影响我国的相关化工产业。
从我国能源结构的特点来看能源结构仍然不够合理,在主要能源中煤炭资源储量最为丰富,然而天然气和石油储量相对匮乏。
另一方面我国的人口基数较大,人均占有量不足,加之人口基数大和城市化加快、社会经济的飞速发展,对能源的需求越来越大。
煤气化技术的应用与发展前景
煤气化技术的应用与发展前景煤气化技术是一种将固体煤转化为可燃气体的过程,通过这种技术可以将煤炭资源转化为更清洁、高效的能源形式。
煤气化技术的应用和发展前景备受关注,本文将探讨其在能源领域的应用以及未来的发展前景。
一、煤气化技术的应用1.1 煤气化在化工行业中的应用煤气化技术在化工行业中有广泛的应用。
通过煤气化,煤炭可以转化为合成气,再通过合成气制取合成氨、合成甲醇等重要化工原料。
这种方法不仅可以减少对石油等化石能源的依赖,还可以有效利用煤炭资源,提高资源利用率。
同时,合成氨和合成甲醇等产品也具有广泛的用途,可以用于制造肥料、塑料、涂料等。
1.2 煤气化在能源领域中的应用煤气化技术在能源领域中也有重要的应用。
通过煤气化,煤炭可以转化为合成气,再通过合成气发电、合成气制取液化石油气等方式,将其转化为电力和清洁燃料。
相比传统的燃煤发电,煤气化发电能够大幅减少污染物的排放,提高能源利用效率。
此外,煤气化技术还可以用于生产煤制天然气,实现煤炭资源的高效利用。
二、煤气化技术的发展前景2.1 煤气化技术在环保方面的优势随着人们对环境保护的重视程度不断提高,煤气化技术的环保优势逐渐凸显。
相比传统的燃煤发电,煤气化发电可以大幅减少二氧化硫、氮氧化物等有害气体的排放,减少大气污染。
此外,煤气化技术还可以实现二氧化碳的捕集和储存,减少温室气体的排放,对于应对气候变化具有积极意义。
2.2 煤气化技术在能源转型中的作用随着全球对可再生能源的需求不断增长,煤气化技术在能源转型中扮演着重要角色。
煤气化技术可以将煤炭等化石能源转化为可再生能源的替代品,为能源转型提供了一种可行的途径。
同时,煤气化技术还可以与可再生能源相结合,实现煤炭与太阳能、风能等能源的互补利用,提高能源的可持续性。
2.3 煤气化技术在能源供应安全中的重要性煤气化技术在能源供应安全中也具有重要的地位。
煤炭作为世界上最丰富的化石能源之一,其资源储量丰富、分布广泛,可以为国家提供稳定的能源供应。
煤气化——精选推荐
煤气化第一章概况在中小氮肥的生产中,造气在制取半水煤气作为合成氨原料气的消耗,约占生产成本的55%。
随着氮肥行业的不断发展壮大,消耗大户的造气工段早已引起企业领导及各级管理人员、技术人员的高度重视,对造气工段的科学管理、设备技改的投入、先进工艺和设备的应用、人才的培养等方面进行了探索研究。
间歇式固定床煤气化技术在装备、工艺、操作水平等都取得了长足的进步。
相继引进或研制了一批现代的煤气化技术,标志着新一代煤化工的即将到来。
这些造气气化技术的进步,无论是在单位消耗、资源整合、设备利用率、系统能源的综合利用上都上了一个新台阶。
第一节技术概况一、煤气化装置现状氮肥工业以煤为原料的合成氨占全国合成氨总产量的70%以上,非无烟块煤气化装置合成氨总产量占30%左右。
现简单介绍我国目前的合成氨装置情况。
UGI间歇式气化炉约占9800台左右。
全国运行中的大中小型氮肥企业的有几百家,90%以上企业仍采用UGI间歇式造气炉。
在这些UGI炉中,除少量大炉体外,大部分企业使用φ2800mm炉以下炉体(包括φ2800mm)约占9500台左右,其中φ2600系列炉最多(包括2600,2610,2650)约占7000台左右。
这些UGI制气工艺其原料均以无烟煤、焦碳为原料,在能源日益紧张的今天,成本越来越高,况且原料的利用率比较低,又污染环境。
尽管这种煤气化工艺比较落后,但我国有着庞大的造气炉炉群,再加上受资金和技术条件的限制,现在乃至今后相当长的一段时间,UGI气化技术仍为我国氮肥工业气化方法的主要部分。
当然,UGI气化也具有相当的优点,投资少、见效快,建设周期短且技术成熟。
此技术仍在不断地完善和创新,以弥补UGI气化技术的缺陷和不足。
1.固定间歇式气化(UGI)1.1工艺流程:煤从气化炉炉顶加入并向下移动。
从炉底进入气化剂的氧气(空气),水蒸汽与煤逆流相遇,煤下移的过程中由炉底燃料层上来的气体加热,这样就使沿整个床层高度有一个温度分布,由上而下形成干燥区、干馏区、还原区、氧化区和灰渣区,氧化区和还原区的温度一般为850-1250℃,煤气出口温度200-400℃,该工艺分为5个阶段:吹风阶段,一次上吹阶段,下吹阶段,二次上吹阶段和吹净阶段。
现代煤气化技术对比分析
现代煤气化技术对比分析摘要:煤气化技术作为煤炭资源清洁高效利用的关键技术,近年来发展迅速。
概述了煤气化技术在我国能源利用和发展中的重要作用,介绍了当前我国煤气化技术应用的发展脉络,对比了常见的固定床气化技术、流化床气化技术和气流床气化技术在我国的应用情况,总结了各种气化技术的特点和应用情况,指出我国应用煤气化技术的经验和教训,并对新生的气化技术及常见的煤气化技术未来发展趋势进行了展望。
我国煤气化技术已逐步从早期“外延粗放式”进入到了“内涵集约式”的发展阶段,在“双碳”产业政策背景下,煤气化技术应进入精耕细作研究阶段以提质增效,提高气化炉的整体效率、拓宽煤种适应性、提高气化炉单炉生产能力、降低停车风险保障装置的可靠性、降低气化技术对环境影响程度、强化煤气化与新型煤化工的技术集成是煤气化技术的发展方向。
关键词:现代煤气化技术;对比分析1.煤气化技术开发及应用1.1固定床气化技术固定床气化是原料煤由上部加煤装置加入,与底部通入的气化剂接触并发生化学反应生产煤气的过程,产生的灰渣由气化炉底部排出。
煤料下降速度相对于气化剂的上升速度非常慢,因此称为固定床气化炉或移动床气化炉。
固定床气化技术最早由德国研究开发并实现工业化,19世纪80年代第1台常压固定床间歇气化炉实现工业化,随后美国联合气体改进公司在此基础上进行优化,形成了UGI炉固定床间歇式气化技术。
UGI炉的原料为无烟煤或焦炭,气化剂为空气中的氧气,可以采用连续或间歇式操作方式,产品为煤气或水煤气。
UGI炉设备结构简单、投资低,在我国化肥生产史上做出了重要贡献,但由于其产能和热效率低,渣中含碳量高且生产过程中产物中有大量含氰废水,间歇的操作方式使得操作较为复杂,UGI炉各项指标不能满足当时工业发展需要。
为了解决这些问题,鲁奇公司采用加压和连续进料的方式使气化炉单炉处理能力显著增加,加压固定床气化炉使煤气化技术取得了重大突破,满足了快速发展的化学工业对装置大型化的需求。
煤气化技术特点
煤气化技术特点第一部分:固定层制气工艺。
1- 1 常压固定层间歇制气工艺:工艺特点是:常压气化,固体加料10- 50mm,固体排渣,间歇气化,空气和蒸汽作气化剂,吹风和制气阶段交替进行,适用原料白煤和焦碳,气化温度800~1100℃。
代表炉型有美国的U.G.I 型和前苏联的U.G.Ⅱ型。
工艺过程从略。
技术优点:历史悠久,技术成熟,设备简单,投资省,生产经验丰富。
技术缺点:技术落后,原料动力消耗高,炭转化率低70~75%,产品成本高,生产强度低,程控阀门多,维修工作量大,废气废水排放多,污染严重,面临淘汰。
1- 2 常压固定层连续制气。
常压固定层连续制气工艺的技术特点:常压气化,固体加料,固体排渣,连续制气,富氧空气(氧占50%)或氧气加蒸汽做气化剂,无废气排放,适用煤种白煤和焦碳。
技术优点是:连续制气,炉床温度稳定,约为900~1150℃,操作简单,程控阀门少,维修费用低,生产强度大,碳转化率高,约80- 84%。
技术缺点:需要空分装置,投资比较大。
固定层连续制气工艺的技术突破在于以氧气或富氧空气加蒸汽做气化剂,由于气化剂中氧含量的增加,气化反应过程中,燃烧产生的热量与煤的气化和蒸汽分解所需要的热量能够实现平衡,可以得到稳定的反应温度和固定的反应床层,可以实现连续制气,不用专门吹风,无废气排放,生产强度和能源利用率都有了很大的提高。
1- 3 固定层加压气化工艺:前西德鲁奇公司(Lurgi)开发。
工艺特点:加压气化,固体加料,固体排渣,连续气化,氧气和蒸汽作气化剂,设有加压的煤锁斗和灰储斗,适用煤种:褐煤、次烟煤、活性好的弱粘结煤。
技术优点:加压气化3.1Ma,生产强度大,碳转化率高约90%。
技术缺点:反应温度略低700~1100℃,甲烷含量较高,煤气当中含有焦油和酚类物质,气体净化和废水处理复杂,流程较长,投资比较大。
第二部分:流化床气化工艺。
流化床气化工艺的总体特点是:以粉煤或小颗粒的碎煤为原料气化,气化剂以一定的速度通过物料层,物料颗粒在气化剂的带动下悬浮起来,形成流化床,由于物料层处于流化状态,煤粉和气化剂之间混合更充分,接触面积更大,煤粉和气化剂迅速地进行气化反应,反应产生的煤气出气化炉后去废热回收和除尘洗涤系统,反应产生的灰渣由炉底排出。
几种煤气化工艺的优缺点
浅谈几种煤气化工艺的优缺点我国石油、天然气资源短缺,煤炭资源相对丰富。
发展煤化工产业,有利于推动石油替代战略的实施,满足经济社会发展的需要,煤化工产业的发展对于缓解我国石油、天然气等优质能源供求矛盾,促进钢铁、化工、轻工和农业的发展,发挥了重要的作用。
因此,加快煤化工产业发展是必要的。
1.各类气化技术现状和气化特征煤化工要发展,一个重要的工艺环节就是煤气化技术要发展。
我国自上世纪80年代就开始引进国外的煤气化技术,包括早期引进的Lurgi固定床气化、U-gas 流化床气化、Texaco水煤浆气流床气化,Shell气流床粉煤气化、以及近期拟引进的BGL碎煤熔渣气化、GSP气流床粉煤气化等等,世界上所有的气化技术在我国几乎都是有应用,正因为我国是一个以煤为主要燃料的国家,世界上也只有我国使用如此众多种类的煤气化技术。
随着煤气化联合循环发电(IGCC)、煤制油(CTL)、煤基甲醇制烯烃(MTP&MTO)等煤化工技术的发展,用煤生产合成气和燃气的加压气化工艺近年来有了较快的发展。
Lurgi固定床气化、Texaco水煤浆气化、Shell干粉加压气化、GSP干粉加压气化、BGL碎煤熔渣气化、以及我国自有知识产权的多喷嘴水煤浆气化、加压两段干煤粉气流床气化、多元料浆气化等等技术在我国的煤化工领域展开了激烈的竞争,对促进煤化工的发展做出了贡献。
Lurgi固定床气化工艺在我国有哈气化、义马、天脊、云南解肥、兰州煤气厂等6个厂;Texaco水煤浆气化工艺已在我国鲁南、上海焦化、渭化、淮化、浩良河、金陵石化、南化等9个厂投入生产,情况良好;Shell干粉加压气化技术在我国已经有双环、洞氮、枝江、安庆、柳化等5个厂投产,还有10余个项目正在安装,将于今后几年陆续投产;多喷嘴水煤浆气化已在山东华鲁恒升、兖矿国泰2个厂投运,还有7个厂家正在安装,最晚在2009年投产;GSP干煤粉气化技术在神华宁夏煤业集团和山西兰花煤化工有限责任公司的煤化工厂也将投入建设;加压两段干煤粉气流床气化技术已通过中试验收,华能集团“绿色煤电”项目2000t/d级和内蒙古世林化工有限公司1000t/d级的气化装置正在设计安装中。
煤气化技术特点
煤气化技术特点第一部分:固定层制气工艺。
1- 1 常压固定层间歇制气工艺:工艺特点是:常压气化,固体加料10- 50mm,固体排渣,间歇气化,空气和蒸汽作气化剂,吹风和制气阶段交替进行,适用原料白煤和焦碳,气化温度800~1100℃。
代表炉型有美国的U.G.I 型和前苏联的U.G.Ⅱ型。
工艺过程从略。
技术优点:历史悠久,技术成熟,设备简单,投资省,生产经验丰富。
技术缺点:技术落后,原料动力消耗高,炭转化率低70~75%,产品成本高,生产强度低,程控阀门多,维修工作量大,废气废水排放多,污染严重,面临淘汰。
1- 2 常压固定层连续制气。
常压固定层连续制气工艺的技术特点:常压气化,固体加料,固体排渣,连续制气,富氧空气(氧占50%)或氧气加蒸汽做气化剂,无废气排放,适用煤种白煤和焦碳。
技术优点是:连续制气,炉床温度稳定,约为900~1150℃,操作简单,程控阀门少,维修费用低,生产强度大,碳转化率高,约80- 84%。
技术缺点:需要空分装置,投资比较大。
固定层连续制气工艺的技术突破在于以氧气或富氧空气加蒸汽做气化剂,由于气化剂中氧含量的增加,气化反应过程中,燃烧产生的热量与煤的气化和蒸汽分解所需要的热量能够实现平衡,可以得到稳定的反应温度和固定的反应床层,可以实现连续制气,不用专门吹风,无废气排放,生产强度和能源利用率都有了很大的提高。
1- 3 固定层加压气化工艺:前西德鲁奇公司(Lurgi)开发。
工艺特点:加压气化,固体加料,固体排渣,连续气化,氧气和蒸汽作气化剂,设有加压的煤锁斗和灰储斗,适用煤种:褐煤、次烟煤、活性好的弱粘结煤。
技术优点:加压气化3.1Ma,生产强度大,碳转化率高约90%。
技术缺点:反应温度略低700~1100℃,甲烷含量较高,煤气当中含有焦油和酚类物质,气体净化和废水处理复杂,流程较长,投资比较大。
第二部分:流化床气化工艺。
流化床气化工艺的总体特点是:以粉煤或小颗粒的碎煤为原料气化,气化剂以一定的速度通过物料层,物料颗粒在气化剂的带动下悬浮起来,形成流化床,由于物料层处于流化状态,煤粉和气化剂之间混合更充分,接触面积更大,煤粉和气化剂迅速地进行气化反应,反应产生的煤气出气化炉后去废热回收和除尘洗涤系统,反应产生的灰渣由炉底排出。
煤气化技术介绍
煤气化技术培训资料时间:2020-9目录一、 前言--------------------------------------------------3页二、 煤气化技术分类及概况----------------------------------3页三、国内主要煤气化技术介绍---------------------------------5页四、各种煤气化工艺的优缺点及比较--------------------------89页五、煤气化技术的评价方法----------------------------------95页 附录:鲁奇固定床气化炉设备图纸德士古气流床气化炉设备图纸煤气化技术介绍一、前言:煤气化是一个热化学过程。
以煤或煤焦为原料,以氧气(空气、富氧或纯氧)、水蒸气或氢气等作气化剂,在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为气体燃料的过程。
煤气化是煤化工的“龙头”,也是煤化工的基础。
煤气化工艺是生产合成气产品的主要途径之一,通过气化过程将固态的煤转化成气态的合成气,同时副产蒸汽、焦油、灰渣等副产品。
二、煤气化技术分类及概况:2.1煤气化技术分类:目前以煤为原料生产合成气的煤气化技术按照气化炉内物料流动方式来划分,主要有三大类:固定床(或称为移动床)、流化床和气流床。
其中具有代表性的煤气化技术如下:各种气化技术已经发展多年,但在目前的情况下,并没有一种气化技术可以适用于所有的工程项目。
气化技术的选择要综合从原料煤种、装置规模、产品方案、业主的详细要求,从整个工厂的角度具体分析确定气化方法。
2.2固定床气化技术概况:固定床气化的煤质适应范围较广,除黏结性较强的烟煤、热稳定性差的煤以及灰熔点很低的煤外,从褐煤到无烟煤均可气化。
固定床气化的缺点是单炉产气量略小,反应温度较低,蒸汽的分解率低,气化装置需要大量的蒸汽。
气化装置所产生的废水中还含有大量的酚、氨、焦油,污水处理工序流程长,投资高大。
国内外几种主要煤制气技术的发展现状及利弊简评
种较广,是一项在现阶段国外同类技术生产能力太大、
-./+0/1/2345/67$ 869$:3548;/$ 3<$ =35/$ >/7.39=+3<+ 7./+ :382+ >8?@6A+B8=+@6=@9/+ 869+3C7=@9/+ :.@68
!"# !#$%&
(D@86+ E87C;82+ B8=+ F8;/67+ :35486G H+ D@86+ I’&&%(J$ :.@68)
广; 碳转化率高, 产品气中甲烷含量低, " 气化温度高,
国外技术简介 #""
鲁奇碎煤加压气化技术 #$ !%" 鲁奇碎煤加压气化技术产生于 #& 世纪 ’& 年代, 是 目前世界上建厂数量最多的煤气化技术, 运行中的气化 炉达数百台。 鲁奇气化炉生产能力大、 煤种适应性广, 主 要用于生产城市煤气, 生产合成气的厂很少。我国云南 解化集团和山西天脊集团采用该技术生产合成氨。 但鲁 奇气化炉生产合成气时, 气体成分中甲烷含量高(() % 且含气生产流程长、 投资大, 因此, 单纯生产合成 !&* ), 气较少采用鲁奇气化炉。 德士古水煤浆气化 #$ #+" 德士古气化工艺是 !,-( 年推出的世界上第二代煤 气化工艺, 其技术特点是对煤种的适应性较宽, 对煤的 活性没有严格的限制,但对煤的灰熔点有一定的要求 达 ,.* %,(* , 排水中不含焦油、 酚等污染物; 煤气质量 好, 有效气( /012 #)高达 (&) 左 右 , 甲烷含量低, 适宜 做合成气。 德士古气化工艺目前在世界上已建成了 ( 个厂, 其 中在我国已建成投产 ’ 个(鲁南、 渭河、 上海三联供、 安 徽淮南) , 单炉投煤量从 3.& 吨 4 天 %!5&& 吨 4 天, 气化
煤气化工艺的简要评述
煤气化工艺的简要评述目前国内可供选择的成熟或相对成熟的煤加压气化工艺很多,各种煤气化工艺的综合比较也有较多的文献、资料可供查阅,这里只简要叙述几种主要煤气化工艺的特点及现阶段存在存在的问题。
1、TEXACO水煤浆气化TEXACO水煤浆气化采用水煤浆进料、液态排渣、在气流床中加压气化,水煤浆与纯氧在高温高压下反应生成煤气。
气化炉主要结构是水煤浆单喷嘴下喷式,大部分是采用水激冷工艺流程,单炉容量目前最大可达日投煤量2000吨,操作压力大多采4MPa、6.5MPa,少数项目也已达到8.4MPa。
我国引进该技术最早的是山东鲁南化肥厂,于1993年投产,后来又有若干厂使用,目前已有十来家。
比较有代表性的有渭河(气化压力6.0MPa)、淮南(气化压力4.0MPa)和鲁南(气化压力2.0MPa)。
由于国内已经完全掌握了TEXACO气化工艺,积累了大量的经验,因此设备制造、安装和工程实施周期短,开车运行经验丰富,达标达产时间也相对较短,主要问题是对使用煤质有一定的选择性,同时存在气化效率相对较低、氧耗相对较高及耐火砖寿命短等问题,但随着在国内投运时间的延长部分问题已得到有效解决。
2、多喷嘴对置水煤浆气化本项技术是“九五”期间由华东理工大学、兖矿鲁南化肥厂、中国天辰化学工程公司合作开发的。
2000年10月通过原国家石油和化学工业局组织的鉴定和验收。
示范装置为兖矿国泰化工有限公司,建成两套日投煤1150吨的气化炉,操作压力4.0MPa,生产24万吨/年甲醇,联产71.8MW发电。
装置已于2005年10月投入运行。
第二个项目是应用在华鲁恒升化工股份有限公司大氮肥国产化工程,建设一套多喷嘴对置式水煤浆气化装置,日投煤750吨,操作压力6.5MPa,装置已于2005年6月初投入运行。
该工艺仍属于水煤浆气化的范畴,与TEXACO的主要区别是由TEXACO单喷嘴改为对置式多喷嘴,强化了热质传递,气化效果较好,但多喷嘴需要设置多路控制系统,增加了设备投资和维修工作量。
不同煤气化技术优劣性分析
不同煤气化技术优劣性分析如果要问最近我国煤气化技术领域最受关注的事件是什么,那世界第一台水煤浆气化的水冷壁气化炉在山西建成并成功连续运行了几个月当仁不让。
而由此,水煤浆热壁炉和水冷壁炉优缺点的比较再次成为业界的热点话题,继而又引起了关于煤气化技术孰优孰劣的争议。
事实上,目前国内煤气化技术种类众多,近几年围绕各种技术之间的优缺点比较、评判就一直就没有停止过。
国内煤化工企业也想通过选择与比较,寻求最好的技术。
哪种煤气化技术好?什么样的企业适用什么样的技术?企业在选取煤气化技术时应注意什么问题?气化技术各有优劣煤气化技术是煤化工项目的龙头。
目前在国内推广的煤气化技术,包括我国自主开发技术和国外技术10多种。
煤气化技术若按炉型分,主要有固定床、流化床、气流床三种。
具体来讲,固定床气化炉有UGI炉和鲁奇炉,目前我国氮肥产业就主要采用UGI炉,有几千台炉子在运行;流化床常用气化炉有温克勒炉、循环流化床炉、灰熔聚流化床炉、恩德炉、U-Gas气化炉等;气流床按进料形式不同,分为干煤粉进料和水煤浆进料两大类,而以气化炉内是否衬有耐火保温材料分类,又有热壁炉和水冷壁炉两种。
所谓水冷壁,就是由水管、石英砂、煤渣组成的内腔。
一直以来,水冷壁都用于粉煤气化炉,水煤浆气化炉则多用耐火砖结构的热壁炉。
但是,山西阳煤丰喜肥业(集团)有限责任公司临猗分公司与清华大学、北京达力科公司共同合作,把水煤浆气化炉的内衬革新改造为了水冷壁,可谓一项重大创新。
江苏索普集团有限责任公司副总经理邵守言向记者介绍,耐火砖结构的水煤浆气化炉,其耐火温度为1350℃。
如果煤的灰熔点超过1350℃,耐火砖会受不了。
水冷壁气化炉最大的优势,就是对灰熔点超过1350℃的煤也能气化。
尽管他认为水冷壁气化炉还要经过几年的工程运行考验,还要解决水带走的热量、结垢后怎么处理等工程问题,但这是个技术发展方向,从技术方案上来说具有可行性。
毕竟目前适合热壁炉的煤种在国内只在河南义马、甘肃华亭、陕西榆林等地有,适合的煤种不多,水冷壁气化炉拓宽了煤种的使用范围。
国内典型煤气化优缺点
一、各种煤气化工艺的优缺点我国已经工业化的、已建立示范装置的和已经中试装置考验的、从国外引进技术的、属于国内具有自主知识产权的煤气化装置和技术,有常压固定层间歇式无烟煤(或焦炭)气化技术、常压固定层无烟煤(或焦炭)富氧连续气化技术、鲁奇固定层煤加压气化技术、灰熔聚流化床粉煤气化技术、恩德沸腾层(温克勒)粉煤气化技术、GE德士古(Texaco)水煤浆加压气化技术、多元料浆加压气化技术、多喷嘴(四烧嘴)水煤浆加压气化技术、壳牌(Shell)干煤粉加压气化技术、GSP干煤粉加压气化技术、两段式干煤粉加压气化技术、四喷嘴对置式干粉煤加压气化技术,几乎是国外有的煤气化技术我国都有,国外没有的煤气化技术我国也有。
煤气化工艺技术很多,使选择煤气化工艺技术无从着手。
首先我们不能只轻信专利商的宣传,现在世界上还没有万能气化炉,各种气化工艺技术都有其特点和优缺点,有其适应范围。
对专利商的宣传要去粗取精、去伪存真,只有通过生产实践长期稳产高产考验过的,经济上合理、环境上符合国家和当地环保规定和要求的,才是最可靠的。
下面分别介绍这些技术的优缺点。
1.常压固定层间歇式无烟煤(或焦炭)气化技术这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风放空气对大气污染严重。
从发展看,属于将逐步淘汰的工艺。
2.常压固定层无烟煤(或焦炭)富氧连续气化技术这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂、连续气化、原料可采用8-10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低、适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。
3.鲁奇固定层煤加压气化技术主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、各种煤气化工艺的优缺点我国已经工业化的、已建立示范装置的和已经中试装置考验的、从国外引进技术的、属于国内具有自主知识产权的煤气化装置和技术,有常压固定层间歇式无烟煤(或焦炭)气化技术、常压固定层无烟煤(或焦炭)富氧连续气化技术、鲁奇固定层煤加压气化技术、灰熔聚流化床粉煤气化技术、恩德沸腾层(温克勒)粉煤气化技术、GE德士古(Texaco)水煤浆加压气化技术、多元料浆加压气化技术、多喷嘴(四烧嘴)水煤浆加压气化技术、壳牌(Shell)干煤粉加压气化技术、GSP干煤粉加压气化技术、两段式干煤粉加压气化技术、四喷嘴对置式干粉煤加压气化技术,几乎是国外有的煤气化技术我国都有,国外没有的煤气化技术我国也有。
煤气化工艺技术很多,使选择煤气化工艺技术无从着手。
首先我们不能只轻信专利商的宣传,现在世界上还没有万能气化炉,各种气化工艺技术都有其特点和优缺点,有其适应范围。
对专利商的宣传要去粗取精、去伪存真,只有通过生产实践长期稳产高产考验过的,经济上合理、环境上符合国家和当地环保规定和要求的,才是最可靠的。
下面分别介绍这些技术的优缺点。
1.常压固定层间歇式无烟煤(或焦炭)气化技术这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风放空气对大气污染严重。
从发展看,属于将逐步淘汰的工艺。
2.常压固定层无烟煤(或焦炭)富氧连续气化技术这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂、连续气化、原料可采用8-10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低、适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。
3.鲁奇固定层煤加压气化技术主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气。
因为其产生的煤气中含有焦油、高碳氢化合物含量约1%左右,甲烷含量约10%左右,同时,焦油分离、含酚污水处理都比较复杂,所以不推荐用以生产合成气。
4.灰熔聚流化床粉煤气化技术中国科学院山西煤炭化学研究所在上世纪80年代,就开始研究这项技术,2001年单炉配套20Kt合成氨/a工业性示范装置成功运行,实现了工业化,其特点是煤种适应性宽,可以用<6-8mm碎煤,属流化床气化炉,床层温度达11000C左右,中心射流形成床内局部高温区温度达到1200-13000C,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状灰渣排出。
床层温度比恩德气化炉高100-2000C,可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。
缺点是气化压力为常压和低压、2007年12月完成了1.0MPa 压力下的长周期运行试验,积累了运行经验,Φ2400气化炉,投煤量500-600t/d。
操作压力尚偏低,有待进一步做提高气化压力的试验。
现在单炉气化能力较低、产品气中CH4含量较高(1.5-2%),虽然采取了飞灰循环入炉气化措施,但第二旋风分离器排出细灰量还是比较大,对环境污染及飞灰堆存和综合利用问题有待进一步解决。
此技术适合于中小型氮肥厂利用就地或就近的煤炭资源改变原料路线。
5.恩德粉煤气化技术恩德炉实际上属于改进后的温克勒沸腾层煤气化炉,适用于气化褐煤和长焰煤,要求原料煤属不粘结或弱粘结性、灰分小于25-30%,灰熔点高(ST大于12500C)、低温化学活性好(在9500C时,应>85%,10000C时,应>95%)。
至今在国内已建和在建的装置共有13套22台气化炉,已投产的有16台。
属流化床气化炉,床层中部温度在1000-10500C左右。
目前最大的气化炉,用富氧气化,产气量为40000M3/h半水煤气。
缺点是气化压力为常压,单炉气化能力还比较低,产品气中CH4含量高达1.5-2%,飞灰量大、对环境污染及飞灰堆存和综合利用问题有待解决。
希望不要走吉林化肥厂和兰州化肥厂污染环境的老路,此技术适合于就近有褐煤的中小型氮肥厂改变原料路线。
6.GE德士古(Texaco)水煤浆加压气化技术GE德士古(Texaco)水煤浆加压气化技术,属气流床加压气化技术,原料煤经磨制成水煤浆后泵送进气化炉顶部单烧嘴下行制气,原料煤运输、制浆、泵送入炉系统比Shell和GSP 等干粉煤加压气化要简单得多,安全可靠、投资省。
单炉生产能力大,目前国际上最大的气化炉日投煤量为2000t,国内已投产的气化炉能力最大为1000t/d。
设计中的气化炉能力最大为1600t/d。
对原料煤适应性较广,气煤、烟煤、次烟煤、无烟煤、高硫煤及低灰熔点的劣质煤、石油焦等均能用作气化原料。
但要求原料煤含灰量较低、还原性气氛下的灰熔点低于13000C,灰渣粘温特性好。
气化压力从2.5、4.0、6.5到8.5MPa皆有工业性生产装置在稳定长周期运行,装置建成投产后即可正常稳定生产。
气化系统的热利用有两种形式,一种是废热锅炉型,可回收煤气中的显热副产高压蒸汽,适用于联合循环发电;另一种是水激冷型,制得的合成气的水气比高达1.4,适用于制氢、制合成氨、制甲醇等化工产品。
气化系统不需要外供过热蒸汽及输送气化用原料煤的N2或CO2。
气化系统总热效率高达94-96%,高于Shell干粉煤气化(为91-93%)和GSP干粉煤气化(为88-92%)。
气化炉结构简单,为耐火砖衬里。
气化炉内无转动装置或复杂的膜式水冷壁内件,所以制造方便、造价低,在开停车和正常生产时无需连续燃烧一部分液化气或燃料气(合成气)。
煤气除尘比较简单,无需价格昂贵的高温高压飞灰过滤器,投资省。
碳转化率达96-98%;有效气成分(CO+H2)约为(80-83%);有效气(CO+H2)比氧耗为336-410M3/ Km3,有效气(CO+H2)比煤耗为550-620Kg/Km3。
国外已建成投产的装置有6套,15台气化炉,国内已建成投产的装置有7套,21台气化炉,正在建设、设计的装置还有4套,13台气化炉,已建成投产的装置最终产品有合成氨、甲醇、醋酸、醋酐、氢气、一氧化碳、燃料气、联合循环发电,各装置建成投产后,一直连续稳定,长周期运行。
装备国产化率已达90%以上,由于国产化率高、装置投资较其他加压气化装置都低,有备用气化炉的水煤浆加压气化与不设备用气化炉的干煤粉加压气化装置建设费用的比例大致为Shell法:GSP法:多喷嘴水煤浆加压气化法:GE水煤浆法=(2-2.5):(1.4-1.6):1.2:1。
国内已掌握了丰富的工程技术经验,已培养出一大批掌握该技术的设计、设备制造、建筑安装、煤种评价、试烧和工程总承包的单位及工程技术人员,所以建设、建成投产到正常连续运行的周期比较短,这是业主所期望的。
缺点是气化用原料煤受气化炉耐火砖衬里的限制,适宜于气化低灰熔点的煤。
碳转化率较低。
比氧耗和比煤耗较高。
气化炉耐火砖使用寿命较短,一般为1-2年,国产砖寿命为一年左右,有待改进。
气化炉烧嘴使用寿命较短,一般使用2个月后,需停车进行检查、维修或更换喷嘴头部,有待改进提高。
7.多元料浆加压气化技术多元料浆加压气化技术是西北化工研究院提出的,具有自主知识产权。
其基本生产装置与水煤浆加压气化技术相仿,属气流床单烧嘴下行制气。
典型的多元料浆组成为含煤60-65%,油料10-15%,水20-30%。
但是作者认为在制备多元料浆时掺入油类的办法与当前我国氮肥工业以煤代油改变原料路线的方针不符合,是不可取的,有待改进。
8.多喷嘴(四烧嘴)水煤浆加压气化技术在“九五”期间华东理工大学、兖矿鲁南化肥厂、中国天辰化学工程公司承担了国家重点科技攻关课题“新型(多喷嘴对置)水煤浆气化炉开发”。
属气流床多烧嘴下行制气,气化炉内用耐火砖衬里。
开发成功后,相继在山东德州华鲁恒生化工股份有限公司建设了一套气化压力为6.5MPa,日处理煤750t的气化炉系统,于2005年6月正式投入运行,至今运转良好。
在山东滕州兖矿国泰化工有限公司建设了两套气化压力为4.0MPa,日处理煤1150t的气化炉系统,于2005年7月21日一次投料成功,运行至今。
经考核验收,结论是同样以北宿洗精煤为原料气化,多喷嘴水煤浆加压气化与单烧嘴加压气化相比,气化技术指标见表1多喷嘴气化炉与单烧嘴气化炉相比,比煤耗可降低约2.2%,比氧耗可降低6.6%,这是很有吸引力的。
同时调节负荷比单烧嘴气化炉灵活。
适宜于气化低灰熔点的煤。
已建成及在建项目共11家,30台气化炉。
已顺利投产的有3家,4台气化炉。
在建最大的气化炉投煤量为2000t/d,6.5MPa。
但目前暴露出来的问题是气化炉顶部耐火砖磨蚀较快的问题;以及同样直径同生产能力的气化炉,其高度比GE德士古单烧嘴气化炉高,又多了三套烧嘴和其相应的高压煤浆泵、煤浆阀、氧气阀、止回阀、切断阀及连锁控制仪表,一套投煤量1000t/d 的气化炉投资比单烧嘴气化炉系统的投资约多2000-3000万元。
以一个有3套投煤量1000t/d气化炉,日处理原料煤2000t的煤气化装置比较,约增加投资6000-9000万元,每年要多增加维护检修费用,且增加了单位产品的固定成本。
但该技术属我国独有的自主知识产权技术,在技术转让费方面比引进GE水煤浆气化技术要少得多,还是很有竞争力的。
该技术有待进一步在生产实践中改进提高。
9.壳牌(Shell)干煤粉加压气化技术壳牌(Shell)干煤粉加压气化技术,属于气流床加压气化技术。
可气化褐煤、烟煤、无烟煤、石油焦及高灰熔点的煤。
入炉原料煤为经过干燥、磨细后的干煤粉。
干煤粉由气化炉下部进入,属多烧嘴上行制气。
目前国外最大的气化炉是日处理2000t煤,气化压力为3.0MPa,国外只有一套用于商业化联合循环发电的业绩,尚无更高气化压力的业绩。
这种气化炉是采用水冷壁,无耐火砖衬里。
采用废热锅炉冷却回收煤气的显热,副产蒸汽,气化温度可以达到1400-16000C,气化压力可达3.0-4.0MPa,可以气化高灰熔点的煤,但仍需在原料煤中添加石灰石作助熔剂。
该种炉型原设计是用于联合循环发电的,国内在本世纪初至今已签订技术引进合同的有19台气化炉装置,其最终产品有合成氨、甲醇,气化压力3.0-4.0MPa。
其特点是干煤粉进料,用高压氮气气动输送入炉,对输煤粉系统的防爆要求严格;气化炉烧嘴为多喷嘴,有4 个对称式布置,调节负荷比较灵活;为了防止高温气体排出时夹带的熔融态和粘结性飞灰在气化炉后的输气导管换热器、废热锅炉管壁粘结,采用将高温除灰后的部分300-3500C气体与部分水洗后的160-1650C气体混合,混合后的气体温度约2000C,用返回气循环压缩机加压送到气化炉顶部,将气化炉排出的合成气激冷至9000C后,再进入废热锅炉热量回收系统。