国内外煤气化技术介绍--重点学习--

合集下载

煤气化技术介绍

煤气化技术介绍

煤气化技术介绍一、起源煤气化技术是指把经过适当处理的煤送入反应器如气化炉内,在一定煤气化技术工艺流程的温度和压力下,通过氧化剂(空气或氧气和蒸气)以一定的流动方式(移动床、硫化床或携带床)转化成气体,得到粗制水煤汽,通过后续脱硫脱碳等工艺可以得到精制一氧化碳气。

1857年,德国的Siemens兄弟最早开发出用块煤生产煤气的炉子称为德士古气化炉。

这项工艺引进中国后在二十世纪九十年代由山东省鲁南化肥厂经过广大工程技术人员的努力,发明了自主知识产权的对置式四喷嘴气化炉,目前已经在国内得到广泛推广应用,特别是兖矿集团煤化工项目在多处使用次技术,取得了显著的经济效益。

还有经过其他许多开发商的开发,到1883年应用于生产氨气。

煤气化技术是清洁利用煤炭资源的重要途径和手段。

二、原理煤干馏过程,主要经历如下变化:当煤料的温度高于100℃时,煤中的水分蒸发出;温度升高到200℃以上时,煤中结合水释出;高达350℃以上时,粘结性煤开始软化,并进一步形成粘稠的胶质体(泥煤、褐煤等不发生此现象);至400~500℃大部分煤气和焦油析出,称一次热分解产物;在450~550℃,热分解继续进行,残留物逐渐变稠并固化形成半焦;高于550℃,半焦继续分解,析出余下的挥发物(主要成分是氢气),半焦失重同时进行收缩,形成裂纹;温度高于800℃,半焦体积缩小变硬形成多孔焦炭。

当干馏在室式干馏炉内进行时,一次热分解产物与赤热焦炭及高温炉壁相接触,发生二次热分解,形成二次热分解产物(焦炉煤气和其他炼焦化学产品)。

煤干馏的产物是煤炭、煤焦油和煤气。

煤干馏产物的产率和组成取决于原料煤质、炉结构和加工条件(主要是温度和时间)。

随着干馏终温的不同,煤干馏产品也不同。

低温干馏固体产物为结构疏松的黑色半焦,煤气产率低,焦油产率高;高温干馏固体产物则为结构致密的银灰色焦炭,煤气产率高而焦油产率低。

中温干馏产物的收率,则介于低温干馏和高温干馏之间。

煤干馏过程中生成的煤气主要成分为氢气和甲烷,可作为燃料或化工原料。

国内最全的煤气化技术简介

国内最全的煤气化技术简介

国内最全的煤气化技术简介(最新整理)本文收集、整理、并汇总了国内当前大多数煤气化工艺(包括水煤浆、干煤粉、碎煤等加压气化工艺;固定床、流化床、气流床气化工艺;激冷流程、废锅流程;水冷壁、耐火砖等冷壁炉和热壁炉型),可作为煤化工、煤气化专业技术人员参考资料,是目前网络上公开交流的较为全面的一篇资料。

1、“神宁炉”粉煤加压气化技术(宁夏神耀科技有限责任公司)以高旋流单喷嘴大通量粉煤加压气化炉为目标载体,以多煤种理化特性数据为基础,构建了气化炉流场、传热分析等模型;基于燃烧器强动量传导机制,揭示了顶置式旋流气化场湍流燃烧的动力学机理;揭示了氧气和煤粉的强化反应规律,独创了高效无相变水冷壁反应室与“沉降-破泡式”激冷室相耦合的气化炉。

“神宁炉”干粉煤气化技术能源转化效率高,有效气成分≥91%,碳转化率≥98.5%。

固体灰渣好处理,灰渣中不含苯、酚、焦油等大分子有机物废物。

气化系统吨煤污水排放量控制在0.4—0.5t,废水处理后可完全回用。

高效、中空、高能点火系统,实现高压、惰性环境下点火成功率98%以上。

采用组合式燃烧器通道结构,控制火焰形成,确保气化炉内壁挂渣均匀。

2、“科林炉”CCG粉煤加压气化技术(德国科林工业技术有限责任公司)技术特点:(1)煤种适应性广:适用于各种烟煤、无烟煤、褐煤及石油焦等,对强度、热稳定性、结渣性、粘结性等没有具体要求。

对高灰分、高灰熔点、高硫含量的“三高”煤等低品质的煤种拥有很好的工业化业绩。

(2)技术指标高:因燃烧器采用多烧嘴顶置下喷的配置方式,原料在气化炉内碰撞混合更加充分,气化炉炉膛及顶部挂渣均匀,可实现较高的气化温度(1400~1700℃),碳转化率高达到99%以上,合成气中不含重烃、焦油等物质,有效合成气成分90~93%,冷煤气效率80~83%。

(3)投资低:根据项目规模不同,可提供日投煤量750吨/天至3000吨/天的不同气化炉炉型设计,主要设备制造已完全实现国产化,整个装置的投资建设成本低,建设周期短。

国内外各种先进煤气化技术

国内外各种先进煤气化技术

国内外各种先进煤气化技术一、引言二、煤气化技术概述:2.1 固定层制气工艺(移动床)2.2 流化床气化工艺2.3 气流床气化工艺2.4 其他煤气化技术三、国内主流煤气化技术详解3.1 Lurgi(鲁奇)煤气化技术3.2 Texaco(德士古)煤气化技术3.3 Shell煤气化技术工艺3.4 GSP煤气化技术3.5 Dow煤气化工艺3.6 Texaco、Shell、GSP三种气化技术对比四、其它煤气化技术4.1 第三代煤气化技术4.2 组合气化炉煤气化法五、国内外煤气化的技术现状和发展趋势5.1 国外技术现状和发展趋势5.2 国内的技术现状和发展趋势5.3 国内工业化煤气化装置技术最新成果一、引言我国石油资源相对短缺,仅占化石能源探明储量的51.3%,开采量仅为世界开采量的21.4%,石油供需矛盾日益突出。

由于世界资源日趋减少,中东地区战乱不止,石油价格动荡不稳因此大量依赖石油进口将严重威胁我国国民经济的运行安全。

同时,我国煤炭资源丰富,探明可采储量2040亿t(2002年)。

煤炭在一次能源消费结构中占有主导地位,20世纪80年代以来一直在70%上下。

专家研究认为,在未来相当长时期内,一次能源消费结构中煤炭仍将居主导地位,到2050年将维持在50%以上。

目前国内发展煤气化合成化工产品的势头很旺特别是在产地,一批新的煤化工项目开始起步,老企业正以现代新技术改造传统落后的生产装置,以油为原料的大、中型合成氨厂开始进行煤代油的技术改造。

通过改造可以达到降低生产成本,改善环境状况之目的。

本文针对这一情况综合介绍国内煤气化技术现状,并对目前主流煤气化技术作一横向对比。

煤炭气化,即在一定温度、压力条件下利用气化剂(O2、H2O或CO2)与煤炭反应生成洁净合成气(CO、H2的混合物),是对煤炭进行化学加工的一个重要方法,是实现煤炭洁净利用的关键。

煤炭气化技术,尤其是高压、大容量气流床气化技术,显示了良好的经济和社会效益,代表着发展趋势,是现在最清洁的煤利用技术,是洁净煤技术的龙头和关键。

煤气化基础知识培训讲稿

煤气化基础知识培训讲稿

煤气化基础知识培训讲稿一、煤炭气化定义煤化工是以煤为原料经过化学加工,实现煤的转化并进行综合利用的工业。

煤化工包括炼焦工业,煤炭气化工业,煤制化学品工业以及其他煤加工制品工业等。

所谓的煤炭气化技术,是新型煤化工的一个重要单元,就是将固体煤变成气态烃,CO,H2气体等的技术,其目的就是获得清洁能源和化工原料。

煤炭气化时,必须具备三个条件,即气化炉、气化剂(如蒸汽/空气或氧气等)、供给热量,三者缺一不可。

二、煤炭气化发展简史煤化工发展始于18世纪后半叶,用煤生产民用煤气;在欧洲当时用煤干馏方法,生产的干馏煤气用于城市街道照明;1840年由焦炭制发生炉煤气来炼铁,1875年使用增热水煤气作为城市煤气。

二次世界大战时期,煤炭气化工业在德国得到迅速发展。

1935~1945年期间德国共建立了9个合成油厂,总产量达570kt。

二次世界大战后,煤炭气化工业因石油、天然气的迅速发展减慢了步伐,进人低迷时期,直到20世纪70年代成功开发由合成气制甲醇技术,由于甲醇的广泛用途,使煤炭气化工业又重新引起人们重视。

到20世纪80年代末,由煤炭气化制合成气,羰基合成生产醋酸、醋酐开始大型化生产,这是煤制化学品的一个非常重要的突破。

现在,随着气化生产技术的进一步发展,以生产含氧燃料为主的煤炭气化合成甲醇、二甲醚,有广阔的市场前景。

三、中国煤炭气化技术现状煤气化技术视炉内气-固状态和运动形式,主要分为三大类∶1.固定床以块煤(10~50mm)为原料的固定床,在气化过程中,煤由气化炉顶部加入,气化剂由气化炉底部加入,煤料与气化剂逆流接触,相对于气体的上升速度而言,煤料下降速度很慢,甚至可视为固定不动,因此称之为固定床气化,而实际上,煤料在气化过程中是以很慢的速度向下移动的,比较准确的称其为移动床气化。

先进的固定床气化工艺以鲁奇移动床加压气化为代表,鲁奇炉是逆向气化煤在炉内停留时间长达1h,反应炉的操作温度和炉出口煤气温度低,碳效率高、气化效率高。

国内外煤气化技术概述

国内外煤气化技术概述

国内外煤气化技术概述煤气化技术的研发已有200多年的历史,根据气化炉所使用的煤颗粒大小和颗粒在气化炉内的流动状态,气化炉总体上分为三类,即以鲁奇为代表的固定床气化炉、以U—Gas、灰熔聚为代表的流化床气化炉和以德士古、壳牌为代表的气流床气化炉。

1.1 鲁奇固定床气化技术鲁奇固定床气化技术产生于20世纪40年代,由鲁奇公司开发。

鲁奇炉以8~50mm粒度、活性好、不黏结的无烟煤、烟煤或褐煤为原料,煤从气化炉的项部加入,而气化剂从炉子的下部供入,因而气固间为逆向流动,随着反应的进行,煤在气化炉内缓慢移动。

鲁奇固定床气化的压力可达3.0MPa,气化温度为900~1050℃,单炉投煤量一般为1000ffd(最大可达1920ffd),采用固态排渣方式。

典型的鲁奇固定床气化炉对燃料的要求比较高,尤其不宜使用焦结性煤。

由于气化温度较低,产生的煤气中不可避免的含有大量的沥青、焦油,因此需要对粗煤气进行分离净化。

为简化复杂的粗煤气净化流程,提高气化效率,英国煤气公司在固作态排渣鲁奇炉的基础上,进一步提高了气化温度,以强化气化过程,发展成液态排渣鲁奇炉⋯。

鲁奇气化炉起初主要用于生产城市煤气,后发展到生产合成油、氨、甲醇等,以及燃气。

我国云南解化集团等许多单位采用该技术用于合成氨。

由于鲁奇气化炉生产合成气时,气体成分中甲烷含量高(8~10%),且含焦油、酚等物质,气化炉后需要设置废水处理及回收、甲烷分离转化装置,用于生产合成气生产流程长、投资大,因此单纯生产合成气较少采用鲁奇气化炉。

1.2 GSP气流床气化技术GSP工艺技术由前民主德国的德意志燃料研究所开发,始于20世纪70年代末。

GSP气化炉由烧嘴、冷壁气化室和激冷室组成。

烧嘴为内冷多通道的多用途烧嘴,冷却水分别在物料的内中、中外层之间和外层之外,冷却方式比较均匀,可以使烧嘴温度保持在较低水平。

固体气化原料被碾磨为不大于0.5mm的粒度后,经过干燥,通过浓相气流输入系统送至烧嘴。

各种煤气化技术介绍

各种煤气化技术介绍

固体煤
CO + H2
工业、民用燃气
合成气
氨 甲醇 油 二甲醚 烯烃

H2
煤炭气化技术
就是将固
体煤变成气 态烃, CO , H2气体等的 技术
其目的就 是获得清洁 能源和化工
原料
新型煤化 工的一个重
要单元
气化产品--煤气
煤气化是发展煤基液 体燃料合成、先进的IGCC 发电、多联产系统、制氢、 燃料电池、直接还原炼铁 等过程工业的基础。
F 空层
空层即燃料层的上部,炉体内的自由区,其主要作用是汇集煤气,并使炉内生 成的还原层气体和干馏段生成的气体混合均匀。由于空层的自由截面积增大,使 得煤气的速度大大降低,气体夹带的颗粒返回床层,减小粉尘的带出量。
控制空层高度一是要求在炉体横截面积上要下煤均匀,下煤量不能忽大忽小; 二是要按时清灰。
灰渣层中的灰是煤炭气化后的固体残渣,煤灰堆积在炉底的气体分布板上具有以下 三个方面的作用。
1干燥层 2干馏层 3还原层 4氧化层 5灰渣层
①由于灰渣结构疏松并含有许 多孔隙,对气化剂在炉内的均 匀分布有一定的好处。
②煤灰的温度比刚入炉的气化 剂温度高,可使气化剂预热。
③灰层上面的氧化层温度很高, 有了灰层的保护,避免了和气 体分布板的直接接触,故能起 到保护分布板的作用。
D 干馏层
干馏层位于还原层的上部,气体在还原层释放大量的热量,进入于馏层时温度已经 不太高了,气化剂中的氧气已基本耗尽,煤在这个过程历经低温干馏,煤中的挥发分 发生裂解,产生甲烷、烯烃和焦油等物质,它们受热成为气态而进入干燥层。
干馏区生成的煤气中因为含有较多的甲烷,因而煤气的热值高,可以提高煤气的热 值,但也产生硫化氢和焦油等杂质。

煤气化技术简介

煤气化技术简介

煤气化技术煤气化已有100多年的发展历史,先后开发了200多种气化工艺或气化炉型,有工业化应用前景的十余种。

煤气化可分为完全气化和不完全气化两大类:完全气化是指煤及其它固体原料与气化剂进行一步法化学反应,生成可燃气或合成气;不完全气化是指固体原料进行热加工时,除生成可燃气外还有含碳固体产物(如煤炼焦过程)。

这些产物又可进行加工利用。

国外为了提高燃煤电厂热效率,减少环境污染,对煤气化联合循环发电技术作了大量工作,促进了煤气化技术的开发。

目前已成功开发出了对煤种适应性广、气化压力高、生产能力大、气化效率高、污染少的新一代煤气化工艺,主要有荷兰壳牌(Shell)的粉煤气化工艺、德国克鲁伯—考柏斯(Krupp—Koppers)的Prenflo工艺,美国德士古(Texaco)和Destec 的水煤浆气化工艺以及德国黑水泵的GSP工艺等。

本章着重介绍我厂油改煤改造工程所引进的Shell粉煤气化工艺技术。

第一节煤气化技术分类及其发展一、煤气化技术分类最常用的气化分类方法是按煤和气化剂在气化炉内的相对运动来划分,大体可分成三种:逆流:固定床、移动床。

煤(焦)由气化炉顶部加入,自上而下经过干燥层、干馏层、还原层和氧化层,最后形成灰渣排出炉外;气化剂自下而上经灰渣层预热后进入氧化层和还原层(两者合称气化层)。

代表炉型为常压UGI炉和加压Lurgi炉,主要用于制取城市煤气。

固定床气化的局限性是对床层均匀性和透气性要求较高,入炉煤要有一定的粒(块)度及均匀性。

煤的机械强度、热稳定性、粘结性和结渣性等指标都与透气性有关,因此,固定床气化炉对入炉原料有很多限制。

并逆流或返混流:流化床、沸腾床。

气化剂由炉底部吹入,使细粒煤(<6mm)在炉内呈并逆流反应,通常称为流态化或沸腾床气化。

煤粒( 粉煤)和气化剂在炉底锥形部分呈并流运动,在炉上筒体部分呈并流和逆流运动。

为了维持炉内的“沸腾”状态并保证不结疤,气化温度应控制在灰软化温度(ST)以下。

国内外典型气流床煤气化技术概述

国内外典型气流床煤气化技术概述

烧室下部侧壁对置,可快速快速调节负荷范围(40%~ 100%)。但是烧 嘴隔焰罩和开工烧嘴容易产生过氧腐蚀损坏。激冷气压缩机主要是将冷 煤气送到气化炉顶部进行换热。
SHell 技术已在国内的湖北双环、神华集团、中原大化、河南永煤等 单位实现应用,全国共有 19 个项目,27 台气化炉用于合成氨、甲醇生产。
关键词:气流床 煤气化
所谓气流床煤气化是将气化剂夹带的煤粉或煤浆,通过特殊喷嘴送 入气化炉内,在高温下,煤氧等混合物迅速分解、燃烧、气化反应,产 生 CO 和 H2 为主的煤气化技术。国外 TCGP、SCGP、GSP 技术均发展成 熟,国内的多喷嘴、两段技术、HT-L、非熔渣 - 熔渣分级技术、多元料 浆技术正快速发展应用。煤气化作为煤化工的龙头,它的好坏决定着后 续工艺以及长远的经济效益。
两段技术已在内蒙古世林化工项目、华能满洲里煤化工项目、华能 绿色煤电 IGCC 项目等 5 家单位开建,部分已投产,主要用于生产甲醇、 发电等。
2.3 航天炉气化技术(HT-L)[6-7] 航天炉煤气化技术与 GSP 技术相似均采用下喷式气流床激冷流程, 但是知识产权独立。该技术对煤种要求低,热效率和碳转化率高。采用 激冷流程及灰渣水循环技术,对环境保护好。 HT-L 气化炉、烧嘴、破渣机、热风炉、激冷水循环泵等是此技术 的 核 心 设 备。 气 化 炉 采 用 盘 管 式 水 冷 壁, 四 组 管 绕 制 而 成, 盘 管 外 径 89mm,壁厚 8mm 径向热膨胀 6mm。自上而下单喷嘴喷射与 GSP 炉相同,
1.3 加压气流床(GSP)技术 [3] 合格煤粉经干燥后通过 N2 输送系统送至烧嘴,煤粉与其他气化剂(氧 气、水蒸气)经烧嘴同时喷入气化炉内的反应室,然后在高温、高压下 发生裂解、燃烧、气化反应,生成粗煤气。气化产生的熔渣以及粗煤气 一起进入气化炉下部的激冷室。冷却后的粗煤气去洗涤系统,熔渣通过 锁斗系统排出,激冷水送至污水处理系统。GSP 技术适用煤种广泛,输 送安全性高,运行周期长不需备炉,碳转化率高,合成气质量好。采用 激冷流程,工艺紧凑,流程简单,环境效益好。气化炉操作弹性大,负 荷调节灵活。点火升温迅速,设备及运行费用较低。开、停车操作方便, 时间短,从冷态达到满负荷仅需 1H。但是 GSP 技术存在工业化业绩少, 操作经验缺乏,加料计量过程复杂、投资较高,无独立灰水处理技术等 问题。 该技术设备主要包括磨煤机、给料锁斗、加料器、组合喷嘴、气化 炉、渣锁斗、破渣机、捞渣机、文丘里洗涤器、沉降槽、激冷水泵等。 气化炉上部为冷壁气化室,由水冷壁,水夹套组成。水冷壁是由特殊耐 热材料碳化硅为屏蔽涂层的盘管和翅片焊接组成的圆筒形内腔,采用以 渣抗渣的技术防止高温溶渣腐蚀及开停车产生应力对耐火材料的破坏。 下部为激冷室,内有激冷喷头和内衬筒,内衬筒与承压外壳环隙有激冷 水自下向上流动,在顶端环隙间径向流出,激冷室承压壳体的壁温不超 过 200℃。喷嘴由配有火焰检测器的点火喷嘴和生产喷嘴所组成,中心向 外环隙依次为燃料气、冷却水、氧 / 蒸汽、冷却水、煤粉通道、冷却水 6 个通道。 GSP 技术虽然进入国内较晚,但是凭借其自身优势已经在我国的山 西兰花煤化工有限责任公司醇、氨(300/100kt/a)项目、神华宁煤集团有 限责任公司(1670Kt/a)甲醇项目、贵州开阳化工有限公司(500Kt/a) 合成氨项目、淮南集团合成氨项目开始应用实施。 2 国内气流床煤气化技术 2.1 多喷嘴对置式水煤浆气化技术(OMB)[4] 多喷嘴对置式水煤浆气化技术是在 TexaCO 技术的基础上发展起来 的,其反应机理与 TexaCO 技术相同,流程相似。该技术采用多喷嘴对置 技术,雾化效果好。负荷可调节范围大,速度快,装置适应能力强,气 化效率高。洗涤冷却室采用喷淋鼓泡复合床,热质传递效果好,液位稳。 气体初步净化系统采用分级净化,系统压降低,高效节能,合成气中灰 含量低。采用蒸发热水塔的渣水处理系统,热传递效率高,水循环流程 简单,耐结垢。但是也存在炉体拱顶处耐火材料烧损快的技术问题。 OMB 技术的关键设备有:磨煤机、高压煤浆泵、气化炉、工艺喷嘴、 煤气初步净化设备、蒸发热水塔、滚筒筛、渣锁斗、捞渣机、激冷水泵。 气化炉上部为气化室,内衬耐火砖,气化室中上部布置工艺喷嘴,喷嘴 在同一水平面。气化炉下部为激冷室,采用复合床结构形式消除了带水、 带灰问题。工艺喷嘴采用外混式、新型预膜式喷嘴,喷嘴流道介质由内 向外依次为氧气、煤浆、氧气。喷嘴头部(向火面)采用盘管冷却来防 止喷嘴损坏,由 1 套单独的系统向喷嘴供应冷却水,该系统设置了复杂 的安全联锁。一般使用 3 个月后需更换喷嘴头部或在喷嘴头部堆焊的耐
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Lurgi 氧气鼓风气化炉的典型操作结果
泥 煤 煤种来源 粒径(mm) 工业分析(wt%) 挥发份 固定炭 水分 灰分 高热值 kJ/kg 灰熔点 /℃ 操作压力 /MPa 煤气组成,(vol%) CO H2 CH4 CnHm H2S CO2 N2 煤气热值 /kJ/m3 17.0 34.1 13.6 0.6 0.1 33.8 0.8 11614 19.1 37.2 11.8 0.4 0.2 30.7 0.5 11446 15.9 39.2 10.8 1.2 0.4 32.2 0.3 11409 20.2 38.9 11.7 0.4 0.3 28.1 0.4 11748 21.4 38.4 9.6 0.5 0.2 28.9 1.0 11096 24.2 39.7 9.4 1.0 0.8 24.4 0.5 11811 24.8 38.3 9.3 0.6 0.5 25.8 0.7 11438 20.3 45.3 4.7 0.3 0.1 27.5 1.3 9836 57.3 25.2 15.5 2.0 22865 -2.03 36.8 32.6 26.5 4.1 26168 1204 2.52 29.1 30.4 34.3 6.2 27935 1249 3.03 30.5 38.7 16.5 14.3 31168 1427 3.03 19.7 38.3 5.4 36.3 300098 1421 2.86 28.9 43.0 15.7 12.4 32122 1399 2.45 29.1 47.6 5.1 18.2 33332 1382 2.24 5.7 87.3 2.0 5.0 35193 1499 2.86 Ireland 15.2-40.6 Germany 1.0-10.1 褐 煤 North Dakota 1.4-30.5 次 烟 Riotolbio 5.1-30.5 煤 Sasoll 5.1-30.5 烟 Westerfield 5.1-30.5 煤 Charle-ston 5.1-30.5 无烟煤 Vietnam 5.1-30.5
GSP气化炉

二段,水煤浆进料无需循环气 急冷固化飞渣 1987年由DOW 化学公司建成 第一套工业化装置,整个工 艺流程包括煤浆制备,气化 炉和排渣系统,煤气的冷却 净化及热量回收装置。
E-Gas气化炉
气流床的备煤和进料
● 干粉 粉煤90%<100μ m,干燥w<2%,N2保护和输送
锁斗加压系统,计量,能耗高
现有职工570人,其中科技人员393人,中科院院士1人, 研究员40余人,副研究员及高级工程师110多人,另外还 有在读博士、硕士研究生约150人。
主要研究学科方向 承担国家重大科研项目
煤 化 学 与 化 工 催 化 化 学 与 工 程 新 型 炭 材 料 化 学 反 应 工 程
973
项 目
863 项 目
环境友好,净化成本低 粗煤气、水、灰渣净化处理容易,无环境二次污染 煤种适应性高 可适用于高灰、高灰熔点煤
国内外煤气化工艺
已商业化和正商业化的工艺:
● 气流床气化 ● 流化床气化 ● 固定床气化 GE-Texaco,Shell,GSP,E-Gas,K-T HTW,Winkler, AFB, Lurgi
煤燃烧:
Coal Air
C + O2 CO2
H + O2
〔S〕+ O2 〔N〕+ O2 Hg 水
H2O
SOX NOX Hg, HgO 水蒸汽
Flue gas
燃 烧 和 气 化 的 对 比
燃烧 煤量 100 温度 1000℃ 压力 常压 介质 空气 介质量 900 产物 CO2,N2, H2O,NOx, SOx, 灰
气流床
常压 K-T,1949年,德国,50台(29台1993年) 加压 Texaco( 2.5-6.5MPa ),德国,日本,美国,中国 中国最多 (鲁南,上海,淮化,渭河,南化,榆林…) Shell
流化床
Winkler,常压,1926年,70台,现已剩余很少 HTW( 1.0-3.0MPa ),1986年 AFB 2001年常压商业运行 常压低压(0.5MPa)推广中 2006年,加压大型半工业试验装置建设
一. 煤炭的组成和用途
煤炭:复杂的有机含碳矿物(从褐煤到无烟煤),以碳为主,
主要成份为C,H,O,N,S;高度芳香化;多少不等的 无机矿物, Ash : 1~50%, Water: X~60%, Volatile:3~45%
用途
能源 能源
燃烧发电 (10~35MJ/kg)
制合成气 CO+H2,H2 制燃料气CH4,CO,H2 制还原剂(冶金焦,铁合金焦) 制吸附剂(活性炭,活性焦)
干煤粉(dp<0.1mm),锁斗 O2/H2O 鼓风; 膜式水冷壁(垂直管) 压力 3.0MPa 废热锅炉换热 1500-1600℃ 熔渣急冷排出 循环煤气降温固化飞渣
Shell 气化炉
壳牌气化炉的典型数据
项 用 煤 量 目 t/d 设 229 2.51 29.9 62.9 5.8 计 变 化 范 围 115-235 2.44-2.51 22.7-34.6 54.8-69.0 2.2-10.8 示 范 运 行 229 2.44 27.7-29.8 66.5-69.0 2.2-2.4
科 技 攻 关
国 际 合 作 项 目
国 家 创 新 基 金
军 工 重 点 科 研
山西煤气化工程研究中心简介
1980年成立灰熔聚煤气化课题组;
1994年扩建为气化室;
2001年改名能源环境工程实验室;
2002年改名为煤气化工程研究中心; 2005年成立山西煤气化工程研究中心;进行加压灰熔聚煤 气化工艺大型化的开发。
取决于热力学平衡和接近平衡的程度
实际气化过程并非按化学计量进行,而是取决于过程的温度控制,以保证
正常的气固流动
备煤,进料,反应,渣排出和气体净化
现代电力和能源化工对煤气化的要求
大规模、高生产能力 单台处理量达 500~2000 ton/day 过程高效 操作压力、操作温度合理 能耗低 设备投资低
● 气化炉的操作温度150℃ ≥灰的流动温度
● 高温耐火材料磨蚀增大 ● 气化炉材料质量要求提高 ● 污水系统结垢增加
建议灰渣流动温度<1350℃ (Texaco),粘度<25pa.s, 对非牛顿型流体渣,渣口温度 >tcr
Slag viscosity as a function of temperature
H2S,NH3, 粉尘, K,Na,Hg CO2
H2
Fuel cell
(η =80% )
电力
64%
净化
变换
合 IGCC 成 气 (η =60% ) 炼油厂 H2 合 成 气
电力
48%
甲醇
DME MTO MTP MTG
直接液化
合成氨 合成
汽油 柴油 油品 NH3 甲醇 合成油
煤气化过程的简单分析:
煤气化通常不希望有焦油等液态产品存在,以消除净化的困难,通常要求
典型的气化技术
● 移动床
Lurgi
HTW
● 流化床
KRW AFB
Texaco
● 气流床
E-Gas
Shell GSP
Lurgi炉
德国,1930年, 合成气 O2/Steam鼓风
运行装置:
SASOL 97台,南非 大平原 18台,美国 中国11台
加压固态排渣 Lurgi
固定床气化炉
历史长,炉数多,使用可靠 逆流热交换,出口温度低(250-650℃) 热效率高 气体干馏产物多,甲烷高,热值高 焦油等杂质多,下游净化困难 使用不粘块煤,价格高 氧消耗低而蒸汽消耗高(1-2kg汽/kg煤) 固定床气体分布影响大,处理能力有限 (500-800吨)
煤气化:
CnHmOxNySz=C+CO+CO2+H2+NH3+HCN+H2S+COS+••••
Coal Oxygen Steam
C+
1/
2
O2
CO CO2 2CO CO + H2
C + O2 C + CO2 C + H2O
C + 2H2
CO + H2O CO + 3H2 〔S〕 〔N〕
CH4
H2 + CO2 CH4 + H2O H2S+COS NH3+HCN
● 水煤浆
水煤浆制备耗能较干粉少,泵送容易,控制容易;
水煤浆浓度低,热值低,水蒸发和加热耗能高 , 对于水性煤如 褐煤,年青烟煤,水煤浆浓度低; 水煤浆浓度 ∝煤的平衡湿含量,固定炭,表面 C/O官能团,自由膨胀数,Cf/V,粘土,可溶性 Ca,Mg盐含量
煤中矿物和渣的流动特性(气流床)
● 干粉煤都能气流床气化,但受灰渣影响
温度在900℃以上,有足够的停留时间
煤气化的主反应为 C+H2O
CO+H2和C+CO2
2CO,此二反应在高温是
有利的,通常1000℃以上时已达足够平衡转化率
高温高压有利于化学反应进行,但在1000-1200℃以上反应受扩散控制 气化炉炭转化率取决于反应速度和停留时间,气相有效成份浓度(或热值)
介绍内容
煤炭的特性 煤气化原理 现代煤气化技术发展
中科院山西煤化所研究所介绍
1954年10月创建于大连市(中科院煤炭研究室) 1961年迁至太原市
1963年扩建为中国科学院煤炭化学研究所
1965年-1978年改名为燃料化学研究所
1979年复名为中国科学院山西煤炭化学研究所
人员结构:
Gasifier Gas Composition (Vol %) H2 25 - 30 CO 30 - 60 CO2 5 - 15 H2O 2 - 30 CH4 0-5
相关文档
最新文档