3多目标规划M详解

合集下载

多目标规划

多目标规划

解:
x2
A B C
x1
Eab = E pa = {B}, Ewp = AB, BC
{
}
O
T 2 2 例2 设 X = {( x1 , x2 ) ( x1 + 1) + 2 x = 4}, 求 X , 的 Eab , E pa , Ewp
2
解:
x2
Eab = φ , E pa = Ewp
= AB
{ }
第二节 多目标规划问题的解 一,向量集的极值 1 多目标规划的标准形式是
min( f1 ( x),..., f p ( x))T , p > 1, x ∈ E n g i ( x) ≥ 0 i = 1,..., m s.t. h j ( x) = 0 j = 1,..., l (2.1)
1
介绍A.M.Geoffrion于1968年提出的—种 真有效解—G-有效解.

min f ( x) = ( f1 ( x), f 2 ( x))T
x∈D
f1 ( x) = x1 + 2 x2 , f 2 ( x) = x1 x2 , D = ( x1 , x2 )T 0 ≤ x1 ≤ 1,0 ≤ x2 ≤ 1
的有效解和弱有效解. f1 ( x) = 3 x2 1 B
{
}
R pa = Rwp = {OA, AB}
解: 1 画出 D 及 D 的像 f (D )
f1
x
f1 , f 2 联立消去 x
O 1

f1 = f 22 + 2 f 2
f2
1
R pa = Rwp
. .
2
.
f2
x
o
1 2

多目标规划——精选推荐

多目标规划——精选推荐

则目标函数为
,并根据最初的约束条件求解。
记求得的最优解为 = 。
然后将 = 为约束条件(绝对约束)添加到原目标规划的约束中,求解 级目标问题:
对于解P3级规划问题也是同理。
最后一个单目标规划的规划的求解结果即为目标规划的满意解。
注意:在目标规划中不提最优解的概念,只提满意解的概念(因为不可能所有的目标都达到最优),即寻求能够照顾到各个目标,并使决 策者感到满意的解,由决策者来确定选取哪一个解,但满意解的数目太多而难以将其一一求出。
于是我们就可以把多目标规划问题转化为一般的单目标模型:
例题:某厂计划在下一个生产周期内生产A,B两种产品,每种产品的单位利润分别为10和18(单位:万元),资源消耗和限制数 量如下表,求总利润最大的生产方案。
解:设生产A,B,C分别为 , , 个单位,数学模型为:
这是一个单目标问题,解得x1=50/7,x2=200/7,最优目标函数值z=4100/7万元。 但是如果考虑到第一种资源面临涨价预期,希望尽可能清空库存利于快速补充,故考虑本期利润最大化的同时必须为下一个周期 做好准备,从而增加新目标函数:
P1级目标: 达到利润指标利润6000万; P2级目标: 尽量用完第一种资源的库存,不够可以适当外购议价资源; P3级目标: 尽量不加班,如果需要加班则加班时间不要超过100小时。 达成函数(目标函数): 设生产A,B,C分别为 , , 个单位,约束条件:
先求解P1级目标问题:
在目标规划中不提最优解的概念只提满意解的概念因为不可能所有的目标都达到最优即寻求能够照顾到各个目标并使决策者感到满意的解由决策者来确定选取哪一个解但满意解的数目太多而难以将其一一求出
多目标规划 多目标规划问题特点:
1. 多个优化目标 2. 约束条件有回旋 给出几个实际的例子: 例如要购置一台手提电脑,你想要 1. 内存尽可能大 2. 运行速度尽可能快 3. 重量尽可能轻 4. 体积尽可能小 5. 清晰度要高 6. 性 价比要尽可能高 … 这些东西就是目标。 而像:1. 希望价格在5千以内 2. 希望外观比较漂亮 3. 比较坚固 4. 性能要稳定可靠 .....就是一些模糊的约束条件。 又例如,去浙大参加研究生复试,应该怎么走?这就是一个交通工具的选择问题。 每个人都有自己的走法,而 1. 一个小时左右能够到 2. 单程费用不要超过20元 3. 最好车上有坐位 4. 步行路程不要超过1000米 .....之类的约束条件就是很多的目标。

多目标规划

多目标规划
其中V-min表示对个p目标f1(x), f2(x), ... , fp(x)以向量 的目标函数F(x)进行评价,每个目标都以追求最小为目的, T 其中F(x)= ( f 1 ( x ), f 2 ( x ), , f p ( x )) . 因此,有时也将(VP)写为:
V (VP) V min F ( x) min F ( x) 或(VP) g ( x)0 xR
T R { x | g ( x ) 0 }, g ( x ) ( g ( x ), g ( x ), , g ( x )) . 其中, 1 2 m
主要特点:
(1)多目标数学规划中,评价一个可行解的好坏是由
p个目标所决定的,即用一个向量F(X)来比较好坏,但 是对于两个可行解,谁好谁坏有时不能比较出来.
Hale Waihona Puke 设置显示参数:显示每次迭代的输出 options=optimset('Display','iter'); 调用fgoalattain函数: [x,favl,attainfactor,exitflag] =fgoalattain(@ff12,x0,goal,weight,A,b, [],[],lb,[],[],options) 运行后,输出结果为:
x= 5 4 favl = 29700 -44000 attainfactor = -0.0100 exitflag = 4
例:(投资问题)某企业拟用1000万元投资A、 B两项目的技术改造.设x1,x2分别表示分配 给A、B项目的投资(万元).据估计,投资 项目A、B的年收益分别为投资的60%和70%; 投资风险损失,与总投资和单项投资的关系 为:0.001x12+0.002x22+0.001x1x2.根据市 场调查显示,A项目的投资前景好于B项目, 因此希望A项目的投资不小于B项目,试问应 该如何在A、B两个项目之间分配投资,才能 既使年利润最大,又使风险损失为最小。

多目标规划模型及其在生产优化中的应用

多目标规划模型及其在生产优化中的应用

多目标规划模型及其在生产优化中的应用随着科技的不断进步,企业在生产的过程中需要考虑的因素也越来越多,例如成本、质量、效率、环保等多个方面。

这些因素不仅对企业的发展起到了决定性的作用,而且对于整个行业的发展也具有重要意义。

因此,在这个时代,如何能够完成多目标规划,对于企业的生产优化是非常重要的。

本文将从多目标规划模型及其在生产优化中的应用方面进行探讨。

一、多目标规划模型的概述多目标规划(multi-objective programming,MOP)是指在满足多个目标的基础上,寻求最优方案的一种决策方法。

多目标规划模型是通过建立目标函数,对每个目标进行评价和权衡,从而实现多目标的决策优化模型。

多目标规划模型可以被用来解决许多现实生产和决策问题,例如资源配置问题、供应链管理问题、营销决策问题、风险管理和环境保护问题等等。

在这些问题中,优化目标多个,且有时目标之间存在着矛盾性,因此需要采用多目标规划模型来解决。

二、多目标规划模型在生产优化中的应用1. 降低成本和提高质量对于一个企业来说,成本和质量是两个非常重要的因素。

如何同时降低成本和提高质量成为了企业的一个难题。

多目标规划模型可以帮助企业在进行生产决策时,考虑多个目标,实现成本和质量的平衡。

在多目标规划模型中,建立成本和质量的目标函数,对企业的各项指标进行量化和分析,然后对目标函数进行加权,最终得到最优方案。

通过这种方式,企业可以在不降低产品质量的条件下,实现成本的降低,从而提高企业的效益。

2. 提高生产效率和降低能耗随着市场竞争的加剧,企业需要不断提高生产效率,从而降低成本,并提高企业的竞争力。

另一方面,环境保护也成为了现代企业生产的一个必须考虑的因素。

多目标规划模型可以在生产过程中,同时考虑生产效率和能耗,实现生产的可持续发展。

在多目标规划模型中,建立生产效率和能耗的目标函数,评估企业的各项指标,加权得到最优方案。

通过这种方式,企业可以在提高生产效率的同时,降低能耗,实现生产效率与环境保护的双赢。

《多目标规划》PPT课件

《多目标规划》PPT课件

2021/4/24
16
多目标规划的象集
研究象集的作用在于:
(1) 求出F R中的有效点和弱有效点,就可确定有效解和弱有效解;
(2) 对象集F R的研究可以提供—些解多目标规划的方法;
f x
f x
f1 x f2 x
f2 x f1 x
2021/4/24
Re* a,b
O
ab
x
O a cd b x
13
a
b
多目标规划的解集
❖ 解集之间的关系
(1)
p

i1
Ri*
,则 Ra*b
p
i 1
Ri*
(2) Re* Rw*e R
(3) Ri* Rw*e (i 1, 2,..., p)
产品
A1 A2 A3
产品生产销售数据表
生产效率
利润
最大销量
能耗
(m/h) (元/m) (m/周) (t/1000m)
20
500
700
24
25
400
800
26
15
600
500
28
2021/4/24
6
多目标规划问题的典型实例
假设该厂每周生产三种产品的小时数分别为 x1, x2, x3 ,则我们根据各种产品的单位
规划中的每个目标函数看成是单目标规划问题的目标函数,即我们分别考虑 p 个单
目标规划问题:min fi x, xR, i 1,2,..., n ,那么这 p 个单目标规划问题的公共最优
解才是多目标规划问题的的绝对最优解。如果这 p 个单目标规划问题没有公共的最
优解,则多目标规划问题就没有绝对最优解。
x1 60 又考虑到购买的数量必须要满足非负的条件,由于对 x1 已经有相应的约束条件,故只 需添加对 x2 的非负约束即可。 综合以上分析,得到最优化数学模型如下:

多目标规划(运筹学

多目标规划(运筹学

环境与资源管理
资源利用
多目标规划可用于资源利用优化,以最 大化资源利用效率、最小化资源浪费为 目标,同时考虑环境保护、可持续发展 等因素。
VS
环境污染控制
多目标规划可以应用于环境污染控制,以 最小化污染排放、最大化环境质量为目标 ,同时考虑经济成本、技术可行性等因素 。
城市规划与交通管理
城市布局
发展更高级的建模语言和工具, 以简化多目标规划问题的描述和 求解过程。
求解算法
02
03
混合整数规划
研究更高效的求解算法,以处理 大规模、高维度的多目标规划问 题。
研究如何将连续变量和离散变量 有效地结合在多目标规划问题中, 以解决更广泛的优化问题。
数据驱动的多目标优化
数据驱动决策
利用大数据和机器学习技术,从大量数据中提取有用的信息,以 支持多目标决策过程。
案例二:投资组合优化
总结词
投资组合优化是多目标规划在金融领域的应 用,旨在实现投资组合的风险和回报之间的 最佳平衡。
详细描述
在投资组合优化中,投资者需要权衡风险和 回报两个目标。多目标规划方法可以帮助投 资者找到一个最优的投资组合,该组合在给 定风险水平下能够获得最大的回报,或者在 给定回报水平下能够实现最小的风险。通过 考虑多个目标,多目标规划可以帮助投资者 避免过度依赖单一目标而导致的潜在风险。
在多目标规划中,约束条件可能包括资源限制、时间限制、技术限制等,需要综合考虑各种因素来制 定合理的约束条件。
决策变量
决策变量是规划方案中需要确定的参 数,其取值范围和类型根据问题的实 际情况而定。
在多目标规划中,决策变量可能包括 投资规模、生产能力、产品种类等, 需要合理选择和定义决策变量,以便 更好地描述问题。

《多目标规划模型》课件

《多目标规划模型》课件

02
权重法的主要步骤包括确定权重、构造加权目标函数、求解加权目标函数,最 后得到最优解。
03
权重法的优点是简单易行,适用于目标数量较少的情况。但缺点是主观性强, 依赖于决策者的经验和判断。
约束法
1
约束法是通过引入约束条件,将多目标问题转化 为单目标问题,然后求解单目标问题得到最优解 。
2
约束法的主要步骤包括确定约束条件、构造约束 下的目标函数、求解约束下的目标函数,最后得 到最优解。
多目标规划模型
目录
• 多目标规划模型概述 • 多目标规划模型的建立 • 多目标规划模型的求解方法 • 多目标规划模型的应用案例 • 多目标规划模型的未来发展与挑战
01 多目标规划模型概述
定义与特点
定义
多目标规划模型是一种数学优化方法 ,用于解决具有多个相互冲突的目标 的问题。
特点
多目标规划模型能够权衡和折衷多个 目标之间的矛盾,寻求满足所有目标 的最佳解决方案。
02 多目标规划模型的建立
确定目标函数
01
目标函数是描述系统或决策问题的期望结果的数学表达 式。
02
在多目标规划中,目标函数通常包含多个目标,每个目 标对应一个数学表达式。
03
目标函数的确定需要考虑问题的实际背景和决策者的偏 好。
确定约束条件
01 约束条件是限制决策变量取值范围的限制条件。 02 在多目标规划中,约束条件可以分为等式约束和
谢谢聆听
模型在大数据和人工智能时代的应用前景
要点一
总结词
要点二
详细描述
随着大数据和人工智能技术的快速发展,多目标规划模型 在许多领域的应用前景广阔。
大数据时代带来了海量的数据和复杂的问题,这为多目标 规划模型提供了广阔的应用场景。例如,在金融领域,多 目标规划可以用于资产配置和风险管理;在能源领域,多 目标规划可以用于能源系统优化和碳排放管理。同时,随 着人工智能技术的不断发展,多目标规划模型有望与机器 学习、深度学习等算法相结合,共同推动相关领域的发展 。

3多目标规划(M)详解

3多目标规划(M)详解

增加约束
x
i 1
9
i
6,
以学分最多为目标求解。
最优解: x1 = x2 = x3 = x5 = x7 = x9 =1, 其它为0;总 学分由21增至22。
1 2 3
4 5 6 7 8 9
注意:最优解不唯一!
可将x9 =1 易为x6 =1 LINDO无法告诉优化 问题的解是否唯一。
Hale Waihona Puke 求解算法 转化为单目标 实例1:投资的收益和风险
市场上有n种资产(如股票、债券、…)Si ( i=1,…n) 供投资者选择,某公司有数额为M的一笔相当大的资金可用 作一个时期的投资。公司财务分析人员对这n种资产进行了 评估,估算出在这一时期内购买Si的平均收益率,并预测出 购买Si的风险损失率。考虑到投资越分散,总的风险越小, 公司确定,当用这笔资金购买若干种资产时,总体风险可用 所投资的Si中最大的一个风险来度量。 购买Si要付交易费,费率已知,并且当购买额不超过最低限 额时,交易费按购买最低限额计算(不买当然无须付费)。 另外,假定同期银行存款年利率是1%, 且既无交易费又无风 险。试给该公司设计一种投资组合方案 目标一:使净收益尽可能大; 目标二:而总体风险尽可能小。
用Lindo或Lingo软件求解,得到最优 解 *
x1 3, x2 3, z 1500 .
Max z 200x1 300x2 ;
2. 目标规划建模
若在上例中,企业的经营目标不仅要考
s. t. 2 x1 2 x2 12 , 4 x1 16, 5 x2 15, x1 , x2 0.
目标规划的数学模型
目标规划的基本概念
为了克服线性规划的局限性,目标规划采用如下手段: 1. 设置偏差变量; 2. 统一处理目标与约束; 3. 目标的优先级与权系数。

多目标规划-精品

多目标规划-精品

步骤:
主要目标 f1x的最优集合为 R 1 ,再在集合 R 1
内求次重要目标 f2x的最优解,设此时的最优
解集合为 R 2 ,如此继续进行,直到求出最后一
个目标函数的最优解。
第一步 第二步 第 p步
m x R 0 fi1n xf1x1
m x R 1 fi2n xf2x2
假定要求 p个目标 f1x,f2x, ,fpx的最优值,约束
条件为 xR。如果其中一个目标比较关键,如 f1x希望
它取极小值,使其他目标满足一定条件,如使
fifixfi i 2,,p
而把问题转化为单目标规划问题
mifn1x
x R'
R f 1 f i x f i , i 2 , ,p , x R
例子:
橡胶配方问题
一个橡胶由 n种成分组成,用 xx1,x2, xnT
来表示一个橡胶配方。对于每一个配方往往同
时硬需 度要f2 考x,察伸多长个指f3 标x,。变例形如橡f4 胶x的等强,力假设f1共x有,m
个指标,则对两个不同方案,就要同时比较个 指标,才能获得尽可能好的橡胶配方。
求最小时,可以p 给每个目标相应的权系
数i 0,且 i 1,构成新的目标函数 i1 p Fxi fix i1 然后使这个新的目标函数取极小值。
这里的权系数大小根据每个目标函数的相 对重要性来确定。
3.平方和加权法
首先确定各个目标 fi x的希望目标值 f i *,
x m Rp1ifp nxfpxp
式中:
R R0
R i x im fix i ,x n R i 1
最后所求出的 x p为最优解。

多目标规划方法讲义(PPT42张)

多目标规划方法讲义(PPT42张)
max Z ( X )
s . t .
(1)
( X ) G(2)
是与各目标函数相关的效用函数的和函数。
在用效用函数作为规划目标时,需要确定一组权值 i 来反映原问题中各目标函数在总体目标中的权重,即:
max i i
i 1 k
( x , x , x ) g ( i 1 , 2 , , m ) i 1 2 n i
x d d 200 1 d d 0( j 1 . 2 . 3 ) j, j x d d 250 2
2 3
2 3
若规定3600的钢材必须用完,原式9 x1 +4 x2 ≤3600 x 4 x d d 3600 d , d 0 则变为 9 1 2 4 4 4 4
1( X ) 0 2( X ) 0 ( X ) ( X ) 0 m
在求解之前,先设计与目标函数相应的一组目标值理想 化的期望目标 fi* ( i=1,2,…,k ) , 每一个目标对应的权重系数为 i* ( i=1,2,…,k ) , 再设 为一松弛因子。 那么,多目标规划问题就转化为:
在一次决策中,实现值不可能既超过目标值又未达 到目标值,故有 d+× d- =0,并规定d+≥0, d-≥0
当完成或超额完成规定的指标则表示:d+≥0, d-=0 当未完成规定的指标则表示: d+=0, d-≥0 当恰好完成指标时则表示: d+=0, d-=0 ∴ d+× d- =0 成立。
2、目标约束和绝对约束
对于由绝对约束转化而来的目标函数,也照上述处理即 可。
二 多目标规划求解
为了求得多目标规划问题的非劣解,常常需要将 多目标规划问题转化为单目标规划问题去处理。实现 这种转化,有如下几种建模方法。

多目标规划求解方法介绍

多目标规划求解方法介绍

多目标规划求解方法介绍多目标规划(multi-objective programming,也称为多目标优化)是数学规划的一个分支,用于处理具有多个冲突目标的问题。

在多目标规划中,需要找到一组解决方案,它们同时最小化(或最大化)多个冲突的目标函数。

多目标规划已经在许多领域得到了应用,如工程、管理、金融等。

下面将介绍几种常见的多目标规划求解方法。

1. 加权和法(Weighted Sum Method):加权和法是最简单和最直接的多目标规划求解方法。

将多个目标函数通过赋予不同的权重进行加权求和,得到一个单目标函数。

然后使用传统的单目标规划方法求解该单目标函数,得到一个最优解。

然而,由于加权和法只能得到权衡过的解,不能找到所有的非劣解(即没有其他解比它更好),因此它在解决多目标规划问题中存在局限性。

2. 约束方法(Constraint Method):约束方法是将多目标规划问题转化为一系列带有约束条件的单目标规划问题。

通过引入额外的约束条件,限制目标函数之间的关系,使得求解过程产生多个解。

然后使用传统的单目标规划方法求解这些带有约束条件的问题,得到一组最优解。

约束方法可以找到非劣解集合,但问题在于如何选择合适的约束条件。

3. 目标规划算法(Goal Programming Algorithms):目标规划算法是特别针对多目标规划问题设计的一类算法。

它通过将多个目标函数转化为约束关系,建立目标规划模型。

目标规划算法可以根据问题的不同特点选择相应的求解方法,如分解法、交互法、加权法等。

这些方法与约束方法相似,但比约束方法更加灵活,能够处理更加复杂的问题。

4. 遗传算法(Genetic Algorithms):遗传算法是一种启发式的优化方法,也可以用于解决多目标规划问题。

它模仿自然界中的进化过程,通过不断地进化和迭代,从初始种群中找到优秀的个体,产生一个适应度高的种群。

在多目标规划中,遗传算法通过构建适应度函数来度量解的好坏,并使用交叉、变异等操作来产生新的解。

多目标规划

多目标规划

化多为少的方法即线性规划把多目标规划问题归为单目标的数学规划(线性规划或非线性规划)问题进行求解经济学家帕雷托,即所谓标量化的方法,这是基本的算法之一。

①线性加权和法对于多目标规划问题(VMP),先选取向量要求λi>0(i=1,2,…,m)作各目标线性加权和然后求解单目标数学规划问题。

λ 的各个分量λi(i=1,2,…,m)通常叫做权系数。

它的大小反映了各相应分目标在问题中的重要程度。

一般,对权系数的不同选取,可以得到问题(VMP)的不同的有效解或弱有效解。

如何选取权系数,对于不同的问题可以有不同的处理方法。

线性规划②理想点法为了求解多目标规划问题(VMP),先依次极小化各个分目标。

设求得第i个目标的极小值多目标规划,则得到R中的一个点多目标规划多目标规划。

由于点ƒ多目标规划的各个分量对于相应的分目标而言是最理想的值,故称ƒ多目标规划为问题(VMP)的理想点。

选取权系数λi>0(i=1,2,…,m),并作偏差(函数)多目标规划,最后求解数学规划问题问题(2)的最优解是问题(VMP)的有效解。

理想点法的基本思想是在某种意义下使向量目标函数与所考虑问题的理想点的偏差为极小,来求出多目标规划问题的有效解。

在上述偏差中,p的不同取值代表了不同意义的偏差。

当取p=2,λi=1(i=1,2,…,m),则偏差就为距离多目标规划多目标规划。

这种情形,理想点法也叫做最短距离法。

分层求解法生态规划对于问题(VMP),假若目标函数多目标规划的各个分目标可以按其在问题中的重冯·诺伊曼要程度排出先后次序,并设这个次序为:ƒ1(x),ƒ2(x),…,ƒm(x)。

先对第一个目标进行极小化:多目标规划,设得到的最优解为x。

然后,按下述格式依次分层对各目标进行极小化:式中多目标规划。

设k=m时得到问题(3)的最优解x,则在每一多目标规划的条件下,x是多目标规划(VMP)的有效解。

在实用中,为了保证每一多目标规划,常把上述Xk中的等式约束作适当的宽容,即给出一组所谓宽容量δi(i=1,2,…,m- 1),并以多目标规划代替(3)中的Xk。

第五章_多目标规划

第五章_多目标规划

R x gi ( x ) 0, i 1, 2,, m 称为多目标规划问题
的可行集或容许集, x R 称为可行解或容许解 . 多目标规划问题与前面讲的规划问题的主要区 别在于:目标函数不止一个,而是 p 个( p 2 ) 。 多目标规划问题的解法:根据问题的实际背景 和特征,设法将多目标优化问题转化为单目标优 化问题,从而得到满意解的方法.
F f1 ( x ), f 2 ( x ), f p ( x ) 为其最优值.
T
容易看出,在使用分层序列法时,若对某个 问题 Pi , 其最优解是唯一的, 则问题 Pi 1 , Pp 的 最优解也是唯一的,且 x(i 1) x( p) x(i ) 。因 此常将分层序列法修改如下:选取一组适当 的小正数 1 ,, p ,成为宽容值,把上述的问 题 Pi 修改如下:
解: 设该厂每周生产布料 A1 , A2 , A3 的小时数为
x1 , x2 , x3 ,总利润为 y1 f1 ( x ) (元) ,总能耗为 y2 f 2 ( x ) ( t 标准煤) ,其中 x = ( x1 , x2 , x3 )T ,
y1 f1 ( x ) 0.15 400 x1 0.13 510 x2 0.20 360 x3 y2 f 2 ( x ) 1.2 0.4 x1 1.3 0.51x2 0.36 1.4 x3
一般的多目标规划问题都可写成如下的形式:
min f1 ( x ) min f 2 ( x ) min f p ( x ) s.t. gi ( x ) 0, i 1, 2,, m
其中, x = ( x1 , x2 ,, xm )T Rn , p 2 .
多目标规划问题的求解不能只追求一个目标的 最优化(最大或最小),而不顾其他目标。

多目标规划方法讲义(PPT 76张)

多目标规划方法讲义(PPT 76张)
9
二 多目标规划求解技术简介
为了求得多目标规划问题的非劣解,常常需要将 多目标规划问题转化为单目标规划问题去处理。实现 这种转化,有如下几种建模方法。

效用最优化模型 罚款模型 约束模型 目标达到法 目标规划模型
方法一
效用最优化模型(线性加权法)
思想:规划问题的各个目标函数可以通过一定的方式 进行求和运算。这种方法将一系列的目标函数与效用 函数建立相关关系,各目标之间通过效用函数协调, 使多目标规划问题转化为传统的单目标规划问题:
讲多目标规划方法
多目标规划解的讨论——非劣解 多目标规划及其求解技术简介

效用最优化模型罚款模型 约束模型目标规划模型
目标达到法

多目标规划是数学规划的一个分支。 研究多于一个的目标函数在给定区域上的最优化。又称多 目标最优化。通常记为 MOP(multi-objective programming)。
在图1中,max(f1, f2) .就
方案①和②来说,①的
f2 目标值比②大,但其目 标值 f1 比②小,因此无
法确定这两个方案的优
与劣。 在各个方案之间, 显然:④比①好,⑤比
图1 多目标规划的劣解与非劣解
④好, ⑥比②好, ⑦比
③好……。
而对于方案⑤、 ⑥、⑦之间则无法确 定优劣,而且又没有 比它们更好的其他方 案,所以它们就被称 为多目标规划问题的 非劣解或有效解, 其余方案都称为劣解。 所有非劣解构成的集 合称为非劣解集。 当目标函数处于冲突状态时,就不会存在使所有目 标函数同时达到最大或最小值的最优解,于是我们只能 寻求非劣解(又称非支配解或帕累托解)。
3

多目标规划及其非劣解
多目标规划模型

多目标规划模型概述ppt

多目标规划模型概述ppt
hj(X)0
X(x1,x2,...x.n), 为决策变量
如对于求极大(max)型,其各种解定义如下: 绝对最优解:若对于任意的X,都有F(X*)≥F(X) 有效解:若不存在X,使得F(X*)≤ F(X)
弱有效解:若不存在X,使得F(X*)<F(X)
2、多目标优选问题的模型结构
可用效用函数来表示。设方案的效用是目标属性
4 3
x1 x1
5x2 10 x
200 2 300
x 1 , x 2 0
望达到的目标值转化为约束条件。 经研究,工厂认为总产值至少应 达到20000个单位,而污染控制 在90个单位以下,即
f2(X)40x0160x02 20000
f3(X)3x12x2 90
由主要目标法化为单目标问题
max f 1 ( X ) 70 x 1 120 x 2
的函数:
U (x)U (f1,f2,..f.p),
并设
aij fi(xj )
且各个方案的效用函数分别为
U (xj)U (a1j,a2j,.a .p .)j,
则多目标优选模型的结构可表示如下:
ord(U X)(U(X1)U , (X2),..U ..(,Xp))T s.t. gi(X)0
hj(X)0
多目标决策问题中的方案即为决策变量,也称为多目 标问题的解。备选方案即决策问题的可行解。在多目标决 策中,有些问题的方案是有限的,有些问题 的方案是无限 的。方案有其特征或特性,称之为属性。
1、多目标规划问题的模型结构
opt(FX)(f1(X),f2(X),...f.p,(X))T s.t. gi(X)0
解:问题的多目标模型如下
max f 1 ( X ) 70 x 1 120 x 2 max f 2 ( X ) 400 x 1 600 x 2

《多目标规划》课件

《多目标规划》课件

约束条件
01
约束条件是限制决策变量取值范围的限制条件,通常表示为决 策变量的不等式或等式。
02
在多目标规划中,约束条件可能包括资源限制、技术限制、经
济限制等。
约束条件的处理需要考虑其对目标函数的综合影响,以确定最
03
优解的范围。
决策变量
01 决策变量是规划问题中需要确定的未知数,通常 表示为数学符号或参数。
多目标规划的算法改进与优化
混合整数多目标规划算法
结合整数规划和多目标规划的优点,解决具有离散变量的 多目标优化问题。
进化算法
借鉴生物进化原理,通过种群进化、基因突变等方式寻找 多目标优化问题的Pareto最优解。
梯度下降法
利用目标函数的梯度信息,快速找到局部最优解,提高多 目标规划的求解效率。
多目标规划在实际问题中的应用前景
特点
多目标遗传算法能够处理多个相互冲突的目标函数,提供一组非劣解集供决策者选择。 它具有较强的全局搜索能力和鲁棒性,适用于复杂的多目标优化问题。
注意事项
多目标遗传算法需要合理设置遗传参数和选择策略,以确保求解的有效性和准确性。
04
多目标规划案例分析
生产计划优化案例
总结词
生产计划优化案例主要展示多目标规划在生产计划方面的应 用,通过合理安排生产计划,降低成本并提高生产效率。
《多目标规划》课件
• 多目标规划概述 • 多目标规划的基本概念 • 多目标规划的常用方法 • 多目标规划案例分析 • 多目标规划的未来发展与展望
目录
01
多目标规划概述
定义与特点
定义
多目标规划是一种决策方法,旨在同 时优化多个目标函数,并考虑多个约 束条件。
特点

多目标规划求解方法介绍

多目标规划求解方法介绍
§3.3 多目标规划求解方法介绍
一、约束法
1.基本思想:在多个目标函数中选择一个主要目标作为 目标函数,其它目标处理为适当的约束。
(VP)V s.t.
min F (x) gi (x) 0, i
f1 ( x), , 1,, m
f p (x)
T
S x gi (x) 0,i 1,,m
无妨设 f1(x)为主要目标,对其它各目标 f2(x),, f p (x) 可预先
(LVP)
g2 (x) x1 x2 8 0 g3 (x) x1 6 0
g4 (x) x2 4 0
g5 (x) x1 0
g6 (x) x2 0
用约束法求解。设 f1(x) 为主目标。
第一步:分别求解
f1
min s.t.
f1 ( x) xS

x(1) (6,0)T
x(1) -30 x(2) 3
f p (x) x S p1
得最优值
f
* p
则 Sp
x
f p (x)
f
* p
Sp1 是在分层序列意义下的最优解集合。
3.
性质:
Sp
S
* pa
,即在分层序列意义下的最优解是有
效解。
证明:反证。设
~
xSp
,但
~
x
S
* pa
,则必存在
~
yS
使
~
~
F(y) F(x)
即至少有一个j0 ,使
~
~
f j ( y) f j (x), j 1,, j0 1,
考虑上述(VP)问题, 为主目标。
fk (x)
第一步: (1)对 j 1,2,, p ,求解单目标问题:

多目标规划模型-很好

多目标规划模型-很好

对于上述模型的三个目标,工厂 确定利润最大为主要目标。另两 个目标则通过预测预先给定的希 望达到的目标值转化为约束条件。 经研究,工厂认为总产值至少应 达到20000个单位,而污染控制 在90个单位以下,即
f 2 ( X ) 400x1 600x2 20000 f 3 ( X ) 3x1 2 x2 90
多目标决策由于考虑的目标多,有些目标之间又 彼此有矛盾,这就使多目标问题成为一个复杂而困难 的问题.但由于客观实际的需要,多目标决策问题越来 越受到重视,因而出现了许多解决此决策问题的方法. 一般来说,其基本途径是,把求解多目标问题转化为求 解单目标问题.其主要步骤是,先转化为单目标问题, 然后利用单目标模型的方法,求出单目标模型的最优 解,以此作为多目标问题的解.
g i ( X ) 0 s.t. h j ( X ) 0
例如,某公司计划购进一批新卡车,可供选择的卡车有如 下4种类型:A1,A2,A3,A4。现考虑6个方案属性:维 修期限f1,每100升汽油所跑的里数f2,最大载重吨数f3,价 格(万元)f4,可靠性f5,灵敏性f6。这4种型号的卡车分别 关于目标属性的指标值fij如下表所示。
i
1
f j * max f ij
f j * * min f ij
i
变换后的指标值矩阵为: aij A1 A2 A3 A4 f1 1 100 1 40.6 f2 1 100 42.25 25.75 f3 67 1 100 67 f4 50.5 100 1 25.75 f5 34 1 67 100
多目标决策问题包含有三大要素:目标、方案和决策者。
1、多目标规划问题的模型结构
optF( X ) ( f1 ( X ), f 2 ( X ),...., f p ( X ))T s.t. g i ( X ) 0 hj (X ) 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求解算法
转化为单目标
实例1:投资的收益和风险
市场上有n种资产(如股票、债券、…)Si ( i=1,…n) 供 投资者选择,某公司有数额为M的一笔相当大的资金可用作 一个时期的投资。公司财务分析人员对这n种资产进行了评 估,估算出在这一时期内购买Si的平均收益率,并预测出购 买Si的风险损失率。考虑到投资越分散,总的风险越小,公 司确定,当用这笔资金购买若干种资产时,总体风险可用所 投资的Si中最大的一个风险来度量。 购买Si要付交易费,费率已知,并且当购买额不超过最低限 额时,交易费按购买最低限额计算(不买当然无须付费)。 另外,假定同期银行存款年利率是1%, 且既无交易费又无风 险。试给该公司设计一种投资组合方案 目标一:使净收益尽可能大; 目标二:而总体风险尽可能小。
0-1规划模型
课号
课名
先修课要求
1
微积分
2
线性代数
3
最优化方法 微积分;线性代数
4
数据结构
计算机编程
5
应用统计 微积分;线性代数
6
计算机模拟
计算机编程
7
计算机编程
8
预测理论
应用统计
9
数学实验 微积分;线性代数
转化为单目标的具体方法介绍:
1. 主要目标法 在多目标优化问题中,根据问题的实际
情况,确定一个目标为主要目标,而把其余目 标作为次要目标,并且根据决策者的经验,选 取一定的界限值。这样就可以把次要目标也作 为约束来处理,于是就将原多目标问题转化为 在新的约束下,求主要目标的单目标优化问题。
转化单目标法
为了选修课程门数最少,应学习哪些课程 ?
选修课程最少,且学分尽量多,应学习哪些课程 ?
0-1规划模型
决策变量
课号
课名
所属类别
1
微积分
数学
2
线性代数
数学
3 最优化方法 数学;运筹学
4
数据结构
数学;计算机
5
应用统计
数学;运筹学
6 计算机模拟 计算机;运筹学
7 计算机编程
计算机
8
预测理论
运筹学
9
数学实验 运筹学;计算机
2. 线性加权和法:按照m个目标 fi(x) 的重要
程度,分别乘以一组权系数,然后相加作
为目标函数。
m
m
u f x i fi x i 1
i 1
i 1
转化单目标法
3. 极大极小点法
min
1im
u
f
x

min
xX
max
1im
fi
x

4. 范数理想点法
矛 盾 的
s.t. 4x1 5x2 80
4x1 2x2 48
x1
6
x1, x2 0
Байду номын сангаас
一般形式: min Q( X ) max R( X ) s.t. F ( X ) M
X O
双目标规划模型
化成单目标规划模型
化法一 化法二
min Q( X )
max R( X )
s.t. R( X ) a 或 F(X) M
多目标优化模型
一、多 目 标 优 化 简 介
• 优化(Optimization) : 从若干可能的方案中寻求某 种意义下的最优方案
•多目标规划(Multiple Objectives Programming) 是数学规划的一个分支,研究多于一个目标函数在给 定区域上的最优化,又称多目标最优化,通常记为 VMP。
1
d p
f x, f ;


m
i
fix fi
p p
i1

转化单目标法
5. 评价函数法 以上的各种方法都是由 fi (x)归结成一
个目标其可看作是 fi ( x) 的函数 U( x) u( f ( x))
我们可统一称其为评价函数,显然其 具有很大的概括性,它不仅包括以上的 一些方法,还可以构造新的方法。当然 这种构造也不是随意的,一般要根据问 题的具体背景和几何意义来构造
s.t. Q( X ) b F(X) M
X O
X O
min Q( X ) (1 ) R( X )
s.t. F ( X ) M
X O
为目标权重或偏好系数。
a,b, 均可看成参数,对不同的参数值求出
最优解,然后加以讨论,选出满意解。
例 选课策略
课号
课名
学分
约束条件
最少2门数学课, 3门运筹学课, 2门计算机课。
xi=1 ~选修课号i 的 课程(xi=0 ~不选)
目标函数 选修课程总数最少
9
Min Z xi i 1
x1 x2 x3 x4 x5 2
x3 x5 x6 x8 x9 3 x4 x6 x7 x9 2
每条线路中的景点可以全部参观,也可以参观其中之一。 不仅如此,一起参观景点的人数越多,每人承担的费用也会越 小。车费与车型、乘客人数、路程种类及公里数有关。
主办方在会议开始前对所有参会的100位代表 旅游意向进行了调查,充分考虑这些代表的意愿, 为主办方设计代表们合适的旅游路线,使他们在会 议结束后的10天时间内花最少的钱游尽可能多的地 方。 目标一:宾客参观意愿满意度尽可能高 目标二:宾客所花费用尽可能少 目标三:宾客游尽可能多的景点
所属类别
先修课要求
1
微积分
5
数学
2
线性代数
4
数学
3
最优化方法
4
数学;运筹学 微积分;线性代数
4
数据结构
3
数学;计算机
计算机编程
5
应用统计
4
数学;运筹学 微积分;线性代数
6
计算机模拟
3
计算机;运筹学
计算机编程
7
计算机编程
2
计算机
8
预测理论
2
运筹学
应用统计
9
数学实验
3
运筹学;计算机 微积分;线性代数
要求至少选两门数学课、三门运筹学课和两门计算机课
线性多目标规划模型---线性加权和法
例: 一个生产问题,有关数
据如表。问如何安排生产可 使总利润最大,产量之和最 小。要求第二种原料用完。
原单料耗品 产 甲
A4
B4
C1 单位利润 80

5
2
0 100
总量
80 48 6
解 设 x1, x2为甲,乙的产量

min max
z1 x1 x2 z2 80x1 100x2
求解算法
转化为单目标
实例2:旅游路线设计
今年暑假,我校要召开“××学术会议”,届时来自国内 外的许多著名学者都会相聚成都。在会议结束后,主办方希望 能安排这些远道而来的贵宾参观四川省境内的著名自然和人文 景观,初步设想有如下线路可供选择: 一号线:九寨沟、黄龙; 二号线:乐山、峨嵋; 三号线:四姑娘山、丹巴; 四号线:都江堰、青城山; 五号线:海螺沟、康定;
相关文档
最新文档