多目标规划的原理和
第四章多目标规划
x1 ≥ 0, x2 ≥ 0
这是具有两个目标的非线性规划问题。
9
由以上实例可见,多目标最优化模型与单目标
最优化模型的区别主要是目标多于一个。在这些目
标中,有的是追求极大化,有的是追求极小化,而
极大化与极小化是可以相互转化的。因此,我们不
难将多目标最优化模型统一成一般形式:
决策变量:x1,……,xn 目标函数:minf1(x1,……,xn)
di+
=
fi
(
X
)-fi
0,
0
fi ( X ) > fi0, fi ( X ) ≤ fi0,i = 1,……,p
fi ( X )关于fi0的负偏差为
di−
=
0,
fi0
−
fi (X
)
fi ( X ) ≥ fi0, fi ( X ) < fi0,i = 1,……,p
则不难看出
di+ + di-= fi ( X )-fi0 , di+ − di-=fi ( X )-fi0, di+ • di- = 0,
2
第四章 多目标规划
第一节 多目标规划模型
线性规划及非线性规划研究的都是在给定的约束集合 R={X|gi(X) ≥0,i=1,2,……,m)} X∈En
上,求单目标f(x)的最大或最小的问题,即方案的好坏是以 一个目标去衡量。然而,在很多实际问题中,衡量一个方 案的好坏往往难以用一个指标来判断 。也就是说,需要用 一个以上的目标去判断方案的好坏,而这些目标之间又往 往不是那么协调,甚至是相互矛盾的。本章将以实例归结 出几类常见的描述多目标最优化问题的数学模型。
16
根据农户对目标重要性的排序,将前两个目标作为 第一优先层,将第三个目标作为第二优先层,再把其中 的求最大化转化为求其负数的最小,便得到下列具有两 个优先层次的分层多目标极小化模型:
多目标规划
解:
x2
A B C
x1
Eab = E pa = {B}, Ewp = AB, BC
{
}
O
T 2 2 例2 设 X = {( x1 , x2 ) ( x1 + 1) + 2 x = 4}, 求 X , 的 Eab , E pa , Ewp
2
解:
x2
Eab = φ , E pa = Ewp
= AB
{ }
第二节 多目标规划问题的解 一,向量集的极值 1 多目标规划的标准形式是
min( f1 ( x),..., f p ( x))T , p > 1, x ∈ E n g i ( x) ≥ 0 i = 1,..., m s.t. h j ( x) = 0 j = 1,..., l (2.1)
1
介绍A.M.Geoffrion于1968年提出的—种 真有效解—G-有效解.
�
min f ( x) = ( f1 ( x), f 2 ( x))T
x∈D
f1 ( x) = x1 + 2 x2 , f 2 ( x) = x1 x2 , D = ( x1 , x2 )T 0 ≤ x1 ≤ 1,0 ≤ x2 ≤ 1
的有效解和弱有效解. f1 ( x) = 3 x2 1 B
{
}
R pa = Rwp = {OA, AB}
解: 1 画出 D 及 D 的像 f (D )
f1
x
f1 , f 2 联立消去 x
O 1
得
f1 = f 22 + 2 f 2
f2
1
R pa = Rwp
. .
2
.
f2
x
o
1 2
基于多目标规划模型的建设方案优化设计
基于多目标规划模型的建设方案优化设计概述:建设项目的规划和设计是一个复杂而关键的过程。
传统的规划方法往往只考虑单一目标,无法全面考虑各种因素的权衡和平衡。
而基于多目标规划模型的建设方案优化设计能够在考虑多个目标的基础上,找到最优解,提高建设方案的质量和效益。
一、多目标规划模型的概念和原理多目标规划模型是一种数学模型,它考虑了多个目标之间的相互关系和权衡。
在建设项目中,常见的目标包括经济效益、环境效益、社会效益等。
多目标规划模型的原理是通过建立目标函数和约束条件,将多个目标转化为数学问题,并利用数学方法求解最优解。
二、建设方案的多目标优化设计1. 目标的确定在进行多目标优化设计前,需要明确建设方案的各个目标。
例如,对于一个城市道路建设项目,目标可以包括减少交通拥堵、提高通行效率、降低能耗等。
目标的确定需要综合考虑项目的特点和需求,确保目标的合理性和可操作性。
2. 变量的选择变量是影响建设方案的因素,通过调整变量的取值可以改变建设方案的性能。
在多目标优化设计中,需要选择合适的变量,并确定其取值范围。
例如,对于道路建设项目,变量可以包括道路宽度、道路材料、交通信号灯等。
选择合适的变量可以提高优化设计的效果。
3. 目标函数的建立目标函数是多目标优化设计的核心,它反映了各个目标之间的关系和权衡。
在建立目标函数时,需要考虑目标之间的相互影响和权重。
例如,对于道路建设项目,可以建立一个综合评价指标,包括交通拥堵指数、通行效率指数和能耗指数。
通过设定不同的权重,可以实现不同目标之间的平衡。
4. 约束条件的设置约束条件是多目标优化设计的限制条件,它反映了建设方案的可行性和可操作性。
在设置约束条件时,需要考虑项目的实际情况和限制条件。
例如,对于道路建设项目,约束条件可以包括土地利用限制、环境保护要求等。
合理设置约束条件可以确保优化设计的可行性和可持续性。
5. 模型求解和结果分析通过建立多目标规划模型,可以利用数学方法求解最优解。
多目标规划模型概述
例题:某公司考虑生产两种光电太阳能电池:产品甲和产品乙。这种生产过程会在空气中引起放射性污染。因此,公司经理有两个目标:极大化利润与极小化总的放射性污染。已知在一个生产周期内,每单位甲产品的收益是1元,每单位乙产品的收益是3元。而放射性污染的数量,每单位甲产品是1.5个单位,每单位乙产品是1个单位.由于机器能力(小时)、装配能力(人时)和可用的原材料(单位)的限制,约束条件是
4、步骤法(STEM法) 这是一种交互方法,其求解过程通过分析者与决策者之间的对话逐步进行,故称步骤法。 步骤法的基本思想是,首先需要求出原多目标问题的一组理想解(f1*,f2*,…,fp*)。实际上,这些解fi*(i=1,2,…,p)无法同时达到,但可以当作一组理想的最优值。以理想解作为一个标准,可以估计有效解,然后通过对话,不断修改目标值,并把降低要求的目标作为新的约束条件加入原来的约束条件中去重新计算,直到决策者得到满意的解。 步骤法算法如下:第一步:分别求解以下p个单目标问题的最优解
1、多目标规划问题的模型结构
为决策变量
如对于求极大(max)型,其各种解定义如下:绝对最优解:若对于任意的X,都有F(X*)≥F(X)有效解:若不存在X,使得F(X*)≤ F(X)弱有效解:若不存在X,使得F(X*)<F(X)
2、多目标优选问题的模型结构 可用效用函数来表示。设方案的效用是目标属性的函数:
得到最优解 ,其相应的目标值 即为理想值,此最优解处别的目标所取的值用 表示,即 ,把上述计算结果列入下表
目标有两个:一是利润最大,二是污染最小.该问题的多目标规划模型如下:
解:首先,分别求解两个单目标问题的最优解,由它们得到的目标函数值组成理想解.
多目标规划方法讲义
max(min)Z f1( x1, x2,, xn )
i ( x1, x2,, xn ) gi (i 1,2,, m)
f
min j
fj
f
max j
(
j
2,3,,
k)
方法四 目标达到法 首先将多目标规划模型化为如下标准形式:
f1( X )
min
F
(
x
)
min
f2
(X
)
fk
(
X
)
1
(
(二)对于多目标规划问题,可以将其数学模型一般地描 写为如下形式:
max(min)
f1
(
X
)
Z F ( X ) max(min) f2 ( X )
max(min) fk ( X )
1( X )
g1
s.t.
(
X
)
2(X
)
G
g2
m ( X )
gm
式中: X [ x1, x2 ,, xn ]T 为决策变量向量。
∴ d+× d- =0 成立。
2、目标约束和绝对约束
引入了目标值和正、负偏差变量后,就对某一问题 有了新的限制,既目标约束。
目标约束即可对原目标函数起作用,也可对原约束起 作用。目标约束是目标规划中特有的,是软约束。
绝对约束(系统约束)是指必须严格满足的等式或 不等式约束。如线性规划中的所有约束条件都是绝对 约束,否则无可行解。所以,绝对约束是硬约束。
目标规划的图解法
一、目标规划概述
目标规划是在线性规划的基础上,为适应经济管理 中多目标决策的需要而逐步发展起来的一个分支。
(一)、目标规划与线性规划的比较
最优化多目标规划动态规划
最优化多目标规划动态规划多目标规划是指在决策问题中同时考虑多个目标的优化问题,其目标可能相互矛盾或者相互关联。
动态规划是一种通过将问题划分为子问题并利用子问题的最优解来求解整体最优解的方法。
将多目标规划与动态规划结合起来,可以解决一些具有多个相互关联目标的决策问题。
下面将介绍最优化多目标规划动态规划的原理和应用举例。
1.定义决策变量:确定需要作出的决策,并定义决策变量。
2.建立状态转移方程:将问题划分为多个子问题,并建立它们之间的状态转移方程。
状态转移方程描述了子问题之间的关系,通过子问题之间的转移可以得到整体问题的最优解。
3.确定初始状态和边界条件:确定初始状态和边界条件,即子问题的初始状态和边界条件,用于递归地求解子问题。
4.递推求解:使用动态规划的递推求解方法,从初始状态开始,逐步求解子问题,直到求解出整体的最优解。
5.分析最优解:根据求解结果分析得到的最优解,并根据需要进行调整和优化。
假设有一家公司要进行产品的生产安排,公司有多个产品需要安排生产,每个产品有不同的生产时间和利润,同时公司还要考虑生产能力的限制和产品订单的要求。
问题可以建立如下的数学模型:决策变量:对于每个产品,决定其生产数量。
目标函数:最大化总利润。
约束条件:生产时间不能超过生产能力限制,同时生产数量要满足订单要求。
利用动态规划方法可以将问题分解为多个子问题,以子问题的最优解作为动态规划的递推依据。
具体步骤如下:1.将产品的生产时间和利润作为状态,根据时间顺序划分为多个子问题。
2.定义状态转移方程,将子问题的最优解与前面子问题的最优解关联起来。
3.初始状态为生产时间为0的情况,边界条件为订单要求。
4.递推求解,根据状态转移方程求解每个子问题的最优解。
5.分析最优解,确定每个产品的生产数量,以及总利润。
通过最优化多目标规划动态规划的方法,可以在满足多个目标和约束条件的情况下,求解出最优的决策方案。
这种方法可以应用于生产调度、资源分配、物流配送等领域,帮助企业做出合理的决策,达到优化目标。
多目标规划模型及其在生产优化中的应用
多目标规划模型及其在生产优化中的应用随着科技的不断进步,企业在生产的过程中需要考虑的因素也越来越多,例如成本、质量、效率、环保等多个方面。
这些因素不仅对企业的发展起到了决定性的作用,而且对于整个行业的发展也具有重要意义。
因此,在这个时代,如何能够完成多目标规划,对于企业的生产优化是非常重要的。
本文将从多目标规划模型及其在生产优化中的应用方面进行探讨。
一、多目标规划模型的概述多目标规划(multi-objective programming,MOP)是指在满足多个目标的基础上,寻求最优方案的一种决策方法。
多目标规划模型是通过建立目标函数,对每个目标进行评价和权衡,从而实现多目标的决策优化模型。
多目标规划模型可以被用来解决许多现实生产和决策问题,例如资源配置问题、供应链管理问题、营销决策问题、风险管理和环境保护问题等等。
在这些问题中,优化目标多个,且有时目标之间存在着矛盾性,因此需要采用多目标规划模型来解决。
二、多目标规划模型在生产优化中的应用1. 降低成本和提高质量对于一个企业来说,成本和质量是两个非常重要的因素。
如何同时降低成本和提高质量成为了企业的一个难题。
多目标规划模型可以帮助企业在进行生产决策时,考虑多个目标,实现成本和质量的平衡。
在多目标规划模型中,建立成本和质量的目标函数,对企业的各项指标进行量化和分析,然后对目标函数进行加权,最终得到最优方案。
通过这种方式,企业可以在不降低产品质量的条件下,实现成本的降低,从而提高企业的效益。
2. 提高生产效率和降低能耗随着市场竞争的加剧,企业需要不断提高生产效率,从而降低成本,并提高企业的竞争力。
另一方面,环境保护也成为了现代企业生产的一个必须考虑的因素。
多目标规划模型可以在生产过程中,同时考虑生产效率和能耗,实现生产的可持续发展。
在多目标规划模型中,建立生产效率和能耗的目标函数,评估企业的各项指标,加权得到最优方案。
通过这种方式,企业可以在提高生产效率的同时,降低能耗,实现生产效率与环境保护的双赢。
《多目标规划》PPT课件
2021/4/24
16
多目标规划的象集
研究象集的作用在于:
(1) 求出F R中的有效点和弱有效点,就可确定有效解和弱有效解;
(2) 对象集F R的研究可以提供—些解多目标规划的方法;
f x
f x
f1 x f2 x
f2 x f1 x
2021/4/24
Re* a,b
O
ab
x
O a cd b x
13
a
b
多目标规划的解集
❖ 解集之间的关系
(1)
p
若
i1
Ri*
,则 Ra*b
p
i 1
Ri*
(2) Re* Rw*e R
(3) Ri* Rw*e (i 1, 2,..., p)
产品
A1 A2 A3
产品生产销售数据表
生产效率
利润
最大销量
能耗
(m/h) (元/m) (m/周) (t/1000m)
20
500
700
24
25
400
800
26
15
600
500
28
2021/4/24
6
多目标规划问题的典型实例
假设该厂每周生产三种产品的小时数分别为 x1, x2, x3 ,则我们根据各种产品的单位
规划中的每个目标函数看成是单目标规划问题的目标函数,即我们分别考虑 p 个单
目标规划问题:min fi x, xR, i 1,2,..., n ,那么这 p 个单目标规划问题的公共最优
解才是多目标规划问题的的绝对最优解。如果这 p 个单目标规划问题没有公共的最
优解,则多目标规划问题就没有绝对最优解。
x1 60 又考虑到购买的数量必须要满足非负的条件,由于对 x1 已经有相应的约束条件,故只 需添加对 x2 的非负约束即可。 综合以上分析,得到最优化数学模型如下:
多目标规划(运筹学
环境与资源管理
资源利用
多目标规划可用于资源利用优化,以最 大化资源利用效率、最小化资源浪费为 目标,同时考虑环境保护、可持续发展 等因素。
VS
环境污染控制
多目标规划可以应用于环境污染控制,以 最小化污染排放、最大化环境质量为目标 ,同时考虑经济成本、技术可行性等因素 。
城市规划与交通管理
城市布局
发展更高级的建模语言和工具, 以简化多目标规划问题的描述和 求解过程。
求解算法
02
03
混合整数规划
研究更高效的求解算法,以处理 大规模、高维度的多目标规划问 题。
研究如何将连续变量和离散变量 有效地结合在多目标规划问题中, 以解决更广泛的优化问题。
数据驱动的多目标优化
数据驱动决策
利用大数据和机器学习技术,从大量数据中提取有用的信息,以 支持多目标决策过程。
案例二:投资组合优化
总结词
投资组合优化是多目标规划在金融领域的应 用,旨在实现投资组合的风险和回报之间的 最佳平衡。
详细描述
在投资组合优化中,投资者需要权衡风险和 回报两个目标。多目标规划方法可以帮助投 资者找到一个最优的投资组合,该组合在给 定风险水平下能够获得最大的回报,或者在 给定回报水平下能够实现最小的风险。通过 考虑多个目标,多目标规划可以帮助投资者 避免过度依赖单一目标而导致的潜在风险。
在多目标规划中,约束条件可能包括资源限制、时间限制、技术限制等,需要综合考虑各种因素来制 定合理的约束条件。
决策变量
决策变量是规划方案中需要确定的参 数,其取值范围和类型根据问题的实 际情况而定。
在多目标规划中,决策变量可能包括 投资规模、生产能力、产品种类等, 需要合理选择和定义决策变量,以便 更好地描述问题。
多目标规划ppt
多目标规划问题的典型实例
例1 木梁设计问题
用直径为 1(单位长)的圆木制成截面为矩形的梁。为使重量最轻面强度最大, 问截面的宽和高应取何尺寸? 假设矩形截面的宽和高分别为 x1 和 x2 ,那么根据几何知识可得:
2 x12 + x2 = 1
且此时木梁的截面面积为 x x 。同时根据材料力规划的解集
绝对最优解
* * 设 x* ∈ R ,如果对于 ∀x ∈ R 均有 F ( x ) ≤ F ( x ) ,则称 x 为多目标规划问题的绝对最
*
优解。多目标规划问题的绝对最优解的全体可以记为 Rab ,其含义为:该最优解与 任意一个可行解都是可以进行比较的。下图为当 n = 1, p = 2 时绝对最优解的示意图。
以显然 A2 比 A3 好。 对于方案 A1 和 A2 ,由于无法确定其优劣, 而且又没有比它们更好的其他方案,所 以它们就被称之为多目标规划问题的有效解 有效解 (或者非劣解) ,其余方案都称为劣解。所有 非劣解构成的集合称为非劣解集 非劣解集。 非劣解集
O
f2 A5 A4 A1 A3 A2 f1 A6 A7
x2 L xn ] ; F ( x ) = f1 ( x )
T
f2 ( x ) L
f p ( x ) , p ≥ 2
对向量形式的 p 个目标函数求最小,且目标函数 F ( x ) 和约束函数 gi ( x ) 、hi ( x ) 可以 是线性函数也可以是非线性函数。
令 R = {x | gi ( x ) ≤ 0, i = 1, 2,..., m} ,则称 R 为问题的可行域,V-min F ( x ) 指的是
多目标规划问题的典型实例
例2 工厂采购问题
某工厂需要采购某种生产原料,该原料市场上有 A 和 B 两种,单价分别为 2 元/kg 和 1.5 元/kg。现要求所花的总费用不超过 300 元,购得的原料总重量不少于 120kg,其中 A 原料不得少于 60kg。间如何确定最佳采购方案,花最少的钱,采 购最多数量的原料。 设 A、B 两种原料分别采购 x1 、 x2 kg,那么总的花费为: f1 ( x ) = 2 x1 + 1.5 x2 购得的原料总量为: f 2 ( x ) = x1 + x2 那么我们求解的目标即是使得花最少的钱买最多的原料,即最小化 f ( x ) 的同时
第四章多目标规划模型
第四章 多目标规划模型多目标决策问题的理论基础之一是向量优化问题,也称多目标优化问题。
这类问题,从方法论的角度看,它是一个目标函数中具有向量值的数学规划问题;从决策论角度看,它又是决策规则中含有各个目标极值的决策问题。
因此,多目标决策问题属于向量优化问题。
向量优化问题的解与标量优化问题的解是不同的。
标量优化问题对任何两个函数的解,只要比较它们的两个函数值的大小,总可以从中找出一个最优解,且能排出它们的顺序;而多目标优化问题的解都是非劣解,且不是唯一的,究竟谁优谁劣,很难直接作出判断。
非劣解的概念是由经济学家pareto 于1896年提出的。
但是发展为向量优化问题的生成非劣解技术,还是在1951年Kuhn-Tucker 非劣性条件发表以后的事。
由于向量优化问题是在标量优化问题的基础上发展起来的,只要通过适当的途径将向量优化问题转化为标量优化问题,就可以利用求解标量优化问题的现有方法,求解具有一定特征的向量优化问题。
本章主要介绍有关向量优化问题的基本理论,如非劣解概念,特征非裂解的标量优化解法及非劣性的充要条件。
其中提到的许多概念和术语,在本书的后继章节中都是很有用的。
第一节、多目标规划基本概念与原理1.1非劣解概念设求解()x f 1和()x f 2两个目标的最大值,他们的可行解域如图4.1所示。
图中可行解域内部的各点数据,总是劣于可行域边界上的某点值。
这是因为内部的任一点,总可在边界上至少找出一个相应点,它的目标函数值不劣于内部这点所反映的目标函数值,而且至少有一个目标函数值优于内部这点的目标函数值。
图4.1 多目标非劣解集示意图例如,图中的C 点就劣于A 点和B 点之间任一点所反映的目标函数值。
所以,在优选中类似C 点的一些点可以舍去,并将这些可以舍去的解称为劣解。
但是可行域边界上各点所代表的解,就不能直接判断它们的优劣(如A 点、B 点就是这样)。
因为这些点中任一个与其他任一个相比较,总会发现一个目标函数值比其他另一个函数值优越,但又不是两个目标函数值都优越,否则其中的一个作为劣解而舍去。
数学建模多目标规划
虑利润,还需要考虑多个方面,因此增加下列因素(目标):
• 力求使利润指标不低于1500元 • 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2 • 设备A为贵重设备,严格禁止超时使用 • 设备C可以适当加班,但要控制;设备B既要求充分利用,又 尽可能不加班,在重要性上,设备B是设备C的3倍 从上述问题可以看出,仅用线性规划方法是不够的,需 要借助于目标规划的方法进行建模求解
4 5 6 7 8 9
∗ ∗ ∗
多目标规划
• 对学分数和课程数加权形成一个目标,如三七开。
Min Y = λ1Z − λ2W = 0.7 Z − 0.3W
课号 1 2 3 4 5 6 7 8 9 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 学分 5 4 4 3 4 3 2 2 3
u( f (x)) = ∑λi fi (x)
i =1
m
∑λ = 1
i =1 i
m
转化单目标法
3. 极大极小点法
1≤ i ≤ m
min u ( f ( x )) = min max{ f i ( x )}
x∈ X 1≤ i ≤ m
4. 范数理想点法
dp
(
p⎤ ⎡ f ( x ), f ;ω = ⎢ ∑ ω i f i ( x ) − f i ⎥ ⎣ i =1 ⎦ m
0-1规划模型
课号 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 先修课要求
约束条件 先修课程要求 x3=1必有x1 = x2 =1
∗ 1 ∗ 2 ∗ 3 ∗ ∗ ∗
4 5 6 7 8 9
微积分;线性代数 计算机编程 微积分;线性代数 计算机编程 应用统计 微积分;线性代数
多目标规划
指标往往相互矛盾(诸如资源可供 量与利润,利润与污染程度等), 使得多目标规划问题往往没有线性 规划意义下的最优解,只能给出统 筹兼顾各方面要求的一个满意解。
在上例中,如果利润指标与污染指标的重 要程度不同,比如:利润指标比污染指标 重要10 倍, 那么,目标函数就将写成min(10 + ) 如果利润指标和污染指标的重要程度是不 能通过数值来比较的,比如我们要求在尽 量降低污染指标的前提下去追求最大利润, 则目标函数可以形式化地写成min(k1 +k2 )。式中的k1k2,不代表具体的数值, k1>>>k2,表示远远地大于k2。
多目标规划的特点是:引人正、负偏差变 量, 以及优先因子和权系数∀正偏差变量d+ 表示考察变量值超过目标值的部分;而负偏 差变量d-则表示考察变量值少于目标值的 部分,并且d+ ·d-恒等于0。 并且规划问题常常有多个考察目标, 而达到 这些目标的优先次序又有所不同, 用P 表示 优先程度, 且P >P (i= 1 , 2 ,…,n)。当同一 优先级有多个考察目标时, 以权系数区别不 同目标之间的差别。
应用领域
多目标规划在资源分配、计划编制、生产调 度等方面有一定的应用。
通过建立多目标规划模型,可以 解决供应商的选择问题(1、分析各供应商评价
标准的优先次序;2、建立多目标规划模型)
优化供应链的绩效 开发供应链的渠道 拓展市场需求 ……
多目标规划的研究趋势
( 1) 长期以来, 多目标规划的算法一直受到特 别重视, 目前尚未出现可以用来解决所有多目 标规划问题的统一算法, 算法及其收敛性的研 究将是一个长期的研究方向。
存在,当约束方程中有矛盾方程时, 线性规划问题就无可行解,为了防止 出现这种现象,可以设想将约束“放 松” 引入偏差变量的概念: 正偏差 是超出现有资源的部分, 负偏差 是现有资源使用后剩余部分。
多目标规划的移动理想点法
合偏差最小, 即
删
,, 『
W
㈤ (2 一 ̄ l I f
,’ ,
。
.
受 约 束 于 X其 中可 行 域 x 的 m 个 约 束 条 件 , e, 即 g
z i . … 。C x
其‘想 为向 为量 离。 … ‘ 产 , 中 理, 的, 向’范。 为点 目量 权i 数 , P 距 = 一 。一 J . 产 J , , , 所问理的为,出 问 考题想偏极来多规题 虑的点差小求言划 m,,晰洲 剌 目 标 ,一 , , 一
E0 ) (, 0
( f)A5o B12 C11。 " ,, ”0 , 2 。 。 , ・ " , D1 】 E0 : ( ( l ( 9 ( 6 (】 1 ) l) 7) 8 ,
( 1 1) ,
所以理 想点为厂=8)f= ,,已 (1。 o()( 在图中标出) 12 , o o
多 目标规划的移动理想点法
口 王 梅 刘小艳 刘 欣 宇
7 05 ) 10 4 ( 安科 技 大 学 陕 西 ・ 西 西安
摘
要 : 介 绍多 目标规划 移动理想点法的基本原理, 基本方法。建立 了解决相关问题 的一般模型 , 利用该模 型
可以方便地解决一 些多目标 规划问题 , 并应用模型进行 了举例计算。 关键词 :多 目标规划 理想点
( 画出 1 可行域X在目 ) 标空间的映 像Y的图 形;
() 出所 有 非 劣 解 ; 2求
从 方 案 的 可 行 域 x 中 生成 的 ,随着 可行 域 缩 小 为 调和
解集 , 相应 的理 想点 ・ 也应该用
~ .
取代式 ) X的重 2中
’
() 目标空 间标 出 3在
单目标规划和多目标规划的区别与联系
单目标规划和多目标规划的区别与联系1.最优化概念最优化是应用数学的一个重要分支,最优化可定义为一种数学方法,用它可以对各种生产活动进行规划,在可供利用资源(资源泛指矿藏、水能、人力、设备、原料、运输条件、生态环境、资金、时间、空问等等)的限制条件下,使生产活动得到最大的效益或用最少的资源完成指定的生产活动。
最优化问题的数学表现形式为:式中,123()n f x x x x ⋅⋅⋅、、称为目标函数,若具体问题是求123max ()n f x x x x ⋅⋅⋅、、,则令123123()()n n x x x x f x x x x ϕ⋅⋅⋅=-⋅⋅⋅、、、、,于是最大值问题就转化为最小值问题123min ()n x x x x ϕ⋅⋅⋅、、。
123()j n h x x x x ⋅⋅⋅、、称为等式约束条件,123g ()i n x x x x ⋅⋅⋅、、称为不等式约束条件,如果约束条件中有123()0i n s x x x x ⋅⋅⋅≤、、,则可令123123()g ()i n i n s x x x x x x x x ⋅⋅⋅=-⋅⋅⋅、、、、,于是原来的“≤”就变为了“≥”。
满足约束条件的一组123n x x x x ⋅⋅⋅、、称之为一组可行解。
满足目标函数的可行解称为最优解,即我们需要寻求的答案。
许多现实和理论问题都可以建模成这样的一般性框架,最优化问题种类繁多,分类的方法也有许多。
按目标函数的个数分类:1)单目标规划:只存在一个目标函数时,称这一类问题为单目标规划。
2)多目标规划:当存在多个目标函数时,称为多目标规划。
2.单目标规划方法非线性规划问题的求解一般要比线性规划困难很多,而且目前尚没有适合于各类非线性问题的一般算法,每种算法都有自己的特定的使用范围。
有些情况下,为方便计算,也会把非线性规划问题近似为线性规划问题进行求解。
2.1一维搜索一维搜索是求解单变量非线性规划问题的方法。
这类方法不仅有实用价值,而且大量多维最优化方法都依赖于一系列的一维最优化。
多目标规划模型
多目标规划模型
多目标规划模型是一种求解多个目标总体最优支线的LPP模型,旨在完成多个相关目
标最优满足。
包括经济、社会和环境等专业特性有利于避免单项过度追求,全面评估系统
最佳性能,它也称为混合目标规划或复杂目标规划模型。
构建一个多目标规划模型的方法应该从以下几个方面展开:
首先,应该根据求解问题的特点,确定多目标case的目标函数类型,并定义各个目
标函数。
其次,明确多目标case的约束条件,即求解问题实际具有的各种条件,如限制条件、限制条件等。
接着,根据多目标规划模型的定性要求,选择满足各个目标函数的优化算法,建立求
解模型。
总的来说,多目标规划模型具有明确的定性优化要求,长远地满足多个相关目标最优
满足,被应用于经济、社会和环境等各个领域。
其优点在于,在实际社会经济中,多目标
规划模型可以有效弥补传统的单目标规划模型的不足,完善单项过度追求的问题,以及全
面考核系统的最佳性能。
《多目标规划》课件
约束条件
01
约束条件是限制决策变量取值范围的限制条件,通常表示为决 策变量的不等式或等式。
02
在多目标规划中,约束条件可能包括资源限制、技术限制、经
济限制等。
约束条件的处理需要考虑其对目标函数的综合影响,以确定最
03
优解的范围。
决策变量
01 决策变量是规划问题中需要确定的未知数,通常 表示为数学符号或参数。
多目标规划的算法改进与优化
混合整数多目标规划算法
结合整数规划和多目标规划的优点,解决具有离散变量的 多目标优化问题。
进化算法
借鉴生物进化原理,通过种群进化、基因突变等方式寻找 多目标优化问题的Pareto最优解。
梯度下降法
利用目标函数的梯度信息,快速找到局部最优解,提高多 目标规划的求解效率。
多目标规划在实际问题中的应用前景
特点
多目标遗传算法能够处理多个相互冲突的目标函数,提供一组非劣解集供决策者选择。 它具有较强的全局搜索能力和鲁棒性,适用于复杂的多目标优化问题。
注意事项
多目标遗传算法需要合理设置遗传参数和选择策略,以确保求解的有效性和准确性。
04
多目标规划案例分析
生产计划优化案例
总结词
生产计划优化案例主要展示多目标规划在生产计划方面的应 用,通过合理安排生产计划,降低成本并提高生产效率。
《多目标规划》课件
• 多目标规划概述 • 多目标规划的基本概念 • 多目标规划的常用方法 • 多目标规划案例分析 • 多目标规划的未来发展与展望
目录
01
多目标规划概述
定义与特点
定义
多目标规划是一种决策方法,旨在同 时优化多个目标函数,并考虑多个约 束条件。
特点
多目标规划的若干理论和方法共3篇
多目标规划的若干理论和方法共3篇多目标规划的若干理论和方法1多目标规划的若干理论和方法多目标规划是指在多目标条件下进行决策的一种数学方法,它把一个问题转化成一个具有多个目标约束条件的数学优化问题。
在现代化的社会经济发展中,人们往往不仅仅关注单一的目标,而是有着多种不同的目标和需求。
因此,多目标规划技术应运而生,被广泛应用于各行各业的决策和管理中。
本文将简单介绍多目标规划的若干理论和方法。
一、多目标规划的相关理论1. Pareto最优解Pareto最优解是多目标规划中比较重要的概念之一,它指的是在多个目标之间不能再做出更好的妥协的一种解法。
具体来说,如果一个解决方案比其他所有解决方案在某个目标上优秀,而在其他目标上没有任何明显的劣势,则该解决方案就被称为Pareto最优解。
2. 支配支配是另一个多目标规划的重要概念,它指的是在所有可能的解空间中,一个解决方案中所有目标值都比另一种解决方案好,则前者支配后者。
例如,如果一个解决方案在所有目标上都比另一个解决方案好,则前者支配后者。
3. 目标规划多目标规划中,一个重要的理论发展就是目标规划。
它把问题分解为多个聚焦于更少数目标的小问题。
通过优化多个小问题的解决方案,最终达到全局最优解。
二、多目标规划的方法1. 权值法权值法是多目标规划的一种基础方法,其主要思路是通过对每个目标进行加权求和,将多目标问题转化为单一目标问题。
先确定每个目标的权重,然后将所有目标的得分加权求和,得到唯一的一个综合得分。
由此作为参考,进一步进行优化。
2. 线性规划法线性规划法是一种基础的多目标规划方法,它的求解过程基于线性规划。
将所有的目标约束转为线性规划约束条件,然后通过线性规划问题来求解最优解。
3. 模糊规划法模糊规划法是一种基于模糊数学的多目标规划方法。
它采用模糊数值来表达目标和约束条件,并通过模糊方法解决多目标策略问题。
4. 遗传算法遗传算法是一种基于生物进化原理的求解多目标规划问题的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多目标规划的原理和
多目标规划是一种优化方法,用于解决同时存在多个目标函数的问题。
与单目标规划不同,多目标规划的目标函数不再是单一的优化目标,而是
包含多个决策者所关心的目标。
目标函数之间可能存在冲突和矛盾,因此
需要找到一个平衡点,使得各个目标都能得到满意的结果。
1.目标函数的建立:多目标规划需要明确各个决策者所关心的目标,
并将其转化为数学模型的形式。
目标函数可以是线性的、非线性的,也可
以包含约束条件。
2.解集的定义:解集是指满足所有约束条件的解的集合。
在多目标规
划中,解集通常是一组解的集合,而不再是单个的最优解。
解集可以是有
限的或无限的,可以是离散的或连续的。
3.最优解的确定:多目标规划中的最优解不再是唯一的,而是一组解
的集合,称为非劣解集。
非劣解集是指在所有目标函数下都没有其他解比
其更好的解。
要确定最优解,需要考虑非劣解集中的解之间的关系,即解
集中的解是否有可比性。
4.解的评价:首先需要定义一种评价指标来比较不同解之间的优劣。
常用的方法有加权法、广义距离法、灰色关联法等。
评价指标的选择应该
能够反映出决策者对不同目标的重视程度。
5. Pareto最优解:对于一个多目标规划问题,如果存在一组解,使
得在任意一个目标函数下都没有其他解比其更好,那么这组解就被称为Pareto最优解。
Pareto最优解是解集中最为重要的解,决策者可以从中
选择出最佳的解。
6.决策者的偏好:在实际应用中,决策者对不同目标的偏好有时会发生变化。
因此,多目标规划需要考虑决策者的偏好信息,并根据偏好信息对解集进行调整和筛选。
多目标规划在解决实际问题中具有广泛的应用,尤其在决策支持系统领域发挥了重要作用。
它不仅能够提供一组有竞争力的解供决策者参考,还能够帮助决策者更好地理解问题的本质和各个目标之间的权衡关系。
多目标规划既可以应用于工程、经济、管理等领域的决策问题,也可以用于社会、环境等领域的问题求解。
总之,多目标规划通过将多个目标函数集成为一个数学模型,寻找一组最佳的解集,从而在多个目标之间实现平衡和协调。
通过对解集进行评价和选择,决策者可以根据自身的需求和偏好做出最终的决策。
多目标规划的原理和方法在实际应用中具有重要的指导意义,为决策问题的解决提供了一种更加全面和综合的视角。