PLC两种液体混合控制
两种液体混合装置PLC控制系统设计
摘要S7-200 是一种小型的可编程序控制器,实用于各行各业,各类场合中的检测.监测及控制的主动化.S7-200系列的壮大功效使其无论在自力运行中,或相连成收集皆能实现庞杂控制功效.是以S7-200系列具有极高的机能价钱比.本体系应用S7-200PLC实现了对液体混杂装配的主动控制请求.同时控制体系应用仿真装备不但能知足两种液体混杂的功效,并且可以扩大其功效知足多种液体混杂体系的功效.提出了一种基于PLC 的多种液体混杂控制体系设计思绪, 进步了液体混杂临盆线的主动化程度和临盆效力.文中具体介绍了体系的硬件设计.软件设计.个中硬件设计包液体混杂装配的电路框图.输入/输出的分派表及外部接线;软件设计包含体系控制的梯形图.指令表及工作进程.在本装配设计中,液面传感器和电阀门以及搅动电机采取响应的钮子开关和发光二极管来模仿,别的还借助外围元件来完成本装配.全部程序采取构造化的设计办法, 具有调试便利, 保护简略, 移植性好的长处.症结词:PLC ;液体混杂装配;程序目录1 液体混杂装配控制体系设计义务21.2设计内容及要实现的目标22 体系总体计划设计32.1体系硬件设置装备摆设及构成道理32.2体系接线图设计33 控制体系设计43.1估算43.5外部接线图设计73.6控制程序流程图设计83.7控制程序设计83.8创新设计内容104 体系调试及成果剖析114.1体系调试114.2成果剖析11总结12申谢13参考文献141液体混杂装配控制体系设计义务课程设计的目标在工艺加工最初,把多种原料再适合的时光和前提下进行须要的加工以得到产品一向都是在人监控或操纵下进行的,在后来多用继电器体系对次序或逻辑的操纵进程进行主动化操纵,但是如今跟着时期的成长,这些方法已经不克不及知足工业临盆的现实须要.现实临盆中须要更精确.更便捷的控制装配.跟着科学技巧的日新月异,主动化程度请求越来越高,本来的液体混杂远远不克不及知足当前主动化的须要.可编程控制器液体主动混杂体系集成主动控制技巧,计量技巧,传感器技巧等技巧与一体的机电一体化妆置.充分接收了疏散式控制体系和分散控制体系的长处,采取尺度化.模块化.体系化设计,设置装备摆设灵巧.组态便利.可编程控制器多种液体主动混杂控制体系的特色:1)体系主动工作;2)控制的单周期运行方法;3)由传感器送入设定的参数实现主动控制;4)启动后就能主动完成一个周期的工作,并轮回.本体系采取PLC是基于以下两个原因:1)PLC具有很高的靠得住性,平日的平均无故障时光都在30万小时以上;2)编程才能强,可以将隐约化.隐约决议计划息争隐约都便利地用软件来实现.根据多种液体主动混杂体系的请求与特色,我们采取的PLC具有小型化.高速度.高机能等特色,可编程控制器指令丰硕,可以接各类输出.输入扩充装备,有丰硕的特别扩大装备,个中的模仿输入装备和通信装备是体系所必须的,可以或许便利地联网通信.1.2 设计内容及要实现的目标应用西门子PLC的S7-200系列设计两种液体混杂装配控制体系.在试验之前将容器中的液体放空,按动启动按钮SB1后,电磁阀A通电打开,液体A流入容器.当液位高度达到中限位时,液位传感器I0.0接通,此时电磁阀A断电封闭,而电磁阀B通电打开,液体B流入容器.当液位达到上限位时,液位传感器I0.1接通,这时电磁阀B断电封闭,同时启动电念头M搅拌.60分钟后电念头M停滞搅拌,这时电磁阀C通电打开,放出混杂液去下道工序.当液位高度降低到下限位后,再延时5s电磁阀C断电封闭,并同时开端新的周期. 图1.1 两种液体混杂装配2体系总体计划设计根据设计请求,本体系为两种液体主动混杂,须要对各类液体的液面的高度监控,是以,须要应用到传感器进行液面高度的监控.各类液体入池的比例须要应用电磁阀控制,入池后的搅拌,则须要电机控制.对各个控件的控制,须要一个完全的控制流程,应用PLC技巧进行编程,可以实现对各个控件的控制.具体控制办法根据标题请求,按下启动按钮时,A种液体进入容器,当达到必定值时,停滞进入,B种液体开端进入,当达到必定值时,停滞进入.搅拌机进行搅拌,一分钟后搅拌平均,停滞搅拌,放出液体.液体放出达到必定值时停滞放出.液体的进入和放出,须要电磁阀的控制,液面的深度须要传感器的控制.2.1 体系硬件设置装备摆设及构成道理在炼油.化工.制药.饮料等行业中,多种液体混杂是必不成少的程序,并且也是其临盆进程中十分重要的构成部分.我预备设计一个可以将两种食用液体主动混杂成饮料的控制装配,两种饮料分离定名为液体A 和液体B.根本的设计硬件如下表所示:表2.1 设计硬件选择名称 型号 数目 微型盘算机 专用盘算机 1台 PLC 主机单元西门子S7-200系列 1台 两种液体主动混杂单元 配套 1台 通信电缆配套若干图液体混杂控制装配控制的模仿试验面板图如图2.1所示,此面板中,液面传感器用钮子开关来模仿,启动.停滞用动合按钮来实现,液体A 阀门.液体B 阀门.混杂液阀门的打开与封闭以及搅匀电机的运行与停转用发光二极管的点亮与熄灭来模仿.图2.1 液体混杂控制装配控制的模仿试验面板图 2.2 体系接线图设计表2.2 输入/输出接线列表3控制体系设计3.1 估算起首统计被控装备对输入.输出点的总需求量,把被控装备的旌旗灯号源一一列出,卖力剖析输入.输出点的旌旗灯号类型.在初始状况时,根据请求要实现液体的主动混杂导出控制,在开端操纵之前,各阀门必须为封闭状况,容器为空.此时液体控制电磁阀Y1=Y2=Y3=OFF 状况;传感器L1=L2=L3=OFF 状况;电念头M 为封闭状况.面板 SB1 SB2 H I L Y1 Y2 Y3 KM PLC在启动操纵中,当装配和液体的都预备好之后,按下启动按钮,开端下列操纵:1)Y1=ON,液体A流入容器;当液面到达L2时,Y1=OFF,Y2=ON;2)液体B流入,液面达到L1时,Y2=OFF,M=ON,电念头开端进行液体的充分混杂搅拌;3)当混杂液体搅拌平均后(设时光为60s),M=OFF,Y3=ON,开端放出混杂液体;4)当液体降低到L3时,L3从ON变成OFF,把时光控制为再过5s后容器放空,封闭Y3,Y3=OFF完成一个操纵周期;5)在只要没有按停滞按钮的状况下,则主动进入下一个轮回操纵周期.在停滞操纵中,当工作完成之后须要封闭体系,按一下停滞按钮,则在当前混杂操纵周期停滞后,才停滞操纵.从而使体系停滞在开端状况,以便下次启动体系时可以或许顺遂的开端体系的轮回.硬件电路设计选用型液位传感器个中.LSF系列液位开关可供给异常精确.靠得住的液位检测.其道理是根据光的反射折射道理,当没有液体时,光被前端的棱镜面或球面反射回来;有液体笼罩光电探头球面时,光被折射出去,这使得输出产生变更,响应的晶体管或继电器动作并输出一个开关量.应用此道理可制成单点或多点液位开关.LSF 光电液位开关具有较高的顺应情形的才能,在耐腐化方面有较好的抵抗才能.相干元件重要技巧参数及道理如下:(2)工作温度上限为125°C(3)触点寿命为100万次(4)触点容量为70w(5)开关电压为24V DC 3.2.2 搅拌电机的选择选用EJ15-3型电念头个中“E”暗示电念头,“J”暗示交换的,15为设计序号,3为最大工作电流相干元件重要技巧参数及道理如下:EJ15系列电念头是一般用处的全封闭自扇冷式鼠笼型三相异步电念头.(1)额定电压为220V,额定频率为50Hz,功率为 2.5KW,采取三角形接法.(2)电念头运行地点的海拔不超出1000m.工作温度-15~40°C /湿度≤90%.(3)EJ15系列电念头效力高.节能.堵转转矩高.噪音低.振动小.运行安然靠得住.其硬件接线如图3.1.图硬件接线电磁阀的选择(1)入罐液体选用VF4-25型电磁阀个中“V”暗示电磁阀,“F”暗示防腐化,4暗示设计序号,25暗示口径(mm)宽度.相干元件重要技巧参数及道理如下:1)材质:聚四氟乙烯.应用介质:硫酸.盐酸.有机溶剂.化学试剂等酸碱性的液体.2)介质温度≤150℃/情形温度-20~60°C.3)应用电压:AC:220 V50Hz/60Hz DC:24V.4)功率:AC:2.5KW.5)操纵方法:常闭:通电打开.断电封闭,动作响应敏捷,高频率.(2)出罐液体选用AVF-40型电磁阀个中“A”暗示可调撙节量,“V”暗示电磁阀,“F”暗示防腐化,40为口径(mm)相干元件重要技巧参数及道理如下:1)其最大特色就是能经由过程装备上的按键设置来控制流量,达到准时排空的后果.2)其阀体材料为:聚四氟乙烯,有比较强的抗腐化才能.3)应用电压:AC:220 V50Hz/60Hz DC:24V.4)功率:AC:5KW.3. 接触器选用CJ20-10/CJ20-16型接触器.个中“C”暗示接触器,“J”暗示交换,20为设计编号,10/16为主触头额定电流.相干元件重要技巧参数及道理如下:(1)操纵频率为1200/h(2)机电寿命为1000万次(3)主触头额定电流为10/16(A)(4)额定电压为380/220(A)PLC的型号.规格繁多,根据前面3.1的I/O估算,再查阅《西门子PLC编程手册》中的相干表格,肯定PLC选型.根据以上剖析,对PLC来说,须要供给5个输入点和4个输出点.除了以上的输入输出点不测,PLC与盘算机.打印机.CRT显示器等装备衔接,须要用专用接口,也应盘算在内.斟酌到在现实装配.调试和应用中,还有可能发明一些估算中未预感到的身分,要根据现实情形增长一些输入.输出旌旗灯号.是以,要按估量数再增长15%―20%的输入.输出点数,以备未来调剂.扩充应用.综上所述,I/O估算为:输入点点数为8,输出点点数为7.综上所述,点数在30以内,为便利扩大,选择S7-200系列CPU 224型.在懂得了体系工艺要乞降控制请求后,接着要做的就是将I/O通道分派给PLC的指定I/O端子,具体如表3.1所示.分类元件端子号感化输入SB1 起动按钮SB2 停滞按钮L1 液面高位传感器L2 液面中位传感器L3 液面低位传感器输出M 搅拌电念头Y1 液体A流入电磁阀Y2 液体B流入电磁阀Y3 放出混杂液体电磁阀3.5 外部接线图设计图3.2 PLC外部接线图图3.3 装配操纵面板如图 3.2所示,PLC外部接线图左边一排为输入,个中I0.3,I0.1,I0.3,I0.2,I0.4分离与SB1,SB2,L1,L2,L3相连;右边一排为输出,个中Q0.2,Q0.0,Q0.1,Q0.3分离与Y1,Y2,Y3,KM相连.如图3.3所示起停按钮P1,P2分离与主机的I0.3,I0.4相连,液面传感器P3,P4,P5分离与主机的输入点I0.1,I0.3,I0.2相接,液体A阀门,液体B阀门,混杂液体阀门和搅拌机P6,P7,P8,P9分离与主机的输出点Q0.0,Q0.1,Q0.3,Q0.2相连.3.6 控制程序流程图设计图3.4 控制程序流程图3.7 控制程序设计根据体系的请求及I/O通道分派,写出继电器梯形图,如图3.5所示.具体设计思绪如下:1)肇端操纵:在按启动按钮I0.3之后,使Q0.0得电,打开电磁阀A,从而使液体A 流入容器.2)当液位上升到中限位时:当液面上升到中限位时,I0.0由OFF变成ON,使Q0.0断电,封闭电磁阀A.同时使Q0.1得电,打开电磁阀B,从而使液体B流入容器.3)当液位上升到上限位时:当液面上升到上限位时, I0.1由OFF状况变成ON状况,使Q0.1断电,封闭电磁阀 B.同时使Q0.2得电,启动搅拌机M.此时启动准时器T37,60s后T37动作,使Q0.2掉电.4)搅拌平均后放出混杂液体:在Q0.2的降低沿通事后沿微分指令DIFD使Q0.3置位,打开电磁阀C,开端放出混杂液体.5)当液位降低到下限位时:当液位降低到下限位时,启动准时器T38,5s后使Q0.3掉电,封闭电磁阀C,此时液体已放空.6)主动轮回工作:在没有按停滞按钮I0.4的情形下,体系将在T38的记不时光到了时,使Q0.0置位,主动进入下一操纵周期.从而实现混杂液体PLC主动控制的轮回工作.7)停滞操纵:当按下停滞按钮时,停滞按钮I0.4为ON状况,不克不及使电磁阀A.B.C断开,体系履行完本周期的操纵后,将主动逗留在初始状况.应用S7-200西门子简略单纯编程器编入梯形图,如下所示.图3.5 梯形图3.8 创新设计内容此次设计进程中,我有一些本身的设法主意.1)搅拌桶内的液位传感器的靠得住性不强,可以试着改为敏锐性强.靠得住性高的检测仪器.防止因为输入液体时,飞溅的液体触碰着液位传感器而导致发出错误旌旗灯号.2)在电路中供给一个备用电源,如许做的目标就是包管掉落电之后也能使体系完成该周期的工作,从而包管体系在完成当前周期的操纵时,停滞在初始状况,使容器为空.以便在恢复电源后能顺遂的从第一步开端进行轮回.如许就防止了在混杂某些化学物资,比方具有腐化性的物资时.因为掉落电,长时光储消失容器中,从而造成对装配的腐化或破坏;也防止了引起情形污染的可能.同时期替了掉落电保持如许一个麻烦和斟酌不周的进程.4 体系调试及成果剖析4.1 体系调试应用调试程序进行体系静调.模仿两种液体混杂装配的操纵进程,对控制程序作一些修改,使之变成可持续运行的调试程序.具体作法如下:设PLC进入运行方法后:经由必定的预备时光,模仿按下启动按钮,Q0.0的指导灯亮;一段时光后,液面上升到L2地位,Q0.0的指导灯灭,Q0.1的指导灯亮;一段时光后,液面上升到L1地位,Q0.1的指导灯灭,Q0.2的指导灯亮;一段时光后,Q0.2的指导灯灭,Q0.3的指导灯亮;一段时光后,液面低于L3地位,Q0.1的指导灯灭,Q0.0的指导灯亮,当前操纵周期停滞,主动进入下一个操纵周期.在体系运行进程中,模仿按下停滞按钮,所有运行立刻停滞.调试停滞.4.2 成果剖析基于以上设计与调试,两种液体混杂装配的体系设计根本停滞.测试成果知足课题给定请求.总结此次课程设计是异常可贵的一次理论与实践相联合的机遇,经由过程此次此次对“液体主动混杂装配的PLC控制”的设计使我摆脱了单纯理论进修的状况,和眼高手低的缺点,经由过程本次PLC的课程设计,使我懂得到PLC的重要性.电气控制与可编程控制器是一门极其重要的课程,他分解了盘算机技巧和主动控制技巧和通信技巧.在当今由机械化向主动化,信息化飞速成长的社会,PLC技巧越来越受人们普遍应用,远景可不雅,是以学会和应用PLC,将对我们今后踏上工作岗亭有极其重要的帮忙,在此次设计中,我们碰到了很多艰苦,经由过程对自身的查找,我找出几点缺少之处:1,不太会应用查翻材料.碰到艰苦,起首不先检讨材料,过多依附同窗和先生的帮忙,相对不自力.2,进修卖力程度不敷,进修热忱不高,基本相对单薄,控制常识太少.3,设计时对时光合理安插上欠妥.但恰是此次设计,让我熟悉到本身的缺少,为今后今后的工作进修找到了偏向和进步的动力.经由过程此次PLC课程设计实践.我学会了PLC的根本编程办法,对PLC的工作道理和应用办法也有了更深入的懂得.在对理论的应用中,进步了我们的工程本质,在没有做实践设计以前,我们对常识的撑握都是理论上的,对一些细节不加看重,当我们把本身想出来的程序用到PLC中的时刻,问题消失了,不是不克不及运行,就是运行的成果和请求的成果不相相符.如许,我就只能一个一个问题的去解决,经由过程查阅材料或者是就教同窗,一次一次的调试程序,最后达到设计请求.使得我对PLC 的懂得得到增强,看到了实践与理论的差距.最后经由过程本次课程设计,使我懂得了PLC控制技巧在工业应用和工业临盆中的重要地位;经由过程本次课程设计,使我更深入的懂得了PLC的编程思惟,也能更好的将所学常识应用到实践中动.是以学好这门课程对今后的成长有举足轻重的地位.申谢短暂的一礼拜的设计就这么停滞了,虽说时光很短暂但学的到的器械很多.在此感激***先生的谆谆教诲和孜孜不倦的指点,先生渊博的学识.严谨的治学精力和一丝不苟的工作风格深深影响了我,使我毕生受益.同时,在行文进程中,也得到了很多同窗的珍贵建议,在此一并致以诚挚的谢意.最后,我向在百忙中抽出时光对本文进行评审并提出珍贵看法的列位先生暗示衷心肠感激!参考文献【1】戚长政《自念头与临盆线》科学出版社2004【2】蔡杏山《零起步轻松学西门子S7-200PLC技巧》人平易近邮电出版社2010【3】马桂喷鼻《电气控制与PLC应用》化学工业出版社2006【4】何友华《可编程序控制器及经常应用控制电器》冶金工业出版社2008【5】肖清《西门子PLC课程设计指点书》化学工业出版社2009。
液体混合控制实验报告
一、实验目的1. 了解液体混合装置的结构和工作原理;2. 掌握PLC控制系统的基本原理和应用;3. 学会使用PLC技术实现对液体混合过程的自动化控制;4. 提高动手能力和实验技能。
二、实验原理液体混合装置主要用于将两种或多种液体按照一定比例进行混合。
实验中,我们采用PLC控制系统实现对液体混合过程的自动化控制。
PLC(可编程逻辑控制器)是一种广泛应用于工业控制领域的电子设备,具有可靠性高、抗干扰能力强、编程灵活等优点。
实验原理如下:1. 通过传感器采集液体混合装置的液位、温度等参数;2. 将传感器采集的信号传输至PLC控制器;3. PLC控制器根据预设的控制程序,对电磁阀、搅拌机等执行机构进行控制,实现对液体混合过程的自动化控制;4. 通过人机界面实时显示液体混合装置的运行状态。
三、实验设备1. PLC控制器(如S7-200系列);2. 传感器(如液位传感器、温度传感器);3. 电磁阀、搅拌机等执行机构;4. 实验装置(含液体混合容器、连接导线等);5. 编程软件(如STEP 7-Micro/WIN);6. 计算机等辅助设备。
四、实验步骤1. 连接实验装置,确保各部件连接正确;2. 在PLC控制器中编写控制程序,实现对液体混合过程的自动化控制;3. 通过编程软件将控制程序下载至PLC控制器;4. 设置PLC控制器的运行参数,如液位、温度等;5. 启动实验装置,观察液体混合过程;6. 调整控制参数,优化液体混合效果;7. 记录实验数据,分析实验结果。
五、实验结果与分析1. 液体混合装置的液位传感器能够准确采集液位信息,并将信号传输至PLC控制器;2. PLC控制器根据预设的控制程序,对电磁阀、搅拌机等执行机构进行控制,实现了液体混合过程的自动化控制;3. 实验过程中,通过调整控制参数,优化了液体混合效果;4. 实验结果表明,PLC控制系统在液体混合过程中具有较好的控制性能。
六、实验总结1. 通过本次实验,我们了解了液体混合装置的结构和工作原理;2. 掌握了PLC控制系统的基本原理和应用;3. 学会了使用PLC技术实现对液体混合过程的自动化控制;4. 提高了动手能力和实验技能。
液体混合PLC控制系统设计
液体混合PLC控制系统设计液体混合是一种广泛应用的工业制程。
为了实现可靠和高效的控制,现代工业中常常采用PLC(可编程逻辑控制器)控制系统。
本文将介绍PLC控制液体混合的系统设计。
一、系统功能需求液体混合的系统功能需求通常包括:液体流量计量、液体掺杂比例控制、液体混合搅拌等。
在系统设计过程中,应考虑该制程的特殊性需求,例如液体成分、流速以及搅拌程度等。
二、PLC选择PLC控制系统是液体混合制程中最常用的自动化控制器,因为它拥有很高的控制精度和可靠性。
在选择PLC时,应考虑其I/O点数、处理器性能、扩展性、通信口数量和支持的编程软件等因素。
三、系统功能模块1.流量计量模块。
通常采用电磁流量计或者重力流量计,用于测量液体的质量流量,与PLC通讯以获取液体流量数据。
2.比例控制模块。
通常采用调节阀或者脉宽调制控制方式,用于控制液体的掺杂比例,比例控制事件可根据PLC内存程序进行设定。
3.搅拌控制模块。
通常采用调速电机,用于控制搅拌桨的转速,PLC控制搅拌桨的转速等参数。
四、编程设计针对系统功能模块,需要进行编程设计。
PLC编程可以采用多种编程方式,如Ladder Diagram(LD)、Function Block Diagram(FBD)、Structured Text(ST)、Instruction List(IL)等。
其中Ladder Diagram是最常使用的一种方式,是一种类似于电路图的编程格式。
在设计过程中需要定时存储数据,数据库可以自行搭建或者直接采用PLC内部的存储器。
五、系统控制策略在液体混合制程中,系统的控制策略应尽量保证其稳定性和精准度。
系统控制策略通常包括以下几种方式:1.滞后控制。
在处理液体混合制程时,只有等到液体流动到特定位置时才开始进行搅拌操作,这使得混合不是非常均匀。
2.脉冲控制。
通过控制调节阀或者脉宽调制的方式,设置掺杂比例,可以较精确的控制液体混合。
3.前馈控制。
在搅拌过程中,通过加入一定的预测信息来实现搅拌效果的改善。
两种液体的混合装置PLC控制系统设计说明
两种液体的混合装置PLC控制系统设计设有两种液体A和B在容器按照一定比例进行混合搅拌,装置结构如图10-1所示。
其中SL1、SL2、SL3为液面传感器,当液面淹没时分别输出信号。
YV1、YV2、YV3为电磁阀,M为搅拌用电动机。
图10-1 两种液体混合装置示意图1.控制要求(1)初始状态此时各阀门关闭,容器是空的。
YV1=YV2=YV3=OFFSL1=SL2=SL3=OFFM=OFF(2)启动操作合上起动开关,开始下列操作:①YVl=ON,液体A流入容器,当液面到达SL3时,YV1=OFF, YV2=ON;②液体B流入,液面达到SL1时,YV2=OFF,M=ON,开始搅拌(设时间为16 s)。
在搅拌期间,为了搅拌的均匀,缩短搅拌时间,要求:正、反转搅拌;③混合液体搅拌均匀后,M=OFF,YV3=ON,放出混合液体。
④当液体下降到SL2时,SL2从ON变为OFF,再过20 s后容器放空,关闭YV3。
(YV3=OFF)完成一个操作周期;⑤只要没断开开关,则自动进入下一操作周期。
(3)停止操作当断开起停开关,待当前混合操作周期结束后,才停止操作,使系统停止于初始状态。
(4)拖动情况搅拌机由一台三相异步电动机拖动,要求电动机可正、反转,直接起动,自由停机。
2.设计要求(1)完成控制要求中的控制过程。
(2)搅拌液体时,要求:正、反搅拌交替进行。
(3)在发生突发事件后(如突然停电)整个控制系统能继续突发事件前工作状态工作,也能通过手动使系统回到原始(循环工作前)状态。
(4)作出I/O分配表、PLC的I/O接线图。
设计流程图、梯形图、指令表、调试操作板布置图。
(5)编制设计使用说明书。
3.设计过程(1) I/O分配表(见表10 -1)在了解了系统工艺要求和控制要求后,首先要做I/O分配,把已知的输入信号和输出信号分配给PLC的指定I/O端子。
表10-1 I/O分配表(2) PLC的I/O接线图(见图10 -2)图10-2 PLC的I/O接线图(3)设计梯形图程序根据控制要求,选择用顺序控制设计两种液体混合装置的系统控制,其步骤如下:①A液体流入(对应的Y11=ON),当SL3液面中位传感器动作(X3=ON),使KV1停止工作( Y11=OFF)。
基于PLC的两种液体混合搅拌控制系统设计
物理与电子工程学院编程及应用》《PLC 课程设计报告书设计题目:PLC的两种液体混合搅拌控制系统设计基于业:专自动化级:班XXX学生姓名:XX: 号学XXXX:指导教师XXXX18 日年12 月2013课程设计任务书物理与电子工程学院班级:XX 自动化专业:要摘是以计算机技术为核心的通用自动控制装置,也可以说它是一种用PLC程序来改变控制功能的计算机。
随着微处理器、计算机和通信技术的飞速发已在工业控制中得到广泛应用,而且所占比重在迅PLC展,可编程序控制器模块、输入模块、输出模块和编程装置组成。
CPU主要由速的上升。
PLC它应用于工业混合搅拌设备,使得搅拌过程实现了自动化控制、并且提升了搅拌设备工作的稳定性,为搅拌机械顺利、有序、准确的工作创造了有力的控制程序可进行单周期或连续工保障。
本文所介绍的多种液体混合的PLC还有通信联网功作,具有断电记忆功能,复电后可以继续运行。
另外,PLC能,再通过组态,可直接对现场监控、更方便工作和管理。
关键词:PLC;液位传感器;定时器;梯形图目录1 液体自动混合系统方案设计.................. 错误!未定义书签。
1.1 控制要求.............................................. 错误!未定义书签。
1.2 编程软件地址分配表.......................... 错误!未定义书签。
1.3 PLC外部电路接线图........................... 错误!未定义书签。
1.4 主电路连接图...................................... 错误!未定义书签。
1.5 控制程序.............................................. 错误!未定义书签。
2 液体自动混合系统的硬件设计.............. 错误!未定义书签。
液体混合装置plc控制
液体混合装置在工业生产中扮演着重要的角色,保障液体混合装置安全、可靠的运转,并提高该系统的自动化水平是本次设计的首要目标。
随着PLC 技术的日益完善以及PLC 在实际工程自动化控制领域中所表现出来的高可靠性、高稳定性等优点逐渐显现,其在自动化控制领域的应用也越来越广泛。
将PLC 应用于工业混合搅拌设备,使得搅拌过程实现了自动化控制、并且提升了搅拌设备工作的稳定性,为搅拌机械可靠、安全、有序的工作提供了强有力的保障。
本文所介绍的两种液体混合装置的 PLC 控制程序可进行连续自动循环工作,在设计的过程中充分进行了设备运行的可靠性分析,并辅助以高分辨率的光电液位传感器严格控制所注入的两种液体的比例,严格保证混合溶液的质量,为后续工序的进行奠定良好的基础。
同时, PLC 所具有的高稳定性和高可靠性可确保该装置长期连续运行,减少了路线检修和维护的时间,大大提高了生产效率。
PLC;液体混合装置;自动化控制1---1.1 设计内容---------------------------------------------------------------------------------------------------------1.2 控制要求----------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------2.1 总体方案论证---------------------------------------------------------------------------------------------- ---2.2 系统硬件配置-------------------------------------------------------------------------------------------------2.3 系统可靠性设计------------------------------------------------------------------------------------------------------------------------------------- --3.1 主电路的设计---------------------------------------------------------------------------------- ---3.2 确定 I/O 数量,选择 PLC 类型-------------------------------------------------------------- 7--3.2.1 I/O 数量的确定 (7)3.2.2 PLC 类型的选择 (7)3.3 I/O 点的分配与编号--------------------------------------------------------------------------- --3.4 控制流程图-------------------------------------------------------------------------------------- 8---3.5 元器件明细表 -------------------------------------------------------------------------------- --0 3.6 I/O 接线图----------------------------------------------------------------------------------- --0 3.7 控制程序梯形图----------------------------------------------------------------------------- --3.8 控制程序语句表-------------------------------------------------------------------------- -3.9 程序调试 -------------------------------------------------------------------------------------- 1--------------------------------------------------------- -9-- ---------------------------------------------------- -0---------------------------------------------------------------------------------------------------------------------参考文献----------------------------------------------------------------------------------------------------------------- 22利用西门子 PLC 的 S7-200 系列设计两种液体混合装置控制系统。
基于三菱FX2N的两种液体混合控制系统
基于三菱FX2N的两种液体混合控制系统1. 引言液体混合控制系统在工业生产中起到了至关重要的作用。
它可以精确控制两种液体的混合比例,以满足生产过程中的要求。
本文将介绍基于三菱FX2N的两种液体混合控制系统的设计和实现。
2. 系统硬件设计2.1 三菱FX2N PLC概述三菱FX2N PLC是一种常用的工业自动化控制器,具有高性能和可靠性。
它采用了先进的控制算法和可编程逻辑控制器,可以实现各种复杂的控制任务。
2.2 传感器和执行器选择在液体混合控制系统中,需要使用传感器来检测液体的流量和浓度,以及使用执行器来实现液体的混合和分配。
常用的传感器包括流量传感器、浓度传感器等,常用的执行器有阀门、泵等。
根据具体的需求,选择合适的传感器和执行器。
2.3 电路设计液体混合控制系统的电路设计包括供电电路、信号采集电路和控制电路。
供电电路为系统提供稳定可靠的电源,信号采集电路负责采集传感器的信号,控制电路根据采集到的信号进行逻辑控制。
3. 系统软件设计液体混合控制系统的软件设计包括PLC程序编写和人机界面设计。
3.1 PLC程序编写PLC程序是液体混合控制系统实现逻辑控制的核心。
根据系统硬件设计和具体的控制需求,编写PLC程序来实现液体流量和浓度的监测、液体混合比例的计算和控制。
3.2 人机界面设计人机界面是用户与液体混合控制系统进行交互的窗口。
它可以提供实时监控、参数设置和报警信息等功能。
通过人机界面,用户可以方便地对系统进行操作和监控。
4. 系统实现与测试4.1 系统组装与连接根据系统硬件设计,进行系统的组装和连接。
确保各个传感器和执行器正确连接到PLC,并接通电源。
4.2 软件上传与调试将编写好的PLC程序上传到三菱FX2N PLC中,并进行软件调试。
确认软件的逻辑正确,并能够实现液体混合比例的准确控制。
4.3 系统测试与优化对液体混合控制系统进行功能测试和性能优化。
通过对系统的连续运行和不同工况下的测试,找出可能存在的问题,并进行适当的优化和改进。
液体混合装置控制plc实验报告
液体混合装置控制plc实验报告液体混合装置控制PLC实验报告一、实验目的本实验旨在通过液体混合装置控制PLC实验,学习PLC控制系统的基本原理和应用,了解液体混合装置的工作原理及其控制方法,并能够独立完成液体混合装置的PLC程序设计和调试。
二、实验原理1. 液体混合装置的工作原理液体混合装置是一种常见的工业设备,它主要由搅拌器、进料管道、出料管道、计量泵等组成。
在工作时,将需要混合的物质分别加入到不同的容器中,通过计量泵将各个容器中的物质按照一定比例送入搅拌器中进行混合。
最终得到所需的混合物。
2. PLC控制系统的基本原理PLC是可编程逻辑控制器(Programmable Logic Controller)的简称,它是一种广泛应用于工业自动化领域中数字电子计算机系统。
PLC 可以根据用户需求编写程序,在特定条件下对各种设备进行精确控制。
其具有高可靠性、高稳定性和强抗干扰能力等特点。
三、实验器材1. 液体混合装置2. PLC控制器3. 计量泵4. 电缆及连接器5. 电源四、实验步骤1. 连接液体混合装置和PLC控制器,按照电路图连接计量泵和电源。
2. 打开PLC编程软件,编写液体混合装置的PLC程序。
3. 将编写好的PLC程序下载到PLC控制器中。
4. 启动液体混合装置,观察其工作状态,检查是否正常运行。
5. 调整计量泵的流量,验证液体混合比例是否正确。
五、实验结果分析在本次实验中,成功地应用了PLC控制系统对液体混合装置进行了精确控制。
通过调整计量泵的流量,得到了所需的混合物,并验证了其比例正确。
六、实验总结本次实验通过液体混合装置控制PLC实验的设计与操作,使学生们更加深入地理解了PLC系统的基本原理和应用,并且能够独立完成液体混合装置的PLC程序设计和调试。
同时也让学生们更加熟悉工业自动化领域中的数字电子计算机系统,为今后的工作和学习打下坚实的基础。
PLC两种液体混合控制
专题实验一:两种液体混合控制一、任务说明:上限位、下限位和中线位液体传感器被液体淹没时为1状态,阀A、阀B和阀C为电磁阀,线圈通电时打开,线圈断电时关闭。
开始时容器是空的,各阀门均关闭,各传感器均为0状态。
按下启动按钮,打开阀门A,液体A进入容器,中限位开关变ON时,关闭阀门A,打开阀B,液体B流入容器,液面上升到上限位开关时,关闭阀门B,电动机M 运行,搅拌液体;1min后停止搅拌,打开阀C,放出混合液体;当液体至下限位开关之后5S,容器放空,关闭阀C,打开阀A,开始下一周期的操作。
按下停止按钮后,当前工作周期的操作结束后,才停止操作,并返回初始状态。
二、I/O地址分配序号地址元件说明序号地址元件说明1 I0.2 S1 上限位按钮 6 Q0.3 Y4 排水阀2 I0.3 S2 中限位按钮7 Q0.4 M 电动机3 I0.4 S3 下限位按钮8 Q0.5 L1 上限位指示灯4 Q0.1 Y1 液体A 9 Q0.6 L2 中限位指示灯5 Q0.2 Y2 液体B 10 Q0.7 L3 下限位指示灯三、硬件接线图四、软件设计思路启动混合液体系统时,SM0.1为初始脉冲并扫描一个周期。
M0.0接通并保持,使Q0.1输出,电磁阀A开启液体A开始流入容器中。
当页面上升至下限位L3时,下限位传感器给出信号,I0.4接通,点亮下限位指示灯D3(Q0.7通电);当液面上升至中限位L2时,中限位传感器给出信号,I0.3接通,点亮中限位指示灯D2(Q0.6通电),并关闭电磁阀A(QO.1断电),同时打开电磁阀B(Q0.2通电),液体B开始流入容器中,当液体上升至上限位L1时,上限位传感器给出信号,I0.2接通,点亮上限位传感器指示灯D1(Q0.5通电),并关闭电磁阀B(Q0.2断电),同时启动搅拌电动机M(Q0.4通电),搅拌1min后,电动机M停止搅拌(Q0.4断电),并打开电磁阀C(Q0.3通电),混合液体流出容器,随着混合液体流出,传感器信号逐渐消失,液面指示灯依次熄灭,当液面下降至下限位后,再延时5秒,容器放空,关闭电磁阀C(Q0.3断电),并打开电磁阀A(Q0.1通电),开始下一个周期工作过程。
基于PLC的两种液体混合搅拌控制系统设计
物理与电子工程学院《PLC编程及应用》课程设计报告书设计题目:基于PLC的两种液体混合搅拌控制系统设计专业:自动化班级:XXX学生姓名:XX学号:XXXX指导教师:XXXX2013年12 月18 日物理与电子工程学院课程设计任务书专业:自动化班级:XX学生姓名XX 学号XX课程名称PLC原理与应用设计题目基于PLC的两种液体混合搅拌控制系统设计摘要PLC是以计算机技术为核心的通用自动控制装置,也可以说它是一种用程序来改变控制功能的计算机。
随着微处理器、计算机和通信技术的飞速发展,可编程序控制器PLC已在工业控制中得到广泛应用,而且所占比重在迅速的上升。
PLC主要由CPU模块、输入模块、输出模块和编程装置组成。
它应用于工业混合搅拌设备,使得搅拌过程实现了自动化控制、并且提升了搅拌设备工作的稳定性,为搅拌机械顺利、有序、准确的工作创造了有力的保障。
本文所介绍的多种液体混合的PLC控制程序可进行单周期或连续工作,具有断电记忆功能,复电后可以继续运行。
另外,PLC还有通信联网功能,再通过组态,可直接对现场监控、更方便工作和管理。
关键词:PLC;液位传感器;定时器;梯形图目录1 液体自动混合系统方案设计.................... 错误!未定义书签。
1.1 控制要求................................................ 错误!未定义书签。
1.2 编程软件地址分配表 ............................ 错误!未定义书签。
1.3 PLC外部电路接线图............................. 错误!未定义书签。
1.4 主电路连接图........................................ 错误!未定义书签。
1.5 控制程序................................................ 错误!未定义书签。
PLC控制液体混合的监控技术设计
PLC控制液体混合的监控技术设计PLC(可编程逻辑控制器)是一种实时控制设备,广泛应用于工业自动化领域。
对于液体混合过程的监控技术设计,PLC可提供可靠的控制和监控功能。
本文将从以下几个方面探讨PLC控制液体混合的监控技术设计。
一、系统构建液体混合监控系统的构建应考虑到控制要求和数据采集需求。
系统由PLC、传感器、执行器、HMI(人机界面)以及通信组件等组成。
PLC通过与液体混合设备进行连接,控制混合过程的各个阶段,同时采集相关的数据,并通过HMI显示监控信息。
二、传感器选择液体混合过程中,选择合适的传感器对于实时监控非常重要。
温度传感器、流量传感器、压力传感器和液位传感器是常用的液体监测传感器。
温度传感器用于监测液体温度,流量传感器用于监测液体流速,压力传感器用于监测液体压力,液位传感器用于监测液体液位。
这些传感器能够提供准确的监测数据,用于PLC的控制和数据采集。
三、PLC程序设计PLC程序设计是实现液体混合过程控制的关键。
根据混合过程的需求,在PLC中编写相应的逻辑程序。
程序中应包括混合设备的启动、停止控制逻辑,以及各种液体参数(如温度、流量、压力和液位)的监测和控制逻辑。
此外,还应包括故障报警和安全保护功能的程序设计。
PLC的程序设计需要根据具体的混合工艺进行优化,以提高系统的稳定性和可靠性。
四、HMI设计HMI设计是液体混合监控系统中与操作人员进行交互的界面。
通过HMI,操作人员可以实时了解液体混合过程的状态和参数,监控系统的运行状态,并进行相应的操作。
HMI设计应简洁明了,界面友好,操作方便。
在HMI上显示液体混合过程中的关键参数和曲线图,可以帮助操作人员更好地了解和监控系统,及时发现和解决问题。
五、通信与数据采集液体混合监控系统通常需要与其他设备进行数据交换和信息共享。
PLC可以通过通信模块与上位机、数据库和其他设备进行连接,实现数据采集和共享。
通过与上位机的数据交互,可以实现远程监控和远程控制功能。
PLC的两种液体混合控制系统设计方案
PLC课程设计报告液体混合的模拟控制2016年5月25日摘要PLC以其独特的优点得到迅速地发展和普及,并在冶金、机械、纺织、轻工等诸多领域取代了传统的继电接触器控制。
掌握可编程控制器的工作原理、具备设计、调试可编程控制器系统的能力,已成为现代工业对电气技术人员的基本要求。
将PLC应用于液体混合装置的控制,对于学习和工业上的应用显得尤为重要。
本设计以两种液体的混合控制为例,要求是将两种液体按一定比例混合,在搅匀电机搅匀后将混合液体输出容器。
并自动开始下一周期,形成一个循环状态。
在按下停止按钮后所有工序停止操作。
同时,该设计采用西门子公司的S7-200系列机型进行控制系统的PLC程序设计,利用模拟装置对两种液体混合的工业流程进行模拟。
关键词:两种液体、混合装置、自动控制目录1 液体自动混合系统方案设计01.1 控制要求01.2 编程软件地址分配表01.3 PLC外部电路接线图11.4 主电路连接图11.5 控制程序21.6顺序功能图22 液体自动混合系统的硬件设计32.1 硬件选型32.2 主电路的设计32.3 液体混合控制系统示意43液体自动混合系统的软件设计53.1 PLC控制的相关流程图53.2 可编程控制器梯形图54 心得体会9参考文献101 液体自动混合系统方案设计1.1 控制要求本课程设计是基于PLC的液体自动混合搅拌系统设计,L1、L2、L3是液面传感器。
两种液体的流入由电磁阀Y1和Y2控制,混合液的流出由电磁阀Y3控制。
搅拌电动机用于驱动桨叶将液体混合均匀。
本系统的工作原理如图1-1-1所示。
按下起动按钮,电磁阀Y1闭合,开始注入液体A,按L2表示液体到了L2的高度,停止注入液体A。
同时电磁阀Y2闭合,注入液体B,按L1表示液体到了L1的高度,停止注入液体B,开启搅拌机M,搅拌4s,停止搅拌。
同时Y3为ON,开始放出液体至液体高度为L3,再经2s停止放出液体。
同时液体A注入。
开始循环。
广东水利电力-PLC曹薇两种液体混合装置控制系统
广东水利电力职院-PLC 实操试题
两种液体混合装置控制系统
要求:有两种液体A 、B 需要在容器中混合成液体C 待用,初始时容器是空的,所有输出均失效。
按下启动信号,阀门X1打开,注入液体A ;到达I 时,X1关闭,阀门X2打开,注入液体B ;到达H 时,X2关闭;开启搅拌器R ,搅拌5s 钟;打开阀门X3,释放液体C ;当最低位液位传感器L=1时,关闭X3进入下一个循环。
按下停止按钮,要求停在初始状态。
启动信号X0,停止信号X1,H (X2),I (X3),L (X4),阀门X1(Y0),阀门X2(Y1),搅拌器R (Y2),阀门X3(Y3)
混合装置控制系统PLC 控制要求
请用PLC 控制两种液体混合的一个自动工作过程,包括以下四个步骤:
(1)手动按下起动按钮(SB1),阀门X1打开,注入液体A ;
(2)液位到达I 时,X1关闭,阀门X2打开,注入液体B ;
(3)液位到达H 时,X2关闭,开启搅拌器R ,搅拌5s 钟;
(4)打开阀门X3,释放液体C ,当最低位液位传感器L=1时,关闭X3进入下一个循环。
直到按下停止按钮停止所有工作。
液体A
液体B
阀X1
H
I L
实操任务要求:
(1)编制主要设备材料表;
(2)I/O地址分配表;
(3)编制PLC控制梯形图;
(4)控制设备安装接线;
(5)检查后加电试运转与故障排除;
(6)记录总结运行结果,编制操作说明书;
(7)提交材料清单: PLC接线图、设备材料表、I/O地址分配表、操作说明书。
(完整word版)基于MCGS的PLC液体混合控制系统设计
摘要本组课题是对液体自动混合装置的模拟控制,实现液体混合装置的自动添加液体、自动混合等自动控制功能。
在本设计的梯形图设计中是大量运用计时器和顺序控制继电器指令来完成的。
在PLC程序设计的基础上结合有关的外围设备形成一个易于工业控制的系统整体,在易于扩展其功能的原则而设计。
本监控系统采用PLC为控制核心,具备自动混合两种液体的功能, 由传感器检测储藏罐中的液面高度,按顺序加入A和B两种液体,搅拌40s后放出混合液体。
过程监控上,我们采用的是MCGS组态软件,这是我国自主研发的组态软件,适用于各品牌的PLC。
在课程设计中主要进行的是设备的基本机构图,混合装置控制的模拟实验面板图,PLC的选型,外部硬件接线图,以及绘制所要实现的功能图,进而在GX_Developer与GX.Simulator 中仿真调试,输出对应的指令表;在MCGS中设计监控的人机界面,对于储藏罐以及传感器和电磁阀和流动块的属性设置,同时绘制历史报表,最后将PLC中的程序同步到MCGS中,进行仿真调试,实现界面的实时监控,以及历史数据和曲线的实时监测。
关键词: 液体自动混合,可编程控制器PLC,MCGS组态软件AbstractThis topic is for liquid automatically mixing device simulation control,the fulfilling liquid mixing device automatically add liquid,automatic mixing automatic control function.In this design ladder diagram design is application of a timer and sequence control relay instructions to finish。
On the basis of the PLC program design combined with related peripheral devices formed an easy to industrial control of the whole system,easy to expand its function in the principle of design. The monitor system adopts PLC as control core, with automatic mixing two liquids function by the tanks sensor test highly liquid surface,in order to join A and B two liquids,stirring 3min after release mixture liquid. Process monitoring, we use is MCGS software,this is our country self—developed configuration software,applicable to the brand of PLC.In the course design of main equipment of the basic organization chart is mixing device control simulation experiments of panel figure,PLC selection,external hardware hookup and mapping to achieve the functional diagram,and in the GX_Developer GX. With weathering steel during commissioning,output of simulation corresponding instruction form;In the MCGS in design human—machine interface,for monitoring and tanks sensor and solenoid and flow pieces of attribute to set,while drawing history statements and will last a program in a PLC synchronization to MCGS,debugging realize simulation,real-timemonitoring of the interface and the history data and curve of real—time monitoring。
液体混合装置的PLC控制编程
[2 ]廖常初.S7-200 PLC编程及应用[D ].北京:机械工业 出版社,2014. (收稿日期= 2019-03-23)
《湖北农机化》2019年第9期 79
2 液体混合装置控制程序的编制 在实际应用中,物料的混合操作装置将2种或2种以
上液体按一定比例混合,然后进行相应的后续处理。编程
程序采用西门子S7-200 PLC指令编写。如图为3种液 体混合装置,当装置投入运行时,液体A、B和C阀关闭,混 合液阀打开20 s,然后清空容器然后关闭。按下启动按钮 SB 1,装置开始打开液体A阀YV1,液体A流入容器。当 液面达到SQ3时,关闭液体YV1阀门,打开液体B阀门 YV22。当液位达到SQ2时,关闭液体B阀YV2,并打开 液体C阀YV3。当液位达到SQ1时,关闭液体C阀YV 3、 混合器电机并开始搅拌。搅拌电机工作1 min,停止搅拌。 混合液阀YV4打开,开始释放混合液。当液面降至SQ4 时,SQ4与连接断开,20 s后,容器被清空,混合阀关闭,开 始下一个循环,按下SB2后,当前混合液处理完毕后,停止
开发研究
液体混合装置的PLC控制编程
苏可营,王伟” (沈阳工学院,辽宁抚顺113122)
摘要:液体混合程序是编程中的基本程序,采用顺序 控制法可以编制该程序。本文主要探究液体混合装置的
PLC控制编程。
关键词:编程;液体混合
1 可编程控制器软件编程 可编程控制器備称PLC)是工厂用来进行数字操作的
装置,由于其稳定可靠、通用性强等诸多优点使成为自动控 制的有力工具。
®fial
iqi
图2功鬻表图
3 结束语 在工作过程中,如果液体到达对应位置,则立即转移到
电气控制与PLC(案例教程)教学课件第9章 S7-200 PLC程序控制指令及其应用 ——以两种液
ห้องสมุดไป่ตู้
• (1)结束指令END和MEND • 结束指令分为有条件结束指令(END)和无条件结束指令(MEND)。 • (2)停止指令STOP • STOP指令的功能是输入有效时,立即终止程序的执行,能够使CPU从RUN状态切换到STOP 状态。 • (3)看门狗复位指令WDR • WDR(Watchdog Reset)称做看门狗复位指令,也称为警戒时钟刷新指令。 • 为了保证系统可靠运行,PLC内部设置了系统监视定时器(WDT),用于监视扫描周期是否 超时。
• 在循环指令中,FOR和NEXT之间的程序段称为循环体。当循环允许信号EN端为1时,开始执 行循环指令。每执行一次循环体,当前计数值增1,并且将结果同终值比较,如果大于终值,则 终止循环。
• 每条FOR指令必须对应一条NEXT指令,即必须成对使用。循环可以嵌套(一个FOR--NEXT 循环在另一个FOR--NEXT循环之内)使用,但嵌套深度最多为8层,各个嵌套之间不可有交叉现 象。
• (3)当一个子程序被调用时,系统自动保存当前的堆栈数据,并把栈顶置1,堆栈中的其他值 为0,子程序占有控制权。子程序执行结束,通过返回指令自动恢复原来的逻辑堆栈值,调用程 序又重新取得控制权。
• (4)子程序中的定时器和累加器。
• (5)当子程序在一个扫描周期内被多次调用时,在子程序中不能使用上升沿、下降沿、定时 器和计数器指令。
• 1. 建立子程序
• 建立子程序是通过编程软件来完成的。
• 可以采用下列方法建立:在编程软件“编辑”菜单中选择“插入子程序”;或者在程序编辑器窗 口中单击鼠标右键,从弹出的菜单中选择“插入子程序”。
• 2. 指令格式及功能 • 子程序指令包括两条:子程序调用指令和子程序条件返回指令。
基于PLC的两种液体混合控制系统设计
基于PLC的两种液体混合控制系统设计摘要:随着科学技术的日新月异,自动化程度要求越来越高,原有的生产装置远远不能满足当前高度自动化的需要.减轻劳动强度,保障生产的可靠性、安全性,降低生产成本,减少环境污染、提高产品的质量及经济效益是企业生成所必须面临的重大问题,可编程控制器系统不断满足各个生产领域的生产需要,提高生产效益.本文以两种液体的混合灌装控制为例,将两种液体按一定比例混合,在电动机搅拌后要达到控制要求才能将混合的液体输出容器,并形成循环状态。
液体混合系统的控制设计考虑到其动作的连续性以及各个被控设备动作之间的相互关联性,针对不同的工作状态,进行相应的动作控制输出,从而实现液体混合系统从第一种液体加入到混合完成输出的这样一个周期控制工作的程序实现.设计以液体混合控制系统为中心,从控制系统的硬件系统组成、软件选用到系统的设计过程(包括设计方案、设计流程、设计要求、梯形图设计、外部连接通信等),旨在对其中的设计及制作过程做简单的介绍和说明.设计采用三菱公司的FX系列去实现设计要求。
关键词:PLC;梯形图;两种液体;混合装置;自动控制目录前言-—--——-—--————-—----——--—-----—--———-————--—----1第1章两种液体混合灌装机控制系统设计—----———--—-—----21。
1 方案设计---—--——-———-—-——-———-———-—-—--———--—-—---————-————--—21.2 方案的介绍--——-——-—--—-—-——-—————--———--—---——-—--——-—---——-——3第2章硬件电路设计—--—---—--———-—--—-————---——--—-—--42。
1 总体结构——--—--——-——-—-—-—-—-—————-—-————-—----—-————--———---—42。
2 液位传感器的选择—--——-———-——-—----—--—-————-—--—---—-—----——--52。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题实验一:两种液体混合控制
一、任务说明:
上限位、下限位和中线位液体传感器被液体淹没时为1状态,阀A、阀B和阀C为电磁阀,线圈通电时打开,线圈断电时关闭。
开始时容器是空的,各阀门均关闭,各传感器均为0状态。
按下启动按钮,打开阀门A,液体A进入容器,中限位开关变ON时,关闭阀门A,打开阀B,液体B流入容器,液面上升到上限位开关时,关闭阀门B,电动机M 运行,搅拌液体;1min后停止搅拌,打开阀C,放出混合液体;当液体至下限位开关之后5S,容器放空,关闭阀C,打开阀A,开始下一周期的操作。
按下停止按钮后,当前工作周期的操作结束后,才停止操作,并返回初始状态。
三、硬件接线图
四、软件设计思路
启动混合液体系统时,SM0.1为初始脉冲并扫描一个周期。
M0.0接通并保持,使Q0.1输出,电磁阀A开启液体A开始流入容器中。
当页面上升至下限位L3时,下限位传感器给出信号,I0.4接通,点亮下限位指示灯D3(Q0.7通电);当液面上升至中限位L2时,中限位传感器给出信号,I0.3接通,点亮中限位指示灯D2(Q0.6通电),并关闭电磁阀A(QO.1断电),同时打开电磁阀B(Q0.2通电),液体B开始流入容器中,当液体上升至上限位L1时,上限位传感器给出信号,I0.2接通,点亮上限位传感器指示灯D1(Q0.5通电),并关闭电磁阀B(Q0.2断电),同时启动搅拌电动机M(Q0.4通电),搅拌1min后,电动机M停止搅拌(Q0.4断电),并打开电磁阀C(Q0.3通电),混合液体流出容器,随着混合液体流出,传感器信号逐渐消失,液面指示灯依次熄灭,当液面下降至下限位后,再延时5秒,容器放空,关闭电磁阀C(Q0.3断电),并打开电磁阀A(Q0.1通电),开始下一个周期工作过程。
五、时序图
六、程序。