GHZ微带渐变阻抗变换器设计报告
射频电路课程设计或者微波电路课程设计报告——波导微带转换电路设计报告
波导到微带转换电路一、技术指标要求:工作频率:26.5~40GHz输入/输出驻波比:<1.2插入损耗:<1.0dB二、理论分析:现在波导到微带的转换电路一般采用E面或H面插入探针的办法实现。
本设计做的是H面探针的模型仿真。
仿真模型如下图1所示:矩形波导的主模是TE模,电场在宽边的中心处达到最大值,所以将微带探针从10宽边中心插入波导,这样波导中的场将在探针上尽可能大的激励起电流。
探针附近被激励起的高次模存储无功功率的局部场,使接头具有电抗性质。
由于探针过渡具有容性电抗,一段具有感性电抗的高阻线被串联在探针过渡器后面,以消除容性电抗。
通过仿真发现对转换电路影响较大的参量有6个,分别是:探针长度L1,探针宽度W1,开口面大小(宽d,高h),高阻抗线长度L2,高阻抗线宽度W2,短路面离探针的距离D。
由于短路面为电壁,所以在短路面的四分之一波长处的电场有最大值,设计时将D取为四分之一波长。
三、设计过程:本设计中心频率取工作的两边界和的一半大约为33GHZ,工作频段为26.5GHz 到40GHz。
确定矩形波导尺寸、基板的材料和尺寸以及微带金属条带的初始尺寸并建立模型。
此处采用WR-28标准矩形波导,尺寸为7.112mm*3.556mm,基板材料选用Rogers5880型基片,厚度为0.254mm,相对介电常数为2.2,微带金属条带厚度为0.05mm,通过阻抗软件计算得出50欧姆微带线在33GHZ的宽度为0.75mm。
波导开口面的大小对电路的性能有一定的影响,为了抑制高次模又较好的实现匹配这里取开口面宽边d为1.8mm高h为1mm。
探针的尺寸先设置初始值在通过HFSS仿真优化得出长度L1=1.79mm,宽度W1=0.8mm,厚度取0.05mm。
高阻抗线长度L2=0.5mm,宽度W2=0.3mm,厚度取0.05mm。
短路面至探针的距离经计算得D=2.28mm。
整个波导的长度取为13.28mm。
四、设计结果及存在问题分析:从下图S21的曲线图可以看出在26.5GHZ-40GHZ频段S21的大小都小于0.065Db,信号能很好的传输满足插损要求。
第1 2组渐变阻抗变换
ii
iii 苏州大学应用技术学院毕业设计 (论文)
目录 第一章 绪论 ....................................... 1
第 1.1 节 微波渐变阻抗变换器的研究背景 ................... 1 第 1.2 节 微波渐变阻抗变换器的研究思路 ................... 2 第 1.3 节 软件介绍 ....................................... 2 第 1.4 节 论文的结构 ..................................... 2
第 1.4 节 论文的结构
第一章为绪论,阐述了课题研究的背景,研究的思路,设计过程中所用软件的简单介 绍。 第二章对微波渐变阻抗变换器进行了理论分析,包括传输线理论,阻抗变换器,渐变 阻抗变换器的理论分析。 第三章介绍了微波渐变阻抗变换器的设计与调试,包括对微带线的设计与仿真,加入 阻抗变换器之后的整个系统的设计与仿真,根据模型图制作成实物并调试的过程。
1
2 苏州大学应用技术学院毕业设计 (论文)
天线是一种特定的阻抗匹配器,实现射频 /微波信号在封闭传输线和空气媒质之间的 匹配传输。
第 1.2 节 微波渐变阻抗变换器的研究思路
在微波系统中,消除或降低反射波的问题一直是微波技术(当然也包括其他各频段的 传输系统)中的重要技术课题。微波系统造成反射的因素很多,如负载阻抗与传输线的波 阻抗不相等;同类型的不同型号的传输线连接;不同类型的传输线连接;传输线中接入各 种必要的元器件等。传输线上反射波的存在使传输线的工作状态变坏;负载得到的信号功 率减小;系统的工作容量降低;传输信号的波形也要受到影响。为了达到消除或减小反射 波的目的,在传输线的适当位置加入调配元件或网络,以它们产生的新的反射波去抵消传 输线上原有的反射波,从而实现匹配,微波渐变阻抗变换器则是采用了这一思想。
阻抗变换器设计
射频电路设计实训报告设计题目阻抗变换器设计系别年级专业设计组号学生姓名/学号指导教师摘要:射频设计的主要工作之一,就是使电路的某一部分与另一部分相匹配,在这两部分之间实现最大功率传输,这就需要在射频电路中加入阻抗变换器从而达到阻抗匹配的目的。
阻抗变换器就是起到将压电传感器的高阻抗变换为信号放大处理部分需要的低阻抗。
本设计是关于阻抗匹配和阻抗转换器的一些阻抗匹配电路以及阻抗匹配的方法,用以实现匹配以及50Ω到75Ω以及75Ω到50Ω的阻抗转换器。
从而得到所需要的输出阻抗以达到变换的目的。
本次实验以2个无源阻抗匹配器为例,分别采用简单的电容电感的方式设计所需要的阻抗转换器,整理出实物并进行测试。
Abstract: One of the main RF design is a part of the circuit and the other part of the match between the two parts to achieve maximum power transfer, which requires adding the RF circuit impedance converter to achieve impedance matching purposes. Impedance transformer is played to a high impedance piezoelectric sensor signal amplification process is transformed into some of the needs of low impedance. This design is about impedance matching and impedance converter circuit and impedance matching impedance matching some of the methods used to achieve matching and 50Ω to 75Ω and 75Ω to 50Ω impedance converter. In order to get the required output impedance of achieving the purpose of transformation. The experiment with two passive impedance matching device, for example, capacitance and inductance, respectively, a simple way to design the required impedance converter to produce a physical and tested. 关键词: 射频设计 阻抗变换器 阻抗匹配 无源一、基本阻抗匹配理论当负载阻抗与传输线特性阻抗不相等或连接两段特性阻抗不同的传输线时,由于阻抗不匹配会产生反射现象,从而导致传输系统的功率容量和传输效率下降,负载不能获得最大功率。
GHZ微带渐变阻抗变换器设计报告
微带渐变阻抗变换器设计报告一、设计任务名称:设计一个工作频率为,输入阻抗为50Ω,输出阻抗为30Ω的阻抗变换器。
主要技术指标:S11低于-20dB,S21接近,re(Z0)接近50Ω,VWAR接近1。
二、设计过程1.原理:1.1 阻抗匹配的概念阻抗匹配元件在微波系统中用的很多,匹配的实质是设法在终端负载附近产生一新的反射波,使它恰好和负载引起的反射波等幅反相,彼此抵消,从而达到匹配传输的目的。
一旦匹配完善,传输线即处于行波工作状态。
在微波电路中,常用的匹配方法有:(1)电抗补偿法:在传输线中的某些位置上加入不消耗的匹配元件,如纯电抗的膜片、销钉、螺钉调配器、短路调配器等,使这些电抗负载产生的反射与负载产生的反射相互抵消,从而实现匹配传输,这些电抗负载可以是容性,也可以是感性,其主要有点是匹配装置不耗能,传输效率高。
(2)阻抗变换法:采用λ/4阻抗变换器或渐变阻抗变换器使不匹配的负载或两段特性阻抗不同的传输线实现匹配连接。
(3)发射吸收法:利用铁氧体元件的单体传输特性(如隔离器等)将不匹配负载产生的反射波吸收掉。
传输线的核心问题之一是功率传输。
对一个由信号源、传输线和负载构成的系统,希望信号源在输出最大功率的同时负载能全部吸收,以实现高效稳定的传输。
这就要求信号源内阻与传输线阻抗实现共轭匹配,同时要求负载与传输线实现无反射匹配。
.阻抗匹配的方法阻抗匹配的方法是在负载与传输线之间接入匹配器,使其输入阻抗作为等效负载与传输线的特性阻抗相等。
图3-1 阻抗匹配匹配器是一个两端口的微波元件,要求可调以适应不同负载,其本身不能有功率损耗,应由电抗元件构成。
匹配阻抗的原理是产生一种新的反射波来抵消实负载的反射波(二者等幅反相),即“补偿原理”。
常用的匹配器有有λ/4阻抗变换换器和支节匹配器。
本论文主要采用λ/4阻抗变换器。
. λ/4阻抗变换器λ/ 4阻抗变换器是特征阻抗通常与主传输线不同、长度为λ/ 4的传输线段,它可以用于负载阻抗或信号源内阻与传输线的匹配,以保证最大功率的传输;此外,在微带电路中,将两段不同特性阻抗的微带线连接在一起是为了避免线间反射,也应在两者之间加四分之一波长变阻器。
微波实验报告
已知:输入阻抗Zin=75Ω
负载阻抗Zl=(64+j75)Ω
特性阻抗Z0=75Ω
介质基片面性εr=2.55 ,H=1mm
假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=λ/4,两分支线之间的距离为d2=λ/8。画出几种可能的电路图并且比较输入端反射系数幅值从1.8GHz至2.2GHz的变化。
n=4时,z3=R/z2,z=1.77392,,故:
z3=R/z2=2.81862,z4=R/z1=4.10775
3.用TXLINE计算相应微带线长度及宽度,选择单位和项目频率2GHz-6GHz。
f=f0=4GHz,εr=9.6,厚度H=1mm,Z0=10Ω,Z1=12.17Ω,Z2=17.74Ω,
之前网上下的学长学姐的报告有很多不靠谱,但是调谐都要调到中心频率上,否则都不对,还有老师验收的时候如果自己心情很不好,只要她发现一点错误就会坚定的认为不是自己做的,所以一定要确保没有错误,原理一定要弄清楚.愿后来人好运~~~
实验2 微带分支线匹配器
一.实验目的:
1.熟悉支节匹配的匹配原理
2.了解微带线的工作原理和实际应用
定义下列公式为变阻器的中心频率和相对带宽:
f0=(f1-+f2)/2
D=(f2-f1)/fo
其中f1和f2分别为频带边界的上下边界,f0为传输线中心波长,D为相对带宽。
取变阻器每段为传输线波长的四分之一,即1=λg0/4.
一般来将,微带变阻器的设计步骤为:
(1)根据给定的指标,查表确定微带变阻器的节数n;
实验麻烦一点的地方在于调谐,可以调整的参数有四个,即TL2、TL3、TL4、TL5的L。当然不用所有的都调,只要通过观察调整各个微带线长度时驻波比的变化情况选取两三个即可。同时要注意让这四个微带线的长度L呈递增或者递减的趋势。经过调谐让驻波比的波形满足给定条件,不超过1.15。
2.4GHZ微带渐变阻抗变换器设计报告详解
2.4GHZ微带渐变阻抗变换器设计报告一、设计任务1.1名称:设计一个工作频率为2.4GHZ,输入阻抗为50Ω,输出阻抗为30Ω的阻抗变换器。
1.2主要技术指标:S11<-20dB,S21<-0.7dB,re(Z0)=50Ω,VWAR尽量接近于1。
二、设计过程2.1原理:2.1.1 阻抗匹配的概念阻抗匹配元件在微波系统中用的很多,匹配的实质是设法在终端负载附近产生一新的反射波,使它恰好和负载引起的反射波等幅反相,彼此抵消,从而达到匹配传输的目的。
一旦匹配完善,传输线即处于行波工作状态。
在微波电路中,常用的匹配方法有:(1)电抗补偿法:在传输线中的某些位置上加入不消耗的匹配元件,如纯电抗的膜片、销钉、螺钉调配器、短路调配器等,使这些电抗负载产生的反射与负载产生的反射相互抵消,从而实现匹配传输,这些电抗负载可以是容性,也可以是感性,其主要有点是匹配装置不耗能,传输效率高。
(2)阻抗变换法:采用λ/4阻抗变换器或渐变阻抗变换器使不匹配的负载或两段特性阻抗不同的传输线实现匹配连接。
(3)发射吸收法:利用铁氧体元件的单体传输特性(如隔离器等)将不匹配负载产生的反射波吸收掉。
传输线的核心问题之一是功率传输。
对一个由信号源、传输线和负载构成的系统,希望信号源在输出最大功率的同时负载能全部吸收,以实现高效稳定的传输。
这就要求信号源内阻与传输线阻抗实现共轭匹配,同时要求负载与传输线实现无反射匹配。
2.1.2 阻抗匹配的方法阻抗匹配的方法是在负载与传输线之间接入匹配器,使其输入阻抗作为等效负载与传输线的特性阻抗相等。
图3-1 阻抗匹配匹配器是一个两端口的微波元件,要求可调以适应不同负载,其本身不能有功率损耗,应由电抗元件构成。
匹配阻抗的原理是产生一种新的反射波来抵消实负载的反射波(二者等幅反相),即“补偿原理”。
常用的匹配器有有λ/4阻抗变换换器和支节匹配器。
本论文主要采用λ/4阻抗变换器。
2.1.3 λ/4阻抗变换器λ/ 4阻抗变换器是特征阻抗通常与主传输线不同、长度为λ/ 4的传输线段,它可以用于负载阻抗或信号源内阻与传输线的匹配,以保证最大功率的传输;此外,在微带电路中,将两段不同特性阻抗的微带线连接在一起是为了避免线间反射,也应在两者之间加四分之一波长变阻器。
电磁场与微波技术实验报告(全)
信息与通信工程学院电磁场与微波技术实验报告班级:姓名:学号序号:日期:1实验二:分支线匹配器一、实验目的掌握支节匹配器的工作原理;掌握微带线的基本概念和元件模型;掌握微带线分支线匹配器的设计和仿真。
二、实验原理支节匹配器支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。
单支节匹配器:调谐时,主要有两个可调参量:距离d 和分支线的长度l。
匹配的基本思想是选择d,使其在距离负载d 处向主线看去的导纳Y 是Y0 + jB 形式,即Y = Y0 +jB ,其中Y0 = 1/Z0。
并联开路或短路分支线的作用是抵消Y 的电纳部分,使总电纳为Y0,实现匹配,因此,并联开路或短路分支线提供的电纳为−jB ,根据该电纳值确定并联开路或短路分支线的长度l,这样就达到匹配条件。
双支节匹配器:通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(注意双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。
微带线微带线是有介质εr(εr > 1) 和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr,可以近似等效为均匀介质填充的传输线,等效介质电常数为εe ,介于1 和εr 之间,依赖于基片厚度H 和导体宽度W。
而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。
三、实验内容已知:输入阻抗Z in = 75 Ω 负载阻抗Z L = (64 + j35) Ω特性阻抗Z0 = 75 Ω介质基片εr = 2.55,H = 1mm,导体厚度T 远小于介质基片厚度H。
2假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1 = λ/4 ,两分支线之间的距离为d2 = λ/8。
画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。
18GHZ微带渐变阻抗变换器设计报告
.1.8GHZ微带渐变阻抗变换器设计报告一、设计任务1.1名称:设计一个工作频率为1.8GHZ,输入阻抗为50Ω,输出阻抗为30Ω的阻抗变换器。
1.2主要技术指标:S11低于-20dB,S21接近0.7dB,re(Z0)接近50Ω,VWAR接近1。
二、设计过程1.原理:1.1 阻抗匹配的概念阻抗匹配元件在微波系统中用的很多,匹配的实质是设法在终端负载附近产生一新的反射波,使它恰好和负载引起的反射波等幅反相,彼此抵消,从而达到匹配传输的目的。
一旦匹配完善,传输线即处于行波工作状态。
在微波电路中,常用的匹配方法有:(1)电抗补偿法:在传输线中的某些位置上加入不消耗的匹配元件,如纯电抗的膜片、销钉、螺钉调配器、短路调配器等,使这些电抗负载产生的反射与负载产生的反射相互抵消,从而实现匹配传输,这些电抗负载可以是容性,也可以是感性,其主要有点是匹配装置不耗能,传输效率高。
(2)阻抗变换法:采用λ/4阻抗变换器或渐变阻抗变换器使不匹配的负载或两段特性阻抗不同的传输线实现匹配连接。
(3)发射吸收法:利用铁氧体元件的单体传输特性(如隔离器等)'..将不匹配负载产生的反射波吸收掉。
传输线的核心问题之一是功率传输。
对一个由信号源、传输线和负载构成的系统,希望信号源在输出最大功率的同时负载能全部吸收,以实现高效稳定的传输。
这就要求信号源内阻与传输线阻抗实现共轭匹配,同时要求负载与传输线实现无反射匹配。
1.2.阻抗匹配的方法阻抗匹配的方法是在负载与传输线之间接入匹配器,使其输入阻抗作为等效负载与传输线的特性阻抗相等。
阻抗匹配图3-1匹配器是一个两端口的微波元件,要求可调以适应不同负载,其本身不能有功率损耗,应由电抗元件构成。
匹配阻抗的原理是产生一种新的反射波来抵消实负载的反射波(二者等幅反相),即“补偿原理”。
常用的匹配器有有λ/4阻抗变换换器和支节匹配器。
本论文主要采用λ/4阻抗变换器。
1.3 . λ/4阻抗变换器λ/ 4阻抗变换器是特征阻抗通常与主传输线不同、长度为λ/ 4的传输线段,它可以用于负载阻抗或信号源内阻与传输线的匹配,以保'. .证最大功率的传输;此外,在微带电路中,将两段不同特性阻抗的微带线连接在一起是为了避免线间反射,也应在两者之间加四分之一波长变阻器。
三段微带阻抗渐变匹配电路的ADS设计和灵敏度分析结论
三段微带阻抗渐变匹配电路的ADS设计和灵敏度分析结论三段微带阻抗渐变匹配电路的ADS设计和灵敏度分析结论对于功率管,随着其输出功率的加大,输入输出电阻(兼顾线性、效率等指标所对应的最佳阻抗,器件生产商通常提供)很小,需要渐变微带线进行匹配,通常为三节,如图考虑到带宽的要求,曾经试图自己编程进行设计,由于牵扯很多理论和优化算法,暂时不能完成,本文利用仿真软件ADS中的内嵌优化算法和方便的数据文件调用功能,进行了此类匹配网路的设计,并对匹配电路中微带线的物理参数进行了灵敏度分析,对实际电路的调试有一定的指导意义。
将器件资料中提供的最佳输入输出阻抗(多个频点上的)按照ADS的格式写入两个文件中(*.s1p,注意是否取共轭),在软件中应用“data item”——“s1p”模块,将已经写好的sip文件导入其中,作为负载(管子在不同频率上的阻抗),ads中的仿真电路如下图限定各个尺寸的范围,并凭经验设定初始值,进行逐步优化获得宽带内优化目标的实现,驻波比曲线如下图 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.182.00 2.201.41.51.61.71.31.8freq, GHzV S W R 1由于功放电路的匹配多是凭经验进行手动调整,那么对于上面提到的电路形式是否存在一些比较普遍的规律,因此进行匹配电路物理尺寸变化对功放匹配效果的灵敏度分析是有必要的,利用软件中优化模板的sensitivity 选项操作灵敏度分析,分析结果如下sensVariablesl3w3l2w2l1w1OptimGoal10.0050.4830.0780.1460.600-0.234(对多个不同阻抗的匹配电路进行了灵敏度分析得出类似结论,上面提取一个结果进行说明)表格的意义:说明w3和l1的灵敏度较高,也就是说,这两个参数对匹配效果的影响最显著,可以通过较小范围的调整两者获得好的匹配结果,当然也要控制单板间匹配电路中这两个部分的一致性,避免差的生产性。
24GHZ微带渐变阻抗变换器设计报告.
2.4GHZ微带渐变阻抗变换器设计报告一、设计任务1.1名称:设计一个工作频率为2.4GHZ,输入阻抗为50Ω,输出阻抗为30Ω的阻抗变换器。
1.2主要技术指标:S11<-20dB,S21<-0.7dB,re(Z0)=50Ω,VWAR尽量接近于1。
二、设计过程2.1原理:2.1.1 阻抗匹配的概念阻抗匹配元件在微波系统中用的很多,匹配的实质是设法在终端负载附近产生一新的反射波,使它恰好和负载引起的反射波等幅反相,彼此抵消,从而达到匹配传输的目的。
一旦匹配完善,传输线即处于行波工作状态。
在微波电路中,常用的匹配方法有:(1)电抗补偿法:在传输线中的某些位置上加入不消耗的匹配元件,如纯电抗的膜片、销钉、螺钉调配器、短路调配器等,使这些电抗负载产生的反射与负载产生的反射相互抵消,从而实现匹配传输,这些电抗负载可以是容性,也可以是感性,其主要有点是匹配装置不耗能,传输效率高。
(2)阻抗变换法:采用λ/4阻抗变换器或渐变阻抗变换器使不匹配的负载或两段特性阻抗不同的传输线实现匹配连接。
(3)发射吸收法:利用铁氧体元件的单体传输特性(如隔离器等)将不匹配负载产生的反射波吸收掉。
传输线的核心问题之一是功率传输。
对一个由信号源、传输线和负载构成的系统,希望信号源在输出最大功率的同时负载能全部吸收,以实现高效稳定的传输。
这就要求信号源内阻与传输线阻抗实现共轭匹配,同时要求负载与传输线实现无反射匹配。
2.1.2 阻抗匹配的方法阻抗匹配的方法是在负载与传输线之间接入匹配器,使其输入阻抗作为等效负载与传输线的特性阻抗相等。
图3-1 阻抗匹配匹配器是一个两端口的微波元件,要求可调以适应不同负载,其本身不能有功率损耗,应由电抗元件构成。
匹配阻抗的原理是产生一种新的反射波来抵消实负载的反射波(二者等幅反相),即“补偿原理”。
常用的匹配器有有λ/4阻抗变换换器和支节匹配器。
本论文主要采用λ/4阻抗变换器。
2.1.3 λ/4阻抗变换器λ/ 4阻抗变换器是特征阻抗通常与主传输线不同、长度为λ/ 4的传输线段,它可以用于负载阻抗或信号源内阻与传输线的匹配,以保证最大功率的传输;此外,在微带电路中,将两段不同特性阻抗的微带线连接在一起是为了避免线间反射,也应在两者之间加四分之一波长变阻器。
一种微带一分八Wilkinson功分器的设计与实现
一种微带一分八Wilkinson功分器的设计与实现微带一分八Wilkinson功分器是一种用于将输入功率平均分配到八个输出端口的微带功分器。
本文将介绍该功分器的设计与实现。
1.设计要求设计一个工作频率为f的微带一分八Wilkinson功分器,其特点如下:-输入端口和输出端口的阻抗为Z0(通常为50Ω)。
-输入功率分配到八个输出端口时的功率分配误差不超过±0.5dB。
-高频信号的传输损耗尽量小,以确保功分器的高频性能。
2.设计步骤2.1确定微带线宽度和阻抗首先,根据设计频率f和介质常数,可以计算出微带线的宽度W和介质常数εr。
使用商用PCB设计软件,比如EAGLE或Altium Designer,可以根据W和εr计算出微带线的阻抗Z0。
2.2确定功分器的尺寸接下来,根据所选的微带线宽度W和长度L,可以计算出微带线的特性阻抗Z0。
根据Wilkinson功分器的设计原理,输入端口和输出端口的微带线长度应为L/4,耦合器的长度应为L/2、通过调整L的值,可以得到所需的阻抗Z0。
2.3设计耦合器根据Wilkinson功分器的原理,耦合器的长度应为L/2、通过调整耦合器的宽度,可以控制功分器的功分比。
通常,通过微带线的宽度Wc和长度Lc来控制耦合器的宽度。
通过调整Wc和Lc的值,可以得到所需的功分比。
2.4设计阻抗变换器为了将输入阻抗Z0变换到耦合器的阻抗Zc,需要在输入端口和耦合器之间添加一个阻抗变换器。
阻抗变换器可以由微带线和补偿电容或电感组成。
通过调整阻抗变换器的参数,可以使输入阻抗匹配到耦合器的阻抗。
2.5仿真和调整完成设计后,使用商用EM仿真软件,如Ansoft HFSS或CST Microwave Studio,对功分器进行全波仿真。
通过仿真结果,可以评估功分器的性能,并进行必要的调整,以满足设计要求。
3.实现完成设计和仿真后,可以将功分器制作成实际的PCB。
根据设计要求,选择合适的材料和加工工艺,并使用PCB加工设备制作PCB板。
2.4GHZ微带渐变阻抗变换器设计报告
2.4GHZ微带渐变阻抗变换器设计报告2.4GHZ微带渐变阻抗变换器设计报告一、设计任务1.1名称:设计一个工作频率为2.4GHZ,输入阻抗为50Ω,输出阻抗为30Ω的阻抗变换器。
1.2主要技术指标:S11<-20dB,S21<-0.7dB,re(Z0)=50Ω,VWAR尽量接近于1。
二、设计过程2.1原理:2.1.1 阻抗匹配的概念阻抗匹配元件在微波系统中用的很多,匹配的实质是设法在终端负载附近产生一新的反射波,使它恰好和负载引起的反射波等幅反相,彼此抵消,从而达到匹配传输的目的。
一旦匹配完善,传输线即处于行波工作状态。
在微波电路中,常用的匹配方法有:(1)电抗补偿法:在传输线中的某些位置上加入不消耗的匹配元件,如纯电抗的膜片、销钉、螺钉调配器、短路调配器等,使这些电抗负载产生的反射与负载产生的反射相互抵消,从而实现匹配传输,这些电抗负载可以是容性,也可以是感性,其主要有点是匹配装置不耗能,传输效率高。
(2)阻抗变换法:采用λ/4阻抗变换器或渐变阻抗变换器使不匹配的负载或两段特性阻抗不同的传输线实现匹配连接。
(3)发射吸收法:利用铁氧体元件的单体传输特性(如隔离器等)将不匹配负载产生的反射波吸收掉。
传输线的核心问题之一是功率传输。
对一个由信号源、传输线和负载构成的系统,希望信号源在输出最大功率的同时负载能全部吸收,以实现高效稳定的传输。
这就要求信号源内阻与传输线阻抗实现共轭匹配,同时要求负载与传输线实现无反射匹配。
2.1.2 阻抗匹配的方法阻抗匹配的方法是在负载与传输线之间接入匹配器,使其输入阻抗作为等效负载与传输线的特性阻抗相等。
图3-1 阻抗匹配匹配器是一个两端口的微波元件,要求可调以适应不同负载,其本身不能有功率损耗,应由电抗元件构成。
匹配阻抗的原理是产生一种新的反射波来抵消实负载的反射波(二者等幅反相),即“补偿原理”。
常用的匹配器有有λ/4阻抗变换换器和支节匹配器。
本论文主要采用λ/4阻抗变换器。
微带线阶梯型阻抗变换器(50ohm到100ohm)设计with HFSS
width of port
4◆仿真结果
仿真结果在下一页。仿真结果很好,但与后来网分仪的结果差别很大。不过从网分仪上看出此次所做的实物还是实现了在2.4GHz频率信号下做阻抗变换的功能,同时可观察到该器件在2.556GHz信号下效果最好。
height of ground
height of substrate
width of the strip whose function is to convert the impedance
length of the strip whose function is to convert the impedance
}
LEN=c*1000/(4.0*f0*(sqrt(Ee)));
printf("导体宽度w=%lf毫米\n",w);
printf("等效介电常数Ee=%lf\n",Ee);
printf("导体长度LEN=%lf毫米\n",LEN);
}
else
{
bijiao=44.0-2*Er;
if(Z0>bijiao)
4.0/PI))/Er)/(2.0*Er+2.0);
w=h/((exp(A))/8.0-1/(4.0*exp(A)));
Ee=(Er/2.0+1.0/2.0)/pow((1-(log(PI/2.0)+(log(4.0/PI))/Er)*
(Er-1)/(2.0*A*(Er+1))),2);
}
if(Z0<bijiao)
wz=h/((exp(A))/8.0-1/(4.0*exp(A)));
2~6 GHz宽带微带均衡器设计与实现
第35卷 第1期 2020年3月 西 南 科 技 大 学 学 报 JournalofSouthwestUniversityofScienceandTechnology Vol.35No.1 Mar.2020 收稿日期:2019-06-21 基金项目:国家自然科学基金青年项目(61801406) 第一作者简介:夏祖学(1975—),男,博士,硕导,研究方向为微波组件、天线等,E mail:zuxue_xia@swust.edu.cn2~6GHz宽带微带均衡器设计与实现夏祖学1 何坤林2 何 杨1(1.西南科技大学信息工程学院 四川绵阳 621010;2.广东通宇通讯股份有限公司 广东中山 528400)摘要:较好的性能、更小的尺寸、更低的成本,已经成为宽带微波组件必须满足的基本要求。
微带幅度均衡器可以有效改善宽带功率放大器的增益平坦度,使其满足指标要求。
利用λ/4的开路微带线和薄膜电阻构成谐振器,结合ADS软件与HFSS软件联合仿真设计了2~6GHz的紧凑的微带宽带均衡器,并制作了实物,实测和仿真结果基本一致,从而证明了设计方法的有效性。
关键词:宽带幅度均衡器 微带谐振器 开路枝节 薄膜电阻 协同仿真中图分类号:TN715 文献标志码:A 文章编号:1671-8755(2020)01-0070-05DesignandImplementationof2-6GHzBroadbandMicrostripEqualizersXIAZuxue1,HEKunlin2,HEYang1(1.SchoolofInformationEngineering,SouthwestUniversityofScienceandTechnology,Mianyang621010,Sichuan,China;2.GuangdongTongyuCommunicationCo.,Ltd.,Zhongshan528400,Guangdong,China)Abstract:Higherperformance,smallersizeandlowercosthavebecomethebasicrequirementsforbroad bandmicrowavecomponents.Microstripamplitudeequalizercanbeusedtoeffectivelyimprovethegainflatnessofthebroadbandpoweramplifiersoastomeettherequirements.Inthispaper,aresonatorwascomposedofλ/4openmicrostriplinesandthin filmresistorsandacompactbroadbandmicrostripampli tudeequalizerof2to6GHzwassimulatedandfabricatedbycombiningADSsoftwareandHFSSsoftware.Theexperimentalresultsarebasicallyconsistentwiththesimulationresults,whichprovetheeffectivenessofthecomputeroptimizationdesignmethod.Keywords:Broadbandamplitudeequalizer;Microstripresonator;Quarter waveopen circuitstub;Thinfilmresistor;Co simulation. 幅度均衡器最早应用在低频的音响、邮电通信、CATV等设备中。
微带多节阻抗变阻器的设计仿真
实验 微带多节阻抗变阻器的设计仿真一.实验目的1) 掌握微带多节阻抗变组器的设计2) 掌握用VOLTAIRE XL 进行仿真及优化设计二.实验原理变阻器是一种阻抗变换元件,它可以接于不同数值的电源内阻和负载电阻之间,将 两者起一相互变换作用获得匹配,以保证最大功率的传输;此外,在微带电路中,将两不同特性阻抗的微带线连接在一起是为了避免线间反射,也应在两者之间加变阻器。
单节λ/4 变阻器是一种简单而有用的电路,其缺点是频带太窄。
为了获得较宽的频 带,可以采用多节阻抗变换器。
采用综合设计法进行最佳多节变阻器设计,目前较多使用的有最大平坦度契比雪夫多项式。
等波纹特性多节变阻器比最平坦特性多节变阻器具有更快宽的工作频带。
在微带线形式中,当频率不太高而色散效应可忽略时,各位带线的特性阻抗和相速 均与频率无关,因此属于均匀多节变阻器。
多节变阻器如图一所示。
其每节点长度均为θ;Z0,Z1,Z2……,Zn 为各界的特性阻 抗,Zn+1 为负载阻抗,并假设Zn+1>Zn,……Z2>Z1,Z1>Z0连接处驻波比ρ1 ρ2…… ρn+1反射系数Γ1 Γ2…… Γn+1定义下列公式为变阻器的相对带宽和中心波长:)2121(2g g g g Wq λλλλ+-= 212120g g g g g λλλλλ+⋅=其中1g λ和λg2分别为频带边界的传输线波长,0g λ为传输线的中心波长,Wq 为相对带宽。
去编组其每段长度为传输线波长的四分之一,即4/0g l λ=。
一般来讲,微带变阻器的设计步骤为:1)根据给定指标,查表(最平坦型或等波纹型)确定微带变阻器的节数n 。
2)查表得到各段线的特性阻抗。
3)利用TXLINE 计算相应微带线的长度及宽度。
三.实验内容设计仿真等波纹型微带多节变阻器,给定指标:在2GHZ —6GHZ 的频率范围内,阻抗从50Ω变为10Ω,驻波比不应超过1.15,介质基片εr=9.6,厚度h=1mm,在此频率范围内色散效应可忽略。
微带-波导转换
波导-微带转换电路刘云生201222040512设计目的:设计一只Ka波段波导到微带转换电路。
其技术指标要求如下:工作频率:26.5~40GHz输入/输出驻波比:<1.2插入损耗:<1.0dB一、设计思路微带探针转换是目前应用最为广泛的波导-微带过渡形式并且它有明显的优点。
它的插人损耗低,回波损耗小,具有较大频宽,且其结构紧凑,加工方便,装卸容易。
图1和图2中所示为常用微带探针转换结构图,我们采用H面微带探针转换的结构。
探针从波导宽面插入,并且探针平面与波导窄面垂直。
微带过渡段我们采用渐变结构。
通过优化探针插入深度d,微带变换器的长度1L,探针和微带变换器各自宽度,1s s,波导的微带插入处到波导短路处的距离L,得到满足指标的结果。
图1 H面微带探针转换结构图图2 E面微带探针转换结构图二、设计过程:(1)利用ADS软件里的微带计算工具得出中心频率为33.5GHz处的微带的宽度0.77Sx mm,如图3所示。
图3 50欧姆微带线宽(2)在HFSS中建立仿真模型如图4所示,包括微带金属条,微带基板,以及包围空气腔三部分。
利用对称性以YZ面为对称面切掉一半可以减少计算时间。
图4 仿真模型(3)设置三部分的材料属性,其中微带金属条为PEC,微带基板为Duriod5880(厚度0.254mm=)。
包围空气=,相对介电常数 2.2腔设为真空(默认)。
(4)设置波端口1,2。
都为1个模式,如图5。
图5 波端口1 波端口2(5)设置边界条件如图6。
其中微带被包围空气腔的上面设置辐射边界,对称YZ面设置为Prefect H面。
图6 边界条件(6)设置求解,扫频。
然后设置5个优化变量(优化探针插入深度以及微带变换器的长度,1s s,波导的微带插入处到波d L,宽度,1导短路处的距离L),优化目标即为设计指标。
三、设计结果及存在问题分析:通过优化得到最佳优化值如下图7中所示:图7 优化变量优化结果为:图8 优化结果图驻波比在整个频段内均小于1.2,插入损耗在整个频段内均小于0.3dB,故在全频段内满足设计要求。
微带一分五宽带Wilkinson功分器的设计制作
微带一分五宽带Wilkinson功分器的设计制作徐洋;彭龙;张帅【摘要】针对功分器被应用于功率放大器、相控阵天线、混频器和多路中继通信机等微波设备中.其性能的好坏直接影响到整个系统能量的分配和合成效率.设计了一种工作频带在0.7~2.5 GHz的微带一分五宽带功分器,根据优化结果制作了器件实物.采用Ansoft Designer、Serenade以及HFSS软件进行协同仿真,仿真结果表明,该功分器在整个频带范围内具有良好的性能指标,器件测试结果与仿真结果吻合,适用于通信、功率分配合成系统中.【期刊名称】《电子科技》【年(卷),期】2016(029)004【总页数】4页(P133-135,139)【关键词】微带;功分器;宽带【作者】徐洋;彭龙;张帅【作者单位】成都信息工程大学光电技术学院,四川成都610225;成都信息工程大学光电技术学院,四川成都610225;成都信息工程大学光电技术学院,四川成都610225【正文语种】中文【中图分类】TN626功分器在微波电路中有着广泛的应用,被应用在功率放大器、相控阵天线[1]、混频器和多路中继通信机等微波设备中。
其性能的好坏直接影响到整个系统能量的分配和合成效率。
随着宽带天线、宽带滤波器等器件的不断发展,对宽带功分器的需求也越来越大[2]。
功率分配器作为最基本的微波无源器件,其将一个输入信号分配成多个较小的信号,相反其也可将多个信号进行功率合成。
当输出端口较多时,非2n个时,难以保证输出个端口幅度和相位的一致性。
幅度和相位的一致性对系统的影响较大[3],例如在相控阵天线系统中。
本文利用Ansoft Designer、Serenade、AutoCAD、HFSS等软件对功分器进行协同仿真,设计并制作出了工作频带在0.7~2.5 GHz的微带一分五宽带功分器。
可广泛应用于通信、功率分配合成系统中。
1.1 宽频带等分功分器本文设计的是一个工作频带在0.7~2.5 GHz,涉及到功分比为1∶1的两路功分器,带宽约为4个倍频层,结合多节λ/4阻抗变换器相级联的形式,阻抗变换器采用4节。
0.1GHz~12GHz宽带小信号放大器设计中期报告
0.1GHz~12GHz宽带小信号放大器设计中期报告
设计目标:
设计一款宽带小信号放大器,能够工作在0.1GHz~12GHz的频段内,具有高增益、低噪声、稳定可靠的性能。
设计思路:
本次设计采用混合式匹配的设计方法,通过在输入端串联L型匹配
电路和反馈电感,达到阻抗匹配和谐振的目的;在输出端采用板上电容
分离的Pi型网络,为了抑制基带回路产生负载影响,还采用了负载谐振
电路。
设计步骤:
1、参数选择
根据设计目标,选择增益、噪声系数、输出阻抗等参数。
本次设计
的参数为:增益>20dB,噪声系数<2dB,输出阻抗50Ω。
2、电路拓扑选择
根据参数选择采用混合式匹配的设计方法。
3、电路元件选取
根据设计要求选取合适的元器件。
本次设计采用了HMC311SC70和MGA-685T6两款微波管,其它元器件如电容、电感、电阻等则采用常见
的标准元件。
4、阻抗匹配
在输入端串联L型匹配电路和反馈电感,达到阻抗匹配和谐振的目的。
5、输出匹配
采用板上电容分离的Pi型网络,为了抑制基带回路产生负载影响,还采用了负载谐振电路。
6、仿真验证
在ADS软件中建立电路模型,并进行仿真验证。
未来计划:
1、进行PCB设计和制作,进行实际性能测试。
2、对设计进行改进,以达到更理想的性能表现。
3、对设计过程中的问题进行总结和分析,记录设计经验,为今后的设计提供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微带渐变阻抗变换器设计报告
一、设计任务
名称:设计一个工作频率为,输入阻抗为50Ω,输出阻抗为30Ω的阻抗变换器。
主要技术指标:S11低于-20dB,S21接近,re(Z0)接近50Ω,VWAR接近1。
二、设计过程
1.原理:
1.1 阻抗匹配的概念
阻抗匹配元件在微波系统中用的很多,匹配的实质是设法在终端负载附近产生一新的反射波,使它恰好和负载引起的反射波等幅反相,彼此抵消,从而达到匹配传输的目的。
一旦匹配完善,传输线即处于行波工作状态。
在微波电路中,常用的匹配方法有:
(1)电抗补偿法:在传输线中的某些位置上加入不消耗的匹配元件,如纯电抗的膜片、销钉、螺钉调配器、短路调配器等,使这些电抗负载产生的反射与负载产生的反射相互抵消,从而实现匹配传输,这些电抗负载可以是容性,也可以是感性,其主要有点是匹配装置不耗能,传输效率高。
(2)阻抗变换法:采用λ/4阻抗变换器或渐变阻抗变换器使不匹配的负载或两段特性阻抗不同的传输线实现匹配连接。
(3)发射吸收法:利用铁氧体元件的单体传输特性(如隔离器等)
将不匹配负载产生的反射波吸收掉。
传输线的核心问题之一是功率传输。
对一个由信号源、传输线和负载构成的系统,希望信号源在输出最大功率的同时负载能全部吸收,以实现高效稳定的传输。
这就要求信号源内阻与传输线阻抗实现共轭匹配,同时要求负载与传输线实现无反射匹配。
.阻抗匹配的方法
阻抗匹配的方法是在负载与传输线之间接入匹配器,使其输入阻抗作为等效负载与传输线的特性阻抗相等。
图3-1 阻抗匹配
匹配器是一个两端口的微波元件,要求可调以适应不同负载,其本身不能有功率损耗,应由电抗元件构成。
匹配阻抗的原理是产生一种新的反射波来抵消实负载的反射波(二者等幅反相),即“补偿原理”。
常用的匹配器有有λ/4阻抗变换换器和支节匹配器。
本论文主要采用λ/4阻抗变换器。
. λ/4阻抗变换器
λ/ 4阻抗变换器是特征阻抗通常与主传输线不同、长度为λ/ 4的传输线段,它可以用于负载阻抗或信号源内阻与传输线的匹配,以保证最大功率的传输;此外,在微带电路中,将两段不同特性阻抗的微带线连接在一起是为了避免线间反射,也应在两者之间加四分之一波长变阻器。
当负载阻抗与其传输线的波阻抗不相等,或两段波阻抗不同的传输线相连接时,在其间接入阻抗变换器可以消除或减少传输线上的反射波以获得匹配。
对某些传输线如金属波导,因其封闭性和制品的标准性,阻抗变换器要做成准用元件;而对于微带线则可根据负载情况设计微带阻抗变换阶段,并与微带电路一同光刻腐蚀(或真空镀膜的方法)一次形成。
阻抗变换器的最基本形式是利用四分之一波长线的阻抗变换特性。
在两个特性阻抗不同的传输线之间插入一段或多段不同特性阻抗的
传输线,佘当选取其长度、特性阻抗的值和节(段)数,就可以在一定带宽内驻波比低于某个给定的值。
这种变换装置成为阶梯式阻抗变换器。
λ/4阻抗变换器由一段特性阻抗为Z01的λ/4传输线构成。
如图3-2-1所示
图3-2-1 λ/4阻抗变换器原理性示意图
由(3-4)、(3-5)可画出|Γ|随θ(或f)变化的曲线;曲线作周期为π的变化。
设允许|Γ|≤|Γ|m,则其工作带宽对应于Δθ限定的范围频率。
由于θ偏离π/2时|Γ|曲线急剧下降,故工作带宽很窄。
图3-2-2 单节λ/4阻抗变换器的带宽特性
微带线λ/4阻抗变换器,一般都是保持变换段的导体带与接地板之间的距离不变,介质材料也不变,阻抗的变换是通过改变代替带的宽度来实现的。
λ/4阻抗变换器只有在中心频率或其附近很窄的频带内,才能满足一定的匹配要求;当频率偏离中心较大时,匹配性能急剧下降。
微波阻抗变换器的作用是消除反射,提高传输效率,改善系统稳定性。
阻抗匹配元件种类很多,主要的有螺钉调配器、阶梯阻抗变换器和渐变型阻抗变换器三种。
本次主要研究的是渐变阻抗变换器,渐变线是其特性阻抗按一定规律平滑的由一条传输线的特性阻抗过渡到另一条传输线的特性阻抗。
从理论上讲,多级变换器的阻抗越多,其匹配频带越宽,多阶梯阻抗变换器随着阶梯数目的增加带来了尺寸的增加和造价的增大,工程上考虑到尺寸、成本、性能发展出了渐变阻抗变换器,,因为它有更好地带宽匹配性能。
图2-2给出了渐变阻抗变换器的图形:
(1)50Ω微带线
50Ω微带线模型
50Ω微带线的特性阻抗实部
由图可以看出在时,微带线阻抗的实部约为Ω,接近50Ω,此时微带线的宽度约为。
(2)30Ω微带线
30Ω微带线模型
30Ω微带线的特性阻抗实部
由图可以看出在时,微带线阻抗的实部约为Ω,接近30Ω,此时微带线宽度为。
所以建模型时50Ω的宽度为,长度为5mm,50Ω的宽度为,长度5mm,渐变线长度约为.
2.关键参数优化:
L2(渐变线长度):45mm-48mm
优化图
三、设计结果
仿真结果:
结构截图
参数列表
W0:基板宽度 W1:50Ω微带线宽度 L1:微带线长度W2:30Ω微带线宽度 L2:阻抗变换器长度
H:基板高度
2.指标图
S11(回波损耗)图
S21(插入损耗)图
VSWR(驻波比)图
Re(Z0)(输入阻抗)图
3.测试结果:
S11(回波损耗)在时为<-20dB
S21(插入损耗)在时为接近
VWSR(驻波比)在时为约等于1
Re( Z0)(输入阻抗)在时为Ω接近50Ω
四、结论与体会
本次实验是设计渐变型阻抗变换器,从仿真的结果图中可以看出,各项指标都是符合要求的,说明了此项设计的可行性。
另外,通过这次实验设计,我认识到了HFSS软件的强大功能,很值得去深入学习,也因此,要感谢老师给了我们学习这款软件的机会,同时也要感谢学长学姐对我们的悉心指导。