电力电子实验matlab仿真SVC

电力电子实验matlab仿真SVC
电力电子实验matlab仿真SVC

电力电子技术仿真实验报告

学校:四川大学

学院:电气信息学院

专业:电气工程及其自动化

年级:2011级

班级:电力109班

实验内容:+300Mvar~-100Mvar SVC

MATLAB仿真

实验小组成员:

杜泽旭:1143031345

罗恒:1143031346

何强:1143031347

蒋红亮:1143031153

一、仿真平台

本次实验的仿真平台是MATLAB软件。MA TLAB软件是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。本次实验所用的MATLAB软件版本为MA TLAB 7.11.0(R2010b)。

二、仿真模型

在本次试验中我们所用是MATLAB中的自带的示例中的Sim Power system中的主要由1台735kV/16kV 333MV A的耦合变压器、1台109Mvar晶闸管控制的电抗器(TCR)和3台94Mvar晶闸管投切的电容器(TSC)构成的+300Mvar~-100Mvar静止无功补偿器(SVC)系统,这是一个已经搭建好的模块我们只需用在以上基础做一定的参数设定就可以得到我们所想要的仿真模型。操作步骤如下所示:

三、实验要求

1)实验原理图;

2)模型并联补偿原理;

3)阐述模型中补偿器的构成,如多电平、多脉冲或其他方式构成;4)模型中的补偿装置的主要功用;

5)原有模型的实验效果;

6)画出模型的控制框图。

四、实验内容

1、系统总体结构图:

2、系统模型图

3、模型中补偿器的构成、并联补偿原理以及功用:

本系统由1台735kV/16kV 333MV A 的耦合变压器,其二次侧分别接入1台109Mvar 晶闸管控制的电抗器(TCR )和3台94Mvar 晶闸管投切的电容器(TSC )构成的+300Mvar~-100Mvar 静止无功补偿器(SVC ),为多脉冲构成方式。TCR 相当于连续可调的电感只能吸收无功功率,TSC 则以94Mvar 为步进最多可以发出282Mvar 的无功功率,本系统接入系统后,当系统出现无功不足时,便根据实际情况投入适合容量的TSC 向系统补偿无功功率,当系统有过多无功时,便根据实际情况投入TCR

,并调节使之吸收系统中的无

功功率。SVC主要的功能有:

1)、当长距离输送电能时,通过控制中间变电所的无功功率,将整个线路的动态稳定极限提高到接近每个区段的动态稳定极限;

2)、沿输电线维持一个稳定的电压分布来使输送功率最大化,同时提高输电的效率;

3)、利用快速的过电压控制来降低线路的绝缘等级;

4)、有效的阻尼薄弱的互联系统之间的功率振荡;

5)、动态平衡可变的不对称负荷;

6)、抑制由大功率的晶闸管传动系统和电弧炉等冲击性负荷所引起的电压波动。

4、运行仿真:

SVC在电压控制模式下设置基准电压为1.0pu(pu为标幺值,下同),电压每变动0.01pu,SVC便调节100Mvar。运行仿真,由下图可以得知初始电压源为1.0pu,SVC的TSC1被投入系统运行,TCR的触发延迟角为96°,从系统吸收无功功率,此时整个SVC装置既没有向系统发出无功功率,也没有从系统吸收无功功率。在0.1秒时,电压突然升到1.025pu,此时TSC1退出运行,这时所有的TSC此时都没有被投入系统,同时TCR吸收95Mvar的无功功率使得系统电压下降到了 1.01pu,而此后到了0.4s时,电压源的电压突然降到了0.93pu,此时SVC逐个向系统投入了3个TSC,并控制TCR向系统吸收无功,使得整个SVC 装置向系统发出256Mvar的无功功率,将系统电压抬升到0.974pu,0.7s后系统电压上升到了1.0Mvar,因此SVC装置逐个退出了TSC3、TSC2,保留TCR和TSC1运行,整个系统恢复到了初始状态。

SVC

控制信号

TSC1 Misfiring

TSC1ab

TSC2ab

TSC3ab

TCRab

电力电子技术MATLAB仿真报告模板

《电气专业核心课综合课程设计》 题目:基于MATLAB的电力电子技术 仿真分析 学校: 院(系): 专业班级: 学生姓名: 学号: 指导教师: 目录

1.整流电路仿真………………………………………………………………………………页码 1.1单相半波可控整流系统………………………………………………………………页码 1.1.1晶闸管的仿真…………………………………………………………………页码 1.1.2单相半波可控整流电路的仿真………………………………………………页码 1.2晶闸管三相桥式整流系统的仿真…………………………………………………页码 1.3相位控制的晶闸管单相交流调压器带系统的仿真………………………………页码 2.斩波电路仿真………………………………………………………………………………页码 2.1降压斩波电路(Buck变换器)………………………………………………………页码 2.1.1可关断晶闸管(GTO)的仿真…………………………………………………页码 2.1.2 Buck变换器的仿真………………………………………………………页码 2.2升压斩波电路(Boost变换器)………………………………………………………页 码 2.2.1绝缘栅双极型晶体管(IGBT)的仿真…………………………………………页码 2.2.2 Boost变换器的仿真……………………………………………………………页码4.逆变电路仿真………………………………………………………………………………页码 4.1晶闸管三相半波有源逆变器的仿真………………………………………………页码 5.课程设计总结………………………………………………………………………………页码参考文献……………………………………………………………………………………页码 电气专业核心课综合课程设计任务书

电力电子技术实验报告

实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验 一、实验目的 (1)掌握各种电力电子器件的工作特性。 (2)掌握各器件对触发信号的要求。 二、实验所需挂件及附件 序 型号备注 号 1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK06 给定及实验器件该挂件包含“二极管”等几个模块。 3DJK07 新器件特性实验 DJK09 单相调压与可调负 4 载 5万用表自备 将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R 串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。 实验线路的具体接线如下图所示: 四、实验内容 (1)晶闸管(SCR)特性实验。

(3)功率场效应管(MOSFET)特性实验。

(5)绝缘双极性晶体管(IGBT)特性实验。 五、实验方法 (1)按图3-26接线,首先将晶闸管(SCR)接入主电路,在实验开始时,将DJK06上的给定电位器RP1沿逆时针旋到底,S1拨到“正给定”侧,S2拨到“给定”侧,单相调压器逆时针调到底,DJK09上的可调电阻调到阻值为最大的位置;打开DJK06的电源开关,按下控制屏上的“启动”按钮,然后缓慢调节调压器,同时监视电压表的读数,当直流电压升到40V时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读数,当电压表指示接近零(表示管子完全导通),停止调节,记录给定电压U

电力电子电路分析与仿真实验报告模板

电力电子电路分析与仿真 实验报告 学院:哈尔滨理工大学荣成学院 专业: 班级: 姓名: 学号:

年月日 实验1降压变换器 一、实验目的: 设计一个降压变换器,输入电压为220V,输出电压为50V,纹波电压为输出电压的0.2%,负载电阻为20欧,工作频率分别为220kHz。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 四、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个

平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。 3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

实验2升压变换器 一、实验目的: 将一个输入电压在3~6V的不稳定电源升压到稳定的15V,纹波电压低于0.2%,负载电阻10欧,开关管选择MOSFET,开关频率为40kHz,要求电感电流连续。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 五、实验原理图:

五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。 3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

Matlab 在电磁场中的应用 (2)

Matlab 在电磁场中的 应用 专业: 电气信息与自动化 班级:2012级自动化3班 学号:12012242065 学院:物电学院 指导老师:李虹 完成日期:2013年12月15日

Matlab 在电磁场中的应用 摘要 Matlab是美国Mathworks公司于80年代推出的大型数学软件,通过多年的升级换代,现在已发展成为集数值计算、符号计算、可视化功能以及诸多的工具箱为一体的大型科学计算软件,它已广泛应用于科研院所、工程技术等各个部门,并成为大学生、研究生必备的工具软件。 电磁学是物理学的一个分支,是研究电场和电磁的相互作用现象。电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于电流的磁效应和变化的磁场的电效应的发现。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。 针对电磁场学习理论性强、概念抽象等特点,利用Matlab强大的数值计算和图形技术,通过具体实例进行仿真,绘制相应的图形,使其形象化,便于对其的理解和掌握。将Matlab引入电磁学中,利用其可视化功能对电磁学实验现象进行计算机模拟,可以提高学习效率于学习积极性,使学习效果明显。 本文通过Matlab软件工具,对点电荷电场、线电荷产生的电位、平面上N 个电荷之间的库仑引力、仿真电荷在变化磁场中的运动等问题分别给出了直观形象的的仿真图,形实现了可视化学习,丰富了学习内容,提高了对电磁场理论知识的兴趣。 关键词:Matlab 电磁学仿真计算机模拟 一、点电荷电场 问题描述: 真空中,两个带正电的点电荷,在电量相同和电量不同情况下的电场分布。根据电学知识,若电荷在空间激发的电势分布为V,则电场强度等于电势梯度的

电力电子技术仿真实验指导书

《电力电子技术实验》指导书 合肥师范学院电子信息工程学院

实验一电力电子器件 仿真过程: 进入MATLAB环境,点击工具栏中的Simulink选项。进入所需的仿真环境,如图所示。点击File/New/Model新建一个仿真平台。点击左边的器件分类,找到Simulink和SimPowerSystems,分别在他们的下拉选项中找到所需的器件,用鼠标左键点击所需的元件不放,然后直接拉到Model平台中。 图 实验一的具体过程: 第一步:打开仿真环境新建一个仿真平台,根据表中的路径找到我们所需的器件跟连接器。

提取出来的器件模型如图所示: 图 第二步,元件的复制跟粘贴。有时候相同的模块在仿真中需要多次用到,这时按照常规的方法可以进行复制跟粘贴,可以用一个虚线框复制整个仿真模型。还有一个常用方便的方法是在选中模块的同时按下Ctrl键拖拉鼠标,选中的模块上会出现一个小“+”好,继续按住鼠标和Ctrl键不动,移动鼠标就可以将模块拖拉到模型的其他地方复制出一个相同的模块,同时该模块名后会自动加“1”,因为在同一仿真模型中,不允许出现两个名字相同的模块。 第三步,把元件的位置调整好,准备进行连接线,具体做法是移动鼠标到一个器件的连接点上,会出现一个“十字”形的光标,按住鼠标左键不放,一直到你所要连接另一个器件的连接点上,放开左键,这样线就连好了,如果想要连接分支线,可以要在需要分支的地方按住Ctrl键,然后按住鼠标左键就可以拉出一根分支线了。 在连接示波器时会发现示波器只有一个接线端子,这时可以参照下面示波器的参数调整的方法进行增加端子。在调整元件位置的时候,有时你会遇到有些元件需要改变方向才更方便于连接线,这时可以选中要改变方向的模块,使用Format菜单下的Flip block 和Rotate

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

电力电子的matlab仿真实验指导书(改)

“电力电子”仿真实验指导书 MATLAB仿真实验主要是在simulink环境下的进行的。Simulink是运行在MATLAB环境下,用于建模、仿真和分析动态系统的软件包。它支持连续、离散及两者混合的线性和非线性系统。由于它具有直观、方便、灵活的特点,已经在学术界、工业界的建模及动态系统仿真领域中得到广泛的应用。 Simulink提供的图形用户界面可使用鼠标的拖放操作来创建模型。Simulink本身包含sources、sinks、Discrete、math、Nonlinear和continuous 等模块库。实验主要使用Sinks、Sources、Signals & System和Power System Blockset这四个模块库中的一些模块搭建电力电子课程中的典型电路进行仿真。在搭建成功的电路中使用scope显示模块显示仿真的波形、验证电路原理分析结果。这些典型电路包括: 1)单相半波可控整流电路(阻性负载和阻感负载) 2)单相全控桥式整流电路(阻性负载和阻感负载) 3)三相全控桥式整流电路(双窄脉冲阻性负载和双窄脉冲阻感负载) 4)降压斩波电路、升压斩波电路 5)三相半波逆变电路、三相全波逆变电路。 一、matlab、simulink基本操作 多数学生在做这个实验是时候可能是第一次使用matlab中的simulink来仿真,因此下面首先介绍一下实验中要掌握得的一些基本操作(编写试验指导书时所使用的matlab6.1版本)。若实验过程中使用matlab的版本不同这些基本操作可能会略有不同。 图0-1 matlab启动界面

matlab的启动界面如图0-1所示,点击matlab左上方快捷键就可以进入simulink程序界面(在界面右侧的Command Window中输入simulink命令回车或者在Launch Pad窗口中点击simulink子菜单中Library Browser都可以进入simulink程序界面)如图0-2所示。 + 图0-2 simulink程序界面 1.新建空白的模块编辑窗口 在simulink程序界面中点击File>New>Model(快捷键Ctrl+n),就可以新建一个空白的模型编辑窗口,然后从模块库窗口中选择合适的元件。在模块编辑窗口中绘制出要仿真的系统的整个模型(只需将所选模块库中的模块拖入模块编辑窗口即可进行电路搭建)。整个电路搭建完毕,各参数设定后,点击Start Simulation就可进行运行仿真电路。通过示波器显示实验波形。 2.对模块的基本操作 (1)调整模块大小 若要调整模块编辑窗口中模块的大小,先选中模块,模块四角出现了小方块。单击一个角上的小方块,并按住鼠标,拖拽鼠标。此时的鼠标指针改变了形状,并出现了虚线方框以显示调整后的大小。放开鼠标键,则模块的图标将按照虚线框的大小显示。

电磁场的Matlab仿真.

Matlab 与电磁场模拟 一单电荷的场分布: 单电荷的外部电位计算公式: q φ= 4πε0r 等位线就是连接距离电荷等距离的点,在图上表示就是一圈一圈的圆,而电力线就是由点向 外辐射的线。 MATLAB 程序: theta=[0:.01:2*pi]'; r=0:10; x=sin(theta*r; y=cos(theta*r; plot(x,y,'b' x=linspace(-5,5,100; for theta=[-pi/4 0 pi/4] y=x*tan(theta; hold on ; plot(x,y; end grid on 单电荷的等位线和电力线分布图: 二多个点电荷的电场情况: 模拟一对同号点电荷的静电场 设有两个同号点电荷, 其带电量分别为 +Q1和+Q2(Q1、Q2>0 距离为 2a 则两 电荷在点P(x, y处产生的电势为: 由电场强度可得E = -?U, 在xOy 平面上, 电场强度的公式为: 为了简单起见, 对电势U 做如下变换:

。 Matlab 程序: q=1; xm=2.5; ym=2; x=linspace(-xm,xm; y=linspace(-ym,ym; [X,Y]=meshgrid(x,y; R1=sqrt((X+1.^2+Y.^2; R2=sqrt((X-1.^2+Y.^2; U=1./R1+q./R2; u=1:0.5:4; figure contour(X,Y,U,u grid on legend(num2str(u' hold on

plot([-xm;xm],[0;0] plot([0;0],[-ym;ym] plot(-1,0,'o' , 'MarkerSize' ,12 plot(1,0,'o' , 'MarkerSize' ,12 [DX,DY] = gradient(U; quiver(X,Y,-DX,-DY; surf(X,Y,U; 同号电荷的静电场图像为: 50 40 30 20 10 0-2 2

电力电子技术MatLab仿真

本文前言 MA TLAB的简介 MATLAB是一种适用于工程应用的各领域分析设计与复杂计算的科学计算软件,由美国Mathworks公司于1984年正式推出,1988年退出3.X(DOS)版本,19992年推出4.X(Windows)版本;19997年腿5.1(Windows)版本,2000年下半年,Mathworks公司推出了他们的最新产品MATLAB6.0(R12)试用版,并于2001年初推出了正式版。随着版本的升级,内容不断扩充,功能更加强大。近几年来,Mathworks公司将推出MATLAB语言运用于系统仿真和实时运行等方面,取得了很多成绩,更扩大了它的应用前景。MATLAB已成为美国和其他发达国家大学教学和科学研究中最常见而且必不可少的工具。 MATLAB是“矩阵实验室”(Matrix Laboratory)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需要。在MATLAB中,每个变量代表一个矩阵,可以有n*m个元素,每个元素都被看做复数摸索有的运算都对矩阵和复数有效,输入算式立即可得结果,无需编译。MATLAB强大而简易的做图功能,能根据输入数据自动确定坐标绘图,能自定义多种坐标系(极坐标系、对数坐标系等),讷讷感绘制三维坐标中的曲线和曲面,可设置不同的颜色、线形、视角等。如果数据齐全,MATLAB通常只需要一条命令即可做图,功能丰富,可扩展性强。MATLAB软件包括基本部分和专业扩展部分,基本部分包括矩阵的运算和各种变换、代数和超越方程的求解、数据处理和傅立叶变换及数值积分风,可以满足大学理工科学生的计算需要,扩展部分称为工具箱,它实际上使用MATLAB的基本语句编成的各种子程序集,用于解决某一方面的问题,或实现某一类的新算法。现在已经有控制系统、信号处理、图象处理、系统辨识、模糊集合、神经元网络及小波分析等多种工具箱,并且向公式推倒、系统仿真和实时运行等领域发展。MATLAB语言的难点是函数较多,仅基本部分就有七百多个,其中常用的有二三百个。 MATLAB在国内外的大学中,特别是数值计算应用最广的电气信息类学科中,已成为每个学生都应该掌握的工具。MATLAB大大提高了课程教学、解题作业、分析研究的效率。

电力电子技术实验报告

实验一 DC-DC 变换电路的性能研究 一、实验目的 熟悉Matlab 的仿真实验环境,熟悉Buck 电路、Boost 电路、Cuk 电路及单端反激变换(Flyback )电路的工作原理,掌握这几种种基本DC-DC 变换电路的工作状态及波形情况,初步了解闭环控制技术在电力电子变换电路中的应用。 二、实验内容 1.Buck 变换电路的建模,波形观察及相关电压测试 2.Boost 变换电路的建模,波形观察及相关电压测试; 3.Cuk 电路的建模,波形观察及电压测试; 4.单端反激变换(Flyback )电路的建模,波形观察及电压测试,简单闭环控制原理研究。 (一)Buck 变换电路实验 (1)电感电容的计算过程: V V 500=,电流连续时,D=0.4; 临界负载电流为I= 20 50 =2.5A ; 保证电感电流连续:)1(20D I f V L s -?= =5 .210002024.0-150????) (=0.375mH 纹波电压 0.2%= s s f LCf D V ?8-10) (,在由电感值0.375mH ,算出C=31.25uF 。 (2)仿真模型如下: 在20KHz 工作频率下的波形如下:

示波器显示的六个波形依次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形。 在50KHz工作频率下的波形如下: 示波器显示的六个波形一次为:MOSFET的门极电压、流过电阻两端的电流、电感电流、输出电压、MOSFET电流及续流二极管电流的波形; 建立仿真模型如下:

(3)输出电压的平均值显示在仿真图上,分别为49.85,49.33; (4)提高开关频率,临界负载电流变小,电感电流更容易连续,输出电压的脉动减小,使得输出波形应更稳定。 (二)Boost 变换电路实验 (1)电感电容的计算过程: 升压比M= S V V 0=D -11,0V =15V,S V =6V,解得D=60%; 纹波电压0.2%=s c f f D ? ,c f RC 1=,s f =40KHz,求得L=12uH,C=750uf 。 建立仿真模型如下:

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验 2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题 目录 一、电磁场仿真软件——Matlab的使用入门……………............................................... .4 二、单电荷的场分

布 (10) 三、点电荷电场线的图像 (12) 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17) 实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、 ^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是 一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6) y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2; plot(x,y1,x, y2,x, y3) (二)几个绘图命令 1. doc命令:显示在线帮助主题 调用格式:doc 函数名 例如:doc plot,则调用在线帮助,显示plot函数的使用方法。 2. plot函数:用来绘制线形图形 plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y 坐标数据。 plot(x,y,s)

电力电子技术与电力系统分析matlab仿真

电气2013级卓班电力电子技术与电力系统分析 课程实训报告 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师:

兰州交通大学自动化与电气工程学院 2016 年 1 月日

电力电子技术与电力系统分析课程实训报告 1 电力电子技术实训报告 1.1 实训题目 1.1.1电力电子技术实训题目一 一.单相半波整流 参考电力电子技术指导书中实验三负载,建立MATLAB/Simulink环境下三相半波整流电路和三相半波有源逆变电路的仿真模型。仿真参数设置如下: (1)交流电压源的参数设置和以前实验相关的参数一样。 (2)晶闸管的参数设置如下: R=0.001Ω,L =0H,V f=0.8V,R s=500Ω,C s=250e-9F on (3)负载的参数设置 RLC串联环节中的R对应R d,L对应L d,其负载根据类型不同做不同的调整。 (4)完成以下任务: ①仿真绘出电阻性负载(RLC串联负载环节中的R d= Ω,电感L d=0,C=inf,反电动势为0)下α=30°,60°,90°,120°,150°时整流电压U d,负载电流L 和晶闸管两端电压U vt1的波形。 d ②仿真绘出阻感性负载下(负载R d=Ω,电感L d为,反电动势E=0)α=30°,60°,90°,120°,150°时整流电压U d,负载电流L d和晶闸管两端电压U vt1的波形。 ③仿真绘出阻感性反电动势负载下α=90°,120°,150°时整流电压U d,负载电流L d和晶闸管两端电压U vt1的波形,注意反电动势E的极性。 (5)结合仿真结果回答以下问题: ①该三项半波可控整流电路在β=60°,90°时输出的电压有何差异?

电力电子课程设计matlab仿真实验

一.课程设计目的 (1)通过matlab的simulink工具箱,掌握DC-DC、DC-AC、AC-DC电路的仿真。通过设置元器件不同的参数,观察输出波形并进行比较,进一步理解电路的工作原理; (2)掌握焊接的技能,对照原理图,了解工作原理; (3)加深理解和掌握《电力电子技术》课程的基础知识,提高学生综合运用所学知识的能力; 二.课程设计内容 第一部分:simulink电力电子仿真/版本matlab7.0 (1)DC-DC电路仿真(升降压(Buck-Boost)变换器) 仿真电路参数:直流电压20V、开关管为MOSFET(内阻为0.001欧)、开关频率20KHz、电感L为133uH、电容为1.67mF、负载为电阻负载(20欧)、二极管导通压降0.7V(内阻为0.001欧)、占空比40%。仿真时间0.3s,仿真算法为ode23tb。 图1-1

占空比为40%的,降压后为12.12V。触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。 图1-2 占空比为60%的,升压后为28.25V。触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。

图1-3 ? 图1-4 升降压变换电路(又称Buck-boost电路)的输出电压平均值可以大于或小于输入直流电压,输出电压与输入电压极性相反,其电路原理图如图1-4(a)所示。它主要用于要求输出与输入电压反相,其值可大于或小于输入电压的直流稳压电源 工作原理: ①T导通,ton期间,二极管D反偏而关断,电感L储能,滤波电容C向负载提供能量。 ②T关断,toff期间,当感应电动势大小超过输出电压U0时,二极管D导通,电感L 经D向C和RL反向放电,使输出电压的极性与输入电压 在ton期间电感电流的增加量等于toff期间的减少量,得: 由的关系,求出输出电压的平均值为:

电力电子技术matl新编仿真实验报告

电力电子技术m a t l新编仿真实验报告 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

上海电机学院卢昌钰 BG0801 10号 1.单相半波可控整流电路 (1)电阻性负载(R=1欧姆,U2=220V,α=30°) 接线图 电阻性负载二次电压,输出电压,二次电流,输出电流,晶闸管电压曲线 输入电压与输出电压波形 (2)阻感负载(R=1欧姆,L=,U2=220V,α=30°) 接线图 阻感负载二次电压,输出电压,二次电流,输出电流,晶闸管电压曲线 输入电压与输出电压波形 (3)阻感负载+续流二极管(R=1欧姆,L=,U2=220V,α=30°)有问题 接线图 阻感负载二次电压,输出电压,二次电流,输出电流,晶闸管电压曲线 输入与输出电压波形 2.单相桥式全控整流电路

(1)电阻性负载(R=1欧姆,U2=220V,α=60°) 电阻性负载电路图搭建 电阻负载输入电压和输出电压对比 电阻负载直流电压和电流波形 电阻负载时晶闸管T1的波形 电流i2的曲线 (2)电感性负载(R=1欧姆,L=,α=60°,U2=220V,) 阻感负载电路图搭建 阻感负载电压输入与输出波形 阻感负载输出电流id 阻感负载输出电压ud 阻感负载交变时的电流i2

阻感负载交变时的电压u2 阻感负载VT1的电压波形 (3)电感性负载+续流二极管(R=1欧姆,L=,α=60°,U2=220V,) 电感性负载+续流二极管接线图 输入和输出电压波形 负载电流 负载电压 二次侧电流 晶闸管两端电压 3.单相桥式半空整流电路 (1)电阻负载(R=1欧姆,α=60°,U2=220V,) 接线图 二次侧电压,负载电压,二次侧电流,负载电流,晶闸管电压,二极管电压,二 极管电流波形图 (2)阻感负载(R=1欧姆,L=,α=60°,U2=220V,) 接线图 二次侧电压,负载电压,二次侧电流,负载电流,晶闸管电压,二极管电压,二 极管电流波形图 (3)阻感负载+续流二极管(R=1欧姆,L=,α=60°,U2=220V,) 接线图 二次侧电压,负载电压,二次侧电流,负载电流,晶闸管VT1电压,二极管VD4 电压,二极管VD4电流波形图

《电力电子技术》实验报告-1

河南安阳职业技术学院机电工程系电子实验实训室(2011.9编制) 目录 实验报告一晶闸管的控制特性及作为开关的应用 (1) 实验报告二单结晶体管触发电路 (3) 实验报告三晶闸管单相半控桥式整流电路的调试与分析(电阻负载) (6) 实验报告四晶闸管单相半控桥式整流电路的研究(感性、反电势负载) (8) 实验报告五直流-直流集成电压变换电路的应用与调试 (10)

实验报告一晶闸管的控制特性及作为开关的应用 一、实训目的 1.掌握晶闸管半控型的控制特点。 2.学会晶闸管作为固体开关在路灯自动控制中的应用。 二、晶闸管工作原理和实训电路 1.晶闸管工作原理 晶闸管的控制特性是:在晶闸管的阳极和阴极之间加上一个正向电压(阳极为高电位);在门极与阴极之间再加上一定的电压(称为触发电压),通以一定的电流(称为门极触发电流,这通常由触发电路发给一个触发脉冲来实现),则阳极与阴极间在电压的作用下便会导通。当晶闸管导通后,即使触发脉冲消失,晶闸管仍将继续导通而不会自行关断,只能靠加在阳极和阴极间的电压接近于零,通过的电流小到一定的数值(称为维持电流)以下,晶闸管才会关断,因此晶闸管是一种半控型电力电子元件。 2.晶闸管控制特性测试的实训电路 图1.1晶闸管控制特性测试电路 3.晶闸管作为固体开关在路灯自动控制电路中的应用电路 图1.2路灯自动控制电路 三、实训设备(略,看实验指导书)

四、实训内容与实训步骤(略,看实验指导书) 五、实训报告要求 1.根据对图1.1所示电路测试的结果,写出晶闸管的控制特点。记录BT151晶闸管导通所需的触发电压U G、触发电流I G及导通时的管压降U AK。 2.简述路灯自动控制电路的工作原理。

电磁场的Matlab仿真

Matlab 与电磁场模拟 一 单电荷的场分布: 单电荷的外部电位计算公式: 等位线就是连接距离电荷等距离的点,在图上表示就是一圈一圈的圆,而电力线就是由点向外辐射的线。 MATLAB 程序: theta=[0:.01:2*pi]'; r=0:10; x=sin(theta)*r; y=cos(theta)*r; plot(x,y,'b') x=linspace(-5,5,100); for theta=[-pi/4 0 pi/4] y=x*tan(theta); hold on ; plot(x,y); end grid on 单电荷的等位线和电力线分布图: r q 04πεφ=

二多个点电荷的电场情况: 模拟一对同号点电荷的静电场 设有两个同号点电荷,其带电量分别为+Q1和+Q2(Q1、Q2>0 )距离为2a则两电荷在点P(x, y)处产生的电势为: 由电场强度可得E = -?U,在xOy平面上,电场强度的公式为: 为了简单起见,对电势U做如下变换: 。 Matlab程序:

q=1; xm=; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1+q./R2; u=1::4; figure contour(X,Y,U,u) grid on legend(num2str(u')) hold on plot([-xm;xm],[0;0]) plot([0;0],[-ym;ym]) plot(-1,0,'o','MarkerSize',12) plot(1,0,'o','MarkerSize',12) [DX,DY] = gradient(U); quiver(X,Y,-DX,-DY); surf(X,Y,U); 同号电荷的静电场图像为:

三相桥式全控整流电路实验报告

三相桥式全控整流电路实 验报告 Prepared on 24 November 2020

实验三三相桥式全控整流电路实验 一.实验目的 1.熟悉MCL-18, MCL-33组件。 2.熟悉三相桥式全控整流电路的接线及工作原理。 二.实验内容 1.MCL-18的调试 2.三相桥式全控整流电路 3.观察整流状态下,模拟电路故障现象时的波形。 三.实验线路及原理 实验线路如图3-12所示。主电路由三相全控整流电路组成。触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。三相桥式整流电路的工作原理可参见“电力电子技术”的有关教材。 四.实验设备及仪器 1.MCL—Ⅱ型电机控制教学实验台主控制屏。 2.MCL-18组件 3.MCL-33组件 4.MEL-03可调电阻器(900) 6.二踪示波器 7.万用表 五.实验方法 1.按图3-12接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL-18电源开关,给定电压有电压显示。

(2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o 的幅度相同的双脉冲。 (3)用示波器观察每只晶闸管的控制极、阴极,应有幅度为1V —2V 的脉冲。注:将面板上的Ublf 接地(当三相桥式全控整流电路使用I 组桥晶闸管VT1~VT6时),将I 组桥式触发脉冲的六个琴键开关均拨到“接通”, 琴键开关不按下为导通。 (4)将给定输出Ug 接至MCL-33面板的Uct 端,在Uct=0时,调节偏移电压Ub ,使=90o 。(注:把示波器探头接到三相桥式整流输出端即U d 波形, 探头地线接到晶闸管阳极。) 2.三相桥式全控整流电路 (1) 电阻性负载 按图接线,将Rd 调至最大450 (900并联)。 三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压U uv 、U vw 、U wu ,从0V 调至70V(指相电压)。调节Uct ,使 在30o ~90o 范围内变化,用示波器观察记录=30O 、60O 、90O 时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )的波形,并记录相应的Ud 和交流输入电压U 2 数值。 30° 60° 90° 3.电感性负载 按图线路,将电感线圈(700mH)串入负载,Rd 调至最大(450)。 调节Uct ,使 在30o ~90o 范围内变化,用示波器观察记录=30 O 、60O 、90O 时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )的波形,并记录相应的Ud 和交流输入电压U 2 数值。 30° 60° 90°

电力电子仿真仿真实验报告

目录 实验一:常用电力电子器件特性测试 (3) (一)实验目的: (3) 掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性; (3) 掌握各器件的参数设置方法,以及对触发信号的要求。 (3) (二)实验原理 (3) (三)实验内容 (3) (四)实验过程与结果分析 (3) 1.仿真系统 (3) 2.仿真参数 (4) 3.仿真波形与分析 (4) 4.结论 (10) 实验二:可控整流电路 (11) (一)实验目的 (11) (二)实验原理 (11) (三)实验内容 (11) (四)实验过程与结果分析 (12) 1.单相桥式全控整流电路仿真系统,下面先以触发角为0度,负载为纯电阻负载为例 (12) 2.仿真参数 (12) 3.仿真波形与分析 (14) 实验三:交流-交流变换电路 (19) (一)实验目的 (19) (三)实验过程与结果分析 (19) 1)晶闸管单相交流调压电路 (19) 实验四:逆变电路 (26) (一)实验目的 (26)

(二)实验内容 (26) 实验五:单相有源功率校正电路 (38) (一)实验目的 (38) (二)实验内容 (38) 个性化作业: (40) (一)实验目的: (40) (二)实验原理: (40) (三)实验内容 (40) (四)结果分析: (44) (五)实验总结: (45)

实验一:常用电力电子器件特性测试 (一)实验目的: 掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性; 掌握各器件的参数设置方法,以及对触发信号的要求。(二)实验原理 将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 ?在MATLAB/Simulink中构建仿真电路,设置相关参数。 ?改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 以GTO为例,搭建仿真系统如下:

电磁场的matlab仿真实验--m语言1

实验三:等量异号点电荷的电势分布 一、实验目的与要求 1.掌握命令窗口中直接输入语句,进行编程绘制等量异号点电荷的电势分布图; 2.掌握二维网格和三维曲面绘图的语句。 二、实验类型 设计 三、实验原理及说明 这里在命令窗口中直接输入简单的语句进行编程设计。MATLAB有几千个通用和专用 五、实验内容和步骤 (一)建立等量异号点电荷的电势方程

物理情景是oxy平面上在x=2,y=0处有一正电荷,x= -2,y=0处有一负电荷,根据 计算两点电荷电场中电势的分布,由于 (二)利用MA TLAB的函数, 绘制等量异号点电荷的电势分布图 首先选定一系列的x和y后,组成了平面上的网络点,再计算对应每一点上的z值。例如-5:0.2:5,-4:0.2:4分别是选取横坐标与纵坐标的一系列数值,meshgrid是生成数据网格的命令,[x,y]是xy平面上的坐标网格点。z是场点(x ,y)的电势,要求写出z的表达式。这里用到MA TLAB的函数mesh()描绘3D网格图,meshgrid()描绘在3D图形上加坐标网格,sqrt()求变量的平方根。mesh()是三维网格作图命令,mesh(x,y,z)画出了每一个格点(x,y)上对应的z值(电势)。在命令窗口中直接输入简单的语句,如下。 解1

解2

当场点即在电荷处时,会出现分母为零的情况,因此在r里加了一个小量0.01,这样既可以完成计算,又不会对结果的正确性造成太大影响。 另外需要注意的是表达式中的“./ ”、“.^ ”是对数组运算的算符,含义与数值运算中的“./ ”、“.^ ”相同,不同之处是后者只对单个数值变量进行运算,而前者对整个数组变量中的所有元素同时进行运算。 解2为了减少计算量,增加精确度,与先前的示例相比,计算范围由原先的-5

杭电电力电子技术实验报告

电力电子技术实验报告班级: 学号: 姓名: 指导老师:余善恩、孙伟华 实验名称:锯齿波同步移相触发电路及单相半波可控整流 三相桥式全控整流及有源逆变电路实验

实验一锯齿波同步移相触发电路及单相半波可控整流一、实验目的 1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 2.掌握锯齿波同步触发电路的调试方法。 3.对单相半波可控整流电路在电阻负载及电阻电感负载时工作情况作全面分析。 4.了解续流二极管的作用。 二、实验内容 1.锯齿波同步触发电路的调试。 2.锯齿波同步触发电路各点波形观察,分析。 3.单相半波整流电路带电阻性负载时特性的测定。 4.单相半波整流电路带电阻—电感性负载时,续流二极管作用的观察。 三、实验线路及原理 锯齿波同步移相触发电路主要由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其原理图如图1-1所示。 主电路 (a) (b)锯齿波同步移相触发电路 图1-1 单相半波可控整流电路 由V3、VD1、VD2、C1等元件组成同步检测环节,其作用是利用同步电压U T来控制锯齿波产生的时刻及锯齿波的宽度。由V1、V2等元件组成的恒流源电路,当V3截止时,恒流源对C2充电形成锯齿波;当V3导通时,电容C2通过R3、V3放电;调节电位器RP1可以调节恒流源的电流大小,改变对电容的充电时间,从而改变了锯齿波的斜率;控制电压U ct、偏移电压U b和锯齿波电压在V5基极综合叠加,从而构成移相控制环节,RP2、RP3分别调节控制电压U ct和偏移电压U b的大小;V6、V7构成脉冲形成放大环节,C5为强触发电容用于改善脉冲的前沿,由脉冲变压器输出触发脉冲。

实验报告-电力电子仿真实验

电力电子仿真实验 实验报告 院系:电气与电子工程学院 班级:电气1309班 学号: 1131540517 学生姓名:王睿哲 指导教师:姚蜀军 成绩: 日期:2017年 1月2日

目录 实验一晶闸管仿真实验 (3) 实验二三相桥式全控整流电路仿真实验 (6) 实验三电压型三相SPWM逆变器电路仿真实验 (18) 实验四单相交-直-交变频电路仿真实验 (25) 实验五VSC轻型直流输电系统仿真实验 (33)

实验一晶闸管仿真实验 实验目的 掌握晶闸管仿真模型模块各参数的含义。 理解晶闸管的特性。 实验设备:MATLAB/Simulink/PSB 实验原理 晶闸管测试电路如图1-1所示。u2为电源电压,ud为负载电压,id为负载电流,uVT 为晶闸管阳极与阴极间电压。 图1-1 晶闸管测试电路 实验内容 启动Matlab,建立如图1-2所示的晶闸管测试电路结构模型图。

图1-2 带电阻性负载的晶闸管仿真测试模型 双击各模块,在出现的对话框内设置相应的模型参数,如图1-3、1-4、1-5所示。 图1-3 交流电压源模块参数

图1-4 晶闸管模块参数 图1-5 脉冲发生器模块参数 固定时间间隔脉冲发生器的振幅设置为5V,周期与电源电压一致,为0.02s(即频率为50Hz),脉冲宽度为2(即7.2o),初始相位(即控制角)设置为0.0025s(即45o)。 串联RLC分支模块Series RLC Branch与并联RLC分支模块Parallel RLC Branch的参数设置方法如表1-1所示。 元件串联RLC分支并联RLC分支 类别电阻数值电感数值电容数值电阻数值电感数值电容数值单个电阻R0inf R inf0 单个电感0L inf inf L0 单个电容00C inf inf C

相关文档
最新文档