第34讲稳恒磁场——磁通量高斯定理和安培环路定律第34讲稳恒
合集下载
磁场的高斯定理和安培环路定理
L
解:
Bp
发生变化. 发生变化.
I2 I1
∫
L
B dl 不发生变化 P
L
例如: 例如: I1 >0 L I2<0 I1 I2 I3 L I L
I3
∫
L
B dl = o ( I1 I 2 )
∫
L
B dl = o ( I1 + I 3 )
∫ B dl
l
= 4 0 I
二,安培环路定理
∑Ii
i =0
§8-4
稳恒磁场的高斯定理与 安培环路定理
一,稳恒磁场的高斯定理
由磁感应线的闭合性可知, 对任意闭合曲面, 由磁感应线的闭合性可知 , 对任意闭合曲面 , 穿入的磁感应线条数与穿出的磁感应线条数相同, 穿入的磁感应线条数与穿出的磁感应线条数相同 , 因此,通过任何闭合曲面的磁通量为零. 因此,通过任何闭合曲面的磁通量为零.
Φ = BS 2 = (6i + 3 j + 1.5k ) (0.15) i = 0.135Wb ( 2) z Φ = ∫∫ B dS = 0
S
O l
x
l
l
一长直导线通有电流I 距其d 例,一长直导线通有电流I,距其d处有 一长为a 宽为b的长方形, 一长为a,宽为b的长方形,求通过这个 长方形的磁通量. 长方形的磁通量.
n
闭合回路所包围的所有电流 的代数和. 的代数和. 所取的闭合路径上各点的磁 感强度值, 感强度值,是由闭合路径内 外所有的电流产生的. 外所有的电流产生的.即是 由空间所有的电流产生的. 由空间所有的电流产生的.
B
二,安培环路定理
定理的物理意义 由安培环路定理可以看出, 由安培环路定理可以看出,由于 磁场中的磁感强度的环流一般不 为零,所以磁场是非保守场 非保守场. 为零,所以磁场是非保守场.
解:
Bp
发生变化. 发生变化.
I2 I1
∫
L
B dl 不发生变化 P
L
例如: 例如: I1 >0 L I2<0 I1 I2 I3 L I L
I3
∫
L
B dl = o ( I1 I 2 )
∫
L
B dl = o ( I1 + I 3 )
∫ B dl
l
= 4 0 I
二,安培环路定理
∑Ii
i =0
§8-4
稳恒磁场的高斯定理与 安培环路定理
一,稳恒磁场的高斯定理
由磁感应线的闭合性可知, 对任意闭合曲面, 由磁感应线的闭合性可知 , 对任意闭合曲面 , 穿入的磁感应线条数与穿出的磁感应线条数相同, 穿入的磁感应线条数与穿出的磁感应线条数相同 , 因此,通过任何闭合曲面的磁通量为零. 因此,通过任何闭合曲面的磁通量为零.
Φ = BS 2 = (6i + 3 j + 1.5k ) (0.15) i = 0.135Wb ( 2) z Φ = ∫∫ B dS = 0
S
O l
x
l
l
一长直导线通有电流I 距其d 例,一长直导线通有电流I,距其d处有 一长为a 宽为b的长方形, 一长为a,宽为b的长方形,求通过这个 长方形的磁通量. 长方形的磁通量.
n
闭合回路所包围的所有电流 的代数和. 的代数和. 所取的闭合路径上各点的磁 感强度值, 感强度值,是由闭合路径内 外所有的电流产生的. 外所有的电流产生的.即是 由空间所有的电流产生的. 由空间所有的电流产生的.
B
二,安培环路定理
定理的物理意义 由安培环路定理可以看出, 由安培环路定理可以看出,由于 磁场中的磁感强度的环流一般不 为零,所以磁场是非保守场 非保守场. 为零,所以磁场是非保守场.
磁场的高斯定理和安培环路定理课件
03
安培环路定理的介绍与推导
安培环路定理的基本概念
总结词
安培环路定理是描述磁场散布的重要定理之一,它指出磁场线总是闭合的,且穿过任意一个封闭曲面的磁通量为 零。
详细描述
安培环路定理是电磁学中的基本定理之一,它描述了磁场线的性质和散布规律。根据安培环路定理,磁场线总是 闭合的,即磁场线不会中断或消失,而是形成一个完整的闭合曲线。此外,安培环路定理还指出,穿过任意一个 封闭曲面的磁通量为零,即磁场线不会从一个区域穿入另一个区域。
磁力线
磁感应强度
描述磁场强弱的物理量,单位是特斯 拉或高斯。
描述磁场散布的几何图形,磁力线闭 合且不相交,磁力线的疏密程度表示 磁场强弱。
高斯定理的背景与定义
高斯定理的背景
磁场在空间中的散布具有闭合性 ,即穿过某一封闭曲面S的磁通量 等于零或无穷大。
高斯定理的定义
穿过任意封闭曲面S的磁通量等于 该封闭曲面所包围的净磁荷量。
04
高斯定理与安培环路定理的比较与联系
两者之间的类似之处
闭合曲面的磁场通量
高斯定理和安培环路定理都涉及到闭合曲面的磁场通量。在高斯定理中,磁场 通量是通过闭合曲面进入或离开某一区域的量,而在安培环路定理中,磁场通 量与电流和闭合曲面的关系是关键。
无源磁场
高斯定理适用于无源磁场,即没有电流源的磁场。同样地,安培环路定理也适 用于无源磁场的情况。
高斯定理的应用场景
01
02
03
磁场散布分析
通过高斯定理可以分析磁 场在空间中的散布情况, 确定磁力线的走向和强弱 。
磁荷检测
高斯定理可以用于检测磁 场中的磁荷散布,例如磁 铁、发电机和电动机中的 磁荷散布。
磁场屏蔽
4.3稳恒磁场
1 2 2 1
B d l B cos900 d l B外d l B cos900 d l B ab 0 0 0 右边 0 n ab I
a b c d
c
d
a
B d l Bd l B d l B 2 r NI
1
dl
I
r r r r
0 Idl r d l 0 I dl dl r B dl L1 4 r 3 4 L1 r3 0 I d l d l r 0 I dl dl r 4 L1 r 3 4 L1 r 3
1 1 2 1 1 1 1
P1LP21P 121
1
2
2 P2 2
B dS
L
0 I 2 2 0 I 4
2
当积分路径 L 反过来转时,起点为 P 点, 终点为 P 点,
1
1
P2 P 1
2 2
2
B dS
dS1
2
B1
B2
B1
B1
B dS 0
S
二,安培环路定理
L
B d l 0 I i
L内
d l dS
L2 L1
用毕—萨—拉定律证明安培环路定理。 载有电流 I 的回路 L 在空间中产生磁场。 计算环路 L 上的磁场环流。P 点的磁场为 B ,
2
1
P
dl
L
L
与 L 不交链时,在积分路径 L上转一圈,有
1
ˆ1 n
B d l B cos900 d l B外d l B cos900 d l B ab 0 0 0 右边 0 n ab I
a b c d
c
d
a
B d l Bd l B d l B 2 r NI
1
dl
I
r r r r
0 Idl r d l 0 I dl dl r B dl L1 4 r 3 4 L1 r3 0 I d l d l r 0 I dl dl r 4 L1 r 3 4 L1 r 3
1 1 2 1 1 1 1
P1LP21P 121
1
2
2 P2 2
B dS
L
0 I 2 2 0 I 4
2
当积分路径 L 反过来转时,起点为 P 点, 终点为 P 点,
1
1
P2 P 1
2 2
2
B dS
dS1
2
B1
B2
B1
B1
B dS 0
S
二,安培环路定理
L
B d l 0 I i
L内
d l dS
L2 L1
用毕—萨—拉定律证明安培环路定理。 载有电流 I 的回路 L 在空间中产生磁场。 计算环路 L 上的磁场环流。P 点的磁场为 B ,
2
1
P
dl
L
L
与 L 不交链时,在积分路径 L上转一圈,有
1
ˆ1 n
高二物理竞赛电磁学磁场的高斯定理安培环路定理PPT(课件)
dB
dB
d
P. P.
d B
c
B a b B c d 2Bab i
而0Ii0i ab
i
... . d l
.o.
.
dl
.
.
.
B
1 2
0i
均匀场!
i
i
a
.B b 与P点到平板的距离无关!
P
例8. 求通电流I, 环管轴线半径为R的螺绕环的 磁场分布。已知环上均匀密绕N 匝线圈。
解:由电流对称性,与环共轴的圆周
Bdl L
B2r
0
0r2R 1 2 0I
Ii r 2 R12 R22 R12
.
r
R1
R2
B 0I
2 R22R12
rRr12
I
R22 R12
当 当
R1 0 r R1
;B ;B
0 Ir
2
R
2 2
0 当 r
实心圆柱体内部
的磁感应强度
R2
;B
0I 2 R2
圆柱体内外 壁的磁感应 强度
当
;
r Ampere’s Law
o 1º 静电场中,任意闭合曲面S的电通量:
d drl' 各点产生的B都不为0。
L dl
dsrd
且有
(B dl)90o
(B dl)90o
B d l B d l
B d l c o s B d l c o s
B d s B d s
20Irrdds 20Irdr sd = 0
B
2
0I
R22 R12
rRr12
r
I
R1
R2
稳恒磁场
安培定律
一、安培力
安培力:电流元在磁场中受到的磁力. 安培力:电流元在磁场中受到的磁力. 一个自由电子受的洛仑兹力为: 一个自由电子受的洛仑兹力为
f 洛 = qv × B = −ev × B
电流元所受磁力: 电流元所受磁力
方向: 方向:×
v
dl
B
I
设截面积为S,单位体积电子数为 设截面积为 单位体积电子数为n 单位体积电子数为
1 2 m = NISn = NI πR n 2
方向:与 B 成600夹角. 夹角. 方向: (2)此时线圈所受力矩的大小为: )此时线圈所受力矩的大小为:
)60
0
B
3 2 πR M = mB sin60 = NIB 4 方向: m× B 方向: ×
0
n
即垂直于 B向上,从上往下俯视,线圈是逆时针转动。 向上,从上往下俯视,线圈是逆时针转动。
1T = 1N ⋅ S ⋅ m−1 ⋅ C−1
磁通量
一、磁力(感)线 磁力( 直线电流的磁力线
磁场的高斯定理
圆电流的磁力线
通电螺线管的磁力线
I
I
I
I
通量(通过一定面积的磁力线数目) 二、磁通量(通过一定面积的磁力线数目)
v v dΦ = B ⋅ dS
v v Φ = ∫s B ⋅ dS
单位
1Wb= 1T ⋅ m
I
该式对任意形状的线圈都适用. 该式对任意形状的线圈都适用.
例1如图,求圆心O点的 B . 如图,求圆心 点的 I O
• × R
B=
µ0 I
4R
I
O• •
R
B=
µ0 I
8R
R
• •O
大学物理稳恒磁场课件
流,也可引起空间电 荷从S面流入和流出时,则S面内
荷分布的变化
的电荷相应发生变化。
由电荷守恒定律,单位时间内由S 流出的净电量应等 于S 内电量的减少
电流连续性方程 恒定(稳恒)电流条件
SdS
dq内 dt
d q内 0 dt
SdS0
大学物理
5.欧姆定律的微分形式
dU—小柱体两端的电压 dI —小柱体中的电流强度
dq dt
方向:正电荷运动的方向 单位:安培(A)
大学物理
几种典型的电流分布
粗细均匀的 金属导体
粗细不均匀的 金属导线
半球形接地电极 附近的电流
电阻法勘探矿藏 时的电流
同轴电缆中的 漏电流
大学物理
电流强度对电流的描述比较粗糙: 如对横截面不等的导体,I 不能反映不同截面处 及同一截面不同位置处电流流动的情况。
静电场的电力线发自正电荷止于负电荷,
有头有尾,不闭合。
磁场的高斯定理 SBdS0
在恒定电流的磁场中,磁感应强
度 B 矢量沿任一闭合路径 L的线积
分(即环路积分),等于什么?
Bdl ?
L
大学物理
1. 长直电流的磁场
1.1 环路包围电流
B
在垂直于导线的平面内任作的环 路上取一点P,到电流的距离为r,
B0nI
若在长螺线管的端口处
B 0nI
2
本次课作业:
大学物理
1. 预习§14.5, §14.6 2. 思考题14.5-14.7 3. 习题14.5,14.7,14.8,14.9,14.10,14.11 作业提交日期: 10月12日
§3 安培环路定理
大学物理
静电场:
高斯定理: sD dSq
磁场的高斯定理和 安培环路定理.ppt
B d S B d S
S1
磁通量仅由 的共同边界线所决定
S2
能否找到一个矢量A,它沿L作 线积分等于通过S的通量?
A dl B dS (a)
L
S
数学上可以证明,这样的矢量A的确存在,对
于磁感应强度B,A叫做磁矢势,A在空间的
分布也构成矢量场,简称矢势。
2π R
oR r
解 0 r R, B d l 0 l r R, l B d l 0I
B0 B 0I
2π r
§3 §4 磁场的高斯定理和安培环路定理
第二章 恒磁场
例5 无限长圆柱电缆的磁场(两空心圆筒)
解 0 r R1, B d l 0 B 0
第二章 恒磁场
例3 无限长载流圆柱体的磁场
I
解 1)对称性分析 2) 选取回路
RR
rR
Bdl l
0I
L
2π rB 0I
B 0I
2π r
r B
0 r R
l
B
d
l
0
π π
r2 R2
I
2π rB 0r2 I
R2
B
0Ir
2π R2
I . dB
ABLCDLA
B dl
AB B dl,
BLC
B dl
CD
DLA
B dl, B dl
B dl
AB
CD
BLC
CLB
DLA
L
B dl B dl 0,即 B dl B dl
稳恒磁场PPT教学课件
★ 注意事项:
1.符号规定:电流方向与L的环绕方向服从右手关
系的I为正,否则为负。
2.安培环路定律对于任一形状的闭合回路均成立。
3.B的环流与电流分布有关,但路径上B仍是闭合路
径内外电流的合贡献。 4.物理意义:磁场是非保守场,不能引入势能。
§4.4磁场对载流导线的作用
1.安培力 2.平行无限长直导线间的相互作用 3.矩形载流线圈在均匀磁场中所受的力矩 4.载流线圈的磁矩
安培力是作用在自由电子上洛伦兹力的宏观表现。 如图,考虑一段长度为ΔI的金属导线,它放置在垂直 纸面向内的磁场中。设导线中通有电流I,其方向向上。
从微观的角度看,电流是由导体中的自由电子向 下作定向运动形成的。设自由电子的定向运动速度为 u,导体单位体积内的自由电子数为(自由电子数密 度)n,每个电子所带的电量为-e。所以根据电流的 定义:
4.1.3 安培定律
正象点电荷之间相互作用的规律—库仑定律是 静电场的基本规律一样,电流之间的相互作用是稳 恒磁场的基本规律。这个规律是安培通过精心设计 的实验得到的,称之为安培定律。
我们把相互作用着的两个载流回路分割为许多 无穷小的线元,叫电流元,只要知道了任意一对电 流元之间相互作用的基本规律,整个闭合回路受的 力便可通过矢量迭加计算出来。但在实验中无法实 现一个孤立的稳恒电流元,从而无法直接用实验来 确定它们的相互作用。
B
0 4
2nI (cos 1
cos 2 )
下面线管 L , 1 0, 2
B 0nI
2.在半无限长螺线管的一端
B 0nI
2
1
0,
2
2
或1
2
,2
0
§4.3 磁场的高斯定理与安培环路定理
磁场的高斯定理和安培环路定律
0I
是否成立???
设任意回路L在垂直于导线的平面内,与电流
成右手螺旋。
l B dl Bdl cos
0I
2πr
dlc
os
d
B
I
dl
r
0I
2πr
rd
0I
2π
d
l
B dl
l
0I
dl cos rd
闭合回路不环绕电流时
B1
0I
2 π r1
B2
0I
2 π r2
B1
B2
d
I
dl1
r1
dl2
I
I
解:取垂直纸面向里为法
B
线方向,以导线1所在位
置为坐标原点,建立如图 所示的坐标轴。
x
l
取细长条面元,面元内为
均匀磁场
a aa
B
0I 2x
2
0I
3a
x
o
x
窄条形面元的元磁通为
dm B dS BdS Bldx I
通过矩形面积内的磁通量
m
dm
2a
Bldx
a1
2a
a
0I 2x
2
0I
o
B 0I
2π x
B // S
x
方向垂直于纸面向里
dΦ BdS 0I ldx I
2π x
B
Φ
S
B dS
0Il
2π
d2
d1
dx x
l
Φ 0Il ln d2
2π d1
d1 d2
o
x
例2 两平行的无限长直导线通有电流 I , 相距3a,
矩形线框宽为a,高为l与直导线共面,求通过线框的
磁场的高斯定理和安培环路定理
dB
0dI
2(R2 r02 )3/ 2
dI=σωrdr
例18、电荷q均匀分布于一半径为R的圆盘上,圆 盘绕通过圆心且垂直于环面的轴匀速转动,角速度 为,求圆盘中心点的磁感应强度。
16
§11-5 磁场对载流导线的作用
一、 安培定律
安培力:载流导线在磁场中受到的磁场力
大小 dF IdlB sin
两个边bc、da 垂直于轴。
b
根据安培环路定理:
a
B
L B dl ab B dl bc B dl cd B dl da B dl
无垂直于轴的磁场分量,管外部磁场趋于零,
因此管内为均匀磁场,任一点的磁感应强度为:
B dl
dB' dB
dB''
l pd c
面平行,则有
dl' o dl''
L B dl B2l 0 jl
ab
B 0 j 方向如图所示。
2
结果:在无限大均匀平面电流的两侧的磁场都
为均匀磁场,并且大小相等,但方向相反。
15
例17、半径为R的圆片上均匀带电,电荷面密度为σ, 令该片以匀角速度ω绕它的轴旋转,求轴线上圆片中 心O为x处的磁场.
圆为安培环路
dB
B dl
L
2πrB
0
I
B 0I
rR
dl ''
dl '
2 πr
B dl
r
0
Ir 2 R2
B
0 Ir
《稳恒磁场》PPT课件
d B 0nd lSv q r
4 π r3
B
q+
r
v
又 dNndls
故运动电荷的磁场
B d dN B 4 π 0q v r 3r
B
q
r
v
7-4 安培环路定律
预习要点 1. 安培环路定律的内容及数学表达式是怎样的?注意
其中电流正、负号的规定. 2. 注意安培环路定律所描述的稳恒磁场的性质. 3. 领会用安培环路定律计算磁感应强度的方法.
23一磁场叠加原理一磁场叠加原理几个电流共同激发磁场任意电流是无数小电流首尾相接组成其上任一电流元在某场点产生的磁感应强度为任意载流导线在点p处的磁感强度电流元在空间一点p产生的磁感应强度
《稳恒磁场》PPT课件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
一、安培环路定律
合路在径真的空积的分稳的恒值磁(场即中B ,的磁环感流应)强,度等于B沿0任乘一以闭该
闭合路径所包围的各电流的代数和.
n
安培环路定理 Bdl 0 Ii
i1
电流I正负的规定: I与L成右螺旋时, I为正;反
之为负.
在场的理论中,把环流不等于零的场称为涡旋 场,所以,稳恒磁场是涡旋场.
大小与 q,v无关
磁感应强度大小定义为:B Fmax qv
二、洛由伦实兹验电力荷量为q的电荷以速度v
在磁场中运动时受到的磁场力:
Fm
F m q v B
运动电荷在磁场中所受的力
q+
B
稳恒磁场2-磁场的通量定理和环路定理
I3 I5
I i
内
I1
I2
+2
I5
L I
Ii 内 I
三. 安培环路定理在解场方面的应用
对于一些对称分布的电流,可以通过取合适的环
路L,利用磁场的安培环路定理比较方便地求解场量
步骤: 1. 根据电流分布的对称性分析磁场分布的对称性。 2. 根据磁场分布的对称性选择合适的积分路径。
例:求无限长均匀载流圆柱面( I, R )的磁场。
a
, a 90 , a 90
2) 有限面积
0, a 90
m B dS BdS cosa
s
s
B
S
3 闭合曲面
规定:外法线方向为dS 正向 磁感应线穿入 m 0
磁感应线穿出 m 0
dS
dS
S
B
不管是长直电流还是闭合线圈, 磁力线都是闭合的,
5.与环路铰链的电流有时也要通过积分求得;
6.对所得结果作必要的讨论;
7.解题前必须作一个好的图,这对正确求解是十分必 要的。
l
b
d
B Bbc 0nI
a
d
l
B
b
dl
c
B 0nI
(2)管外
c f e b
B dl B dl B dl B dl B dl
= =
l
b
c
f
0
e0
c e
B dl B dl B dl 0nIl
2Bl =μ0i l
B 0 i
2
匀强磁场
第4章稳恒磁场
s
--磁ቤተ መጻሕፍቲ ባይዱ是无源场,磁感线是闭合的曲线。
例题: 载流长直导线的磁感应强度环路积分
.I
0 I B 2 r 环路的绕行方向与电流成右手螺旋 关系 0 I l B dl l 2 r dl 0 I
环路的绕行方向与电流右手螺旋关 系相反 0 I l B dl l 2 r dl 0 I
解: 设半径为r的圆形电流,圆形电流为dI, 则在中心的 dI
dB
方向:垂直盘面向外 o r 又因 dI dq 2 dr 2 r dr rdr 2 各圆电流在o点的磁场方向相同 0 R R 0 0 B dB dI dr 0
2 0 I 2 0 I
I
I
L4
L4
2.如图,两个完全相同的回路 L 和 L ,回 1 2 路内包围有无限长直电流 I 和 I ,但在图 1 2 中 (b) 外又有一无限长直电流 I ,图中 p1 3 和 p 是两回路上位置相同的点,请判断
Q j qnv S t
(计算恒定电流所激发的磁场的分布)
四、毕奥—萨伐尔定律 电流元在空间产生的磁场规律:
dB
Id l
I
0 Idl sin
4π r
2
r
P
0 Idl r dB 3 4 r
真空磁导率 0 4 10 N A
7 2
I
I
例题.宽度为b的金属薄板,其电流为 I,求在薄板平面上,距板的一边为r 的P点的磁感应强度. 解:将薄板视为有许多无限长载流直导 线组成。 取图示坐标ox, 取离o距离x,标宽 为dx的长直载流导 x I 线其电 流为 dI dx b
--磁ቤተ መጻሕፍቲ ባይዱ是无源场,磁感线是闭合的曲线。
例题: 载流长直导线的磁感应强度环路积分
.I
0 I B 2 r 环路的绕行方向与电流成右手螺旋 关系 0 I l B dl l 2 r dl 0 I
环路的绕行方向与电流右手螺旋关 系相反 0 I l B dl l 2 r dl 0 I
解: 设半径为r的圆形电流,圆形电流为dI, 则在中心的 dI
dB
方向:垂直盘面向外 o r 又因 dI dq 2 dr 2 r dr rdr 2 各圆电流在o点的磁场方向相同 0 R R 0 0 B dB dI dr 0
2 0 I 2 0 I
I
I
L4
L4
2.如图,两个完全相同的回路 L 和 L ,回 1 2 路内包围有无限长直电流 I 和 I ,但在图 1 2 中 (b) 外又有一无限长直电流 I ,图中 p1 3 和 p 是两回路上位置相同的点,请判断
Q j qnv S t
(计算恒定电流所激发的磁场的分布)
四、毕奥—萨伐尔定律 电流元在空间产生的磁场规律:
dB
Id l
I
0 Idl sin
4π r
2
r
P
0 Idl r dB 3 4 r
真空磁导率 0 4 10 N A
7 2
I
I
例题.宽度为b的金属薄板,其电流为 I,求在薄板平面上,距板的一边为r 的P点的磁感应强度. 解:将薄板视为有许多无限长载流直导 线组成。 取图示坐标ox, 取离o距离x,标宽 为dx的长直载流导 x I 线其电 流为 dI dx b
高斯定理和安培环路定理
r R 时在圆柱面内做一圆周
B cos dl B dl B 2r 0
L L
dI ' dI
P
B0
例 无限大平面电流的磁场.有一无限大的导体平面,均匀地 流着自下而上的面电流.设其电流线密度(垂直于电流线的单 位长度上的电流)为a,求距平面为d的任一点的磁感应强度B.
(1)设闭合曲线L在垂直于无限长载流导线的平面内,电流I穿 过L. 设闭合回路 L为圆形回路( L 与 I 成右螺旋)
载流长直导线的磁感强 度为 0I B 2π R 0I l B d l 2 π R d l 0I l B d l 2 π R l d l
l
I
R R
L
r
2 π rB 0 I
0 r R
2 π rB
B
0I
2π r
B
2 π r l B d l 0 π R 2 I
I
.
dI
dB
0r
R
2
2
I
B
0 Ir
2π R
2
B
B 的方向与 I 成右螺旋
0 r R,
B
0 Ir
B dl μ 0 Ii
L
内
—— 安培环路定律
恒定电流的磁场中,磁感应强度沿一闭合路径 L 的线积分 等于路径 L 包围的电流强度的代数和的 μ 0 倍
安培环路定理
n B dl 0 Ii i 1
一闭合路径的积分的值,等于 0 乘以该闭合路径 所包围的各电流的代数和.
回路绕向化为逆时针时则对任意形状的回路设闭合回路l为圆形回路l与i不成右螺旋安培环路定律恒定电流的磁场中磁感应强度沿一闭合路径l的线积分等于路径l包围的电流强度的代数和的环路上各点的磁场为所有电流的贡献安培环路定理一闭合路径的积分的值等于乘以该闭合路径所包围的各电流的代数和
§3磁场的高斯定理和安培环路定律
L内
I1
答案: 答案:
∫ B ⋅ dl = µ0 ∑ I = µ0 ( I 2 − 2I1)
L L内 太原理工大学物理系
验证(用特例说明) 2 验证(用特例说明) 设闭合回路L为圆形回路, 设闭合回路 为圆形回路,在垂直于导线的平面 与电流成右手螺旋。 右手螺旋 内,与电流成右手螺旋。 载流长直导线的磁感强度为
B
x
l
a a
µ0 I µ0 I B= + 2πx 2π (3a − x )
a
o
x
太原理工大学物理系
窄条形面元的元磁通为
dΦ m = B ⋅ dS = BdS = Bldx I
通过矩形面积内的磁通量
I
B
Φ m = ∫ dΦ m = ∫ Bldx
a1
2a
x
l
a a
= ∫a
2a
µ0 I µ0 I + ldx 2πx 2π (3a − x )
I
B
dl
o
B=
µ0 I
2π R
R
∫ B ⋅ dl = ∫ 2π R dl
l
µ0 I
l
=∫
µ0 I
2π R
Rd ϕ =
µ0 I
2π
∫ dϕ
∫ B ⋅ dl = µ I
l 0
太原理工大学物理系
若回路绕向为反方向时, 若回路绕向为反方向时,则
∫ B ⋅ dl = − ∫
l
l
µ0 I
2πR
dl = − ∫
=∫
dϕ
µ0 I
2πr
dlcos θ
dl
B
I
∫ dϕ
θ
I1
答案: 答案:
∫ B ⋅ dl = µ0 ∑ I = µ0 ( I 2 − 2I1)
L L内 太原理工大学物理系
验证(用特例说明) 2 验证(用特例说明) 设闭合回路L为圆形回路, 设闭合回路 为圆形回路,在垂直于导线的平面 与电流成右手螺旋。 右手螺旋 内,与电流成右手螺旋。 载流长直导线的磁感强度为
B
x
l
a a
µ0 I µ0 I B= + 2πx 2π (3a − x )
a
o
x
太原理工大学物理系
窄条形面元的元磁通为
dΦ m = B ⋅ dS = BdS = Bldx I
通过矩形面积内的磁通量
I
B
Φ m = ∫ dΦ m = ∫ Bldx
a1
2a
x
l
a a
= ∫a
2a
µ0 I µ0 I + ldx 2πx 2π (3a − x )
I
B
dl
o
B=
µ0 I
2π R
R
∫ B ⋅ dl = ∫ 2π R dl
l
µ0 I
l
=∫
µ0 I
2π R
Rd ϕ =
µ0 I
2π
∫ dϕ
∫ B ⋅ dl = µ I
l 0
太原理工大学物理系
若回路绕向为反方向时, 若回路绕向为反方向时,则
∫ B ⋅ dl = − ∫
l
l
µ0 I
2πR
dl = − ∫
=∫
dϕ
µ0 I
2πr
dlcos θ
dl
B
I
∫ dϕ
θ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第34讲:稳恒磁场——磁通量、高斯定理和安培环路定律
内容:§11-3,§11-4 1.磁感应线 2.磁通量
3.高斯定理 (50分钟) 4.安培环路定律 (50分钟)
要求:
1.了解磁感应线的物理意义;
2.理解磁通量的物理意义计算方法; 3.掌握高斯定理及其物理意义;
4.掌握安培环路定律的物理意义并能用以解决磁感应强度的计算。
重点与难点:
1.高斯定理 2.安培环路定律
方法:
重点讲清中的物理意义与计算方法,在此基础上,讲清磁场高斯定理的物理意义,并由此阐明磁场的性质,对安培环路定理,要在讲清其它意义的基础上,通过例题的分析,使学员能掌握其应用方法。
作业:
问题:P173:7,8,9,10 习题:P179:10,13,16,18 预习:§11-5
复习:
1.磁场的概念:
2.Biot-Savart 定律: 3
04r r
l Id B d
⨯=πμ
3.载流长直导线:()120sin sin 4ββπμ-=a
I
B
4.圆形电流轴线:()
2/3222
02x R IR B +=μ 圆心处:R I B 20μ=
5.载流直螺线管: ()120cos cos 2
ββμ-=nI
B
无限长 nI B 0μ=
6.运动电荷的磁场:3
04r r
v q B ⨯=πμ
I 0
⎰
⎰∑⎰⎰⎰⎰⎰⎰⎰⎰
为积分回路L,绕行方向为
Cylinder 圆柱体很长,导体中部磁场是对称的(由电流的对称性可
r
均匀分布在圆柱面上,则由安培环路定
则由安培环路。