钢材的冲击功Akv是什么意思

合集下载

金属力学性能之韧性指标

金属力学性能之韧性指标

韧性:金属在断裂前吸收变形能量的能力称为韧性指标。

①冲击韧性:金属材料在冲击载荷作用下,抵抗破坏的能力或者说断裂时吸收冲击功的能量大小,它表示材料对冲击负荷的抗力。

目前均采用冲击吸收功AKV表示,单位J试样:U型缺口—时效冲击时用V型缺口 AKV表示,V型缺口在锅炉压力容器的检验中应用较多。

时效冲击将试件拉伸残余变形10%(低碳钢),5%(低合金钢)后加热250° 10℃保温一小时后再作冲击,试验采用U型缺口,得出a kus时效冲击值。

(1)脆性转变温度:T k我们把使材料的冲击韧性显著降低的温度叫做脆性转变温度。

因为冲击韧性与试验温度有关,材料在低温下会出现由塑料状态转变为脆性状态,冷脆性转变温度的高低是金属材料质量指标之一。

冷脆转变温度越低的材料其材料的低温冲击性能越好,北方寒冷地区必须具有更低的冷脆转变温度才能保证安全,所以在-20℃以下的地区所有焊件都要求低温冲击韧性。

冷脆温度的测定目前可使用三种方法:①能量准则法②断口形貌准则法③落锤试验法所测试样发生脆性断裂的最高温度称为无塑性转变温度NDT。

钢材的最低允许工作温度应高于无塑性转变温度。

(注意与NDT无损探伤试验相区别)试样在冲击断裂过程中是一个裂纹发生和发展的过程,如果塑变能够发生在断裂的前面,阻止裂纹的扩展而裂纹的继续发展就需要消耗更多的能量。

因此冲击韧性的高低取决于材料有无迅速塑性变形的能力。

a k值对材料内部组织及缺陷较其他方法更为敏感,能够灵敏地反映出材料品质、宏观缺陷和显微组织方面的变化。

此外冲击实验迅速、方便,所以是质量检验的有效方法。

例如:对白点、温度敏感(时效冲击)。

②断裂韧度由于在高强度材料中时常发生低应力脆性断裂。

实际上材料远非是均匀的、连续的各向同性的其组织中存在微裂纹、夹杂、气孔等缺陷可看作是裂纹,在外力作用下,在裂纹尖端附近便出现应力集中,根据断裂力学对裂纹尖端应力场的分析,应力场的强弱主要取决与一个力学参数——应力强度因子K I当拉应力逐渐增大或裂纹逐渐扩展时,K I也随之增大,当K I增大到某一临界值时,试样中的裂纹会突然失稳扩展,导致断裂。

钢材基本性能及指标

钢材基本性能及指标
用下,抵抗过大(塑性)变形和断裂的能力。应力所能达到的某些最大值,也是材料本构关系曲线上的某些应力特征点。指标:屈服点fy(σs)极限强度fu(σb)弹性:钢材在外力作用下产生变形,在外力取消后恢复原状的性能。指标:比例极限fp,弹性极限fe,弹性模量Eσ<fy理想的弹性体:变形小且可恢复,且有强度储备σ≥fy理想的塑性体:变形大且不可恢复,也没有强度储备所以一般可将钢材视为理想的弹塑性材料。通常取屈服点作为强度标准值,而且取受拉和受压的屈服点相同。一则极限强度与屈服点之间的强度差作为储备,留有强度余地;二则屈服点对应的应变(宏观为变形)很小,可以满足正常使用的要求,而极限强度对应的应变(变形)很要大近20倍左右,无法满足正常使用的要求。2.塑性:钢材受力断裂过程中发生不能恢复的残余变形的能力。指标:伸长率说明:因标距不同,有δ5(l0=5d)和δ10(l0=10d),但后一种已基本上不再采用,一则两者共存容易产生混淆,二则可节省试件钢材。断面收缩率后者与标距无关,表征塑性较前者更好,但测量误差较大。塑性越好,越不容易发生脆性断裂,受力过程中,应力和内力重分布就越充分,设计就越安全,破坏前的预兆越明显。Z向(厚度方向性能)钢板就是采用厚度方向拉伸的断面收缩率作为性能级别的划分依据。3.冷弯性能:常温下钢材承受弯曲加工变形的能力。将试件冷弯180o而不出现裂纹或分层。定性指标:合格或不合格。冷弯性能合格的钢材才具有良好的常温加工工艺性能。4.韧性:钢材在冲击荷载作用下,变形和断裂过程中吸收机械能的能力。综合反映钢材的内在质量及力学性能,是强度和塑性的综合指标(σ~ε曲线和坐标轴围成的面积)。是衡量钢材抵抗因低温、应力集中、冲击荷载等作用而脆性断裂的能力。指标:冲击功Akv原为梅氏(Mesnager)U形缺口试件,现采用夏比(Charpy)V形缺口试件。5.可焊性:反映钢材焊接的可行性及焊缝的受力性能。包含施工工艺和受力性能两个方面的可焊性。指标:碳当量。《建筑钢结构焊接技术规程》JGJ81-2002、J218-2002的§2.0.1:建筑钢结构工程焊接难度可分为一般、较难和难三种情况。施工单位在承担钢结构焊接工程时应具备与焊接难度相适应的技术条件。建筑钢结构工程的焊接难度可按下表区分。6.耐久性:钢材在长期使用后的力学性能。耐腐蚀性耐老化(时效硬化)耐长期高温耐疲劳普通钢材供应提供的材性保证:三项保证:屈服点fy(σs)、极限强度fu(σb)、伸长率四项保证:屈服点fy(σs)、极限强度fu(σb)、伸长率、180°冷弯五项保证:屈服点fy(σs)、极限强度fu(σb)、伸长率、180°冷弯、冲击功提供保证的材性越多,钢材的价格也越贵。

金属材料力学性能代 含义

金属材料力学性能代 含义

金属材料力学性能代号含义名称代号单位含义抗拉强度σb MPa 或 N/mm^2材料试样受拉力时,在拉断前所承受的最大应力.抗压强度σbc MPa 或 N/mm^2材料试样受压力时,在压坏前所承受的最大应力.抗弯强度σbb MPa 或 N/mm^2材料试样受弯曲力时,在破坏前所承受的最大应力.抗剪强度τMPa 或 N/mm^2材料试样受剪力时,在剪断前所承受的最大剪应力.抗扭强度τb MPa 或 N/mm^2材料试样受扭转力时,在扭断前所承受的最大剪应力屈服点σs MPa 或 N/mm^2材料试样在拉伸过程中,负荷不增加或开始有所降低而变形继续发生的现象称为屈服.屈服时的最小应力称为屈服点和屈服极限.屈服强度σ0.2MPa 或 N/mm^2材料试样在拉伸过程中, 负荷不增加或开始有所降低而变形继续发生的现象称为屈服.对某些屈服现象不明显的金属材料, 测定屈服点比较困难,为便于测量,通常按其产生永久变形量等于试样原长0.2%时的应力称为屈服度或条件屈服强度.弹性极限σcσc 材料能保持弹性变形的最大应力. 真实弹性极限难以测定, 实际规定按永久变形为原长的0.005%时的应力值表示.比例极限σp MPa 或 N/mm^2在弹性变形阶段, 材料所承受的和应变能保持正比的最大应力,称比例极限.σp与σc两数值很接近,一般常互相通用.弹性模量E MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标.E=σ/ε ε——试样纵向线应变.切变模量G MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标.G=τ/γ γ——试样切应变.泊松比μ在弹性范围内, 试样横向线应变与纵向线应变的比值.μ=|ε/ε'|ε'= -με, ε'——试样横向线应变.疲劳极限σ-1MPa 或 N/mm^2材料试样在对称弯曲应力作用下, 经受一定的应力循环数数 N 而仍不发生断裂时所能承受的最大应力.对钢来说,如应力循环 N 达 10^6-10^7仍不发生断裂时,则可认为随循环次数的增加,将不再发生疲劳断裂,因此常采用 N=(0.5~1)x10^7为基数,确定钢的疲劳极限.蠕变极限σ(1/10^4),σ(1/10^5),σ(0.2/200)...MPa 或 N/mm^2在一定温度下(通常在高温下)和恒定载荷作用下,材料在规定的时间(使用期间)内的蠕变变量或蠕变速度不超过某一规定值的最大应力.符号右下角的分数中, 分子表示规定的变形量的百分数,分母表示产生该变形量所经历的时间(小时).σ(1/10^4) 表示在10000小时产生 1% 变形量的应力,有时在符号的右上角标明试验温度.DVM蠕变极限DVM MPa 或 N/mm^2加载后观测25-35小时, 可允许的伸长速度为10x10^(-14)%/小时的应力.持久极限σ(b/10^4),σ(b/10^5),σ(b/200)MPa 或 N/mm^2在一定温度下(通常在高温下), 材料在恒定载荷作用时, 材料在一定时间(使用期间)内材料破坏时的应力.符号右下角的分数中,分母表示时间(小时).有时在符号的右上角标明试验温度.伸长率(延伸率)δ,δ5,δ10%δ 材料试样被拉断后, 标距长度的增加量与原标距长度之百分比.δ5 试样的标距等于 5 倍直径时的伸长率.δ10 试样的标距等于 10 倍直径时的伸长率.断面收缩率ψ%材料试样在拉断后, 其断裂处横截面积的缩减量与原横截面积的百分比.收缩率和伸长率均用来表示材料塑料的指标冲击韧性值αku ,或 αkv J/cm^2金属材料对冲击负荷的抵抗能力称为韧性, 通常都是以大能量的一次冲击值 (αku ,或 αkv)作为标准的.它是采用一定尺寸和形状的标准试样,在摆锤式一次冲击试验机上来进行试验, 试验结果以冲断试样上所消耗的功( Aku ,或 Akv)与断口处横截面积(F)之比来衡量.冲击功Aku ,或 Akv J 金属材料对冲击负荷的抵抗能力称为韧性, 通常都是以大能量的一次冲击值 (αku ,或 αkv)作为标准的.它是采用一定尺寸和形状的标准试样,在摆锤式一次冲击试验机上来进行试验. Aku,或Akv是冲断试样所消耗的功.布氏硬度HB( HBS 或HBW )kgf/mm^2(一般不标注)硬度是指金属抵抗硬的物体压入其表面的能力.用淬硬小钢球或硬质合金球压入金属表面, 保持一定时间待变形稳定后卸载, 以其压痕面积除加加在钢球上的载荷,所得之商,即为金属的布氏硬度数值.洛氏硬度C 级HRC用1471N 载荷, 将顶角为 120°的圆锥形金刚石的压头,压入金属表面,取其压痕的深度来计算硬度的大小,即为金属的HRC硬度.HRC用来测量HB=230-700的金属材料,主要用于测定淬火钢、调质钢等较硬的金属材料(GB230-83)洛氏硬度A 级HRA用 588.4N 载荷和顶角为 120°的圆锥形金刚石的压头所测定出来的硬度, 一般用来测定硬度很高或硬而薄的金属材料, 如碳化物、硬质合金或表面淬火层,HRA用来测量HB>700金属材料.洛氏硬度B 级HRB用980.7N 载荷和直径为 1.59mm(1/16in)的淬硬钢球所测得的硬度.主要用于测定HB=60-230这一类较软的金属材料,如软钢、退火钢、正火钢、铜、钼等有色金属表面洛氏硬度HRN,HRT试验原理同前面洛氏硬度, 不同的是试验载荷较轻,HRN的压头是顶角为 120°金刚石圆锥体,HRT的压头是直径为1.5875mm 的淬硬钢球.二者的载荷均为15kgf、30kgf 和 45kgf.二者的标注分别为HRN15、HRN30、HRN45和HRT15、HRT30、HRT45.表面洛氏硬度只适用于钢材表面层硬度, 以及较薄、较小试件的硬度测定,数值较准确(见GB1818-79)HRN=100-100tHRT=100-100tt——表示主载荷与初载荷两次加载的压痕深度的差值,mm.维氏硬度HV N/mm^2用49.03-980.7N以内的载荷,将顶角为136°的金刚石四方角锥体压头压入金属的表面, 以其压痕面积除载荷所得之商,即为维氏硬度值.HV 只适用测定很薄(0.3-0.5mm)的金属材料、金属薄镀层或化学热处理后的表面层硬度(如镀铬、渗碳、氮化、碳氮共渗层等)(见GB4340-84)HV=2P/d^2.sin(136/2)=0.1891P/d^2P——压头上的负荷,Nd——压痕对角线长度,mm肖氏硬度HS 以一定重量的冲头, 从一定的高度落于被测试样的表面,以其冲头的回跳高度表示硬度的度量.适用于测定表面光滑的一些精密量具或不易搬动的大型机件.。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。

如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。

这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。

这种能力就是材料的力学性能。

金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。

钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。

在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。

金属材料的机械性能1、弹性和塑性:弹性:金属材料受外力作用时产生变形,当外力去掉后能恢复其原来形状的性能。

力和变形同时存在、同时消失。

如弹簧:弹簧靠弹性工作。

塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。

(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。

塑性变形:在外力消失后留下的这部分不可恢复的变形。

2、强度:是指金属材料在静载荷作用下抵抗变形和断裂的能力。

强度指标一般用单位面积所承受的载荷即力表示,单位为MPa。

工程中常用的强度指标有屈服强度和抗拉强度。

拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。

材料在常温、静载作用下的宏观力学性能。

是确定各种工程设计参数的主要依据。

这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力-应变曲线。

对于韧性材料,有弹性和塑性两个阶段。

弹性阶段的力学性能有:比例极限:应力与应变保持成正比关系的应力最高限。

当应力小于或等于比例极限时,应力与应变满足胡克定律,即应力与应变成正比。

弹性极限:弹性阶段的应力最高限。

材料力学性能考试题

材料力学性能考试题

一、名词解释Ak:冲击吸收功,表示冲击试样变形及断裂消耗的功。

KIC:断裂韧度,表示在平面应变条件下材料抵抗裂纹失稳扩展的能力。

KⅠ:应力场强度因子,表示裂纹尖端应力场的强弱。

△Kth:疲劳裂纹扩展门槛值,表示材料阻止疲劳裂纹开始扩展的性能。

NSR:静拉伸缺口敏感度,金属材料的缺口敏感性指标,缺口试样的抗拉强度σbn与等截面尺寸光滑试样的抗拉强度σb的比值。

ψ:断面收缩率,是试样拉断后,颈缩处横截面积的最大缩减量与原始横截面积的百分比,反映了材料局部变形的能力。

σ-1:疲劳极限,试样经无限次循环也不发生疲劳断裂,将对应的应力称为σ-1。

σ0.2:屈服强度,对于无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力,作为该钢的屈服强度。

στt:持久强度极限,材料在规定温度(t)下,达到规定的持续时间(τ)而不发生断裂的最大应力。

σtε:蠕变极限,在规定温度(t)下,使试样在规定时间内产生的稳态蠕变速率(ε)不超过规定值的最大应力。

σtδ/τ:蠕变极限,在规定温度(t)下和规定的试验时间(τ)内,使试样产生的蠕变总伸长率(δ)不超过规定值的最大应力。

E:弹性模量,表征材料对弹性变形的抗力。

σs:屈服点,呈现屈服现象的金属材料拉伸时,试样在外力不增加仍能继续伸长时的应力。

σbc:抗压强度,试样压至破坏过程中的最大应力。

δ:断后伸长率,是试样拉断后标距的长度与原始标距的百分比。

G:切变模量,在弹性范围内,切应力与切应变之比称为G。

σbc:抗压强度,试样压至破坏过程中的最大应力。

σbb:抗弯强度,指材料抵抗弯曲不断裂的能力。

GI:裂纹扩展力,表征裂纹扩展单位长度所需的力。

σp:比例极限,应力与应变成直线关系的最大应力。

σe:弹性极限,由弹性变形过渡到弹性塑性变形的应力。

弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

冲击韧性

冲击韧性

冲击韧度指标的实际意义在于揭示材料的变脆倾向。

是反映金属材料对外来冲击负荷的抵抗能力,一般由冲击韧性值(ak)和冲击功(Ak)表示,其单位分别为J/cm2和J(焦耳)冲击韧性或冲击功试验(简称"冲击试验"),因试验温度不同而分为常温、低温和高温冲击试验三种;若按试样缺口形状又可分为"V"形缺口和"U"形缺口冲击试验两种。

冲击韧性(冲击值)ak工程上常用一次摆锤冲击弯曲试验来测定材料抵抗冲击载荷的能力,即测定冲击载荷试样被折断而消耗的冲击功Ak,单位为焦耳(J)。

而用试样缺口处的截面积F去除Ak,可得到材料的冲击韧度(冲击值)指标,即ak=Ak/F,其单位为kJ/m2或J/cm2。

因此,冲击韧度ak表示材料在冲击载荷作用下抵抗变形和断裂的能力。

ak值的大小表示材料的韧性好坏。

一般把ak值低的材料称为脆性材料,ak值高的材料称为韧性材料。

ak值取决于材料及其状态,同时与试样的形状、尺寸有很大关系。

ak值对材料的内部结构缺陷、显微组织的变化很敏感,如夹杂物、偏析、气泡、内部裂纹、钢的回火脆性、晶粒粗化等都会使ak值明显降低;同种材料的试样,缺口越深、越尖锐,缺口处应力集中程度越大,越容易变形和断裂,冲击功越小,材料表现出来的脆性越高。

因此不同类型和尺寸的试样,其ak或Ak值不能直接比较。

材料的ak值随温度的降低而减小,且在某一温度范围内,ak值发生急剧降低,这种现象称为冷脆,此温度范围称为“韧脆转变温度(Tk)”。

[1]冲击韧性( ak ):材料抵抗冲击载荷的能力,单位为焦耳/ 厘米 2 ( J/cm2 ) . 代号:аk单位:J/cm2简介:将冲击吸收功除以试样缺口底部处横截面积所得的商。

注:用夏氏U形缺口试样求得的冲击功和冲击值,代号分别为AkU和akU;用夏氏V形缺口试样求得的冲击功和冲击值,代号分别为AKV和аkV。

用一定尺寸和形状的金属试样,在规定类型的冲击试验上受冲击负荷折断时,试样刻槽处单位横截面上所消耗的冲击功,称为冲击韧性以αk表示。

钢管常用名词解释

钢管常用名词解释
名词 L245 LASW ERW DIN2391-94/C GB/T3639 SCH HB HR HV Rm(mpa) ReH(mpa) A(%) CEN zfp
NBK
解释 管线钢 直缝埋弧焊管 电阻焊接钢管统称 DIN(德国)94(年份)C(质量等级) T(推荐) 壁厚等级 布氏硬度 洛氏硬度 维氏硬度 抗拉强度 上屈服限 延伸率 欧洲标准化委员会 无损检验
冲击功试验
冲击吸收功Akv(u) PQF 包辛格效应
热处理
金相 组织 奥氏体 铁氏体 马氏体 珠光体 贝氏体
无损检测 RT UT
简称冲击试验;因试验温度不同而分为常温、低 温和高温三种,若按试样缺口形状又可分V形缺 口,U形缺口两种;用一定尺寸和形状 (10*10*55mm)的试样(长度方向的中高处有U 或V型缺口,缺口深2mm)在规定试验机上受冲击 负荷打击下自缺口处折断的实验; 具有一定尺寸和形状的金属式样,在冲击负荷作 用下折断时所吸收的功,单位为J(焦耳) Premium Quality Finishing的缩写,表示高质 量轧机 多晶体金属在受到反复交变的载荷作用时,出现 塑性变形抗力降低的现象 钢管的热处理是通过钢在固态下加热、保温和冷 却的操作来改变钢管的内部组织,从而获得所需 性能的一种工艺方法。可分为退火、淬火+回火 、调质处理、表面处理;通过热处理可充分发挥 钢管的潜力,还可以改善加工工艺性能,提高加 工质量减少刀具磨损。一些理化指标必须经过热 处理才能获得。如高抗H2S应力腐蚀性能、不锈 钢钢管的强化等;更提高了钢管的韧性;对钢进 行不同的热处理,就可以获得不同的组织; 金属合金组织中的化学成分、晶体结构、物理性 能相同的组分。在金属学的范畴称为金相,其中 包括固溶体、金属化合物和纯元素。 批使用金相方法看到的,由形态、尺寸不同、分 布方式不同的一种或多种相构成的总体,以及各 种材料缺陷和损伤; 铁和其它元素形成的面心立方结构的固溶体,一 般指碳和其它元素在γ铁中的间隙固溶体 铁和其它元素形成的体心立方结构的固溶体,一 般指碳和其它元素在α铁中的间隙固溶体 奥氏体通过无扩散型相变而转变成的亚稳定相。 实际上,是碳在铁中过饱和的间隙式固溶体。晶 体肯有体心正方结构 铁素体片和渗碳体片交替排列的层状显微组织, 是过冷奥氏体进行共析反应的直接产物,也可理 解为铁素体和渗碳体的机械混合物 过冷奥氏体在低于珠光体转变温度和高于马氏体 转变温度之间范围分解成的铁素体和渗碳体的聚 合组织。在较高温度分解成的叫上贝氏体,呈羽 毛状 在材料、设备、结构等不被破坏的前提下,利用 材料的物理性能随缺陷而改变的特性来检测缺陷 是否存在及缺陷的形状、大小、位置以及发展趋 势的检测方法 射线检测 超声检测

工程材料力学性能习题答案

工程材料力学性能习题答案

《工程材料力学性能》课后答案机械工业出版社 2008第2版第一章 单向静拉伸力学性能1、 解释下列名词。

1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。

2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。

3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。

6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。

韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。

8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。

是解理台阶的一种标志。

9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。

弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等2、 说明下列力学性能指标的意义。

答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。

金属材料力学性能代号含义

金属材料力学性能代号含义

金属材料力学性能代号含义名称代号单位含义抗拉强度σb MPa 或 N/mm^2材料试样受拉力时,在拉断前所承受的最大应力.抗压强度σbc MPa 或 N/mm^2材料试样受压力时,在压坏前所承受的最大应力.抗弯强度σbb MPa 或 N/mm^2材料试样受弯曲力时,在破坏前所承受的最大应力.抗剪强度τMPa 或 N/mm^2材料试样受剪力时,在剪断前所承受的最大剪应力.抗扭强度τb MPa 或 N/mm^2材料试样受扭转力时,在扭断前所承受的最大剪应力屈服点σs MPa 或 N/mm^2材料试样在拉伸过程中,负荷不增加或开始有所降低而变形继续发生的现象称为屈服.屈服时的最小应力称为屈服点和屈服极限.屈服强度σ0.2MPa 或 N/mm^2材料试样在拉伸过程中, 负荷不增加或开始有所降低而变形继续发生的现象称为屈服.对某些屈服现象不明显的金属材料, 测定屈服点比较困难,为便于测量,通常按其产生永久变形量等于试样原长0.2%时的应力称为屈服度或条件屈服强度.弹性极限σcσc 材料能保持弹性变形的最大应力. 真实弹性极限难以测定, 实际规定按永久变形为原长的0.005%时的应力值表示.比例极限σp MPa 或 N/mm^2在弹性变形阶段, 材料所承受的和应变能保持正比的最大应力,称比例极限.σp与σc两数值很接近,一般常互相通用.弹性模量E MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标.E=σ/ε ε——试样纵向线应变.切变模量G MPa 或 N/mm^2在比例极限的范围内, 应力与应变成正比时的比例常数,衡量材料刚度的指标.G=τ/γ γ——试样切应变.泊松比μ在弹性范围内, 试样横向线应变与纵向线应变的比值.μ=|ε/ε'|ε'= -με, ε'——试样横向线应变.疲劳极限σ-1MPa 或 N/mm^2材料试样在对称弯曲应力作用下, 经受一定的应力循环数数 N 而仍不发生断裂时所能承受的最大应力.对钢来说,如应力循环 N 达 10^6-10^7仍不发生断裂时,则可认为随循环次数的增加,将不再发生疲劳断裂,因此常采用 N=(0.5~1)x10^7为基数,确定钢的疲劳极限.蠕变极限σ(1/10^4),σ(1/10^5),σ(0.2/200)...MPa 或 N/mm^2在一定温度下(通常在高温下)和恒定载荷作用下,材料在规定的时间(使用期间)内的蠕变变量或蠕变速度不超过某一规定值的最大应力.符号右下角的分数中, 分子表示规定的变形量的百分数,分母表示产生该变形量所经历的时间(小时).σ(1/10^4) 表示在10000小时产生 1% 变形量的应力,有时在符号的右上角标明试验温度.DVM蠕变极限DVM MPa 或 N/mm^2加载后观测25-35小时, 可允许的伸长速度为10x10^(-14)%/小时的应力.持久极限σ(b/10^4),σ(b/10^5),σ(b/200)MPa 或 N/mm^2在一定温度下(通常在高温下), 材料在恒定载荷作用时, 材料在一定时间(使用期间)内材料破坏时的应力.符号右下角的分数中,分母表示时间(小时).有时在符号的右上角标明试验温度.伸长率(延伸率)δ,δ5,δ10%δ 材料试样被拉断后, 标距长度的增加量与原标距长度之百分比.δ5 试样的标距等于 5 倍直径时的伸长率.δ10 试样的标距等于 10 倍直径时的伸长率.断面收缩率ψ%材料试样在拉断后, 其断裂处横截面积的缩减量与原横截面积的百分比.收缩率和伸长率均用来表示材料塑料的指标冲击韧性值αku ,或 αkv J/cm^2金属材料对冲击负荷的抵抗能力称为韧性, 通常都是以大能量的一次冲击值 (αku ,或 αkv)作为标准的.它是采用一定尺寸和形状的标准试样,在摆锤式一次冲击试验机上来进行试验, 试验结果以冲断试样上所消耗的功( Aku ,或 Akv)与断口处横截面积(F)之比来衡量.冲击功Aku ,或 Akv J 金属材料对冲击负荷的抵抗能力称为韧性, 通常都是以大能量的一次冲击值 (αku ,或 αkv)作为标准的.它是采用一定尺寸和形状的标准试样,在摆锤式一次冲击试验机上来进行试验. Aku,或Akv是冲断试样所消耗的功.布氏硬度HB( HBS 或HBW )kgf/mm^2(一般不标注)硬度是指金属抵抗硬的物体压入其表面的能力.用淬硬小钢球或硬质合金球压入金属表面, 保持一定时间待变形稳定后卸载, 以其压痕面积除加加在钢球上的载荷,所得之商,即为金属的布氏硬度数值.洛氏硬度C 级HRC用1471N 载荷, 将顶角为 120°的圆锥形金刚石的压头,压入金属表面,取其压痕的深度来计算硬度的大小,即为金属的HRC硬度.HRC用来测量HB=230-700的金属材料,主要用于测定淬火钢、调质钢等较硬的金属材料(GB230-83)洛氏硬度A 级HRA用 588.4N 载荷和顶角为 120°的圆锥形金刚石的压头所测定出来的硬度, 一般用来测定硬度很高或硬而薄的金属材料, 如碳化物、硬质合金或表面淬火层,HRA用来测量HB>700金属材料.洛氏硬度B 级HRB用980.7N 载荷和直径为 1.59mm(1/16in)的淬硬钢球所测得的硬度.主要用于测定HB=60-230这一类较软的金属材料,如软钢、退火钢、正火钢、铜、钼等有色金属表面洛氏硬度HRN,HRT试验原理同前面洛氏硬度, 不同的是试验载荷较轻,HRN的压头是顶角为 120°金刚石圆锥体,HRT的压头是直径为1.5875mm 的淬硬钢球.二者的载荷均为15kgf、30kgf 和 45kgf.二者的标注分别为HRN15、HRN30、HRN45和HRT15、HRT30、HRT45.表面洛氏硬度只适用于钢材表面层硬度, 以及较薄、较小试件的硬度测定,数值较准确(见GB1818-79)HRN=100-100tHRT=100-100tt——表示主载荷与初载荷两次加载的压痕深度的差值,mm.维氏硬度HV N/mm^2用49.03-980.7N以内的载荷,将顶角为136°的金刚石四方角锥体压头压入金属的表面, 以其压痕面积除载荷所得之商,即为维氏硬度值.HV 只适用测定很薄(0.3-0.5mm)的金属材料、金属薄镀层或化学热处理后的表面层硬度(如镀铬、渗碳、氮化、碳氮共渗层等)(见GB4340-84)HV=2P/d^2.sin(136/2)=0.1891P/d^2P——压头上的负荷,Nd——压痕对角线长度,mm肖氏硬度HS 以一定重量的冲头, 从一定的高度落于被测试样的表面,以其冲头的回跳高度表示硬度的度量.适用于测定表面光滑的一些精密量具或不易搬动的大型机件.。

冲击吸收功

冲击吸收功

冲击吸收功
冲击吸收功Akv(u)是指具有一定尺寸和形状的金属式样,在冲击负荷作用下折断时所吸收的功,单位为焦耳(J)。

冲击韧度指标的实际意义在于揭示材料的变脆倾向,是反映金属材料对外来冲击负荷的抵抗能力,一般由冲击韧性值(ak)和冲击功(Ak)表示,其单位分别为J/cm²和J(焦耳)。

焦耳(简称焦,符号为J),是能量和做功的国际单位。

1焦耳能量相等于1牛顿力的作用点在力的方向上移动1米距离所做的功。

符号J为纪念英国物理学家詹姆斯·普雷斯科特·焦耳而命名。

1焦=1牛·米,也等于1瓦的功率在1秒内所做的功,1焦=1瓦·秒。

钢材的冲击功Akv是什么意思

钢材的冲击功Akv是什么意思

钢材的冲击功Akv是什么意思钢材在进行缺口冲击试验时,摆锤冲击消耗在试样上的能量,称为冲击功,用Ak表示,单位为焦耳(J)。

当为V形缺口时,即为AKV,当为U形缺口时,即为AKU。

冲击试验时摆锤消耗在试样单位截面上的冲击功称为冲击韧性(也称为冲击值),用αk表示。

即:ak=Ak/F,其单位为kJ/m2或J/cm2。

由于冲击功仅为试样缺口附近参加变形的体积所吸收,而此体积又无法测定,且在同一断面上每一部分的变形也不一致,因此用单位截面积上的冲击功αk来判断韧性的方法国内外已逐渐被淘汰。

工程上常用一次摆锤冲击弯曲试验来测定材料抵抗冲击载荷的能力,即测定冲击载荷试样被折断而消耗的冲击功Ak,单位为焦耳(J)。

而用试样缺口处的截面积F去除Ak,可得到材料的冲击韧度(冲击值)指标,即ak=Ak/F,其单位为kJ/m2或J/cm2。

因此,冲击韧度ak表示材料在冲击载荷作用下抵抗变形和断裂的能力。

ak值的大小表示材料的韧性好坏。

一般把ak值低的材料称为脆性材料,ak值高的材料称为韧性材料。

ak值取决于材料及其状态,同时与试样的形状、尺寸有很大关系。

ak值对材料的内部结构缺陷、显微组织的变化很敏感,如夹杂物、偏析、气泡、内部裂纹、钢的回火脆性、晶粒粗化等都会使ak 值明显降低;同种材料的试样,缺口越深、越尖锐,缺口处应力集中程度越大,越容易变形和断裂,冲击功越小,材料表现出来的脆性越高。

因此不同类型和尺寸的试样,其ak或Ak值不能直接比较。

材料的ak值随温度的降低而减小,且在某一温度范围内,ak值发生急剧降低,这种现象称为冷脆,此温度范围称为“韧脆转变温度(Tk)”。

冲击韧度指标的实际意义在于揭示材料的变脆倾向。

什么是夏比冲击试验?夏比是音译:Charpy,夏比冲击试验(英文标准名称:Charpy Imapc t Test)是用以测定金属材料抗缺口敏感性(韧性)的试验。

制备有一定形状和尺寸的金属试样(通常为10×10×55mm),使其具有U形缺口或V形缺口,在夏比冲击试验机上处于简支梁状态,以试验机举起的摆锤作一次冲击,使试样沿缺口冲断,用折断时摆锤重新升起高度差计算试样的吸收功,即为Aku(U型缺口)和Akv(V型缺口)。

钢材的化学成分与力学性能

钢材的化学成分与力学性能

常用材料的化学成分与力学性能20号钢化学成分碳% C : 0.17~0.23 硅%|Si: 0.17~0.37锰%|Mn: 0.35~0.65 铬%|Cr≤: 0.25镍%|Ni≤: 0.30 铜%|Cu≤: 0.2520号钢力学性能:抗拉强度σb (MPa):≥: 410 屈服强度σs (MPa):≥: 245 伸长率δ5 (%):≥:25 断面收缩率ψ (%):≥:55力学性能|AKU/J≥: 冲击韧性值αkv(J/cm2):≥:硬度:未热处理≤156HBS20#号钢特性:该钢属于优质低碳碳素钢,冷挤压、深淡淬硬钢。

该钢强度低,韧性、塑性和焊接性均好。

35#号钢化学成份:碳 C :0.32~0.40;硅Si:0.17~0.37;锰Mn:0.50~0.80;硫S :≤0.035;磷P :≤0.035;铬Cr:≤0.25;镍Ni:≤0.25;铜Cu:≤0.25;35#号钢力学性能:抗拉强度σb(MPa):≥530(54);屈服强度σs(MPa):≥315(32);伸长率δ5(%):≥20;断面收缩率ψ(%):≥45;冲击功Akv (J):≥55;冲击韧性值αkv(J/cm2):≥69(7);硬度:未热处理≤197HB;35#号钢特性:35#号钢优质碳素结构钢有良好的塑性和适当的强度,工艺性能较好,焊接性能尚可,大多在正火状态和调质状态下使用。

45号钢化学成份:碳%|C: 0.42~0.50钢硅%|Si: 0.17~0.37锰%|Mn: 0.50~0.80 铬%|Cr≤: 0.2镍%|Ni≤: 0.30 铜%|Cu≤: 0.25推荐热处理/℃|正火: 850 推荐热处理/℃|淬火: 840推荐热处理/℃|回火: 600抗拉强度|σb/MPa≥: 600 屈服强度|σs/MPa≥: 355伸长率|δ5(%)≥: 16 断面收缩率|ψ(%)≥: 40|AKU/J≥:冲击功39钢材交货状态硬度HBS10/3000,≤|未热处理钢: 229钢材交货状态硬度HBS10/3000,≤|退火钢: 19745#号钢特性:最常用的优质碳素钢,易切削加工。

夏比冲击试验V型缺口和U型缺口的区别

夏比冲击试验V型缺口和U型缺口的区别

夏比冲击试验V型缺口和U型缺口的区别冲击试样中的缺口形式有两种,即夏比V形缺口和夏比U形缺口试样,所测得的冲击吸收功分别用Akv和Aku表示。

冲击试样的取样方式也有两种,即横向取样和纵向取样(与钢板轧制方向垂直为横向,平行为纵向)。

冲击试样的规格尺寸有三种,即标准试样为55×10×10,小试样为55×10×7.5或55×10×5,冲击试样的规格尺寸主要根据材料厚度可能制得的最大尺寸规格确定。

目前我国国内用于容器设计制造的法规和标准均规定以夏比V形缺口、横向取样方式为主。

冲击试样的缺口形式对冲击韧性影响非常大,夏比V形缺口比夏比U形缺口更为尖锐,更能反应材料的缺口和内部缺陷对动态载荷的敏感性。

对于U形试样,进行冲击试验时,其冲击功大部分消耗于裂纹的形成,而对V 形缺口试样,其冲击功大部分消耗于裂纹的扩展。

U形缺口测得的冲击韧性与V 形缺口测得的冲击韧性之间不存在对应的换算关系。

冲击试样的取样方向规定为“横向取样”,主要考虑在钢锭浇注时,会形成偏析及含有杂质,在轧制钢板的过程中,这些不均匀部分和杂质会顺着金属延伸方向形成纤维状组织,从而使钢板平行于轧制方向的力学性能高于垂直方向的力学性能。

我国标准规定的冲击试样取样方向与美国ASME的规定是不一致的,美国ASME标准规定的冲击试样取样方向为“纵向取样”,故对在国内使用的国外进口材料用于国内的容器制造时,应注意冲击试样的取样方向应规定为“横向取样”。

目前,我国金属材料冲击试验方法标准为GB/T229-2007《金属夏比缺口冲击试验方法》。

吸收功的单位是J,而冲击韧性的单位是J/cm2,也就是吸收功除以0.8就是冲击值,一般笼统提冲击值不具体,要看其单位便知,是V还是U 缺口要看用户的要求,其冲击值是不同的。

提高冲击值的办法是比较复杂的,V 型冲击的槽深是2mm,冲击试样的尺寸为10×10×55mm,所以V型槽下面的横截面积为(10-2)mmX10mm=0.8cm2,冲击韧性=冲击值/截面积=J/cm2。

钢结构基本原理 思考题简答题 答案

钢结构基本原理 思考题简答题 答案

钢结构基本原理 简答题思考题 答案2、钢结构的特点是什么?①强度高、重量轻;②材质均匀、可靠性高;③塑性、韧性好;④工业化程度高;⑤安装方便、施工期短;⑥密闭性好、耐火性差;⑦耐腐蚀性差。

第二章钢结构的材料6、什么是钢材的主要力学性能(机械性能)?钢材的主要力学性能(机械性能)通常是指钢厂生产供应的钢材在标准条件(2065℃)下均匀拉伸、冷弯和冲击等单独作用下显示的各种机械性能(静力、动力强度和塑性、韧性等)。

7、为什么钢材的单向均匀拉伸试验是钢材机械性能的常用试验方法?钢材的单向均匀拉伸比压缩、剪切等试验简单易行,试件受力明确,对钢材缺陷的反应比较敏感,试验所得各项机械性能指标对于其它受力状态的性能也具有代表性。

因此,它是钢材机械性能的常用试验方法。

8、净力拉伸试验的条件有哪些?①规定形状和尺寸的标准试件;②常温(2065℃);③加载速度缓慢(以规定的应力或应变速度逐渐施加荷载)。

9、在钢材静力拉伸试验测定其机械性能时,常用应力-应变曲线来表示。

其中纵坐标为名义应力,试解释何谓名义应力?所谓名义应力即为试件横截面上的名义应力σ=F/A 0(F 、A 0为试件的受拉荷载和原横截面面积)。

10、钢材的弹性?对钢材进行拉伸试验,当应力σ不超过某一定值时,试件应力的增或减相应引起应变的增或减;卸除荷载后(σ=0)试件变形也完全恢复(ε=0),没有残余变形。

钢材的这种性质叫弹性。

11、解释名词:比例极限。

比例极限:它是对钢材静力拉伸试验时,应力-应变曲线中直线段的最大值,当应力不超过比例极限时,应力应变成正比关系。

12、解释名词:屈服点屈服点:当钢材的应力不增加而应变继续发展时所对应的应力值为钢材的屈服点。

13、解释名词:弹性变形弹性变形:卸除荷载后,可以完全恢复的变形为弹性变形。

14、解释名词:塑性变形塑性变形:卸除荷载后,不能恢复的变形。

15、解释名词:抗拉强度抗拉强度:钢构件受拉断裂时所对应的强度值。

第一章 绪论及第二章钢材习题

第一章 绪论及第二章钢材习题

第一章绪论、第二章钢材习题一、名词解释1、承载能力的极限状态:结构或构件达到最大承载能力或不适于继续承载的变形时所对应的极限状态。

2、正常使用极限状态:结构或构件达到正常使用或耐久性能的某项限值时所对应的极限状态。

3、钢材的韧性:钢材抵抗冲击荷载的能力,用冲击韧性值指标来衡量。

4、时效硬化:轧制钢材放置一段时间后,其机械性能会发生变化,强度提高,塑性降低,这种现象称为时效硬化。

5、冷作硬化:钢材受荷超过弹性范围以后,若重复地卸载、加载,将使钢材弹性极限提高,塑性降低,这种现象称为冷作硬化。

6、钢材的冷脆:在负温度范围,随温度下降,钢材的屈服强度、抗拉强度提高,但塑性变形能力减小,冲击韧性降低,这种现象称为钢材的冷脆。

7、应力集中:构件由于截面的突然改变,致使应力线曲折、密集,故在空洞边缘或缺口尖端处,将局部出现应力高峰,其余部分则应力较低,这种现象称为应力集中。

8、塑性破坏:破坏前有显著的变形,吸收很大的能量,延续时间长,有明显的塑性变形,断裂时断口呈纤维状,色泽发暗。

9、脆性破坏:破坏前无明显变形,破坏突然发生,断裂时断口平齐,呈有光泽的晶粒状。

脆性破坏危险性大。

10、蓝脆:钢材总得趋势是随着温度的提高,钢材强度及弹性模量下降;但是在250℃附近,钢材强度有所提高,塑性相应降低,钢材性能转脆,由于在这个温度下钢材表面氧化膜呈蓝色,故称为蓝脆。

二、填空题1.钢材的三项基本力学性能指标分别为:屈服强度、抗拉强度和伸长率。

2.Q235-BF表示屈服强度为235MPa的B级常温冲击韧性沸腾钢。

3.普通工字钢用符号I 及号数表示,其中号数代表高度的厘米数。

4.根据应力-应变曲线,低碳钢在单向受拉过程中的工作特性,可以分为弹性阶段、弹塑性阶段、屈服阶段、强化阶段、颈缩阶段。

5.钢材在当温度下降到负温的某一区间时,其冲击韧性急剧下降,破坏特征明显地由塑性破坏破坏转变为脆性破坏破坏,这种现象称为冷脆。

6.钢结构有耐腐蚀性差和_ 耐火性__差的弱点。

钢铁材料的力学性能及名词解释

钢铁材料的力学性能及名词解释

值大小来衡量
由于αK值的大小,不仅取决于材料本身,同时
还随试样尺寸、形状的改变及试验温度的不同 而变化,因而αK值只是一个相对指标。目前国 际上许多国家直接采用冲击吸收功AK作为冲 击韧度的指标 AKU αKU = ——; F AKU
2
冲击吸收功
AKU或 AKV
αKV= ——;

疲劳
大小、方向反复变化的载荷)的作用,在不发生显 著塑性变形的情况下而突然断裂的现象,称为疲劳 金属材料在重复或交变应力作用下,经过周次
1
疲劳极限
σ-1
MPa
(N)的应力循环仍不发生断裂时所能承受的最大 应力称为疲劳极限
金属材料在重复或交变应力作用下,经过周次 (N)后断裂时所能承受的最大应力,叫作疲劳强 2
3
抗压强度
σbc
MPa
σbc=—— Fo 式中 Pbc——试样所受最大集中载荷(N) Fo——试样原横截面积(mm 2)
试样剪断前,所承受的最大负荷下的受剪截面具有 的平均应力 P 双剪:σr=—— ; 2Fo 4
抗剪强度
r、σr
MPa
P 单剪:σr=—— ; Fo 式中 P——剪切时的最大负荷(N) Fo——受剪部位的横截面积(mm 2) 指外力是扭转力的强度极限 3Mb τb≈—— (适用于钢材) 4Wp
1
布氏硬度
HBS
/
验力,测表面压痕直径计算的硬度值。使用钢球测 定硬度小于等于450HBS;使用硬质合金球测定硬度 大于450HBW
2
洛氏硬度
HRA HRB HRC HRD HRE HRF HRG HRH HRK HV
用金刚石圆锥或钢球压头以初始试验力和总试验力 作用下,压入试样表面,经规定的保持时间后,卸

机械基础

机械基础

D.冲击韧性(aK)1.许多机械零件在工作时要受到冲击载荷,例如风铲、锤杆、冲模和锻模等。

冲击载荷引起的应力比静载荷大得多,因此有更大的破坏作用。

2.使用不同类型的试样,其冲击韧性分别表示为akU(U型缺口)或akV(V型缺口)。

3.影响冲击韧性的因素:冲击韧性(ak)值越大,则材料的韧性越好。

材料的冲击韧性的大小受材料的显微组织、宏观缺陷以及环境温度等因素影响,因而测得的冲击韧性值误差较大。

可用于检验冶炼、热加工、热处理等工艺的质量。

E.疲劳强度疲劳现象:许多机械零件如轴、齿轮、弹簧等,在工作时受到交变载荷作用,即使应力远低于材料的屈服强度,但经过一定循环次数后便发生突然断裂,这种现象称为疲劳。

疲劳强度指标:试样经受无限次循环而不断裂的最大应力称为疲劳强度。

金属发生疲劳的原因:主要是表面或内部缺陷以及加工过程中形成的刀痕等。

采取各种表面强化方法(如喷丸、表面热处理等)以及提高冶金质量和表面质量,都能提高零件的疲劳强度。

3.金属材料的工艺性能材料的工艺性能将影响零件加工后的质量以及成本。

因此在选材时,不仅要考虑材料的使用性能而且应当考虑其工艺性能。

A.铸造性能:是指金属材料在铸造成形时获得优质铸件的能力,包括液体金属的流动性、凝固过程中的收缩、偏析等方面。

B.压力加工性能:是指金属材料承受压力加工的能力,它主要取决于金属材料的塑性和变形抗力。

C.焊接性能:是指金属材料在一定的焊接工艺条件下,获得优质焊缝的难易程度。

D.切削性能:金属材料的切削性能包括切削时的切削力、切削后的表面质量以及刀具寿命三个方面。

E.热处理性能:是指金属材料承受热处理加工并获得良好性能的能力。

它包括淬透性、变形、开裂倾向、过热敏感性、回火脆性以及回火稳定性等。

1-4 钢的热处理1.什么是热处理钢的热处理是将钢在固态下加热到预定的温度,并在该温度下保持一定的时间,然后以一定的速度冷却的一种热加工工艺。

2.热处理的目的热处理的目的是改变钢的内部组织结构,以改善钢的性能,延长机械零件的使用寿命。

冲击功名词

冲击功名词

材料的韧性是断裂时所需能量的度量。

描述材料韧性的指标通常载荷作用下,抵抗冲击力的作用而不被破坏的能力。

通常用冲击韧性指标aK来度量。

aK是试件在一次冲击实验时,单位横截面积(m2)的冲击韧性越好。

标准冲击试样有两种,一种是常用的梅氏试样(试样缺口为U型);另一种是夏氏试样(试样缺口为V型)。

同一条件下同一材料制作的两种试样,其梅氏试样的aK值显著大于夏氏试样的aK值,所以两种试样的aK值不能互相比较。

夏氏试样必须注明aK(夏)。

实际工作中承受冲击载荷的机械零件,很少因一次大能量冲击而遭破坏,绝大多数是因小能量多次冲击使损伤积累,导致裂纹产生和扩展的结果。

所以需采用小能量多冲击作为衡量这些零件承受冲击抗力的指标。

实践证明,在小能量多次冲击下,冲击抗力主际生产中,有的大型传动零件、高压容器、船舶、桥梁等,常在其工作应力远低于σS的情况下,突然发生低应力脆断。

通过大量研究认为,这种破坏与制件本身存在裂纹和裂纹扩展有关。

实际使用的材料,不可避免地存在一定的冶金和加工缺陷,如气孔、夹杂物、机械缺陷等,它们破坏了材料的连续性,实际上成为材料内部的微裂纹。

在服役过程中,裂纹扩展的结果,造成零件在较低应力状态下,即低验值的情况下,发生低应力脆断。

材料中存在的微裂纹,在外加应随应力的增大,K1也随之增大,当K1增大到一定值时,就可使裂纹前端某一区域内的内应力大到足以使裂纹失去稳定而迅速扩展,发生脆断。

这个K1的临界值称为临界应力强度因子或断裂韧性,用K1C表示,单位为J/m。

它反映了材料抵抗裂纹扩展和抗脆断的能力。

材料的断裂韧性K1C与裂纹的形状、大小无关,也和外加应力无关,只决定于材料本身的特性(成分、热处理条件、加工工艺等),是一个反映材料性能的常数。

关于断裂韧性,也称力学抗冲击强度,一般都用缺口冲击功和冲击强度来表示。

缺口冲击功是按照一定的标准在规定尺寸的试样上对规定尺寸的缺口进行一次摆锤冲击弯曲试验来测定材料抵抗冲击载荷的能力,即测定冲击载荷试样被折断而消耗的冲击功Ak,单位为焦耳(J)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢材的冲击功Akv是什么意思钢材在进行缺口冲击试验时,摆锤冲击消耗在试样上的能量,称为冲击功,用Ak表示,单位为焦耳(J)。

当为V形缺口时,即为AKV,当为U形缺口时,即为AKU。

冲击试验时摆锤消耗在试样单位截面上的冲击功称为冲击韧性(也称为冲击值),用αk表示。

即:ak=Ak/F,其单位为kJ/m2或J/cm2。

由于冲击功仅为试样缺口附近参加变形的体积所吸收,而此体积又无法测定,且在同一断面上每一部分的变形也不一致,因此用单位截面积上的冲击功αk来判断韧性的方法国内外已逐渐被淘汰。

工程上常用一次摆锤冲击弯曲试验来测定材料抵抗冲击载荷的能力,即测定冲击载荷试样被折断而消耗的冲击功Ak,单位为焦耳(J)。

而用试样缺口处的截面积F去除Ak,可得到材料的冲击韧度(冲击值)指标,即ak=Ak/F,其单位为kJ/m2或J/cm2。

因此,冲击韧度ak表示材料在冲击载荷作用下抵抗变形和断裂的能力。

ak值的大小表示材料的韧性好坏。

一般把ak值低的材料称为脆性材料,ak值高的材料称为韧性材料。

ak值取决于材料及其状态,同时与试样的形状、尺寸有很大关系。

ak值对材料的内部结构缺陷、显微组织的变化很敏感,如夹杂物、偏析、气泡、内部裂纹、钢的回火脆性、晶粒粗化等都会使ak 值明显降低;同种材料的试样,缺口越深、越尖锐,缺口处应力集中程度越大,越容易变形和断裂,冲击功越小,材料表现出来的脆性越高。

因此不同类型和尺寸的试样,其ak或Ak值不能直接比较。

材料的ak值随温度的降低而减小,且在某一温度范围内,ak值发生急剧降低,这种现象称为冷脆,此温度范围称为“韧脆转变温度(Tk)”。

冲击韧度指标的实际意义在于揭示材料的变脆倾向。

什么是夏比冲击试验?夏比是音译:Charpy,夏比冲击试验(英文标准名称:Charpy Imapc t Test)是用以测定金属材料抗缺口敏感性(韧性)的试验。

制备有一定形状和尺寸的金属试样(通常为10×10×55mm),使其具有U形缺口或V形缺口,在夏比冲击试验机上处于简支梁状态,以试验机举起的摆锤作一次冲击,使试样沿缺口冲断,用折断时摆锤重新升起高度差计算试样的吸收功,即为Aku(U型缺口)和Akv(V型缺口)。

可在不同温度下作冲击试验。

吸收功值(焦耳)大,表示材料韧性好,对结构中的缺口或其他的应力集中情况不敏感。

对重要结构的材料近年来趋向于采用更能反映缺口效应的V形缺口试样做冲击试验冲击试验:一种动态力学性能试验,主要用来测定冲断一定形状的试样所消耗的功,又叫冲击韧性试验。

根据试样形状和破断方式,冲击试验分为弯曲冲击试验、扭转冲击试验和拉伸冲击试验三种。

横梁式弯曲冲击试验法操作简单,应用最广,其试验原理见图1。

冲击试样世界各国常用的弯曲冲击试样如图2所示。

中国有关标准规定采用横梁式试验法,所用标准试样以U形缺口试样和V形缺口试样为主。

冲击试样所消耗的功,称为冲击功Ak。

将Ak除以缺口处横截面积F,则得冲击韧度ak,单位为J/cm2。

ak值没有明确物理意义,因为冲击功并非沿着缺口处截面积均匀消耗。

因此,ak值不能直接用于设计计算。

同一种金属材料,缺口越尖越深,则塑性变形体积愈小,吸收功也愈小,材料的韧性也就愈低。

因此,对于不同尺寸和缺口的试样,所得结果不能互相换算和比较。

弯曲冲击试验是20世纪初夏比(G.Charpy)提出的,以后获得广泛使用。

在工程上主要是用它评定冶金质量和加工工艺质量,以及测定韧性-脆性转变温度。

如试样上预制疲劳裂纹,用示波图或其他方法求出载荷-时间曲线和载荷-位移曲线,还可测得动态开裂发生的断裂韧度KId和已扩展裂纹停止扩展的断裂韧度KIA等(见金属的强化)。

韧性-脆性转变是金属材料随温度降低由韧性状态过渡到脆性状态致使冲击韧度急剧降低的现象。

金属材料典型的冲击功与温度的关系曲线见图3。

从韧性角度选材,最重要的是要知道韧性-脆性转变温度Tk(℃)。

Tk通常是根据冲击功(或冲击韧度)、断口形貌特征、变形特征与温度的关系求得。

其方法是:①选取一定冲击功所对应的温度为Tk;②若用夏比V形缺口试样,则对应于冲击功为15英尺-磅(20.34J)的Tk用V15TT表示;③或用断口面积上出现50%结晶状断口时的温度为Tk,以50%FATT表示;④还有以冲击功曲线开始上升的温度来定义Tk,为零塑性转变温度,用NDT表示。

显然, Tk因选用标准不同而异,使用Tk时,一定要注意定义Tk的标准。

冲击韧性:用一定尺寸和形状的金属试样,在规定类型的冲击试验上受冲击负荷折断时,试样刻槽处单位横截面上所消耗的冲击功,称为冲击韧性以αk表示。

目前常用的10×10×55mm,带2 mm深的V形缺口夏氏冲击试样,标准上直接采用冲击功(J焦耳值)AK,而不是采用αK值。

因为单位面积上的冲击功并无实际意义。

冲击功对于检查金属材料在不同温度下的脆性转化最为敏感,而实际服役条件下的灾难性破断事故,往往与材料的冲击功及服役温度有关。

因此在有关标准中常常规定某一温度时的冲击功值为多少、还规定FATT(断口面积转化温度)要低于某一温度的技术条件。

所谓FATT,即一组在不同温度下的冲击试样冲断后,对冲击断口进行评定,当脆性断裂占总面积的50%时所对应的温度。

由于钢板厚度的影响,对厚度≤10mm的钢板,可取得3/4小尺寸冲击试样(7.5×10×55mm)或1/2小尺寸冲击试样(5×10×55mm)。

但是一定要注意,同规格及同一温度下的冲击功值才可相互比较。

只有在标准规定的条件下,才可按标准的换算方法,折算成标准冲击试样的冲击功,再相互比较。

冲击韧性指材料在受到外加冲击负荷的作用下,断裂时消耗的功除以试样缺口断面面积而得到的商值,即在规定温度下,试样抵抗冲击载荷时所吸收的能量。

' H( X$ S, G' I2 K% h冲击韧性的高低,取决于材料有无迅速塑性变形的能力。

冲击韧性高的材料,一般都有较高的塑性。

但塑性指标高的材料不一定都有高的冲击韧性。

这是因为在静负荷下,能够缓慢塑性变形的材料在冲击负荷下不一定能迅速发生塑性变形。

冲击韧性是强度与塑性的综合指标,是强度和塑性两者的函数,但塑性对韧性的影响更大些。

6 R- L* O: G" r5 J4 X冲击试样中的缺口形式主要有两种,即夏比V形缺口和夏比U形缺口试样,所测得的冲击吸收功分别用Akv和Aku表示。

冲击试样的取样方式也有两种,即横向取样和纵向取样(与钢板轧制方向垂直为横向,平行为纵向)。

冲击试样的规格尺寸有三种,即标准试样为55×10×10,小试样为55×10×7.5或55×10×5,冲击试样的规格尺寸主要根据材料厚度可能制得的最大尺寸规格确定。

目前我国国内用于容器设计制造的法规和标准均规定以夏比V形缺口、横向取样方式为主。

冲击试样的缺口形式对冲击韧性影响非常大,夏比V形缺口比夏比U形缺口更为尖锐,更能反应材料的缺口和内部缺陷对动态载荷的敏感性。

对于U形试样,进行冲击试验时,其冲击功大部分消耗于裂纹的形成,而对V形缺口试样,其冲击功大部分消耗于裂纹的扩展。

U形缺口测得的冲击韧性与V形缺口测得的冲击韧性之间不存在对应的换算关系。

冲击试样的取样方向规定为“横向取样”,主要考虑在钢锭浇注时,会形成偏析及含有杂质,在轧制钢板的过程中,这些不均匀部分和杂质会顺着金属延伸方向形成纤维状组织,从而使钢板平行于轧制方向的力学性能高于垂直方向的力学性能。

我国标准规定的冲击试样取样方向与美国ASME的规定是不一致的,美国ASME标准规定的冲击试样取样方向为“纵向取样”,故对在国内使用的国外进口材料用于国内的容器制造时,应注意冲击试样的取样方向应规定为“横向取样”。

材料在冲击载荷作用下抵抗破坏的能力叫冲击韧性。

通俗的讲就是材料在受到外力的打击或是冲撞时它所能抵抗破坏的能力,如冷轧钢或合金钢就比铸铁、铸钢等材料耐冲击,这是因为铸件脆所以不耐撞击。

通俗的说就是在受到抵抗意外冲击的一种能力,和强度、硬度没必然联系。

钢材的冲击功影响因素1.冲击功的实验方法钢材的冲击韧性是指钢材在冲击荷载作用下断裂时吸收机械能的一种能力,是衡量钢材抵抗因低温,应力集中,冲击荷载作用等所导致的断裂能力的一项机械性能。

实验方法是用一定尺寸和形状的金属试样,在规定类型的冲击试验上受冲击负荷折断时,试样刻槽处单位横截面上所消耗的冲击功,称为冲击韧性以αk表示。

目前常用的10×10×55mm,带2 mm 深的V形缺口夏氏冲击试样,标准上直接采用冲击功(J焦耳值)AK,而不是采用αK值。

因为单位面积上的冲击功并无实际意义。

由于钢板厚度的影响,对厚度≤10mm的钢板,可取得3/4小尺寸冲击试样(7.5×10×55mm)或1/2小尺寸冲击试样(5×10×55mm)。

但是一定要注意,同规格及同一温度下的冲击功值才可相互比较。

只有在标准规定的条件下,才可按标准的换算方法,折算成标准冲击试样的冲击功,再相互比较。

2.冲击功的主要影响因素钢材冲击韧性不但和钢材的质量,试件缺口形状,加载速度有关,而且受温度,特别是负温度的影响较大,当温度低于某一温度时,钢材的冲击韧性将急剧降低,同时冲击韧还和试件的厚度有关,厚度越大韧性较低。

冲击韧性值是动态底下的受力,不好根据其它东西确定的,冲击值还跟试样的表面光洁度有关哦。

相关文档
最新文档