钢材的主要性能
常用钢材的牌号性能和用途
常用钢材的牌号性能和用途作为一种重要的结构材料,钢材广泛应用于建筑、汽车、机械、船舶等领域。
钢材按其化学成分、热处理方式和性能特点不同,可分为碳素结构钢、合金结构钢、不锈钢、工具钢等多个类别。
下面将介绍一些常用的钢材牌号、性能和用途。
1.Q235钢:属于碳素结构钢,其主要特点是强度较高、塑性好。
常用于建筑、桥梁、汽车制造和船舶制造。
2.Q345钢:也属于碳素结构钢,具有较高的强度与韧性,广泛应用于建筑、桥梁、汽车制造以及石油管道等领域。
3.45钢:属于碳素结构钢,具有较高的强度和可焊性。
广泛应用于机械零件的制造,如轴、齿轮、刀具等。
4.20CrMo合金结构钢单向:属于合金结构钢,具有较高的强度与耐热性。
常用于制造高温高压设备和重载零部件。
5.40Cr合金结构钢单向:属于合金结构钢,具有较高的强度与硬度。
常用于制造中等负荷和中等速度的零件,如轴、齿轮。
6.304不锈钢:属于奥氏体不锈钢,具有良好的耐腐蚀性和耐高温性。
广泛应用于制造化工设备、医疗器械和厨房用具等领域。
7.316不锈钢:属于奥氏体不锈钢,具有较高的耐腐蚀性和耐高温性。
常用于海洋设备、化学容器和制药设备等领域。
8.H13工具钢:属于冷冲击工具钢,具有优异的热强度和耐磨性。
常用于制造冲模、挤压模和塑料模具等。
9.M2工具钢:属于高速钢,具有耐热、耐磨的特性。
通常用于制造刀具、钻头和齿轮等。
以上介绍的钢材牌号、性能和用途只是其中的一小部分,钢材的种类繁多,可以根据具体应用领域和要求选择合适的材料。
在选择钢材时,需要考虑其强度、耐磨性、耐腐蚀性、可加工性等多个因素,并根据具体工程需求进行合理选择。
钢材的力学性能有哪些
钢材的力学性能有哪些?
钢材的力学性能主要包括强度、塑性、韧性、韧度、屈服点、断裂点、抗拉强度、抗压强度、断裂应变等。
1. 强度:钢材的强度是指其承受应力的能力,反映材料的抗拉强度和抗压强度。
2. 塑性:指材料在拉伸或压缩时,其变形量与外力的大小成正比。
3. 韧性:指材料在拉伸或压缩时,其变形量与外力的大小成反比。
4. 韧度:指材料在拉伸或压缩时,其变形量与外力的大小成反比,但变形量不超过一定值。
5. 屈服点:指材料在拉伸或压缩时,外力达到一定值时,材料开始变形的应力。
6. 断裂点:指材料在拉伸或压缩时,外力达到一定值时,材料断裂的应力。
7. 抗拉强度:指材料在拉伸时,外力达到一定值时,材料不再变形的应力。
8. 抗压强度:指材料在压缩时,外力达到一定值时,材料不再变形的应力。
9. 断裂应变:指材料在拉伸或压缩时,外力达到一定值时,材料断裂的变形量。
建筑钢材2
3.预应力钢筋混凝土用热处理钢筋
大型预应力混凝土构件,由于受力很大,常 采用高强度钢丝或钢绞线作为主要受力钢筋。 预应力高强度钢丝是用优质碳素结构钢盘条, 经酸洗、冷拉或再经回火处理等工艺制成, 钢铰线是由7根直径为2.5~5.0㎜的高强度 钢丝,铰捻后经一定热处理清除内应力而制 成。铰捻方向一般为左捻。
伸长率反映的是钢材在均匀变形
下的塑性,而冷弯性能是钢材处于 不利条件下的塑性,可以揭示钢材 内部组织是否均匀,是否存在内应 力和夹杂物等缺陷。
(2)焊接性能
可焊性是指在一定焊接工艺条件下,在焊缝及 其附近过热区是否产生裂缝及脆硬影响,焊接后接 头强度是否与母体相近的性能。 可焊性受化学成分及含量的影响。含碳量高、 含硫量高、合金元素含量高等,均会降低可焊性。 含碳量小于0.25%的非合金钢具有良好的可焊性。 焊接结构应选择含碳量较低的氧气转炉或平炉 的镇静钢。当采用高碳钢及合金钢时,为了改善焊 接后的硬脆性,焊接时一般要采用焊前预热及焊后 热处理等措施。
直径范围为4~12mm,推荐的公称直径为5、6、7、8、9、10mm
④力学性能和工艺性能
应符合GB13788的相关规定 。
⑤应用
冷轧带肋钢筋用于非预应力构件,与热轧圆盘条 相比,强度提高17%左右,可节约钢材30%左右; 用于预应力构件,与低碳冷拔丝比,伸长率高, 钢筋与混凝土之间的粘结力较大,适用于中、小 预应力混凝土结构构件,也适用于焊接钢筋网。
建筑钢材
二、 钢材的主要技术性能
1.力学性能
钢材的力学性能主要有抗拉性能、耐疲劳性能、 冲击韧性、硬度和应力松弛等。 (1)抗拉性能 抗拉性能是建筑钢材最重要的技术性质。建筑钢 材的抗拉性能,可用低碳钢受拉时的应力一应变图来 阐明,图中明显分为以下四个阶段:
钢材的物理力学性能和机械性能表
钢材的物理力学性能和机械性能表钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等.单独作用下所显示的各种机械性能。
钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项基本性能;通过冷弯试验可得到钢材的冷弯性能;通过冲击韧性试验可得到冲击韧性。
1.屈服点(σs)钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。
设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2)2.屈服强度(σ0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2。
3.抗拉强度(σb)材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。
它表示钢材抵抗断裂的能力大小。
与抗拉强度相应的还有抗压强度、抗弯强度等。
设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。
4.伸长率(δs)材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。
5.屈强比(σs/σb)钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。
6.硬度硬度表示材料抵抗硬物体压入其表面的能力。
它是金属材料的重要性能指标之一。
一般硬度越高,耐磨性越好。
常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
⑴布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
常用建筑钢材主要技术性能指标
常用建筑钢材主要技术性能指标一、碳素结构钢碳素结构钢主要轧制成型材(圆、方、扁、工、槽、角等钢材)、异型型钢(轻轨、窗框钢、汽车轮轮辋钢等)和钢板,用于厂房、桥梁、船舶、建筑及工程结构。
这类钢材一般不需热处理即可直接使用。
碳素结构钢的力学、工艺性能及化学成分指标应符合表10-2、表10-3和表l0-4的规定。
表10-2 碳素结构钢的力学性能表10-3 碳素结构钢的冷弯性能注:B为试样宽度,a为钢材厚度(直径)。
表l0-4 碳素结构钢化学成分Q235A 0.14~0.30~0.30.050 0.045 F.b,ZB 0.12~0.30~0.045C ≤0.18 0.34~0.040 0.040 ZD ≤0.17 0.035 0.035 TZQ255 A 0.18~0.47~0.3 0.050 0.045 F.b.ZB 0.045Q75 0.28~0.50~O.35 0.050 0.045 Z二、常用建筑钢筋按生产工艺、性能和用途的不同,常用建筑钢筋可分为热轧光面圆钢筋、热轧带肋钢筋、低碳热轧网缸条钢筋、冷拉钢筋、热处理钢筋等。
1.热轧光向圆钢筋经热轧成型并自然冷却的成品为表面光圆的钢筋(见图10-1),称为热轧光面圆钢筋。
按其供应方式又可分为热轧直条光圆钢筋(直径为8~20mm)和热轧圆盘条钢筋(直径为5.5~14mm)。
图10-1 光圆钢筋截面形态I级钢筋足用Q235号钢轧制而成,是低强度钢筋,蝮性好,伸长率大,便于弯折成型,焊接性好,广泛用于普通钢筋t昆凝土构件中。
圆钢盘条可用作中小型构件的受力筋或构造筋,还可加工成冷拔低碳钢丝及冷轧钢筋等。
(I)钢筋混凝土用热轧光面圆钢筋钢筋混凝土用热轧光面圆钢筋的力学、工艺性能见表10-5,牌号及化学成分见表10-6。
表10-5 钢筋混凝土用热轧光面圆钢筋力学工艺性能表10-6 钢筋混凝土用热轧光面圆钢筋牌号及化学成分(2)低碳热轧圆盘条(GH701-97)盘条钢筋是成卷盘状供应的热轧钢筋。
钢材的基本性能和指标
4 钢材疲劳现象
各种应力循环下的应力比、应力幅
4 钢材疲劳现象
疲劳强度
钢材在一定次数N的反复荷载作用下发生疲劳破坏,则破 坏应力即为相应于荷载次数N的疲劳强度。
疲劳寿命
相应的上述的反复次数N则被称为疲劳寿命。
疲劳极限
循环无穷次而不破坏的应力上限称为疲劳极限。
4 钢材疲劳现象
疲劳计算(常幅)
与N的关系
7 钢材的品种与规格 (4)规格 钢板 : 圆钢: 等边角钢: 不等边角钢: 槽钢: 工字钢: 钢管: H型钢: 焊接工字钢:
7 钢材的品种与规格 (4)规格 钢板 : 圆钢: 等边角钢: 不等边角钢: 槽钢: 工字钢: 钢管: H型钢: 焊接工字钢:
7 钢材的品种与规格 (4)规格 钢板 : 圆钢: 等边角钢: 不等边角钢: 槽钢: 工字钢: 钢管: H型钢: 焊接工字钢:
7 钢材的品种与规格 (4)规格 钢板 : 圆钢: 等边角钢: 不等边角钢: 槽钢: 工字钢: 钢管: H型钢: 焊接工字钢:
7 钢材的品种与规格 (4)规格 钢板 : 圆钢: 等边角钢: 不等边角钢: 槽钢: 工字钢: 钢管: H型钢: 焊接工字钢:
7 钢材的品种与规格 (4)规格 钢板 : 圆钢: 等边角钢: 不等边角钢: 槽钢: 工字钢: 钢管: H型钢: 焊接工字钢:
6 钢材的塑性破坏和脆性破坏
对比内容 破坏应力 破坏前变 形 断口外形 断口色泽 断口细部 破坏过程 破坏机理 危害性 对策 塑性破坏
引起脆性破坏的原因
脆性破坏
fu
明显
杯形 暗淡 纤维状 延续较长时间 剪应力超过晶粒抗剪能 力 便于发现和补救,较轻 合理设计结构强度
fy
不明显 平直 有光泽 晶粒状 突然 拉应力超过晶粒抗拉能力 大 考虑疲劳和冲击作用,合理选择材料 种类、构造形式、施工工艺
钢材的主要性能
一、钢材的主要性能钢材的力学性能:有明显流幅的钢筋,塑形好、延伸率大。
技术指标:屈服强度、延伸率、强屈比、冷弯性能。
力学性能是最重要的使用性能,包括抗拉性能、冲击韧性、耐疲劳性等。
工艺性能包括冷弯性能和可焊性。
(1)抗拉性能:抗拉性能钢材最重要的力学性能。
屈服强度是结构设计中钢材强度的取值依据。
抗拉强度与屈服强度之比(强屈比)σb/σs,是评价钢材使用可靠性的一个参数。
对于有抗震要求的结构用钢筋,实测抗拉强度与实测屈服强度之比不小于1.25;实测屈服响度与理论屈服强度之比不大于1.3;强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高;但强屈比太大,钢材强度利用率偏低,浪费材料。
钢材受力破坏前可以经受永久变形的性能,称为塑性,它是钢材的一个重要指标。
钢材的塑性指标通常用伸长率表示。
伸长率随钢筋强度的增加而降低。
冷弯也是考核钢筋塑性的基本指标。
(2)冲击韧性,是指钢材抵抗冲击荷载的能力,在负温下使用的结构,应当选用脆性临界温度较使用温度为低的钢材。
(3)耐疲劳性:钢材在应力远低于其屈服强度的情况下突然发生脆断破裂的现象,称为疲劳破坏。
危害极大,钢材的疲劳极限与其抗拉强度有关,一般抗拉强度高,其疲劳极限也较高。
二、钢筋的工艺性能1、钢材的性能主要有哪些内容钢材的主要性能包括力学性能和工艺性能。
力学性能是钢材最重要的使用性能,包括抗拉性能、塑性、韧性及硬度等。
工艺性能是钢材在各加工过程中表现出的性能,包括冷弯性能和可焊性。
(1)抗拉性能。
表示钢材抗拉性能的指标有屈服强度、抗拉强度、屈强比、伸长率、断面收缩率。
屈服是指钢材试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象。
发生屈服现象时的最小应力,称为屈服点或屈服极限,在结构设计时,一般以屈服强度作为设计依据。
抗拉强度是指试样拉伸时,在拉断前所承受的最大荷载与试样原横截面面积之比。
钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
建筑钢材的主要技术性能
建筑钢材概述金属材料一般包括黑色金属和有色金属两大类。
在建筑工程中应用最多的钢材属于黑色金属。
建筑钢材包括钢结构用型钢(如钢板、型钢、钢管等)各钢筋混凝土用钢筋(如钢筋、钢丝等)。
钢材是在严格的技术控制条件下生产的,与非金属材料相比,具有品质均匀稳定、强度高、塑性韧性好、可焊接和铆接等优异性能。
钢材主要的缺点是易锈蚀、维护费用大、耐火性差、生产能耗大。
一、钢材的冶炼钢是由生铁冶炼而成。
生铁的冶炼过程是;将铁矿石、熔剂(石灰石)、燃料(焦炭)置于高炉中,约在1750℃高温下,石灰石志铁矿石中的硅、锰、硫、磷等经过化学反应,生成铁渣,浮于铁水表面。
铁渣和铁水分别从出渣口和出铁口排出,铁渣排出时用水急冷得水淬矿渣;排出生铁中含有碳、硫、磷、锰等杂质。
生铁又分为炼钢生铁(白口铁)和铸造生铁(灰口铁)。
生铁硬而脆、无塑性和韧性,不能焊接、锻造、轧制。
炼钢就是将生铁进行精练。
炼钢过程中,在提供足够氧气的条件下,通过炉内的高温氧化作用,部分碳被氧化成一氧化碳气体而逸出,其他杂质则形成氧化物进入炉渣中被除去,从而使碳的含量降低到一定的限度,同时把其他杂质的含量也降低到允许范围内。
所以,在理论上凡是含碳量在2%以下,含有害杂质较少的Fe-C合金都可称为钢。
根据炼钢设备的不同,常用的炼钢方法有空气转炉法、氧气转炉法、平炉法、电炉法。
二、钢材的分类钢材的品种繁多,分类方法很多,通常有按化学成分、质量、用途等几种分类方法。
钢的分类见表一,目前,在建筑工程中常用的钢种是普通碳素钢和普通低合金结构钢。
建筑钢材的主要技术性能钢材的技术性质主要包括力学性能(抗拉性能、冲击韧性、耐疲劳和硬度等)和工艺性能(冷弯和焊接)两个方面。
一、力学性能1.拉伸性能拉伸是建筑钢材的主要受力形式,所以拉伸性能是表示钢材性能和选用的钢材的重要指标。
将低碳钢(软钢)制成一定规格的试件,放在材料试验机上进行拉伸试验,可以绘出如图一所示的应力—应变关系曲线。
各种钢材的性能和用途!
各种钢材的性能和用途!1.低碳钢:低碳钢含碳量较低,通常在0.05%-0.25%之间。
它具有良好的可塑性、焊接性和冷加工性能。
低碳钢常用于制造汽车构件、机械零件、建筑材料等。
2.中碳钢:中碳钢含碳量在0.25%-0.60%之间,具有中等强度和韧性。
中碳钢常用于制造汽车车身、齿轮、轴承等需要较高强度和韧性的零件。
3.高碳钢:高碳钢含碳量在0.60%-1.00%之间,具有良好的强度和硬度。
高碳钢常用于制造刀具、弹簧和球轴承等需要较高硬度和耐磨性的零件。
4.不锈钢:不锈钢具有较高的耐腐蚀性能和强度,主要由铁、铬、镍等元素组成。
不锈钢常用于制造厨具、化工设备、医疗器械等对耐腐蚀性要求较高的产品。
5.工具钢:工具钢具有良好的硬度、韧性和耐磨性,适用于制作各种切削工具和模具。
根据用途不同,工具钢可以分为冷工具钢、热工具钢和高速钢。
6.结构钢:结构钢是用于建筑和桥梁等大型结构的材料,具有良好的强度、可塑性和焊接性。
根据强度等级的不同,结构钢可以分为普通碳素结构钢、低合金高强度结构钢和耐候钢等。
7.轴承钢:轴承钢具有良好的硬度、强度和耐磨性,适用于制造各种类型的轴承。
轴承钢通常采用合金化的方式来提高其硬度和磨损性能。
8.不锈耐热钢:不锈耐热钢具有较高的耐热性能,主要用于制造高温工作环境下的设备和构件,如炉具、热交换器等。
9.弹簧钢:弹簧钢需要具有较高的弹性和韧性,常用于制造各种类型的弹簧。
总结起来,钢材的性能和用途因其成分和热处理工艺的不同而异。
不同种类的钢材具有不同的力学性能、耐腐蚀性能和耐磨性能,适用于制造各种不同领域的产品。
在选择钢材时,需要根据具体的使用要求和环境条件,选择合适的钢材材料。
钢材的主要性能
钢材应用领域
01
02
03
04
建筑领域
钢材在建筑领域中应用广泛, 如建筑结构、桥梁、道路等。
机械领域
钢材是机械制造的主要原材料 ,用于制造各种机械零件和工
具。
汽车领域
钢材在汽车制造中占据重要地 位,用于制造车身、底盘、发
动机等部件。
船舶领域
钢材是船舶制造的主要材料, 用于制造船体、甲板、舱室等
。
钢材性能指标
02
温度、氧分压、钢材成分和组织结构等。
提高抗氧化性方法
03
合金化、控制轧制工艺、表面涂层保护等。
耐候性
钢材的耐候性
指钢材在室外环境下长期使用时,抵抗大气腐 蚀和紫外线辐射等自然因素的能力。
影响因素
气候条件、紫外线辐射强度、大气污染程度等。
提高耐候性方法
采用耐候钢、表面涂层保护等措施。
化学稳定性
钢材在冷弯过程中,不应出现裂纹或断裂现 象。
冷弯角度
钢材在冷弯时,能够弯曲的最大角度,反映 其塑性变形能力。
冷弯回弹
冷弯后钢材的回弹量,影响工件的形状和尺 寸精度。
热处理工艺性能
淬透性
钢材在淬火时获得淬硬层深度的能力,影响工件的力学性能和耐 磨性。
回火稳定性
钢材回火时抵抗软化或硬度下降的能力,保证工件在使用过程中的 稳定性。
强度
钢材的强度是指其抵抗变形和破坏的能力,通常以屈服点、抗拉强度 等指标来衡量。
韧性
钢材的韧性是指其在冲击或震动作用下吸收能量并抵抗断裂的能力。
硬度
钢材的硬度是指其抵抗局部变形的能力,通常通过硬度试验来测定。
耐腐蚀性
钢材的耐腐蚀性是指其在各种环境条件下抵抗腐蚀的能力,与钢材的 化学成分、组织结构和环境条件有关。
建筑常用钢材的力学性能和工艺性能讲解
建筑常用钢材的力学性能和工艺性能讲解钢材的技术性能包括力学性能、工艺性能和化学性能等。
力学性能主要包括拉伸性能、冲击韧性、疲劳强度、硬度等;工艺性能是钢材在加工制造过程中所表现的特性,包括冷弯性能、焊接性能、热处理性能等。
只有了解、掌握钢材的各种性能,才能正确、经济、合理地选择和使用各种钢材。
一、力学性能(一)拉伸性能钢材的拉伸性能,典型地反映在广泛使用的软钢(低碳钢)拉伸试验时得到的应力σ与应变ε的关系上,如图7.7所示。
钢材从拉伸到拉断,在外力作用下的变形可分为四个阶段,即弹性阶段、屈服阶段、强化阶段和颈缩阶段。
图7.7低碳钢受拉应力-应变1.弹性阶段在OA范围内应力与应变成正比例关系,如果卸去外力,试件则恢复原来的形状,这个阶段称为弹性阶段。
弹性阶段的最高点A所对应的应力值称为弹性极限σp。
当应力稍低于A点时,应力与应变成线性正比例关系,其斜率称为弹性模量,用e表示。
弹性模量反映钢材的刚度,即产生单位弹性应变时所需要应力的大小。
2.屈服阶段当应力超过弹性极限σp后,应力和应变不再成正比关系,应力在B上和B 下小范围内波动,而应变迅速增长。
在σ-ε关系图上出现了一个接近水平的线段。
试件出现塑性变形,AB称为屈服阶段,B下所对应的应力值称为屈服极限σs。
钢材受力达到屈服强度后,变形即迅速发展,虽然尚未破坏,但已不能满足使用要求。
所以设计中一般以屈服强度作为钢材强度取值的依据。
对于在外力作用下屈服现象不明显的钢材,规定以产生残余变形为原标距长度0.2%时的应力作为屈服强度,用σ0.2表示,称为条件屈服强度。
3.强化阶段当应力超过屈服强度后,由于钢材内部组织产生晶格扭曲、晶粒破碎等原因,阻止了塑性变形的进一步发展,钢材抵抗外力的能力重新提高。
在σ-ε关系图上形成BC段的上升曲线,这一过程称为强化阶段。
对应于最高点C的应力称为抗拉强度,用σb来表示,它是钢材所能承受的最大应力。
钢材屈服强度与抗拉强度的比值(屈强比σs/σb),是评价钢材受力特征的一个参数,屈强比能反映钢材的利用率和结构安全可靠程度。
第二讲 钢材的基本性能
第二讲钢材的基本性能钢材的性能和质量是最终的产品质量,和使用寿命是密切相关的,下面来给大家介绍一下钢材的主要性能。
一、物理性能所谓物理性能就是钢材的本质不发生变化所表现出来的性能,主要由以下几种:1、密度单位体积内材料的质量,叫做该材料的密度,密度的计算公式如下:ρ(密度)=m(质量)/V(体积),对于大多数钢材而言,理论计算重量时,都按7.85g/cm3作为该钢材的密度,钢材理论重量计算公式如下:W(理论重量)=F(钢材截面积)×L(钢材长度)×ρ(密度).应当注意的是理论重量与实际重量有一定的出入,只能作为参考。
另外还有钢材质量的简单计算方式,也请大家记一下:圆钢:W=6.17×直径2;方钢:W=7.85×边长2;扁钢:W=7.85×宽度×长度。
2、热膨胀性钢材在受热时体积增大,冷却时收缩的性能称为热膨胀性。
热膨胀性的大小,一般用线膨胀系数α表示。
α值越大,钢材的尺寸或体积随温度变化而变化的程度就越大。
线膨胀系数的计算式如下:α=(l2-l1)/L1t,α线膨胀系数,10-6/℃;t升高的温度。
l1钢材膨胀前的长度cm,l2膨胀后的长度cm。
3、熔点钢材由固态溶解成液态时的温度,纯铁的熔点为1534℃。
4、导电性钢材传导电流的能力。
5、导热性金属传导热的能力。
二、化学性能指钢材在室温和高温条件下,抵抗外界介质对它的化学侵蚀的能力。
1.抗氧化性:钢材在室温或高温下抵抗氧化的能力。
Fe+O2=Fe2O3,氧化过程会随着温度的的提高而加速,所以在高温下工作的零件用钢材应有很好的抗氧化性。
2.耐腐蚀性:钢材抵抗周围介质(大气、水蒸气、有害气体、酸、碱、盐等)的腐蚀能力,最常见的钢铁生锈。
3.化学稳定性:是上述两种的总称,钢材在高温下的化学稳定性叫做热稳定性。
三、力学能力钢材抵抗外力作用的能力,力学性能是衡量钢材质量好坏的最重要指标之一。
1.强度指钢材在外力作用下,抵抗永久变形和断裂的能力,分为抗拉强度、抗压强度、抗弯强度、抗剪强度和抗扭强度五种,一般情况下多以抗拉强度作为判别钢材强度高低的指标。
钢材性能指标
术语解释 1、弹性模量和比例极限: 弹性模量和比例极限: 钢材受力初期,应力与应变成正比例增长,应力与应变之比是常数, 钢材受力初期,应力与应变成正比例增长,应力与应变之比是常数, 称为弹性模量即E=σ/ε。这个阶段的最大应力(A点的对应值) 称为弹性模量即E=σ/ε。这个阶段的最大应力( 点的对应值) E=σ/ε 称为比例极限σa。 称为比例极限σ E值越大,抵抗弹性变形的能力越大;在一定荷载作用下,E值越大, 值越大,抵抗弹性变形的能力越大;在一定荷载作用下, 值越大, 材料发生的弹性变形量越小。一些对变形要求严格的构件,为了把弹性 材料发生的弹性变形量越小。一些对变形要求严格的构件, 变形控制在一定限度内,应选用刚度大的钢材。 变形控制在一定限度内,应选用刚度大的钢材。
σ A
0
a b 0.2%
ε
4、抗拉强度(极限强度): 抗拉强度(极限强度): 当钢材屈服到一定程度后,由于内部晶粒重新排列, 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形的能力 又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高, 又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直 至应力达到最大值。此后钢材抵抗变形的能力明显降低, 至应力达到最大值。此后钢材抵抗变形的能力明显降低,并在最薄弱处发生 较大塑性变形,此处试件界面迅速缩小,出现颈缩现象,直到断裂破坏。 较大塑性变形,此处试件界面迅速缩小,出现颈缩现象,直到断裂破坏。 抗拉强度是钢材所能承受的最大拉应力,即当拉应力达到强度极限时, 抗拉强度是钢材所能承受的最大拉应力,即当拉应力达到强度极限时, 钢材完全丧失了对变形的抵抗能力而断裂。 钢材完全丧失了对变形的抵抗能力而断裂。 抗拉强度虽然不能直接作为计算依据,但屈服强度与抗拉强度的比值, 抗拉强度虽然不能直接作为计算依据,但屈服强度与抗拉强度的比值, 即“屈强比”(σs/σb)对工程应用有较大意义。屈强比愈小,反映钢材在 屈强比” σs/σb)对工程应用有较大意义。屈强比愈小, 应力超过屈服强度工作时的可靠性愈大,即延缓结构损坏过程的潜力愈大, 应力超过屈服强度工作时的可靠性愈大,即延缓结构损坏过程的潜力愈大, 因而结构愈安全。但屈强比过小时,钢材强度的有效利用率低,造成浪费。 因而结构愈安全。但屈强比过小时,钢材强度的有效利用率低,造成浪费。 常用碳素钢的屈强比为0.58~0.63,合金钢的屈强比为0.65~ 常用碳素钢的屈强比为0.58~0.63,合金钢的屈强比为0.65~0.75 0.58 0.65
各种钢材的性能和用途
各种钢材的性能和用途钢是一种合金材料,由铁和其他一些元素组成,其中碳是最常用的合金元素。
不同种类的钢具有不同的性能和用途。
在下面的文章中,我们将探讨几种常见的钢材及其性能和用途。
1. 碳钢(Carbon Steel):碳含量在0.05%至2.0%之间的钢被称为碳钢。
碳钢具有良好的强度和刚性,并且容易加工。
它常用于建筑和机械工程领域,如建筑结构、桥梁、汽车零件和钢筋等。
此外,碳钢也是锻造、焊接和切割等加工过程中常用的材料。
2. 不锈钢(Stainless Steel):不锈钢是一种具有高耐腐蚀性的钢材,其中含有至少11%的铬。
不锈钢的主要特点是抗氧化、耐酸碱腐蚀和易清洁。
由于这些特性,不锈钢常用于制造厨房用具、化工设备、医疗器械、船舶等。
不锈钢根据其组成和性能可以分为多个种类,如奥氏体不锈钢、马氏体不锈钢和铁素体不锈钢等。
3. 合金钢(Alloy Steel):合金钢是指通过添加其他元素来改变其性能的钢材。
合金钢可以提高钢材的硬度、耐磨性、高温强度和耐腐蚀性。
根据添加的元素和含量,合金钢可以进一步细分为多个类别,如铬钼合金钢、镍铬钼合金钢、锰钼合金钢等。
合金钢常用于汽车零件、航空航天工业、工具制造和可靠性要求较高的结构应用。
4. 高速钢(High-Speed Steel):高速钢是一种特殊的合金钢,具有极高的硬度和耐磨性。
它通常由钼、钴、钨、铬等元素组成。
高速钢通常用于制造切削工具,如钻头、铣刀和切割刀等。
高速钢的优点是在高温和高速切削条件下保持了良好的硬度和尺寸稳定性。
5. 耐候钢(Weathering Steel):耐候钢是一种具有卓越耐候性的钢材,能够抵抗大气环境中的腐蚀。
耐候钢中常含有铜、钛、镍和碳等元素。
它不仅具有良好的耐候性,还具有良好的强度和可焊性。
由于其耐候性能,耐候钢常用于制造桥梁、建筑物外墙、交通工具外壳和海上结构等。
除了上述提到的钢材,还存在许多其他类型的特殊钢材,如电工钢、弹簧钢、切割钢等,它们具有特殊的性能和用途。
常用钢材特性介绍
常用钢材特性介绍钢材是最常用的金属材料之一,具有广泛的应用于建筑、制造、汽车、航空航天等领域。
以下是常用钢材的特性介绍:1.碳钢:碳钢是最常见的钢材类型,主要由铁和碳组成,含有少量的其他元素如锰、硅等。
碳钢具有良好的强度和延展性,可以通过热处理来改变其硬度和强度。
碳钢价格低廉,易于加工和焊接,广泛用于建筑、机械制造和汽车工业。
2.不锈钢:不锈钢含有铬、镍等元素,具有良好的耐腐蚀性和抗氧化性能。
不锈钢可以抵抗大多数化学介质的侵蚀,不易生锈或变色。
不锈钢分为多种类型,如奥氏体不锈钢、马氏体不锈钢、铁素体不锈钢等,各有不同的特性和应用领域。
3.合金钢:合金钢是一种通过添加其他元素如钼、铬、镍、钛等来改善钢材性能的钢材。
合金钢可以在常温或高温下提供更高的强度、硬度和耐磨性。
合金钢在机械制造、汽车制造和航空航天等领域得到广泛应用。
4.高速钢:高速钢是一种专门用于切削工具的钢材,具有良好的热硬性和耐磨性。
高速钢能够在高速切削时保持良好的切削性能,并能在高温下保持较高的硬度。
高速钢适用于制造刀具、冲头、刀片等切削工具。
5.磁性材料:磁性钢材常用于电机、电磁设备和变压器等电工领域,具有良好的导磁性和磁导率。
磁性材料可分为软磁材料和硬磁材料,软磁材料具有较高的磁导率,适用于电子器件和电磁线圈等应用。
6.高温钢:高温钢是一种能够在高温条件下保持较高强度和耐热性的钢材。
高温钢可以在高温下保持结构的稳定性,具有优异的耐蠕变性和抗氧化性能。
高温钢广泛应用于石油化工、发电和航空航天等行业。
7.细晶粒钢:细晶粒钢是一种通过控制热处理过程来获得较小晶粒尺寸的钢材。
细晶粒钢具有优异的塑性和韧性,在相同强度条件下可以实现更轻和更薄的结构设计。
细晶粒钢被广泛应用于汽车制造、造船业和建筑领域。
总之,钢材具有丰富的材料特性,可以根据不同需求选择适合的钢材类型。
这些特性包括强度、硬度、韧性、耐腐蚀性、导磁性、耐热性等。
钢材的广泛应用使得我们的生活更加便利和丰富。
常用钢材型号性能特性汇总
常用钢材型号性能特性汇总钢材是一种常见的金属材料,广泛应用于建筑、机械、汽车等各个领域。
根据不同的用途和要求,钢材可以有各种不同的型号和性能特性。
下面是一些常用钢材型号及其性能特性的汇总。
1.Q235钢:Q235钢是中国最常用的钢材之一,其主要特点是强度高、延展性好、焊接性能优良。
它可以用于制造各种结构件和机械零件。
2.Q345钢:Q345钢是一种低合金高强度结构钢,具有强度高、塑性好、耐蚀性好等特点。
它广泛应用于桥梁、船舶、建筑等领域。
3.45#钢:45#钢是一种碳素结构钢,具有硬度高、强度适中、韧性好等特点。
它主要用于制造机械零件,如轴、轴承等。
4.20#钢:20#钢是一种碳素结构钢,具有硬度适中、强度高、可塑性好等特点。
它广泛应用于机械制造、汽车制造、航空航天等领域。
5.40Cr钢:40Cr钢是一种铬钼合金结构钢,具有高强度、高硬度、耐磨性好等特点。
它适合制造高强度螺栓、螺母、齿轮等零部件。
6.65Mn钢:65Mn钢是一种弹簧钢,具有强度高、塑性好、磨损性能好等特点。
它广泛应用于制造弹簧及其他需要高强度的零部件。
7.304不锈钢:304不锈钢是一种常用的不锈钢材料,具有耐腐蚀性好、耐高温性能好等特点。
它广泛应用于化工、食品加工、建筑等领域。
8.316不锈钢:316不锈钢是一种耐腐蚀性能极好的不锈钢材料,具有耐高温、耐酸碱等特点。
它主要用于化工、医药、造船等领域。
9.H13工具钢:H13工具钢是一种热作模具钢,具有高硬度、高热稳定性等特点。
它广泛应用于各种模具制造。
10.P20塑料模具钢:P20塑料模具钢是一种高镍冷作模具钢,具有优良的切削加工性能和韧性。
它广泛应用于塑料模具制造。
以上是一些常用的钢材型号及其性能特性的汇总。
每种钢材都有其独特的特点和适用范围,在选择钢材时需要根据具体的使用要求和环境条件进行综合考虑。
钢材的破坏形式与主要性能
发生真正的塑性破坏,比较安全可靠。在高层钢结构中,用
于八度地震区时,为了保证结构具有良好的抗震性能,要求
钢材的强屈比不得低于1.5。
Question2:
(1)伸长率 是钢材沿长度的均匀变形和颈缩区的集
中变形的总和,所以它不能代表钢材的最大塑性变形能 力。 (2)断面收缩率Ψ是衡量钢材塑性的一个比较真实和稳 定的指标,但是在测量时容易产生较大的误差。因而钢
材标准中往往只采用伸长率 为塑性保证要求。
Question3: 塑性是指当应力超过屈服点后,能产生显著的残余变形
而不立即断裂的性质;韧性是指塑性变形和断裂过程中吸收 能量的能力。韧性同塑性有关,但不完全相同,是强度和塑 性的综合表现。冷弯性能是指钢材在冷加工产生塑性变形时 ,对发生裂缝的抵抗能力,可检验钢材的冷加工工艺和检查 钢材的内部缺陷。钢材冷加工过程中引起的钢材硬化称为冷 作硬化,冷作硬化可能使材料变脆。
槽钢:[截面高度的厘米数,如[30a 钢管:Ø外径×厚度 薄壁型钢:壁厚1.5~5mm。 压型钢板。
课堂讨论
1、为什么取屈服点 f作y 为结构钢材静力强度承载力
极限的依据?
2、伸长率 和截面收缩率Ψ有何区别?
3、塑性和韧性的定义,两者有何区别?冷弯性能和 冷作硬化对结构设计的意义是什么?
4、承受动力荷载的重要结构要通过刨边、扩孔等方 法清除其冷加工的边缘部分?
疲劳强度与反复荷载引起的应力 种类(拉应力、压应力、剪应力和 复杂应力等)、应力循环形式、应 力循环次数、应力集中程度和残余 应力等有关。
对钢结构进行疲劳计算时有如下规定:
1)承受动力荷载重复作用的钢结构构件及其连接,当应 力变化循环次数n等于或大于5×104次时,应进行疲劳计算;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、钢材的主要性能
钢材的力学性能:有明显流幅的钢筋,塑形好、延伸率大。
技术指标:屈服强度、延伸率、强屈比、冷弯性能。
力学性能是最重要的使用性能,包括抗拉性能、冲击韧性、耐疲劳性等。
工艺性能包括冷弯性能和可焊性。
(1)抗拉性能:抗拉性能钢材最重要的力学性能。
屈服强度是结构设计中钢材强度的取值依据。
抗拉强度与屈服强度之比(强屈比)σb/σs,是评价钢材使用可靠性的一个参数。
对于有抗震要求的结构用钢筋,实测抗拉强度与实测屈服强度之比不小于1.25;
实测屈服响度与理论屈服强度之比不大于1.3;
强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高;但强屈比太大,钢材强度利用率偏低,浪费材料。
钢材受力破坏前可以经受永久变形的性能,称为塑性,它是钢材的一个重要指标。
钢材的塑性指标通常用伸长率表示。
伸长率随钢筋强度的增加而降低。
冷弯也是考核钢筋塑性的基本指标。
(2)冲击韧性,是指钢材抵抗冲击荷载的能力,在负温下使用的结构,应当选用脆性临界温度较使用温度为低的钢材。
(3)耐疲劳性:钢材在应力远低于其屈服强度的情况下突然发生脆断破裂的现象,称为疲劳破坏。
危害极大,钢材的疲劳极限与其抗拉强度有关,一般抗拉强度高,其疲劳极限也较高。
二、钢筋的工艺性能
1、钢材的性能主要有哪些内容
钢材的主要性能包括力学性能和工艺性能。
力学性能是钢材最重要的使用性能,包括抗拉性能、塑性、韧性及硬度等。
工艺性能是钢材在各加工过程中表现出的性能,包括冷弯性能和可焊性。
(1)抗拉性能。
表示钢材抗拉性能的指标有屈服强度、抗
拉强度、屈强比、伸长率、断面收缩率。
屈服是指钢材试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象。
发生屈服现象时的最小应力,称为屈服点或屈服极限,在结构设计时,一般以屈服强度作为设计依据。
抗拉强度是指试样拉伸时,在拉断前所承受的最大荷载与试样原横截面面积之比。
钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6~0.65,低合金结构钢为0.65~0.75,合金结构钢为0.84~0.86。
伸长率是指金属材料在拉伸时,试样拉断后,其标距部分所增加的长度与原标距长度的百分比;断面收缩率是指金属试样拉断后,其缩颈处横截面面积的最大缩减量与原横截面面积的百分比。
伸长率和断面收缩率越大,钢材的塑性越好。
(2)冷弯性能。
冷弯性能是指钢材在常温下抵抗弯曲变形的能力,表示钢材在恶劣条件下的塑性。
钢材按规定的弯曲角度a和弯心直径d弯曲后,通过检查弯曲处的外面和侧面有无裂纹、起层或断裂等进行评定。
通过冷弯可以揭示钢材内部的应力、杂质等缺陷,还可用于钢材焊接质量的检验,能揭示焊件在受弯面的裂纹、杂质等缺陷。
(3)冲击韧性。
冲击韧性是指钢材抵抗冲击荷载作用而不破坏的能力。
工程上常用一次摆锤冲击弯曲试验来测定材料抵抗冲击载荷的能力,即测定冲击载荷试样被折断而消耗的冲击功Ak,单位为焦耳(J)。
钢材的冲击韧性是衡量钢材质量的一项指标,特别对经常承受荷载冲击作用的构件,如重量级的吊车梁等,要经过冲击韧性的鉴定。
冲击韧性越大,表明钢材的冲击韧性越好。
(4)硬度。
硬度是指金属抵抗硬物体压人其表面的能力,硬度不是一个单纯的物理量,而是反映弹性、强度、塑性等的一个综合性能指标。
硬度的表示方法有布氏硬度、洛氏硬度、维氏硬度、肖氏硬度。
最常用表示方法为布氏硬度,是用一定直径的球体(钢球或硬质合金球),以相应的试验力压人试样表面,经规定的保持时间后,卸除试验力,测表面压痕直径计算其硬度值。
(5)疲劳破坏。
钢材在交变应力作用下,应力在远低于静荷载抗拉强度的情况下突然破坏,甚至在低于静荷载屈服强度时即发生破坏,这种破坏称为疲劳破坏。
钢材疲劳破坏的应力指标用疲劳强度(或称疲劳极限)来表示,它是指试件在交变应力的作用下,不发生疲劳破坏的最大应力值。
一般把钢材承受交变荷载1×107周次时不发生破坏所能承受的最大应力作为疲劳强度。
设计承受交变荷载且需进行疲劳验算的结构时,应当了解所用钢材的疲劳强度。
2、钢的工艺性能
(1)、铸造性金属材料能用铸造方法获得合格铸件的能力称为铸造性.铸造性包括流动性、收缩性和偏析倾向等.流动性是指液态金属充满铸模的能力,流动性愈好,愈易铸造细薄精致的铸件,收缩性是指铸件凝固时体积收缩的程度,收缩愈小,铸件凝固时变形愈小.偏析是指化学成分不均匀,偏析愈严重,铸件各部位的性能愈不均匀,铸件的可靠性愈小.
(2)、切削加工性金属材料的切削加工性系指金属接受切削加工的能力,也是指金属经过加工而成为合乎要求的工件的难易程度.金乔江钢材告诉大家,通常可以用切削后工作表面的粗糙程度、切削速度和刀具磨损程度来评价金属的切削加工性.
(3)、焊接性焊接性是指金属在特定结构和工艺条件下通过常用焊接方法获得预期质量要求的焊接接头的性能.焊接性一般根据焊接时产生的裂纹敏感性和焊缝区力学性能
的变化来判断.
(4)、锻性锻性是材料在承受锤锻、轧制、拉拔、挤压等加工工艺是会改变形状而不产生裂纹的性能.它实际上是金属塑性好坏的一种表现,金属材料塑性越高,变形抗力就越小,则锻性就越好.锻性好坏主要决定于金属的化学成分、显微组织、变形温度、变形速度及应力状态等因素.
(5)、冲压性冲压性是指金属经过冲压变形而不发生裂纹等缺陷的性能.许多金属产品的制造都要经过冲压工艺,如汽车壳体、搪瓷制品坯料及锅、盆、盂、壶等日用品.为保证制品的质量和工艺的顺利进行,用于冲压的金属板、带等必须具有合格的冲压性能.
(6)、顶锻性顶锻性是指金属材料承受打铆、镦头等的顶锻变形的性能.金属的顶锻性,是用顶锻试验测定的.
(7)、冷弯性金属材料在常温下能承受弯曲而不破裂的性能,称为冷弯性.出现裂纹前能承受的弯曲程度愈大,则材料的冷弯性能愈好. 8、热处理工艺性热处理是指金属或合金在固态范围内,通过一定的加热、保温和冷却方法,以改变金属或合金的内部组织,而得到所需性能的一种工艺操作.热处理工艺就是指金属经过热处理后其组织和性能改变的能力,包括淬硬性、淬透性、回火脆性等.
三、建筑钢材的力学性能
钢材的主要性能包括力学性能和工艺性能。
其中力学性能是钢材最重要的使用性能,包括拉伸性能、冲击性能、疲劳性能等。
工艺性能表示钢材在各种加工过程中的行为,包括弯曲性能和焊接性能等。
(1)拉伸性能反映建筑钢材拉伸性能的指标,包括屈服强度、抗拉强度和伸长率。
屈服强度是结构设计中钢材强度的取值依据。
抗拉强度与屈服强度之比(强屈比)是评价钢材使用可靠性的一个参数。
强屈比愈大,钢材受力超过屈服点工作时的可靠性越大,安全性越高;但强屈比太大,钢材强度利用率偏低,浪费材料。
钢材在受力破坏前可以经受永久变形的性能,称为塑性。
在工程应用中,钢材的塑性指标通常用伸长率表示。
伸长率是钢材发生断裂时所能承受永久变形的能力。
伸长率越大,说明钢材的塑性越大。
试件拉断后标距长度的增量与原标距长度之比的百分比即为断后伸长率。
对常用的热轧钢筋而言,还有一个最大力总伸长率的指标要求。
预应力混凝土用高强度钢筋和钢丝具有硬钢的特点,抗拉强度高,无明显的屈服阶段,伸长率小。
由于屈服现象不明显,不能测定屈服点,故常以发生残余变形为0.2%原标距长度时的应力作为屈服强度,称条件屈服强度,用σ0.2表示。
(2)冲击性能冲击性能是指钢材抵抗冲击荷载的能力。
钢的化学成分及冶炼、加工质量都对冲击性能有明显的影响。
除此以外,钢的冲击性能受温度的影响较大,冲击性能随温度的下降而减小;当降到一定温度范围时,冲击稜急剧下降,从而可使钢材出现脆性断裂,这种性质称为钢的冷脆性,这时的温度称为脆性临界温度。
脆性临界温度的数值愈低,钢材的低温冲击性能愈好。
所以,在负温下使用的结构,应当选用脆性临界温度较使用温度低的
钢材。
(3)疲劳性能受交变荷载反复作用时,钢材在应力远低于其屈服强度的情况下突然发生脆性断裂破坏的现象,称为疲劳破坏。
疲劳破坏是在低应力状态下突然发生的,所以危害极大,往往造成灾难性的事故。
钢材的疲劳极限与其抗拉强度有关,一般抗拉强度高,其疲劳极限也较高。