材料力学性能
材料的力学性能有哪些
材料的力学性能有哪些
1材料力学性能
材料力学性能是指材料受外力作用时产生的结构变形以及产生的变形所抵抗的力之间的相互关系。
材料力学性能决定着物体能够承受多大载荷,从而保证物体的安全和稳定性,也是应用工程材料的重要考量标准。
材料力学性能的分类:
1.1弹性性能
弹性性能是指材料受外力作用时能够承受的恢复力的大小,是衡量材料的强度的重要指标。
包括屈服强度、抗拉强度、抗压强度和断裂强度等级。
若外力作用则材料发生变形,材料结构恢复后变形越小,弹性性能越好。
1.2理论性能
理论性能是指材料在不受外力作用时产生的固有属性,一般包括形状、尺寸、密度、抗剪强度、压缩性能等。
这些性能判断材料的加工性能。
1.3定向性能
定向性能是指材料在特定方向受外力作用时,所产生的变形程度以及抵抗力的大小,一般包括抗断裂性能、抗拉伸性能、抗压缩性能以及特殊材料(如硅胶、聚氨酯)的韧性,用来测试其在特定应用场合时的表现。
1.4加工性能
加工性能是指材料加工时机械性能指标,一般包括热处理性能、热变形性能、焊接性能以及表面质量等。
1.5材料寿命性能
材料寿命性能是指材料受到温度、湿度、外力等作用时的抗老化性能,是材料用途的重要考量标准,一般包括热稳定性、导热性能、环境老化性能、化学稳定性等。
以上就是材料的力学性能的分类及指标,它们的测试可以反映出一种材料的强度、稳定性、耐久性及环境效应等状况。
选择合适的材料并使之满足应用要求,需要对材料力学性能做出合理评估。
材料的力学性能
材料的力学性能
材料的力学性能是指材料在外力作用下所表现出的性能,主要包括强度、韧性、硬度、塑性等指标。
这些性能对于材料的选择、设计和应用具有重要意义。
下面将分别对材料的强度、韧性、硬度和塑性进行介绍。
首先,强度是材料抵抗破坏的能力,通常用抗拉强度、抗压强度、抗弯强度等
指标来表示。
强度高的材料具有较好的抗破坏能力,适用于承受大外力的场合。
例如,建筑结构中常使用高强度钢材,以保证结构的安全稳定。
其次,韧性是材料抵抗断裂的能力,也可以理解为材料的延展性。
韧性高的材
料在受到外力作用时能够延展变形而不断裂,具有较好的抗震抗冲击能力。
例如,汽车碰撞安全设计中常使用高韧性的材料,以保护乘车人员的安全。
再次,硬度是材料抵抗划伤和压痕的能力,通常用洛氏硬度、巴氏硬度等指标
来表示。
硬度高的材料具有较好的耐磨损性能,适用于制造耐磨损零部件。
例如,机械设备中常使用高硬度的合金材料来制造齿轮、轴承等零部件。
最后,塑性是材料在受力作用下发生塑性变形的能力,通常用延伸率、收缩率
等指标来表示。
具有良好塑性的材料能够在加工过程中较容易地进行成型和加工,适用于复杂零部件的制造。
例如,塑料制品的生产常使用具有良好塑性的材料,以满足复杂形状的加工需求。
综上所述,材料的力学性能是材料工程领域中的重要指标,对于材料的选择、
设计和应用具有重要意义。
强度、韧性、硬度和塑性是衡量材料力学性能的重要指标,不同的应用场合需要选择具有不同力学性能的材料,以满足工程需求。
因此,深入了解和掌握材料的力学性能,对于材料工程师和设计师来说是非常重要的。
材料力学性能
§2 材料力学性能材料的力学性能,又称机械性能,是材料抵抗外力作用引起变形和断裂的能力。
包括强度、韧性、硬度、塑性、耐磨性、高温力学性能等。
材料的力学性能不仅与材料的成分、显微结构有关,还和承受的载荷大小、种类、加载速度、环境温度、介质等有关。
2.1 强度2.1.1 拉伸试验材料的强度可以通过光滑圆柱试样静拉伸试验确定。
按照一定的标准加工的光滑圆柱试样,在拉伸载荷作用下发生变形,记录载荷大小和伸长量之间的关系,将其转变为应力应变曲线,即可获得材料的强度力学行为。
典型的应力应变曲线包括:弹性变形阶段(Oe段),屈服阶段(sd段),变形强化阶段(db段),缩颈阶段(bk段),每个阶段反映了材料在不同载荷水平下不同的力学行为。
图3.7 典型的静拉伸应力应变曲线2.1.2 弹性变形在弹性变形阶段,材料中的原子在平衡位置附近作微量位移,载荷消失后微量位移消失,材料宏观外形完全恢复,此时的应力应变曲线满足胡克定律:σ = Eε式中,σ为应力,ε为应变,E为弹性模量。
弹性极限σe:材料由弹性变形过渡到塑性变形时的应力,一般规定产生0.01%塑性变形时的应力为弹性极限值,记为σ0.01 。
弹性模量主要取决于材料的成分,受组织结构影响不大,是个组织不敏感参量。
另外,弹性模量反映了材料中原子间作用力的大小,而材料的熔点也反映了原子间作用力的大小,应此一般地,材料的熔点越高,弹性模量越大。
表3.3 一些材料的弹性模量E(GPa)2.1.3 塑性变形当材料承受的载荷超过弹性极限时,材料将发生不可逆转的永久性变形,称为塑性变形。
在塑性变形阶段,应力应变曲线变成非线性,材料的变形是通过原子价键的断开、重排来实现的。
在晶体材料中,塑性变形主要是通过位错在密排面上沿密排方向的滑移来实现的,因此,晶体结构中位错越容易滑移,则材料的塑性变形越容易。
屈服强度σs:材料出现一定塑性变形时的应力,S为屈服点,多数材料的S 点不明显。
材料的常用力学性能有哪些
材料的常用力学性能有哪些材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征。
1强度强度是指材料在外力作用下抵抗塑性变形或断裂的能力。
强度用应力表示,其符号是σ,单位为MPa,常用的强度指标有屈服强度和抗拉强度,通过拉伸试验测定。
2塑性塑性是指材料在断裂前产生永久变形而不被破坏的能力。
材料塑性好坏的力学性能指标主要有伸长率和收缩率,值越大,材料的塑性就越好,通过拉伸试验可测定。
3硬度硬度是指金属材料抵抗硬物压入其表面的能力。
材料的硬度越高,其耐磨性越好。
常用的硬度指标有布氏硬度(HBS)和洛氏硬度(HRC)。
1)布氏硬度表示方法:布氏硬度用HBS(W)表示,S表示钢球压头,W表示硬质合金球压头。
规定布氏硬度表示为:在符号HBS或HBW前写出硬度值,符号后面依次用相应数字注明压头直径(mm)、试验力(N)和保持时间(s)。
如120 HBS 10/1000/30。
适用范围:HBS适用于测量硬度值小于450的材料,主要用来测定灰铸铁、有色金属和经退火、正火及调质处理的钢材。
根据经验,布氏硬度与抗拉强度之间有一定的近似关系:对于低碳钢,有σ=0.36HBS;对于高碳钢:有σ=0.34HBS。
2)洛氏硬度表示方法:常用HRA、HRB、HRC三种,其中HRC最为常用。
洛氏硬度的表示方法为:在符号前面写出硬度值。
如62HRC。
适用范围:HRC在20-70范围内有效,常用来测定淬火钢和工具钢、模具钢等材料,1HRC相当于10HBS。
4冲击韧性冲击韧性是指材料抵抗冲击载荷而不被破坏的能力,材料的韧性越好,在受冲击时越不容易断裂。
5疲劳强度疲劳强度是指材料经过无数次应力循环仍不断裂的最大应力。
6弹性在物理学和机械学上,弹性理论是描述一个物体在外力的作用下如何运动或发生形变。
在物理学上,弹性是指物体在外力作用下发生形变,当外力撤消后能恢复原来大小和形状的性质。
材料力学性能(Mechanical Properties of Materials)
第1章材料在静载下的力学行为1.1 材料在静拉伸时的力学行为概述静拉伸是材料力学性能试验中最基本的试验方法。
用静拉伸试验得到的应力-应变曲线,可以求出许多重要性能指标。
如弹性模量E,主要用于零件的刚度设计中;材料的屈服强度σs和抗拉强度σb则主要用于零件的强度设计中,特别是抗拉强度和弯曲疲劳强度有一定的比例关系,这就进一步为零件在交变载荷下使用提供参考;而材料的塑性,断裂前的应变量,主要是为材料在冷热变形时的工艺性能作参考。
图1-1 几种典型材料在温室下的应力-应变曲线图1-1表示不同类型材料的几种典型的拉伸应力-应变曲线。
可见,它们的差别是很大的。
对退火的低碳钢,在拉伸的应力-应变曲线上,出现平台,即在应力不增加的情况下材料可继续变形,这一平台称为屈服平台,平台的延伸长度随钢的含碳量增加而减少,当含碳量增至0.6%以上,平台消失,这种类型见图1-1a;对多数塑性金属材料,其拉伸应力-应变曲线如图1-1b所示,该图所绘的虽是一铝镁合金,但铜合金,中碳合金结构钢(经淬火及中高温回火处理)也是如此,与图1-1a不同的是,材料由弹性变形连续过渡到塑性变形,塑性变形时没有锯齿形平台,而变形时总伴随着加工硬化;对高分子材料,象聚氯乙烯,在拉伸开始时应力和应变不成直线关系,见图1-1c,即不服从虎克定律,而且变形表现为粘弹性。
图1-1d为苏打石灰玻璃的应力-应变曲线,只显示弹性变形,没有塑性变形立即断裂,这是完全脆断的情形。
工程结构陶瓷材料象Al2O3,SiC等均属这种情况,淬火态的高碳钢、普通灰铸铁也属这种情况。
1.2 金属材料的弹性变形1.2.1 广义虎克定律已知在单向应力状态下应力和应变的关系为:一般应力状态下各向同性材料的广义虎克定律为:其中:如用主应力状态表示广义虎克定律,则有1.2.2 弹性模量的技术意义工程上把弹性模量E、G称做材料的刚度,它表示材料在外载荷下抵抗弹性变形的能力。
在机械设计中,有时刚度是第一位的。
材料的力学性能
材料的力学性能mechanical properties of materials主要是指材料的宏观性能,如弹性性能、塑性性能、硬度、抗冲击性能等。
它们是设计各种工程结构时选用材料的主要依据。
各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测出的。
表征材料力学性能的各种参量同材料的化学组成、晶体点阵、晶粒大小、外力特性(静力、动力、冲击力等)、温度、加工方式等一系列内、外因素有关。
材料的各种力学性能分述如下:弹性性能材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。
材料的这种性能称为弹性。
外力卸除后即可消失的变形,称为弹性变形。
表示材料在静载荷、常温下弹性性能的一些主要参量可以通过拉伸试验进行测定。
拉伸试样常制成圆截面(图1之a)或矩形截面(图1之b)棒体,l为标距,d为圆形试样的直径,h和t分别为矩形截面试样的宽度和厚度,图中截面形状用阴影表示,面积记为A。
长度和横向尺寸的比例关系也有如下规定:对于圆形截面试样,规定l=10d或l=5d;对于矩形截面试样,按照面积换算规定或者。
试样两端的粗大部分用以和材料试验机的夹头相连接。
试验结果通常绘制成拉伸图或应力-应变图。
图2为低碳钢的拉伸图,横坐标表示试样的伸长量Δl(或应变ε=Δl/l),纵坐标表示载荷P(或应力ζ=P/A)。
图中的曲线从原点到点p为直线,pe段为曲线,载荷不大于点e所对应的值时,卸载后试样可恢复原状。
反映材料弹性性质的参量有比例极限、弹性极限、弹性模量、剪切弹性模量和泊松比等。
比例极限应力和应变成正比例关系的最大应力称为比例极限,即图中点p所对应的应力,以ζp表示。
在应力低于ζp的情况下,应力和应变保持正比例关系的规律叫胡克定律。
载荷超过点p对应的值后,拉伸曲线开始偏离直线。
弹性极限试样卸载后能恢复原状的最大应力称为弹性极限,即图中点e所对应的应力,以ζe表示。
若在应力超出ζe后卸载,试样中将出现残余变形。
材料力学性能
材料⼒学性能第⼀章:绪论⼀、需要掌握的概念材料⼒学性能的定义、弹性变形、线弹性、滞弹性、弹性后效、弹性模量、泊松⽐、弹性⽐功、体弹性模量⼆、需要重点掌握的内容 1、弹性模量的物理本质以及影响弹性模量的因素; 2、掌握根据原⼦间势能函数推倒简单结构材料弹性模量的⽅法; 3、弹性⽐功的计算,已知材料的应⼒应变曲线能求出材料卸载前和卸载后的弹性⽐功。
材料⼒学性能的定义 是指材料(⾦属和⾮⾦属等)及由其所加⼯成的⼯件在外⼒(拉、压、弯曲、扭转、剪切、切削等)作⽤下⾬加⼯、成型、使役、实效等过程中表现出来的性能(弹塑性、强韧性、疲劳、断裂及寿命等)。
这些性能通常受到的环境(湿度、温度、压⼒、⽓氛等)的影响。
强度和塑性和结构材料永恒的主题!弹性变形 是指材料的形状和尺⼨在外⼒去除后完全恢复原样的⾏为。
线弹性 是指材料的应⼒和应变成正⽐例关系。
就是上图中弹性变形⾥前⾯的⼀段直线部分。
杨⽒模量(拉伸模量、弹性模量) 我们刚刚谈到了线弹性,在单轴拉伸的条件下,其斜率就是杨⽒模量(E)。
它是⽤来衡量材料刚度的材料系数(显然杨⽒模量越⼤,那么刚度越⼤)。
杨⽒模量的物理本质 样式模量在给定环境(如温度)和测试条件下(如应变速率)下,晶体材料的杨⽒模量通常是常数。
杨⽒模量是原⼦价键强度的直接反应。
共价键结合的材料杨⽒模量最⾼,分⼦键最低,⾦属居中。
对同⼀晶体,其杨⽒模量可能随着晶体⽅向的不同⽽不同,俗称各向异性。
模量和熔点成正⽐例关系。
影响杨⽒模量的因素内部因素 --- 原⼦半径 过渡⾦属的弹性模量较⼤,并且当d层电⼦数为6时模量最⼤。
外部因素1. 温度:温度升⾼、原⼦间距增⼤,原⼦间的结合⼒减弱。
因此,通常来说,杨⽒模量随着温度的上升⽽下降。
2. 加载速率:⼯程技术中的加载速率⼀般不会影响⾦属的弹性模量。
3. 冷变形:冷变形通常会稍稍降低⾦属的弹性模量,如钢在冷变形之后,其表观样式模量会下降4% - 6%。
泊松⽐简单来说,泊松⽐就是单轴拉伸或压缩时材料横向应变和轴向应变⽐值的负数。
材料力学性能
材料力学性能材料力学性能是指材料在外力的作用下所表现出来的力学特性和性能。
材料力学性能的评价是材料工程中非常重要的一个方面,它直接关系到材料的使用性能和安全性。
下面就常见的材料力学性能进行简要介绍。
1. 强度:材料的强度是指材料在外力作用下抗变形和断裂的能力。
强度是材料力学性能中最基本和重要的指标之一。
常见的强度指标有拉伸强度、屈服强度、抗压强度、剪切强度等。
2. 韧性:材料的韧性是指材料在受到外力作用下的抗冲击和抗断裂能力。
韧性可以通过材料的断裂韧性、冲击韧性等指标来评价。
高韧性的材料具有良好的抗冲击和抗断裂性能。
3. 塑性:材料的塑性是指材料在受到外力作用下能够发生可逆的形变。
材料的塑性可以通过塑性应变、塑性延伸率、塑性饱和应变等指标来描述。
常见的塑性材料有金属材料和塑料材料。
4. 刚性:材料的刚性是指材料在受到外力作用下不易发生形变的能力。
刚性材料具有较高的弹性模量和抗弯刚度。
常见的刚性材料有钢材和铝合金等。
5. 弹性:材料的弹性是指材料在受到外力作用后能自行恢复原状的能力。
弹性材料具有较高的弹性模量和较小的应变率。
常见的弹性材料有弹簧钢和橡胶等。
6. 硬度:材料的硬度是指材料抵抗外部物体对其表面的压入的能力。
硬度指标可以通过洛氏硬度、布氏硬度、维氏硬度等来表示。
硬度高的材料具有较好的抗划伤和抗磨损性能。
7. 耐磨性:材料的耐磨性是指材料在长时间摩擦和磨损作用下的抗磨损能力。
耐磨性可以通过磨损试验来评价。
高耐磨性的材料具有较长的使用寿命。
总的来说,材料力学性能是评价材料使用性能的重要指标,不同材料的力学性能差异很大,选择合适的材料可以提高产品的使用寿命和安全性。
在材料工程中,需要根据具体应用要求和工作环境选择合适的材料,并通过力学性能的评价来保证材料的质量和可靠性。
材料的力学性能
材料的力学性能在一定的温度条件和外力作用下,材料的抗变形和抗断裂能力称为材料的力学性能。
锅炉和压力容器材料的常规力学性能主要包括强度、硬度、塑性和韧性。
(1)强度强度是指金属材料在外力作用下抵抗变形或断裂的能力。
强度指标是设计中确定许用应力的重要依据。
常用的强度指标为:屈服强度为s,或强度为0.2,抗拉强度为b。
高温工作时,应考虑蠕变极限为N,断裂强度为D。
(2)塑性是指金属材料在断裂前产生塑性变形的能力。
塑性指标包括:断裂伸长率,断裂后试样的相对伸长率;面积圆的减少,断裂点上横截面积的相对减少;和冷弯(角)α,即角测量标本时第一个裂纹在拉伸弯曲表面。
(3)韧性是指金属材料抵抗冲击载荷的能力。
韧性通常表达的冲击能量AK和冲击韧性值αk . k值或αk值不仅反映了材料的耐冲击,但也有些敏感材料的缺陷,可以敏感地反映材质的细微变化,宏观缺陷和微观结构。
而且AK对材料的脆性转变非常敏感,可以通过低温冲击试验来测试钢的冷脆性。
断裂韧度是衡量材料韧性的一个新的指标,它反映了材料的抗裂纹扩展能力。
(4)硬度,硬度是衡量材料硬度和柔软度的性能指标。
硬度测试的方法很多,原理不一样,硬度值和意义也不完全相同。
最常用的是静载荷压痕硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值代表材料表面抵抗坚硬物体冲击的能力。
肖氏硬度(HS)属于回弹硬度试验,其值代表金属的弹性变形功。
因此,硬度不是一个简单的物理量,而是反映材料的弹性、塑性、强度和韧性的综合性能指标。
力学性能是钢材最重要的使用性能,包括抗拉性能、塑性、韧性及硬度等。
(1)抗拉性能。
表示钢材抗拉性能的指标有屈服强度、抗拉强度、屈强比、伸长率、断面收缩率。
屈服是指钢材试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象。
发生屈服现象时的最小应力,称为屈服点或屈服极限,在结构设计时,一般以屈服强度作为设计依据。
抗拉强度是指试样拉伸时,在拉断前所承受的最大荷载与试样原横截面面积之比。
材料的力学性能
材料的力学性能材料的力学性能是指材料在外力作用下的力学行为和性能表现。
力学性能是材料工程中非常重要的一个指标,它直接关系到材料的使用寿命、安全性和可靠性。
材料的力学性能主要包括强度、韧性、硬度、塑性、蠕变等指标。
首先,强度是材料抵抗外力破坏的能力。
常见的强度指标包括抗拉强度、抗压强度、抗弯强度等。
抗拉强度是材料在拉伸状态下抵抗断裂的能力,抗压强度是材料在受压状态下抵抗破坏的能力,抗弯强度是材料在受弯曲状态下抵抗破坏的能力。
强度指标直接反映了材料的抗破坏能力,是衡量材料力学性能的重要参数。
其次,韧性是材料抵抗断裂的能力。
韧性是指材料在受外力作用下能够吸收大量的变形能量而不断裂的能力。
韧性好的材料具有良好的抗冲击性能和抗疲劳性能,能够在外力作用下保持良好的形状和结构完整性。
再次,硬度是材料抵抗划痕和穿刺的能力。
硬度是材料抵抗外界硬物划破或穿透的能力,是材料抵抗局部破坏的重要指标。
硬度高的材料通常具有较好的耐磨性和耐磨损性能,能够在恶劣环境下保持较长时间的使用寿命。
此外,塑性是材料在受力作用下发生形变的能力。
塑性好的材料能够在外力作用下产生较大的变形,具有良好的加工性能和成形性能。
材料的塑性直接影响到材料的加工工艺和成型工艺,是材料加工和成形的重要指标。
最后,蠕变是材料在长期受力作用下发生变形和破坏的现象。
蠕变是材料在高温、高压、长期受力作用下产生的一种渐进性变形和破坏,是材料在高温高应力环境下的重要性能指标。
综上所述,材料的力学性能是衡量材料质量和可靠性的重要指标,强度、韧性、硬度、塑性和蠕变是材料力学性能的重要方面。
在材料设计、选材和工程应用中,需要充分考虑材料的力学性能,选择合适的材料以满足工程需求。
同时,通过合理的材料处理和改性,可以改善材料的力学性能,提高材料的使用寿命和安全可靠性。
材料的力学性能强度、塑性
F
F
二、拉伸试验
0
拉伸试验是在静拉力的作用下,
1
对试样进行轴向拉伸,直至将试
样拉断,通过测量拉伸中力和试
样长之间的关系来判断材料的
性能。
0 2
实验仪器
0 3
万能材料试验机
2.拉伸原理
拉伸标准试样
标准试样直径为d,标 距长度为L。
标距L和直径d之间有 两种关系:L=5d或者 L=10d。
力-伸长曲线分析 力-伸长曲线 屈服 冷变形强化 颈缩 断裂
材料的力学性能指标:
强度、塑性、韧性、硬度、疲劳等。
一、强度和塑性
1. 强度:材料或构件在一定载荷下抵抗永久变形和断裂的能 力称为强度。(强度是材料整体抵抗变形和断裂的能力)
2. 弹性:物体受外力作用变形后,除去作用力时能恢复原来形 状的性质。
3. 塑性:在某种给定载荷下,材料产生永久变形的特性。一但 发生塑性形变则无法恢复。
202X
材料的力学性能
度
、
塑
性
202X
材料的力学性能:
材料在不同环境中,承受载荷(静载荷、动载荷、交变载荷)时 表现出的性能, 主要为变形、破坏。
研究材料的力学性能的目的:
确定材料在变形和破坏情况下的一些重要性能指标;作为选择、设计、制造机 械零件或工具的主要依据,也是评判材料质量好坏的重要判据。
2.拉伸试验中的强度指标
1)屈服强度:屈服现象是指试样在试样过程中,外载荷不变的情况下依然 继续变形。
σs=Fs/S0 其中:Fs是试样屈服时承受的拉伸力(N);S0是试样原始横截面积(m2 )。
2)规定残余伸长应力:很多材料没有明显的屈服现象。规定残余伸长应力 是指试样卸载拉伸力后,标距部分的伸长量达到规定的原始标距长度百分比 时产生的拉力与试样横截面比值。
材料的力学性能
材料的力学性能材料是机械产品制造所必须的物质基础,材料的力学性能包括使用性能和工艺性能。
使用性能:是指材料在使用过程中表现出来的性能,它包括力学性能和物理、化学性能等。
工艺性能:是指材料对各种加工工艺适应的能力,它包括铸造性能、锻造性能、焊接性能、切削加工性能和热处理工艺性能等。
切削加工的过程一般在常温下,在不改变材料物理、化学性能的前提下,去除材料上多余金属,使之成为成品的过程。
材料的力学性能是指材料在外力作用下所表现的抵抗能力。
材料的力学性能是确定材料切削加工方案的主要依据。
1.1材料的强度强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。
强度指标一般用单位面积所承受的载荷即力表示,符号为σ,单位为MPa。
工程中常用的强度指标有屈服强度和抗拉强度。
屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs 表示。
抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用σb表示。
对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据。
低碳钢拉伸试验铸铁拉伸试验结论一:在切削加工中,假定其他条件不变,则随着被加工材料强度极限(或弹性模量)的增大,切削力也随之增大,机床负荷增加。
而且在工件安装方面,注意要有足够的夹紧力。
2材料的塑性塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力。
工程中常用的塑性指标有伸长率和断面收缩率。
(1)伸长率AA= (L1-L0)/L0 ×100%式中: L0—试样原标距的长度(mm)L1—试样拉断后的标距长度(mm)(2) 断面收缩率φ断面收缩率是指试样拉断后断面处横截面积的相对收缩值。
φ= (A0-A1)/A0 ×100%式中:A0—试样的原始截面积(mm2)A1—试样断面处的最小截面积(mm2)伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。
材料的力学性能重点总结
名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。
2弹性比功:表示金属材料吸收塑性变形功的能力。
3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。
4包申格效应:金属材料通过预先加载产生少来塑性变形,卸载后再同向加载,规定参与伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5塑性:金属材料断裂前发生塑性变形的能力。
常见塑性变形方式:滑移和孪生6应力状态软性系数:最大切应力最大正应力应力状态软性系数α越大,最大切应力分量越大,表示应力状态越软,材料越易产生塑性变形α越小,表示应力状态越硬,则材料越容易产生脆性断裂7缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生拜年话,产生所谓―缺口效应―①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。
②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。
8缺口敏感度:有缺口强度的抗拉强度ζbm与等截面尺寸光滑试样的抗拉强度ζb的比值. NSR=ζbn / ζs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。
材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间13疲劳贝纹线:以疲劳源为中心的近于平行的一簇同心圆.是疲劳源裂纹扩展时前沿的痕迹14疲劳条带:具有略显弯曲并相互平行的沟槽花样,是疲劳断口最典型的微观特征15驻留滑移带:金属在循环应力长期作用下,形成永久留或再现的循环滑移带称为驻留滑移带,具有持久驻留性.16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI 越大,则应力场各应力分量也越大17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象18氢致延滞断裂:高强度钢或α+β钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下经过一段时间的孕育期后在金属内部,特别是在三向拉应力区形成裂纹,裂纹的逐步扩展,最后突然发生脆性断裂,这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂第一章2.力学性能指标的意义(1)δ0.2 对于拉伸曲线上没有屈服平台的材料,塑性变形硬化过程是连续的,产生0.2%残余伸长应力时刻的屈服强度。
材料力学性能重点总结
材料力学性能重点总结1.强度:强度是材料抵抗外部载荷引起的破坏的程度,通常使用屈服强度、抗拉强度和抗压强度来评价。
强度越高,材料越能承受外部载荷。
2.韧性:韧性是材料在受力时发生塑性变形以及能够吸收能量的能力。
材料具有较高的韧性时,能够在受到巨大应力时仍然保持不破裂。
3.硬度:硬度是材料抵抗表面破坏的能力,也可以理解为材料的抗刮伤能力。
硬度可以衡量材料的耐磨性和耐磨损能力。
4.弹性模量:弹性模量是材料在受力后恢复原状的能力,可以评估材料在受力后的变形程度。
弹性模量越大,材料的刚性越高。
5.延展性:延展性是材料在受力时能够发生塑性变形而不破坏的能力。
延展性高的材料可以更好地适应复杂应力和形状变化。
6.断裂韧性:断裂韧性是材料在受到外部载荷时能够抵抗破坏的能力。
它是强度和韧性的综合指标,可评估材料在极限条件下的断裂性能。
7.蠕变性:蠕变性是材料在长期受力情况下发生的塑性变形。
材料的蠕变性能评估了其在高温和持续应力下的稳定性。
8.疲劳性:疲劳性是材料在受到反复应力循环后发生破坏的能力。
疲劳性能评估了材料在长期使用过程中的可靠性和耐久度。
9.冲击韧性:冲击韧性是材料在受到突然冲击加载时抵抗破坏的能力。
它可以评估材料在极端工作条件下的抗冲击性能。
10.耐腐蚀性:耐腐蚀性是材料抵抗环境介质侵蚀和化学反应的能力。
材料的耐腐蚀性能评估了其在特定环境中的稳定性和使用寿命。
以上是材料力学性能的重点总结,它们通常都与材料的微观结构、成分、加工工艺和使用条件有关。
通过评估和选择材料的力学性能,可以确保材料在各种应用中具有足够的强度、韧性和稳定性。
材料力学性能
材料力学性能材料力学性能是指材料在受力作用下所表现出来的性能,包括强度、刚度、韧性等指标。
材料力学性能的好坏直接影响到材料在工程应用中的可靠性和安全性。
本文将介绍材料力学性能的相关概念和测试方法,并分析其对材料应用的影响。
一、强度强度是指材料抵抗外力破坏的能力。
常见的强度指标包括抗拉强度、抗压强度、抗弯强度等。
抗拉强度是指材料在拉伸力作用下,抗拉破坏的能力。
抗压强度是指材料在受压力作用下,抗压破坏的能力。
抗弯强度是指材料在受弯力作用下,抗弯曲破坏的能力。
强度的测试方法主要包括拉伸试验、压缩试验、弯曲试验等。
材料的强度往往与其成分、结构和加工工艺有关。
例如,金属材料中添加合适的合金元素,可以提高其强度;陶瓷材料中控制晶粒尺寸和界面结合情况,可以提高其抗压强度;纤维增强复合材料中,纤维的分布和取向对抗弯强度有重要影响。
在工程设计中,需要根据具体应用情况选择合适的材料强度指标,并保证其符合设计要求,以确保结构的稳定性和安全性。
二、刚度刚度是指材料抵抗形变的能力,也可以理解为材料对外力作用下的变形程度。
常见的刚度指标包括弹性模量、切变模量等。
弹性模量是指材料在弹性变形范围内,单位应力下的应变,反映了材料的抗弹性变形能力。
刚度的测试方法主要包括拉伸试验、扭转试验等。
材料的刚度与其物理性质和结构密切相关。
高弹性模量的材料具有较高的刚度,其在受力下变形较小;而低弹性模量的材料具有较低的刚度,其在受力下变形较大。
在工程设计中,需要根据结构的刚度要求选择合适的材料,以确保结构的稳定性和正常运行。
三、韧性韧性是指材料抵抗断裂的能力,反映了材料在受力下的变形能力和吸能能力。
常见的韧性指标包括断裂韧性、冲击韧性等。
断裂韧性是指材料在断裂前所能吸收的能量。
冲击韧性是指材料在受冲击载荷下,能够抵抗破坏的能力。
韧性的测试方法主要包括冲击试验、拉伸试验等。
材料的韧性与其断裂机制和微观结构有关。
例如,金属材料中的晶界和位错可以有效地阻止裂纹扩展,提高韧性;聚合物材料中的交联结构和链段运动可以吸收能量,提高韧性。
材料的力学性能
第一章材料的力学性能一、名词解释1、力学性能:材料抵抗各种外加载荷的能力,称为材料的力学性能。
2、弹性极限:试样产生弹性变形所承受的最大外力,与试样原始横截面积的比值,称为弹性极限,用符号σe表示。
3、弹性变形:材料受到外加载荷作用产生变形,当载荷去除,变形消失,试样恢复原状,这种变形称为弹性变形。
4、刚度:材料在弹性变形范围内,应力与应变的比值,称为刚度,用符号E表示。
5、塑性:材料在外加载荷作用下,产生永久变形而不破坏的性能,称为塑性。
6、塑性变形:材料受到外力作用产生变形,当外力去除,一部分变形消失,一部分变形没有消失,这部分没有消失的变形称为塑性变形。
7、强度:材料在外力作用下抵抗变形和断裂的能力,称为强度。
8、抗拉强度:材料在断裂前所承受的最大外加拉力与试样原始横截面积的比值,称为抗拉强度,用符号σb表示。
9、屈服:材料受到外加载荷作用产生变形,当外力不增加而试样继续发生变形的现象,称为屈服。
10、屈服强度:表示材料在外力作用下开始产生塑性变形的最低应力,即材料抵抗微量塑性变形的能力,用符号σs表示。
11、σ0.2:表示条件屈服强度,规定试样残留变形量为0.2%时所承受的应力值。
用于测定没有明显屈服现象的材料的屈服强度。
12、硬度:金属表面抵抗其它更硬物体压入的能力,即材料抵抗局部塑性变形的能力,称为硬度。
13、冲击韧度:材料抵抗冲击载荷而不破坏的能力,称为冲击韧度,用符号αk表示。
14、疲劳:在交变载荷作用下,材料所受的应力值虽然远远低于其屈服强度,但在较长时间的作用下,材料会产生裂纹或突然的断裂,这种现象称为疲劳。
15、疲劳强度:材料经无数次应力循环而不发生断裂,这一应力值称为疲劳强度或疲劳极限,用符号σ-1表示。
16、蠕变:材料在高温长时间应力作用下,即使所加应力值小于该温度下的屈服极限,也会逐渐产生明显的塑性变形直至断裂,这种现象称为蠕变。
17、磨损:由两种材料因摩擦而引起的表面材料的损伤现象称为磨损。
材料力学性能总结
材料力学性能材料受力后就会产生变形,材料力学性能是指材料在受力时的行为。
描述材料变形行为的指标是应力σ和应变ε,σ是单位面积上的作用力,ε是单位长度的变形。
描述材料力学性能的主要指标是强度、延性和韧性。
其中,强度是使材料破坏的应力大小的度量;延性是材料在破坏前永久应变的数值;而韧性却是材料在破坏时所吸收的能量的数值。
1.弹性和刚度材料在弹性范围内,应力与应变成正比,其比值E=σ/ε(MN/m2)称为弹性模量。
E标志着材料抵抗弹性变形的能力,用以表示材料的刚度。
E值主要取决于各种材料的本性,一些处理方法(如热处理、冷热加工、合金化等)对它影响很小。
零件提高刚度的方法是增加横截面积或改变截面形状。
金属的E值随温度的升高而逐渐降低。
2.强度在外力作用下,材料抵抗变形和破坏的能力称为强度。
根据外力的作用方式,有多种强度指标,如抗拉强度、抗弯强度、抗剪强度等。
当材料承受拉力时,强度性能指标主要是屈服强度和抗拉强度。
(1)屈服强度σs在图1-6(b)上,当曲线超过A点后,若卸去外加载荷,则试样会留下不能恢复的残余变形,这种不能随载荷去除而消失的残余变形称为塑性变形。
当曲线达到A点时,曲线出现水平线段,表示外加载荷虽然没有增加,但试样的变形量仍自动增大,这种现象称为屈服。
屈服时的应力值称为屈服强度,记为σS。
有的塑性材料没有明显的屈服现象发生,如图1-6(c)所示。
对于这种情况,用试样标距长度产生0.2%塑性变形时的应力值作为该材料的屈服强度,以σ0.2表示。
机械零件在使用时,一般不允许发生塑性变形,所以屈服强度是大多数机械零件设计时选材的主要依据也是评定金属材料承载能力的重要机械性能指标。
材料的屈服强度越高,允许的工作应力越高,零件所需的截面尺寸和自身重量就可以较小。
(2)抗拉强度σb材料发生屈服后,其应力与应变的变化如图1-1所示,到最高点应力达最大值σb。
在这以后,试样产生“缩颈”,迅速伸长,应力明显下降,最后断裂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章1.退火低碳钢在拉伸作用下的变形过程可分为弹性变形,不均匀屈服塑性变形,均匀塑性变形,不均匀集中塑性变形和断裂2.弹性表征材料发生弹性变形的能力3.应力应变硬化指数表征金属材料应变硬化行为的性能指标,反应金属抵抗均匀苏醒变形的能力4.金属材料在拉伸试验时产生的屈服现象是其开始产生宏观塑性变形的一种标志5. σs 呈现屈服现象的金属材料拉伸时试样在外力不断增加(保持恒定)仍能继续伸长时的应力称为屈服点,记作σs6. σ0.2 屈服强度7.断裂类型:韧性断裂和脆性断裂;穿晶断裂和沿晶断裂;解理断裂、纯剪切断裂和微孔聚集型断裂8.塑性是指金属材料断裂前发生塑性变形的能力9.韧性断裂和脆性断裂的断口形貌:①韧性断裂断口呈纤维状,灰暗色;中低碳钢断口形貌呈杯锥状,有纤维区,放射区和剪切唇三个区域②脆性断裂断口平齐而光亮,呈放射状或结晶状,有人字纹花样10.沿晶断裂断口形貌:沿晶断裂冰糖状11.常见力学行为:弹性变形,塑性变形和断裂第二章1.应力状态软性系数Tmax与σmax的比值2.相对关系压缩试验α=2,扭转试验α=0.83(1)渗碳层的硬度分布---- HK或-显微HV(2)淬火钢-----HRC(3)灰铸铁-----HB(4)鉴别钢中的隐晶马氏体和残余奥氏体-----显微HV或者HK(5)仪表小黄铜齿轮-----HV(6)龙门刨床导轨-----HS(肖氏硬度)或HL(里氏硬度)(7)渗氮层-----HV(8)高速钢刀具-----HRC(9)退火态低碳钢-----HB(10)硬质合金----- HRA第三章1.冲击韧性指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,用Ak表示2.冲击吸收功摆锤冲击试样前后的势能差3.低温脆性实验温度低于某一温度tk时,会由韧性状态转变为脆性状态,冲击吸收功明显下降。
原因:材料屈服强度随温度降低急剧增加的结果4. 韧脆转变温度转变温度tk称为韧脆转变温度第四章1.断裂韧度(K IC )在平面应变条件下材料抵抗裂纹失稳扩展的能力(与组织有关)2.应力场强度因子(K I)受外界条件影响的反映裂纹尖端应力场强弱程度的力学度量(与本身有关)3.断裂韧度(G IC)表示材料阻止裂纹失稳扩展是单位面积所消耗的能量4.K IC的测量标准三点弯曲试样,紧凑拉伸试样,F形拉伸试样和圆形紧凑拉伸试样5.影响K IC的因素1材料成分、组织对其影响:化学成分;基体相结构和晶粒大小;杂质及第二相;显微组织;2外界因素:温度和应变速率。
第五章1.疲劳分类①按应力状态:弯曲疲劳,扭转疲劳,拉压疲劳和复合疲劳②按环境和接触情况:大气疲劳,腐蚀疲劳,高温疲劳,热疲劳,接触疲劳③按断裂寿命和应力高低:高周疲劳和低周疲劳2.疲劳特点疲劳是低应力循环延时断裂,即具有寿命的断裂;疲劳是脆性断裂;疲劳对缺陷十分敏感3.疲劳极限试样可以经无限次应力循环也不发生疲劳断裂是的最大应力,记作σ-1(对称循环,r=-1)(光滑试样)4.疲劳裂纹扩展门槛值(Δ Kth)表示材料阻止裂纹开始疲劳扩展的能力(含裂纹体)5影响疲劳强度的因素⑴表面状态的影响①应力集中程度越大,越容易在缺口处产生裂纹,疲劳强度月底②表面粗糙度越低,材料疲劳极限越高⑵残余应力及表面强化的影响①残余压应力提高疲劳强度,残余拉应力降低疲劳强度②表面强化使机件表面产生有利的残余压应力,同时提高表面强度和硬度,共同提高疲劳强度⑶材料成分及组织影响①通过加入合金元素,提高钢的淬透性和改善钢的强韧性来提高疲劳强度②通过细化晶粒可提高疲劳极限③钢铁在冶炼和轧制过程中的非金属夹杂会降低疲劳极限6.过载损伤界测出不同过载应力水平和相应的开始降低疲劳寿命的应力循环周次,得到不同的试验点,连接各点便得到过载损伤界7.循环硬化若金属材料在恒定应变范围循环作用下,随循环周次增加其应力不断增加,即为循环硬化8.循环软化若在循环过程中,应力逐渐减小则为循环软化9.低周疲劳金属在循环载荷作用下,疲劳寿命为102~105次的疲劳断裂称为低周疲劳10.疲劳金属在机件或构件在变动应力和应变长期作用下,由于累积损伤而引起的断裂现象第六章1.氢脆由于氢和应力的共同作用而导致金属材料产生脆性断裂的现象2.氢致延滞断裂这种由于氢的作用而产生的延滞断裂现象3.低碳钢和低合金钢在苛性碱溶液中的碱脆和在含有硝酸根离子介质中的硝脆;奥氏体不锈钢在含有氯离子介质中的氯脆;铜合金在氨气介质中的氨脆;高强度铝合金在潮湿空气、蒸馏水介质中的脆裂现象4. σscc 材料不发生应力腐蚀的临界应力(光滑试样)5.K Iscc 试样在特定化学介质中不发生应力腐蚀断裂的最大应力场强度因子称为应力腐蚀临界应力场强度因子(含裂纹体)6.发生应力腐蚀的条件①应力②化学物质③金属材料第七章1.磨损机件表面相接触并相对运动时,表面和组件有微小颗粒分离出来形成磨屑,使表面材料逐渐流失、造成表面损伤的现象即为磨损2.磨损分类按磨损机理进行分类,类型有粘着磨损、磨粒磨损、冲蚀,磨损、疲劳磨损、腐蚀磨损和微动磨损3.改善磨粒磨损耐磨性的措施对于以切削作用为主要机理的磨粒磨损应增加材料硬度;根据机件服役条件,合理选择耐磨材料;采用渗碳、渗氮共渗化学热处理;经常注意机件防尘和清洗第八章1. 金属在长时间的恒温、恒载荷作用下缓慢的产生塑性变形的现象2.蠕变极限金属材料在高温长时间载荷作用下塑性变形抗力指标3.持久强度极限在给定温度下和规定时间内试样不发生断裂的最大应力4.应力松弛金属在恒定高温的承载状态下总应变(弹性形变和塑性形变)保持不变,而应力随时间的延长逐渐降低的现象第一章1.金属元素的存在形式间隙或置换固溶体,形成各类强化相,形成非金属夹杂物,游离态2.钢的强化方式主要有固溶强化,细晶强化,第二相强化和位错强化3.碳化物和氮化物与纯金属相比具有高强度,高弹性模量和脆性特点,并具有的熔点高4.非金属夹杂物主要包括氧化物(性脆而易断),碳化物(高塑性),硅酸盐5.钢的分类按用途分类结构钢,工具钢,特殊性能钢,按化学成分分为碳素钢和合金钢6.机器零件用钢包括调质钢(低碳钢淬火高温回火),弹簧钢(中碳钢淬火中温回火)和滚动轴承钢(高碳钢淬火低温回火)7.优质碳素结构钢,如45号钢表示含碳量是0.45%,08钢表示含碳量0.08%碳素工具钢,如T8表示含碳量0.8%合金结构钢,如35SiMn,w(c)=0.35%,w(Si)=1.1~1.4%,w(Mn)=1.1~1.4%8.强碳化物元素,Zr,Ti,Ta,Nb,V第二章1.碳素工程结构钢大部分以热轧成品供货2.Q235 具有一定的强度和塑性,焊接性良好,适用于受力不大而韧性要求高的工程构件3.Q345 具有较高的强度,良好的塑性和低温韧性以及焊接性4.控轧是形变强化和相变强化的结合,将加入微量合金元素的低合金高强钢加热到高温进行轧制,目的是细化晶粒组织,提高热轧钢的强韧性第三章1.调质钢用途用于各类轴类零件,连杆,高强度螺栓等多种应力负荷下工作,受力比较复杂的情况2.调质钢的合金化①含碳量在0.3-0.5,属于中碳②主加元素,提高淬透性(Si Mn Cr Ni B)③辅加元素,细化晶粒(Mo V W Ti Al)3.40,45号钢适用于尺寸较小,负荷较轻的零件;40Cr加入Cr的作用是增加淬透性,强度有所提高,对塑性韧性影响不大4.调质钢的热处理状态预备热处理正火or退火or正火+高温回火,最终热处理淬火+回火5.弹簧钢的成形及热处理热成型弹簧大型弹簧热成形后+淬火、回火冷成形弹簧小型弹簧冷变形或热处理强化+冷成形+低温回火6.弹簧钢中Si-Mn应用最广,50CrV与其相比,热敏感性低,不易脱碳耐回火温度高,对缺口不敏感,典型弹簧钢,65,65Mn,60Si2Mn,50CrV A7.轴承钢热处理两个环节球化退火和淬火+回火8.常见滚动轴承钢的牌号GCr9,GCr15,GCr15SiMn9.表面强化态钢包括渗碳钢,渗氮钢,低淬透性钢(感应加热淬火钢)10.20CrMnTi渗碳钢具有良好的机械性能和工艺性能,淬透性高,由于含Ti,过热敏感性小第四章1.刃具钢种类碳素刃具钢,合金刃具钢和高速钢2.碳素工具钢含碳量0.65-1.35,属高碳钢,含碳量越高,钢的强度和耐磨性越高,塑性韧性下降3.碳素工具钢T7-T13,锻造、热处理缺点是淬透性差4.碳素工具钢在加热过程中有过热敏感性,晶粒容易长大,超过最佳淬火温度,其强度和塑性都明显下降5.低合金刃具钢含碳量0.75-1.5,加入的合金元素为Cr Mn Si W V加入Cr提高耐磨性,增加淬透性,加入Si增加淬透性,提高回火稳定性6.典型低合金刃具钢CrWMn,CrW5,W,Cr06,Cr2,9SiCr,9Mn2V7.高速钢中碳含量0.7-1.65(质量分数)加入W Mo V Cr Co形成合金碳化物,提高硬度耐磨性和红硬性8.高速钢热处理包括球化退火(预先热处理)和淬火+回火(最终热处理)9.高钒高速钢为了提高耐磨性,高钴高速钢为了提高红硬性10典型高速钢W18Cr4V,W6Mo5Cr4V2,W6Mo5Cr4V2Al11.二次硬化采用高的温度淬火,然后进行多次高温回火后,达到二次硬化的目的12.红硬性指材料在经过一定温度下保持一定时间后所能保持其强度的能力13.冷作模具钢牌号Cr12 Cr12Mo1Vi 9Mn2V14.热作模具钢牌号5CrMnMo 5CrNiMo 3Cr2W8V15.二次硬化的机理残余奥氏体在回火过程中转变为马氏体16.CrWMn 用于工作温度不高,制造要求变形小的细而长的形式复杂的切削工具,如,板牙,拉刀,长丝锥,长绞刀,也可以做量具17量具钢的特点高硬度和高耐磨性,高的尺寸稳定性,足够的韧性,一定的抗腐蚀性第五章1.按钢的组织结构特点分为马氏体不锈钢,铁素体不锈钢,奥氏体不锈钢和双相不锈钢2.提高钢耐腐性的途径形成稳定的保护膜,添加Cr;提高固溶体电极电位或形成稳定钝化区,获得单相组织,如单相奥氏体;机械保护措施或覆盖层,如电镀,喷漆等3. 不锈钢的腐蚀类型均匀腐蚀、晶间腐蚀、点腐蚀、缝隙腐蚀、应力腐蚀破裂4.铁素体不锈钢Cr13型0Cr13 0Cr13Al(耐热钢);Cr16-19型Cr17 Cr17Ti;Cr25-30型Cr28 Cr25(耐酸刚)(高Cr含量使脆性变大)5..奥氏体不锈钢耐腐蚀性高,而且塑性高,易于加工,具有良好的焊接性,韧性和低温韧性,无磁性,具有优异的耐酸性抗氧化性应用最广泛的耐酸刚6.马氏体不锈钢①1Cr13 2Cr13(机械结构件)②9Cr18(手术工具)③1Cr17Ni2(高强度耐蚀件)7.提高钢的抗氧化性的途径①通过提高钢中Cr、Al、Si抗氧化性元素,来防止FeO形成或提高其形成温度②加入Cr、Al、Si形成致密氧化膜③在抗氧化钢中加入Ni,形成奥氏体改善工艺性能,提高热强性④控制含碳量在0.1-0.28.钢的热强性表示金属在高温和载荷长时作用下抵抗蠕变和断裂的能力,即高温强度9.蠕变极限在一定温度下,规定时间内试样产生一定蠕变变形量的最大应力10.持久强度表示在规定温度下,达到规定的持续时间而不发生断裂的最大应力11.提高热强性的途径①增加Cr,Mo等元素含量的固溶强化②降低S,P杂质元素含量③用B,Ti,Zr进行晶界强化④通过碳化物和金属间化合物的弥散强化后三章1.铸铁分类碳形式分为白口铸铁、麻口铸铁、灰口铸铁。