曾谨言《量子力学导论》习题解答
曾谨言量子力学练习题答案
曾谨言量子力学练习题答案曾谨言量子力学练习题答案量子力学是现代物理学的重要分支之一,其研究对象是微观粒子的行为规律。
曾谨言是一位著名的物理学家,他在量子力学领域有着杰出的贡献。
在学习量子力学的过程中,我们常常会遇到一些练习题,以下是曾谨言量子力学练习题的答案。
1. 问题:在双缝干涉实验中,光子通过两个狭缝后,在屏幕上形成干涉条纹。
如果将其中一个狭缝完全堵住,干涉条纹会发生什么变化?答案:当一个狭缝被堵住时,干涉条纹会消失,屏幕上只会出现一个单缝的衍射图样。
这是因为双缝干涉实验中,光子通过两个狭缝后会形成波的叠加,产生干涉现象。
而当一个狭缝被堵住时,只有一个光子通过,无法产生干涉。
2. 问题:在量子力学中,什么是波函数?答案:波函数是量子力学中描述微观粒子状态的数学函数。
它可以用来计算粒子在空间中的位置、动量等物理量的概率分布。
波函数的平方模的积分表示了粒子在某一位置的概率密度。
3. 问题:什么是量子纠缠?答案:量子纠缠是量子力学中一种特殊的现象,当两个或多个粒子发生相互作用后,它们的状态将无法被单独描述,而是成为一个整体系统的状态。
即使这些粒子之间距离很远,它们的状态仍然是相互关联的。
这种关联关系在量子通信和量子计算中有着重要的应用。
4. 问题:什么是量子隧穿?答案:量子隧穿是指微观粒子在经典力学中无法通过的势垒或势阱,在量子力学中却有一定概率穿越的现象。
这是由于量子力学中粒子的波粒二象性,粒子具有波动性质,可以在势垒或势阱的两侧存在一定的概率分布。
5. 问题:什么是量子比特?答案:量子比特,简称量子位或qubit,是量子计算中的基本单位。
与经典计算中的比特不同,量子比特可以同时处于多个状态的叠加态,这种叠加态可以通过量子门操作进行处理和控制,从而实现量子计算的优势。
以上是曾谨言量子力学练习题的答案。
量子力学作为一门复杂而又精密的学科,需要我们通过理论和练习来加深对其原理和应用的理解。
希望这些答案能够帮助大家更好地掌握量子力学的知识,并在学习和研究中取得更进一步的突破。
曾谨言量子力学练习题答案
曾谨言量子力学练习题答案量子力学是物理学中描述微观粒子行为的一门基础理论,它在20世纪初由普朗克、爱因斯坦、波尔、薛定谔、海森堡等科学家共同发展起来。
曾谨言教授的量子力学练习题是帮助学生深入理解量子力学概念和计算方法的重要工具。
以下是一些练习题及其答案的示例:练习题1:波函数的归一化某粒子的波函数为 \( \psi(x) = A \sin(kx) \),其中 \( A \) 和\( k \) 是常数。
求波函数的归一化常数 \( A \)。
答案:波函数的归一化条件为 \( \int |\psi(x)|^2 dx = 1 \)。
将\( \psi(x) \) 代入归一化条件中,得到:\[ \int |A \sin(kx)|^2 dx = 1 \]\[ A^2 \int \sin^2(kx) dx = 1 \]利用三角恒等式 \( \sin^2(kx) = \frac{1 - \cos(2kx)}{2} \),积分变为:\[ A^2 \int \frac{1 - \cos(2kx)}{2} dx = 1 \]\[ A^2 \left[ \frac{x}{2} - \frac{\sin(2kx)}{4k} \right] = 1 \]由于波函数在 \( x = 0 \) 到 \( x = \frac{\pi}{k} \) 之间归一化,所以:\[ A^2 \left[ \frac{\pi}{2k} - 0 \right] = 1 \]\[ A = \sqrt{\frac{2k}{\pi}} \]练习题2:薛定谔方程的解考虑一个一维无限深势阱,其势能 \( V(x) = 0 \) 当 \( 0 < x < a \),\( V(x) = \infty \) 其他情况下。
求粒子的能级。
答案:在无限深势阱中,薛定谔方程为:\[ -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} = E\psi(x) \]设 \( \psi(x) = \sin(kx) \),其中 \( k = \frac{n\pi}{a} \),\( n \) 为正整数。
曾谨言--量子力学习题及解答
dv , 1
(1) (2) (3)
v c , v dv v d ,
dv d c d v ( ) d ( ) v c
8hc 5
1 e
hc kT
, 1
1
这里的 的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。 本题关注的是λ取何值时, 取得极大值,因此,就得要求 对λ的一阶导数为零, 由此可求得相应的λ的值,记作 m 。但要注意的是,还需要验证 对λ的二阶导数在 m 处的取值是否小于零,如果小于零,那么前面求得的 m 就是要求的,具体如下:
2
k
2 E
2
k
cos 2d (2 ) cos d ,
2 E
k
这里 =2θ,这样,就有
2
A B E
k
d sin 0
(2)
根据式(1)和(2) ,便有
A E
这样,便有
k n h 2
E
k
E
n h 2 k
nh
其中 h
k
,
h 2
最后,对此解作一点讨论。首先,注意到谐振子的能量被量子化了;其次,这量子化的 能量是等间隔分布的。 (2)当电子在均匀磁场中作圆周运动时,有
R p qBR
2
qB
这时,玻尔——索末菲的量子化条件就为
又因为动能耐 E
p2 ,所以,有 2
2
2 如果所考虑的粒子是非相对论性的电子( E 动 e c ) ,那么
[理学]《量子力学导论》习题答案曾谨言版_北京大学1
第一章 量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动, ⎩⎨⎧<<><∞=ax ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系 λ/h p = (2) 而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量 ⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。
提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:221()2x a E V x m a ω===。
曾谨言量子力学课后答案
= V (x)
x=a
=
1 mω 2 x 2 。 2
−a
0a x
由此得
a = 2E / mω 2 ,
(2)
x = ±a 即为粒子运动的转折点。有量子化条件
∫ ∫ ∫ +a p ⋅ dx = 2
2m(E − 1 mω 2 x 2 ) dx = 2mω 2 +a
a 2 − x 2 dx
−a
2
−a
= 2mωa 2 ⋅ π = mωπ a 2 = nh
因而平面转子的能量
Em = pϕ2 / 2I = m2h 2 / 2I , m =1, 2,3,L
第二章 波函数与 Schrödinger 方程
2.1
设质量为
m
的粒子在势场V
v (r )
中运动。
∫ (a)证明粒子的能量平均值为 E = d 3r ⋅ w ,
w = h 2 ∇ψ *ψ +ψ *Vψ 2m
(3)
w = h 2 ∇ψ * ⋅ ∇ψ +ψ *Vψ , 2m
(4)
且能量平均值
∫ E = d 3r ⋅ w 。
(b)由(4)式,得
∂w ∂t
=
h2 2m
∇ψ. *⋅ ∇ψ
+
∇ψ
*
⋅ ∇ψ.
.
+ψ * Vψ
+ψ
*V ψ.
=
h2 2m
∇
⋅
ψ.
*
∇ψ
+ψ.
∇ψ
*
(能量密度)
(b)证明能量守恒公式
∂w ∂t
+
∇
⋅
v s
=
量子力学_答案_曾谨言
第一章量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动,⎩⎨⎧<<><∞=a x ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系λ/h p = (2)而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn hn dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n m p p p m E z y x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。
提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:2221)(x m x V E a x ω===。
《量子力学导论》习题答案(曾谨言版,北京大学)(2)
第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m M r p-==∙μ (1) 总动量 21p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121M P m p m p T +=+= (4)反之,有 ,11r m R rμ+= r m R r22μ-= (5) p P m p +=21μ,p P m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m ++=, (17) 21r r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’) 总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙ (2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p r m uR p r m u R ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p m Mr p p R -⨯++⨯= )2)(1(⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。
总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=+=μμ2122222122112222122222m m pP u m p m m u m m p P u m p m m u⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p P m m m P m m m μ2222M P += (4’) [从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中p 、和的算术表示式r i ∇-= R i ∇-= ,p r P R L⨯+⨯=解: ()()211221121r r m m Mi p m p m M p ∇-∇-=-=(1) 其中 1111z y x r ∂∂+∂∂+∂∂=∇, 而x X M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111, 同理,y Y M m y ∂∂+∂∂=∂∂11zZ M m z ∂∂+∂∂=∂∂11; (利用上题(17)(18)式。
量子力学_答案_曾谨言
E nx n y nz
π2 2 1 2 2 = + py + p z2 ) = ( px 2m 2m
n x , n y , n z = 1, 2 , 3 ,
2 2 ⎞ ⎛ nx n2 ⎜ + y + nz ⎟ ⎜ a2 b2 c2 ⎟ ⎝ ⎠
1.3 设质量为 m 的粒子在谐振子势 V ( x) = 提示:利用
(1)
V = ∫ d 3 rψ *Vψ
2 ⎞ ⎛ ⎜ T = ∫ d rψ ⎜ − ∇2 ⎟ ⎟ψ ⎠ ⎝ 2m 3 *
(势能平均值)
(2)
(动能平均值)
=−
2m ∫
2
d 3r ∇ ⋅ ( ψ *∇ψ ) − (∇ψ * ) ⋅ (∇ψ )
[
]
其 中 T 的 第 一 项 可 化 为 面 积 分 , 而 在 无 穷 远 处 归 一 化 的 波 函 数 必 然 为 0 。 因 此
1 mω 2 x 2 中运动,用量子化条件求粒子能量 E 的可能取值。 2 p = 2m[ E − V ( x)]
∫ p ⋅ d x = nh,
n = 1, 2 ,
,
V ( x)
1
解:能量为 E 的粒子在谐振子势中的活动范围为
x ≤a
其中 a 由下式决定: E = V ( x) x = a = 由此得
(2)
ψ * × (1)-ψ × (2),得
i
2 ∂ * ( ( ψ ψ )= − ψ *∇ 2ψ − ψ∇ 2ψ * ) + 2iψ *V2ψ ∂t 2m
=−
2
2m
∇⋅( ψ *∇ψ − ψ∇ψ * ) + 2iV2ψ *ψ
∴
曾谨言量子力学练习题答案
曾谨言量子力学练习题答案曾谨言量子力学练习题答案量子力学作为现代物理学的重要分支,是研究微观世界的基本理论。
在学习量子力学的过程中,练习题是不可或缺的一部分。
本文将为大家提供一些曾谨言量子力学练习题的答案,希望能对大家的学习有所帮助。
1. 考虑一个自旋1/2的粒子,其自旋矢量可以表示为:S = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。
对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|其中,i为虚数单位。
根据这些泡利矩阵,我们可以计算自旋矢量在不同方向上的期望值。
2. 对于一个自旋1/2的粒子,其自旋矢量的模长可以表示为:|S| = √(S·S)其中,S·S表示自旋矢量的内积。
根据泡利矩阵的定义,可以计算出自旋矢量在不同方向上的内积。
3. 考虑一个自旋1/2的粒子,其自旋矩阵可以表示为:J = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。
对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|根据这些泡利矩阵,我们可以计算自旋矩阵在不同方向上的期望值。
4. 对于一个自旋1/2的粒子,其自旋矩阵的模长可以表示为:|J| = √(J·J)其中,J·J表示自旋矩阵的内积。
根据泡利矩阵的定义,可以计算出自旋矩阵在不同方向上的内积。
5. 考虑一个自旋1/2的粒子,其自旋算符可以表示为:S = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。
对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|根据这些泡利矩阵,我们可以计算自旋算符在不同方向上的期望值。
6. 对于一个自旋1/2的粒子,其自旋算符的模长可以表示为:|S| = √(S·S)其中,S·S表示自旋算符的内积。
量子力学导论(第二版)曾谨言+北京大学出版社+课后答案
nx , ny , nz = 1, 2,3,
1.3 设质量为 m 的粒子在谐振子势V (x) = 1 mω 2 x 2 中运动,用量子化条件求粒子能量 E 的可能取值。 2
∫ 提示:利用 p ⋅ dx = nh, n = 1, 2, , p = 2m[E − V (x)]
V (x)
解:能量为 E 的粒子在谐振子势中的活动范围为
2
2
a
1.4 设一个平面转子的转动惯量为 I,求能量的可能取值。
∫ 提示:利用
2π 0
pϕ dϕ
= nh,
n = 1, 2,
, pϕ 是平面转子的角动量。转子的能量 E = pϕ2 / 2I 。
解:平面转子的转角(角位移)记为ϕ 。
.
它的角动量 pϕ = I ϕ (广义动量), pϕ 是运动惯量。按量子化条件
a 2 − x 2 dx
−a
2
−a
= 2mωa 2 ⋅ π = mωπ a 2 = nh 2
得 a 2 = nh = 2 n mωπ mω
(3)
代入(2),解出 En = n ω,
n = 1, 2,3,
(4)
∫ 积分公式:
a 2 − u 2 du = u a 2 − u 2 + a 2 arcsin u + c
−i
∂ψ ∂t
*
=
−
2
2m
∇ 2ψ
*
+
(V1
− iV2 )ψ
*
(2)
ψ * × (1)-ψ × (2),得
( ) ( ) i
∂ ψ *ψ ∂t
2
= − ψ *∇ 2ψ −ψ∇2ψ * 2m
+ 2iψ *V2ψ
量子力学曾谨严 第1章作业答案
教材P25 ~27:1、2、3、4(1)、7 1.解:(a)证明能量平均值公式()[]()⎰⎰⎰⎰⎰⎰∞∞∞∞∞⋅ψ∇ψ-⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇=⎭⎬⎫⎩⎨⎧ψψ+ψ∇⋅ψ∇-ψ∇ψ⋅∇-=⎭⎬⎫⎩⎨⎧ψψ+ψ∇ψ-=ψ⎪⎪⎭⎫ ⎝⎛+∇-ψ=sd r r m r r V r r r m r d r r V r r r r r m r d r r V r r r m r d r r V m r r d E)()(2)()()()()(2)()()()()()()(2)()()()()(2)()(2)(*2**23***23*2*2322*3粒子在势场中运动的波函数平方可积()0)()(2*2=⋅ψ∇ψ⎰⎰∞s d r r m因此)()()()()()(23**23r w r d r r V r r r m r d E⎰⎰∞∞=⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇= 其中能量密度为)()()()()(2)(**2r r V r r r mr wψψ+ψ∇⋅ψ∇=(b)证明能量守恒公式S tr i t r t r i t r S r H t r r H t r S tr r V r r r V t r r t r r t r r t r r t r m tr r V r V t r t r r r t r m t w⋅-∇=∂ψ∂∂ψ∂-∂ψ∂∂ψ∂+⋅-∇=ψ∂ψ∂+ψ∂ψ∂+⋅-∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂⋅∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧∂ψ∂∇⋅ψ∇+ψ∇⋅∂ψ∂∇=∂∂)()()()()(ˆ)()(ˆ)()()()()()()()()()()()()()()(2)()()()()()()()(2*******22***2****2即0=⋅∇+∂∂S tw这表明能量守恒,其中能流密度为⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-=)()()()(2**2r t r r t r mS2.解:(a)证明概率不守恒{}{}()()⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+⋅∇-∇-=+∇-∇⋅∇-=+∇-∇-=-=⎭⎬⎫⎩⎨⎧∂∂+∂∂==τττττττττψψψψψψψψψψψψψψψψψψψψψψψψψψψψρ2*3**2*3**32*3*22*3***3**3*33222222)ˆ(ˆ1)(V r dS d imV r dr d im V r dr d im H H r d i t t r d r d dtdr r d dt dS⎰⎰⎰⎰⎰ψψ+⋅∇-=ψψ+⋅-=τττ2*332*322V r dj r d V r d S d j S⎰=τρ)(3r r d dtd⎰⎰+⋅∇-ττψψ2*332V r dj r d即022*≠ψψ=⋅∇+∂∂V j tρ这表明概率不守恒。
量子力学曾谨言练习题答案
量子力学曾谨言练习题答案量子力学是一门研究微观粒子行为的物理学分支,它与经典力学有着根本的不同。
曾谨言教授的《量子力学》教材是许多学生和学者学习量子力学的重要参考书籍。
以下是一些量子力学练习题的答案,供参考:1. 波函数的归一化条件:波函数的归一化条件是为了保证概率的守恒。
一个归一化的波函数满足以下条件:\[ \int |\psi(x)|^2 dx = 1 \]这意味着粒子在空间中任意位置出现的概率之和等于1。
2. 薛定谔方程:薛定谔方程是量子力学中描述粒子波函数随时间演化的基本方程。
对于一个非相对论性的单粒子系统,薛定谔方程可以写为:\[ i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2 \psi + V\psi \]其中,\( \hbar \) 是约化普朗克常数,\( m \) 是粒子质量,\( V \) 是势能,\( \nabla^2 \) 是拉普拉斯算子。
3. 不确定性原理:海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。
其数学表达式为:\[ \Delta x \cdot \Delta p \geq \frac{\hbar}{2} \]这里,\( \Delta x \) 和 \( \Delta p \) 分别是位置和动量的不确定性。
4. 氢原子的能级:氢原子的能级是量子化的,并且可以用以下公式表示:\[ E_n = -\frac{13.6 \text{ eV}}{n^2} \]其中,\( n \) 是主量子数,\( E_n \) 是对应于 \( n \) 能级的能级能量。
5. 泡利不相容原理:泡利不相容原理指出,一个原子中的两个电子不能具有完全相同的四个量子数。
这意味着在同一个原子中,没有两个电子可以同时具有相同的主量子数、角量子数、磁量子数和自旋量子数。
6. 量子隧道效应:量子隧道效应是指粒子在经典力学中不可能穿越的势垒下,由于量子效应,粒子有一定的概率穿越势垒。
曾谨言《量子力学导论》第二的课后答案(杂)
∫ =
1 2π
e imx2 / 2ℏt
+∞ −∞
dkϕ (k
)⋅
⎡ exp⎢−
⎢⎣
i
ℏt 2m
⎜⎛ ⎝
k
−
mx ℏt
2
⎞ ⎟ ⎠
⎤
⎥ ⎥⎦
(1)
当时间足够长后(所谓 t → ∞ ) ,上式被积函数中的指数函数具有δ 函数的性质,取
6
α = ℏt 2m ,
u
=
⎜⎛ k ⎝
−
mx ℏt
⎟⎞ ⎠
,
参照本题的解题提示,即得
∫ ψ (x,t) ≈
1 e ⋅ imx2 2ℏt 2π
2πm e −iπ ℏt
/
4
+∞
ϕ (k )δ
−∞
⎜⎛ ⎝
k
−
mx ℏt
⎟⎞d ⎠
k
(2)
=
m ℏt
e
−iπ
/
4
e
imx 2
/
2ℏtϕ
⎛ ⎜ ⎝
mx ℏt
⎞ ⎟ ⎠
(3)
2
ψ
(x,t) 2
≈
m ℏt
ϕ
⎛ ⎜
⎝
mx ℏt
⎞ ⎟ ⎠
(4)
物理意义:在足够长时间后,各不同 k 值的分波已经互相分离,波群在 x 处的主要成分为 k = mx ℏt ,即
∫∫∫d 3rV2 (ψ
τ
*ψ
)
( ) ∫∫ ∫∫∫ ℏ
=− 2im S
ψ *∇ψ −ψ∇ψ *
⋅
� dS
+
2 ℏ
τ
d 3rV2ψ *ψ
��
量子力学习题答案(曾谨言版)
和任意,所以
ˆ ˆ ) BA ˆ ˆ ( AB
P74 习题3.3
解答:利用
[ p, x ] i mx
m
m1
[ x, pn ] i npn1
[ p, F ]
mn 0 m n C [ p , x ] p mn
i
mn 0
C
mn
mx
m 1
p i F x
Rnl ( r ) N nl l e 2F ( n l 1, 2l 2, )
园轨道(l = n-1)下的径向概率分布函数
n,n1 ( r ) Cr e
2 d n,n1 ( r ) 0 dr
2
2 n 2 Zr na
最概然半径 rn 由下列极值条件决定:
(b) 对两个全同的Femi子,体系波函数必须满足交换 反对称要求。
对Femi子不允许两个粒子处于相同的单态,因 此它们只能处于不同的单态,此时反对称化的体系 波函数: 1 (1, 2) [i (1) j (2) i (2) j (1)], i j 2 2 可能态数目 C3 3 所以,两个全同Femi子总的可能态数目3 (b) 对两个经典的粒子(可区分),其体系波函数无对称 性要求,即 (1, 2) i (1) j (2), i, j 1, 2, 3 可能态数目3 3 9
dp
( x, t ) (2 )
利用
1
e
t m 2 mx 2 [( p x) ] 2t 2m 2t i
dp
e d e
m 2 t e
i 2
i
4
所以
( x, t )
量子力学导论习题答案(曾谨言)
第十章 定态问题的常用近似方法10-1) 设非简谐振子的Hamilton 量表为'0H H H +=222220212x u dx d u H ω+-= 3'x H β=(β为实常数)用微扰论求其能量本征值(准到二级近似)和本征函数(准到一级近似)。
解:已知)0()0(0n n n E H ψψ=,()x H e N n x n n αψα2)0(22-=,()ω 21)0(+=n E n ,ωαu =()[]11121+-++=n n n n n x x ψψαψ ()()()()()[]22222112121+-++++++=n n n n n n n n n x x ψψψαψ()()()()()()()[]311333321113321221++--++++++++--=n n n n n n n n n n n n n n n x x ψψψψαψ计算一级微扰:n n n H E ψψ')1(=03==n n x ψψβ。
(也可由()⎰+∞∞-⋅==dx x x H En nn n32')1(βψ0=(奇)直接得出)计算二级微扰,只有下列四个矩阵元不为0:()()',33332122n n n n H n n n x --=--=αβψβψ',1331322n n n n H n n x --=⋅=αβψβψ ()',133111322n n n n H n n x ++=++⋅=αβψβψ ()()()',333332122n n n n H n n n x ++=+++⋅=αβψβψ计算2'knH:()()622',3821αβ--=-n n n Hnn6232',19αβn H n n =- 6232',189αβn H nn =+()()()622',38321αβ+++=+n n n Hnn又ω 3)0(3)0(=--n n E E ,ω =--)0(1)0(n n E E , ω -=-+)0(1)0(n n E E ,ω 3)0(3)0(-=-+n n E E ,∑-++=++=∴kk n knnnnnnnn E E HHEEEEE )0()0(2''')0()2()1()0(43222811303021ωβωu n n n ⋅++-⎪⎭⎫ ⎝⎛+=)0()0()0('')0()1()0(k kkn knnnnn E E H ψψψψψ∑-+=+=()()()()()()⎥⎦⎤⎢⎣⎡+++-+--+---=++--)0(3)0(1)0(1)0(33)0(321311133213122n n n n n n n n n n n n n n n ψψψψωαβψ10-2) 考虑耦合振子,'0H H H += 参 书.下册§9.2()2221222221220212x x u x x u H ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-=ω 21'x x H λ-=(λ为实常数,刻画耦合强度) (a )求出0H 的本征值及能级简并度。
量子力学_答案_曾谨言
量子力学的诞生
⎧∞, x < 0, x > a V ( x) = ⎨ ⎩0, 0 < x < a
试用 de Broglie 的驻波条件,求粒子能量的可能取值。 解:据驻波条件,有
a = n⋅
λ
2
( n = 1, 2 , 3 , )
(1)
∴ λ = 2a / n
1 mω 2 x 2 中运动,用量子化条件求粒子能量 E 的可能取值。 2 p = 2m[ E − V ( x)]
∫ p ⋅ d x = nh,
n = 1, 2 ,
,
V ( x)
1
解:能量为 E 的粒子在谐振子势中的活动范围为
x ≤a
其中 a 由下式决定: E = V ( x) x = a = 由此得
(1)
(a)证明粒子的几率(粒子数)不守恒。 (b)证明粒子在空间体积 τ 内的几率随时间的变化为
2V d d 3 rψ *ψ = − ( ψ *∇ψ − ψ∇ψ * ) ⋅ dS + 2 ∫∫∫ ∫∫ 2im S dt τ
证: (a)式(1)取复共轭, 得
d ∫∫∫ τ
3
rψ *ψ
−i
2 ∂ * ψ =− ∇ 2ψ * + (V1 − iV2 ) ψ* ∂t 2m
0
pϕ dϕ = nh, n = 1, 2 ,
2 , pϕ 是平面转子的角动量。转子的能量 E = pϕ / 2I 。
解:平面转子的转角(角位移)记为 ϕ 。 , pϕ 是运动惯量。按量子化条件 它的角动量 pϕ = I ϕ (广义动量)
.
∫
∴
因而平面转子的能量
量子力学导论习题答案(曾谨言)
第八章 自旋8.1) 在z σ表象中,求x σ的本征态。
解:在z σ表象中,x σ的矩阵表示为:x σ⎪⎪⎭⎫⎝⎛=0110 设x σ的本征矢(在z σ表象中)为⎪⎪⎭⎫⎝⎛b a ,则有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛b a b a λ0110 可得a b λ=及b a λ= 1,12±==∴λλ 。
,1=λ 则;b a = ,1-=λ 则b a -=利用归一化条件,可求出x σ的两个本征态为,1=λ;1121⎪⎪⎭⎫ ⎝⎛ ,1-=λ ⎪⎪⎭⎫ ⎝⎛-1121 。
8.2) 在z σ表象中,求⋅的本征态,()ϕϕθϕθcos ,sin sin ,cos sin n是()ϕθ,方向的单位矢. 解:在z δ表象中,δ的矩阵表示为x σ⎪⎪⎭⎫⎝⎛=0110, y σ⎪⎪⎭⎫ ⎝⎛-=00i i , z σ⎪⎪⎭⎫⎝⎛-=1001 (1) 因此, z z y y x x n n n n n σσσσ++=⋅=⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+-=-θθθθϕϕcos sin sin cos i i z y x y x ze e n inn in n n (2)设n σ的本征函数表示为Φ⎪⎪⎭⎫⎝⎛=b a ,本征值为λ,则本征方程为()0=-φλσn ,即 0cos sin sin cos =⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----b a e e i i λθθθλθϕϕ (3) 由(3)式的系数行列式0=,可解得1±=λ。
对于1=λ,代回(3)式,可得x y x y x x i i n in n in n n e e b a --=++==-=--112sin 2cos cos 1sin ϕϕθθθθ 归一化本征函数用()ϕθ,表示,通常取为()⎪⎪⎭⎫ ⎝⎛=ϕθθϕθφi e 2sin 2cos ,1或⎪⎪⎪⎭⎫⎝⎛-222sin 2cos ϕϕθθi i ee (4)后者形式上更加对称,它和前者相差因子2ϕi e-,并无实质差别。
量子力学导论习题答案曾谨言
第九章 力学量本征值问题的代数解法9—1) 在8.2节式(21)中给出了自旋(21)与轨迹角动量(l )耦合成总角动量j 的波函数j ljm φ,这相当于21,21===s j l j 的耦合。
试由8.2节中式(21)写出表9.1(a )中的CG 系数jm m m j 21121解:8.2节式(21a )(21b ):()21),0( 21+=≠-=m ml l j jjljm φ⎪⎪⎭⎫ ⎝⎛-+++=+11121lm lm Y m l Y m l l ()⎪⎪⎪⎭⎫⎝⎛-++---+=+=21,2121,212121,21j j m j j m j j Y m j Y m j j m j m l j (21a ) ()21-=j ljljm φ⎪⎪⎭⎫⎝⎛++---=+11121lm lm Y m l Y m l l ()⎪⎪⎪⎭⎫⎝⎛+++--+++-++=≠-=21,2121,211122121),0( 21j j m j j m j j Y m j Y m j j m j m l l j (21b )()21++j l此二式中的l 相当于CG 系数中的1j ,而212==s j ,21,~,,~21±=m m m m j 。
因此,(21a )式可重写为jm ∑=222112211m jm m j m j m j m j212121212121212111111111--+=m j jm m j m j jm m j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛++-⎪⎪⎭⎫ ⎝⎛++++=+=212112212121122111211111211121121),21(m j j m j m j j m j j l j a (21a ’) 对照CG 系数表,可知:当21121+=+=j j j j ,212=m 时 ,21111112212121⎪⎪⎭⎫ ⎝⎛++=+j m j jm m j 而212-=m 时,21111112212121⎪⎪⎭⎫ ⎝⎛+-=-+j m j jm m j 对于21211-=-=j l j 的(21b )式,有21111111221,212121⎪⎪⎭⎫ ⎝⎛+--=-+j m j m j m j21111111221,212121⎪⎪⎭⎫ ⎝⎛++=--+j m j m j m j9-2)设两个全同粒子角动量21j j j ==,耦合成总角动量J ,JMj2ψ()()21212121jm jm m m JM m j jm ψψ∑=(1)利用CG 系数的对称性,证明()JMjJj JM j p 22212ψψ--=由此证明,无论是Bose 子或Fermi 子,J 都必须取偶数证:由式(1),JM j p 212ψ()()12212121jm jm m m JM jm jm ψψ∑=把21m m ↔, ()()12122112jm jm m m JM jm jm ψψ∑=利用CG 系数的对称性 ()()()21212112212jm jm m m Jj JM m j m j ψψ∑--=()JMjJj 22ψ--= (2)对于Fermi 子,=j 半奇数,=j 2奇数,但要求ψψ-=12p , 即要求()12-=--Jj ,所以J 必须为偶数。
量子力学导论习题答案(曾谨言)
第十一章 量子跃迁11—1)荷电q 的离子在平衡位置附近作小振动(简谐振动)。
受到光照射而发生跃迁。
设照射光的能量密度为()ωρ,波长较长。
求:(a )跃迁选择定则;(b )设离子原来处于基态,求每秒跃迁到第一激发态的几率。
11—2)氢原子处于基态。
收到脉冲电场的作用()()t t δεε0=。
使用微扰论计算它跃迁到各激发态的几率以及仍然处于基态的几率(取0ε沿z 轴方向来计算)。
解:令()()()∑-=nt iE nn n er t C t rψψ, (6)初始条件(5)亦即 ()10n n C δ=- (5) 用式(6)代入式(4),但微扰项ψ'H 中ψ取初值1ψ(这是微扰论的实质性要点!)即得()t z e H e dtdC i nt iE n nn δψεψψ101'==∑-以*n ψ左乘上式两端并全空间积分,得()tiE n nn e t z e dtdC i -=δε10再对τ积分,由00>→=-t t ,即得()10n n z i e t Cε=()1≠n (7) 因此0>t 时(即脉冲电场作用后)电子已跃迁到n ψ态的几率为[可直接代入 P291式(23)、P321式(15)而得下式]()21202n n n z e t C P ⎪⎭⎫⎝⎛== ε (8) 根据选择定则()0,1=∆=∆m l ,终态量子数必须是()()10n nlm =即电子只能跃迁到各np 态()1=l ,而且磁量子数0=m 。
跃迁到各激发态的几率总和为⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=∑∑∑n n nn nnz z e z e P 211212021'20'εε (9) 其中 01111==ψψz z (z 为奇宇称)∑∑=nn n n n z z z 1121ψψψψ212112131a r z ===ψψψψ (10)a 为Bohr 半径,代入式(9)即得20'⎪⎭⎫ ⎝⎛=∑ a e P nnε (11) 电场作用后电子仍留在基态的几率为20'11⎪⎭⎫⎝⎛-=-∑ a e P nn ε (12)11—3)考虑一个二能级体系,Hamilton 量0H 表为(能量表象)⎪⎪⎭⎫⎝⎛=21000E E H , 21E E < , 设0=t 时刻体系处于基态,后受微扰'H 作用,⎪⎪⎭⎫ ⎝⎛=βγγα'H , 求t 时刻体系处于激发态的几率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曾谨言《量子力学导论》习题解答第三章一维定态问题3.1)设粒子处在二维无限深势阱中,,,,,0, 0xa,0yb,V(x,y), ,,, 其余区域,a,b求粒子的能量本征值和本征波函数。
如,能级的简并度如何,解:能量的本征值和本征函数为2222nn,,yx(,)E, nn22xy2mabny,nx,2yx,sinsin, n,n,1,2,? ,nnxyxyabab22,,22a,bE,(n,n)若,则 nnxy2xy2many,nx,2yx,sinsin ,nnxyaaan,10,n,5这时,若n,n,则能级不简并;若n,n,则能级一般是二度简并的(有偶然简并情况,如xyxyxy''n,11,n,2与) xy3.2)设粒子限制在矩形匣子中运动,即,,,,,,0, 0xa,0yb,0zc,,V(x,y,z) ,,, 其余区域,a,b,c求粒子的能量本征值和本征波函数。
如,讨论能级的简并度。
解:能量本征值和本征波函数为22222nnn,,yxzE, ,(,,)222nnnm2abcxyzny,nxnz,,8yxz,sinsinsin,,nnn abcabcxyzn,n,n,1,2,3,?xyza,b,c当时,22,,222 E,(n,n,n)xyz2nnn2maxyz32ny,nxny,,2,,yxz ,sinsinsin,,,nnnaaaaxyz,,n,n,n时,能级不简并; xyzn,n,n三者中有二者相等,而第三者不等时,能级一般为三重简并的。
xyz 三者皆不相等时,能级一般为6度简并的。
n,n,nxyz222222,5,6,8,3,4,10(1,7,9),(1,3,11)如 ,22222210,12,16,6,8,20(1,5,10),(3,6,9),3.3)设粒子处在一维无限深方势阱中,0, 0,x,a,V(x,y), ,,, x,0,x,a,证明处于定态的粒子 ,(x)n2aa62x,,,, (x-x)(1) 22212n,讨论的情况,并于经典力学计算结果相比较。
n , ,证:设粒子处于第n个本征态,其本征函数,2n(x),sinx. ,naa2aa2n,a分部2 (1) ,,sin xxdxxxdx,n,,002aa2a2a2222(,),,,,, xxxxxdxn,042a212n,xa2,,(1,cos), xdx ,024aa2a6,,(1) (2) 22n,12在经典情况下,在区间粒子除与阱壁碰撞(设碰撞时间不计,且为弹性碰撞,即粒子碰撞后仅运动方向改,,0, adxxxdx,,变,但动能、速度不变)外,来回作匀速运动,因此粒子处于范围的几率为,故 aadxa , (3) ,,,xx,02a2adxa22,,,xx, ,03a222aa22() (4) x,x,x,x,,34当时,量子力学的结果与经典力学结果一致。
n,,3.4)设粒子处在一维无限深方势阱中,,0, x,a2V(x,y), ,,, x,a2,(n,1)处于基态,求粒子的动量分布。
,x2,cos解:基态波函数为 , (参P57,(12)) ,1aa,,aipx12x,2,,?(p),e,cosdx,a,aa2,2,,aipxixix11,,2aa,,,e,(e,e)dx,a,2,a2,,ppa,,ii,,,()()12aa,,,e,edx,,,,a,2,a2,,,,,pa,pa,pa,pa,,,,,,,,,,,,,,iiii,,,,,,,,,,,,,,111,,aaaa,,,,,,,,,,,,2222,,e,e,,e,e,,,,,,,,,pp,,,,a ,,,,,,,,,,,2i,,2i,,,,,,,aa,,,,,,,,,,,,papa111,,,cos,cos,,,,,pp2,2,a,,,,,,,a,a,,,3,2q,pa,cos 22222,,,,ap3,4,apa22,,()()cos动量的几率分布 p,p,222222,,,,,,ap3.5)设粒子处于半壁高的势场中,, x,0,,V(x),,V,0,x,a (1) ,0,0,x,a,求粒子的能量本征值。
求至少存在一条束缚能级的体积。
解:分区域写出: s.eq"'2,,(x),k(x),0, 0,x,a11 (2) "2,(x),k,(x),0, x,a222,2,E'22其中 (3) ,,,,,,kVE, k022,,''ikx,ikx,(x),Ae,Be1方程的解为 (4) kx,kx,(x),Ce,De2根据对波函数的有限性要求,当时,有限,则 x,,,(x)2C,0当x,0时,,则A,B,0 ,(x),01',(x),Fsinkx, 0,x,a1于是 (5) ,kx,(x),De , x,a2在处,波函数及其一级导数连续,得 x,a',ka'',ka (6) Fsinka,De, kFcoska,,kDe'k'tgka上两方程相比,得 ,, (7) k,,V,E2,0tga,,V,E,,,即(7’) ,,02E,,,'若令 (8) ka,,, ka,,则由(7)和(3),我们将得到两个方程:,,,,,ctg ( 9),,2V,(10)式是以,20,,a (10) ,,2,,,2为半径的圆。
对于束缚态来说,, ,V,E,0r,2,V,a00,,,,ctg,,结合(3)、(8)式可知,和都大于零。
(10)式表达的圆与曲线在第一象限的交点可决定束缚,,2V0a,,2态能级。
当,即,亦即 r,,22,222,Va,,,8 (11) 0时,至少存在一个束缚态能级。
这是对粒子质量,位阱深度和宽度的一个限制。
3—6)求不对称势阱中粒子的能量本征值。
解:仅讨论分立能级的情况,即,0,E,V22,d2mV,E,,?,, 2,dx,,0当x,,,时,,故有kx1,Ae,x,0,k,2mV,E,,,111,,,,,Asinkx,0xa,k2mE,,,,,,,,,,, , ,kx,2,,Ae,a,x,k,2mV,E,222,dln,x,0由在、处的连续条件,得 x,adx(1) ,,k,kctg,, k,,kctgka,,12,k由(1a)可得 (2) sin,,2mV1ka,,由于皆为正值,故由(1b),知为二,四象限的角。
k,k,k12,k因而 (3) sinka,,,,,,2mV2又由(1),余切函数的周期为,故由(2)式,,,,ctg,k1,nsin (4) ,,,,12mV1,k1,kansin由(3),得 (5) ,,,,,2mV2,k,k11,,kansinnsin结合(4),(5),得 ,,,,,,212mV2mV21,k,k11,,kansinsin或 (6) ,,,,2mV2mV12n,1,2,3,?一般而言,给定一个值,有一个解,相当于有一个能级: knn22k,nE, (7) n2ma2mVV,21,2,,sin当时,仅当 V,V21,2V1,,V,,,12,,,,asin才有束缚态,故给定时,仅当 (8) V,V12,,2V2mV12,, V时才有束缚态(若,则无论和的值如何,至少总有一个能级) V,V,Va12当给定时,由(7)式可求出个能级(若有个能级的话)。
相应的波函数为:V,V,ann12,k,kxn,,,Ae ,x0 ,k2m,,VE,n1n1,2mV1,,,,,Asinkx, , 0,x,a,,, ,nnnn ,,kn1,,k,,x,a2n2n,,,,A,1e ,x,a ,k,2mV,E,,n2n22mV,2,,,A,2a,1k,1k其中 n1n2nE,03—7)设粒子(能量)从左入射,碰到下列势阱(图),求阱壁处的反射系数。
,,,0,Vx,0(),解:势阱为 Vx,0,,0.x,在区域?上有入射波与反射波,在区域?上仅有透射波。
故ikxikx,11,,Ae,Be,k,2mV,E,,,110 ikx2,,Ce,k,2mE,22A,B,C由,得。
,(0),,(0)12''由,得。
,(0),,(0),,kA,B,kC1212从上二式消去c, 得。
,,,,k,kA,k,kB121222k,k,,B212R,r,,反射系数 22A,,k,k12将代入运算,可得 k,k12222,,,V16E,EVV000,, R,41,4EV,E,,V00,,,,VEE,03—8)利用Hermite多项式的递推关系(附录A3。
式(11)),证明谐振子波函数满足下列关系,,1nn,1,,,x(x),(x),(x),,nn,1n,1,22,,12,,,,,,,,,,,x(x),nn,,1(x),2n,1,(x),n,1n,2,(x)nn,2nn,222,x,0, V,E2并由此证明,在态下, ,nn22x,,2,(x),AeH(,x)证:谐振子波函数 (1) nnn,其中,归一化常数 A,, ,,m,, (2) nn,2,n!,的递推关系为 (3) H(,x),2,xH(,x),2nH(,x),0.H(,x)n,1nn,1n,,,,,,22221,x2,x2?x(x),Ae,xH(x),Ae,2xH(x),nnnnn2,22,,1,x2,,,AeH(x),2nH(x),nn,1n,12x,,,,222211,,,x2,x2,,,e,nH(x),,,e,H(x)n,1n,1,,,,nn2,2,n!,2,n!,221n,,x2,,,,,e,H(x)n,1n,1,,2,,,2,n,1!,221n,1,,x2, ,,,,e,H(x)n,1n,1,,2,,,2,n,1!,,1nn,1,(x),(x),,,,n,1n,122,,,,,1nn,12,,,?x(x),x(x),x(x),,nn,1n,1,22,,,,,,,,1nn,1nn,1n,1n,2,,,,,,,(x),(x),(x),(x) ,,,,,,n,2nnn,22,222222,,,,,,,,1,,,,,,,,,,,nn,,1(x),2n,1,(x),n,1n,2,(x)n,2nn,222, ,,,,,,1nn,1**x,,,xdx,,(x),,(x),,(x)dx,0 ,,nnnn,1n,1,,22,,,,,,,,,1*22,,,V,(x),mx,(x)dxnn,2,,11*2,,,,,,(x),m,,2n,1(x)dx nn2,,221111,,2,,,m,,,2n,1,n,,,,E2,,n22222,,,3—9)利用Hermite多项式的求导公式。
证明(参A3.式(12)),,dnn,1,,,,(x),,,,nn,1n,1dx22,,22,d,,,,,,,,,,,(x),nn,,1,2n,1,,n,1n,2,nn,2nn,222dx ,dH(x)'n证:A3.式(12):H,(),2nH,(), ,2n,H(,x) nn,1n,1dx2222d,,,,,,,22,x2,x2(x),A,,xeH(x),e,2nH(x),,,,nnnn,1dx2,,,,,,x(x),2n(x)nn,1,,nn,1 ,,,,,,,(x),(x),,2n(x),,n,1n,1n,122,,,,nn,1,,(x),(x),,,,n,1n,122,,2,,,,,,dnn,1nn,1n,1n,2,,,,,,,,,,(x),,,,,,,,,,,,nn,2nnn,22222222dx,,,,,,,, 2,,,,,,,,,,,,nn,,1,2n,1,,n,1n,2,n,2nn,22,,dnn,1,,**,,p,,,i,,dx,,i,,,,,,,dx,0 ,,,,nnnn,1n,1,,dx22,,,,222,,p,d*,,,,T,,,,dxnn,2,,22mmdx,,22,,*,,,,,,12112,,,,,,,, ,,,nn,,n,,n,n,dx,,nn2nn2,22m 222E,,11,,m,,*n,,,,,,2n,1,,dx,,,2n,1,n,,,,,,nn,44222,mm,, 3—10)谐振子处于态下,计算 ,n112222,,,,,x,,p,?,,,,,, ,x,x,x,p,p,p,,,,,,,,1,,n,,,,EV22,,2n 解:由题3—6),xx,0, ,,,22m,m,m,1,,2p,0, p,2mT,mE,n,m,, 由题3—7), ,,n2,,1112222,,1,2,,,,2,x,x,x,x,x,n,,,,,,,,,,,,2m,,,,,,1112222,,12,,,,2,,,,,p,p,p,p,p,n,m,, ,,,,,,2,,,,,,1,,,x,,p,n,,,,2,,对于基态,,刚好是测不准关系所规定的下限。