量子力学习题及解答

合集下载

量子力学习题集及解答

量子力学习题集及解答

量子力学习题集及解答目录第一章量子理论基础 (1)第二章波函数和薛定谔方程 (5)第三章力学量的算符表示 (28)第四章表象理论 (48)第五章近似方法 (60)第六章碰撞理论 (94)第七章自旋和角动量 (102)第八章多体问题 (116)第九章相对论波动方程 (128)第一章 量子理论基础1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000A (可见光),1A (x 射线)以及0.001A (γ射线)时,加速电子所需的电势差是多少?[解] 电子在电势差V 加速下,得到的能量是eV m =221υ这个能量全部转化为一个光子的能量,即λνυhc h eV m ===221 )(1024.1106.11031063.6419834A e hc V λλλ⨯=⋅⨯⨯⨯⨯==∴--(伏) 当 A 50001=λ时, 48.21=V (伏)A 12=λ时 421024.1⨯=V (伏)A 001.03=λ时 731024.1⨯=V (伏)2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。

[解] 普朗克公式为18/33-⋅=kT hv v e dvc hvd πνρ单位体积辐射的总能量为⎰⎰∞∞-==00/3313T hv v e dv v c h dv U κπρ令kThvy =,则 440333418T T e dy y c h k U y σπ=⎪⎪⎭⎫ ⎝⎛-=⎰∞ (★) 其中 ⎰∞-=0333418y e dyy c h k πσ (★★)(★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。

这个公式就是斯忒蕃——玻耳兹曼公式。

其中σ是比例常数,可求出如下:因为)1()1(1121 +++=-=-------y y y y y ye e e e e e ∑∞=-=1n ny edy e y e dy y n ny y ⎰∑⎰∞∞=-∞⎪⎭⎫ ⎝⎛=-013031 令 ny x =,上式成为dx e x n e dy y xn y ⎰∑⎰∞-∞=∞=-03140311 用分部积分法求后一积分,有⎰⎰⎰∞-∞∞--∞∞--+-=+-=0220332333dx xe e x dx e x e x dx e x x xx xx66660=-=+-=∞∞--∞-⎰xx x e dx e xe又因无穷级数 ∑∞==144901n nπ故⎰∞=⨯=-0443159061ππye dy y 因此,比例常数⎰∞-⨯==-=015334533341056.715818ch k e dy y c h k y ππσ尔格/厘米3·度43.求与下列各粒子相关的德布罗意波长:(1)能量为100电子伏的自由电子; (2)能量为0.1电子伏的自由中子; (3)能量为0.1电子伏,质量为1克的质点; (4)温度T =1k 时,具有动能kT E 23=(k 为玻耳兹曼常数)的氦原子。

量子力学基础试题及答案

量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。

答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。

答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。

答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。

答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。

答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。

答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。

2. 描述量子力学中的波函数坍缩现象。

答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。

量子力学复习题附答案

量子力学复习题附答案

量子力学复习题附答案1. 量子力学的基本假设是什么?答案:量子力学的基本假设包括波函数假设、态叠加原理、测量假设、不确定性原理、薛定谔方程和泡利不相容原理。

2. 描述态叠加原理的内容。

答案:态叠加原理指出,一个量子系统可以处于多个可能状态的线性组合,即叠加态。

系统的态函数可以表示为这些可能状态的叠加。

3. 测量假设在量子力学中扮演什么角色?答案:测量假设指出,当对量子系统进行测量时,系统会从叠加态“坍缩”到一个特定的本征态,其概率由波函数的模方给出。

4. 不确定性原理如何表述?答案:不确定性原理表述为,粒子的位置和动量不能同时被精确测量,它们的不确定性的乘积总是大于或等于某个常数,即 $\Delta x\Delta p \geq \frac{\hbar}{2}$。

5. 薛定谔方程的形式是什么?答案:薛定谔方程的形式为 $i\hbar\frac{\partial}{\partialt}\Psi(r,t) = \hat{H}\Psi(r,t)$,其中 $\Psi(r,t)$ 是波函数,$\hat{H}$ 是哈密顿算符,$\hbar$ 是约化普朗克常数。

6. 泡利不相容原理的内容是什么?答案:泡利不相容原理指出,一个原子中不能有两个或更多的电子处于相同的量子态,即具有相同的一组量子数。

7. 什么是波函数的归一化?答案:波函数的归一化是指波函数的模方在整个空间的积分等于1,即$\int |\psi|^2 d\tau = 1$,其中 $d\tau$ 是体积元素。

8. 描述量子力学中的隧道效应。

答案:隧道效应是指粒子通过一个势垒的概率不为零,即使其动能小于势垒的高度。

这是量子力学中粒子波性质的体现。

9. 什么是自旋?答案:自旋是量子力学中粒子的一种内禀角动量,它与粒子的质量和电荷有关,但与粒子的轨道角动量不同。

10. 什么是能级和能级跃迁?答案:能级是指量子系统中粒子可能的能量状态,能级跃迁是指粒子从一个能级跃迁到另一个能级的过程,通常伴随着能量的吸收或发射。

量子力学经典题目及解答

量子力学经典题目及解答
− 解:定态schr.eq 解:定态schr.eq ℏ dψ +u(x) = E ⋯ ) ψ ψ (1 2 2µ dx
2 2
(J1取 号 J2 下 ) 上 ,取 号
o
a
ψΙ = ⋯ 由波函数有限性要求,ψΙΙΙ = 0,(x < 0, x > a)⋯ (2)
ψ (1)式改写为 ′′(x) + (1)式
∂ψ ∂ψ E =E , = ψ⋯ (2) 定 :ℏ 态 i ψ ∂t ∂t iℏ ∂ψ* ∂ψ* E * * 取 共 : iℏ 复 轭 =E , ψ = ψ ⋯ ) (3 ∂t ∂t −iℏ ∴ 态 率 度 布 随 间 化 即 定 几 密 分 不 时 变 , : ∂w ∂ψ* ∂ψ E * E =ψ +ψ* =ψ ψ +ψ* ψ = 0 ∂t ∂t ∂t −iℏ iℏ ∂w 由1 ( ), iJ = − ∇ = 0, ∂t ∴ iJ与 间 关 即 为 t无 的 矢 。 ∇ 时 无 , J 与 关 常 量 ∂t
ቤተ መጻሕፍቲ ባይዱ
µ e s4
2n 2ℏ 2
试由驻波条件求粒子能量的可能值。 试由驻波条件求粒子能量的可能值。 λx h nh 解:驻波条件 1
p2 3.粒子被限制在长宽高分别为 1 3.粒子被限制在长宽高分别为 a , a2, a3 的箱中动, 的箱中动, E = 2µ
a1 = n1
2
, px = ∴
λx
=
2a1
3
a
2x 2x 2A 5 a5 = A2[ (a − x) + ∫ dx] = x = 3*4 3*4 3*4*5 0 30 0 0 30 30 ∴A = 5 , A = 5 a a
2
4

《量子力学》基本概念考查题目以及答案

《量子力学》基本概念考查题目以及答案

《量子力学》基本概念考查题目以及答案1. 量子力学中,粒子的状态由什么描述?A. 位置B. 动量C. 波函数D. 能量答案:C2. 海森堡不确定性原理表明了什么?A. 粒子的位置和动量可以同时准确知道B. 粒子的位置和动量不能同时准确知道C. 粒子的速度和动量可以同时准确知道D. 粒子的位置和能量可以同时准确知道答案:B3. 量子纠缠是指什么?A. 两个粒子之间的经典相互作用B. 两个粒子之间的量子相互作用C. 两个粒子的量子态不能独立于彼此描述D. 两个粒子的量子态可以独立于彼此描述答案:C4. 在量子力学中,一个粒子通过一个势垒的隧穿概率是由什么决定的?A. 粒子的能量B. 势垒的宽度C. 势垒的高度D. 所有以上因素答案:D5. 量子力学的基本方程是什么?A. 牛顿第二定律B. 麦克斯韦方程组C. 薛定谔方程D. 热力学第二定律答案:C6. 在量子力学中,一个系统的波函数坍缩通常发生在什么情况下?A. 当系统处于叠加态时B. 当系统被测量时C. 当系统与环境相互作用时D. B 和 C答案:D7. 量子力学中的泡利不相容原理指出,一个原子中的两个电子不能具有完全相同的一组量子数,这主要影响什么?A. 电子的质量B. 电子的自旋C. 电子的能级D. 电子的电荷答案:C8. 量子退相干是什么?A. 量子态的相干性增强的过程B. 量子态的相干性丧失的过程C. 量子态的叠加态减少的过程D. 量子态的不确定性减少的过程答案:B9. 在量子力学中,哪个原理说明了全同粒子不能被区分?A. 泡利不相容原理B. 量子叠加原理C. 量子不确定性原理D. 量子对称性原理答案:D10. 量子力学中的“观测者效应”指的是什么?A. 观测者的存在改变了被观测系统的状态B. 观测者的存在增强了被观测系统的能量C. 观测者的存在减小了被观测系统的不确定性D. 观测者的存在导致了被观测系统的量子坍缩答案:A11. 在量子力学中,一个粒子的波函数通常是复数还是实数?A. 实数B. 复数C. 整数D. 可以是复数也可以是实数答案:B12. 量子力学中的“粒子-波动二象性”指的是什么?A. 粒子有时表现为波动,有时表现为粒子B. 粒子和波动是两种完全不同的实体C. 粒子和波动是同一种实体的不同表现形式D. 粒子的存在需要波动作为媒介答案:C13. 在量子力学中,一个粒子的动量和位置可以同时被准确测量吗?A. 是的,可以同时准确测量B. 不可以,这受到海森堡不确定性原理的限制C. 只有在特定条件下可以D. 只有使用特殊仪器才可以答案:B14. 量子力学中的“超定性”是指什么?A. 系统的状态由多个波函数描述B. 系统的多个性质可以独立测量C. 系统的波函数可以有多个解D. 系统的多个状态可以共存答案:A15. 在量子力学中,一个粒子的自旋是什么?A. 粒子旋转的速度B. 粒子的量子态的一个内在属性C. 粒子的角动量D. 粒子的动能答案:B16. 量子力学中的“测量问题”指的是什么?A. 如何测量量子系统的尺寸B. 如何测量量子系统的动量C. 测量过程如何影响量子系统的状态D. 测量结果的统计性质答案:C17. 量子力学中的“波函数坍缩”是指什么?A. 波函数在空间中的扩散B. 波函数在时间中的演化C. 波函数从叠加态突然转变为某个特定的状态D. 波函数的数学表达式变得复杂答案:C18. 在量子力学中,一个系统的能量通常是量子化的,这意味着什么?A. 系统的能量可以连续变化B. 系统的能量可以是任何值C. 系统的能量只能取特定的离散值D. 系统的能量只能增加或减少特定的量答案:C19. 量子力学中的“非局域性”指的是什么?A. 量子系统的状态不能在空间中定位B. 量子系统的状态不能在时间中定位C. 量子系统的状态不受空间距离的限制D. 量子系统的状态不受时间距离的限制答案:C20. 在量子力学中,一个粒子的波函数的绝对值平方代表什么?A. 粒子的总能量B. 粒子的总动量C. 粒子在某个位置被发现的概率密度D. 粒子的电荷密度答案:C这套选择题覆盖了量子力学的多个基本概念,适合用于检验学生对量子力学基础知识的掌握情况。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。

2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。

3. 描述量子隧道效应,并解释它在实际应用中的重要性。

三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。

求该粒子的能量E。

2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。

求该电子的动量分布。

答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。

这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。

2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。

例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。

3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。

基本习题及答案_量子力学

基本习题及答案_量子力学

量子力学习题(一) 单项选择题1.能量为100ev的自由电子的De Broglie 波长是A. 1.2. B. 1.5. C. 2.1. D. 2.5.2. 能量为0.1ev的自由中子的De Broglie 波长是A.1.3. B. 0.9. C. 0.5. D. 1.8.3. 能量为0.1ev,质量为1g的质点的De Broglie 波长是A.1.4. B.1.9.C.1.17. D. 2.0.4.温度T=1k时,具有动能(为Boltzeman常数)的氦原子的De Broglie 波长是A.8. B. 5.6. C. 10. D. 12.6.5.用Bohr-Sommerfeld的量子化条件得到的一维谐振子的能量为()A.. B..C.. D..6.在0k附近,钠的价电子的能量为3ev,其De Broglie波长是A.5.2. B. 7.1. C. 8.4. D. 9.4.7.钾的脱出功是2ev,当波长为3500的紫外线照射到钾金属表面时,光电子的最大能量为A. 0.25J. B. 1.25J.C. 0.25J. D. 1.25J.8.当氢原子放出一个具有频率的光子,反冲时由于它把能量传递给原子而产生的频率改变为A.. B.. C.. D..pton 效应证实了A.电子具有波动性.B. 光具有波动性.C.光具有粒子性.D. 电子具有粒子性.10.Davisson 和Germer 的实验证实了A. 电子具有波动性.B. 光具有波动性.C. 光具有粒子性.D. 电子具有粒子性.11.粒子在一维无限深势阱中运动,设粒子的状态由描写,其归一化常数C为A.. B.. C.. D..12. 设,在范围内找到粒子的几率为A.. B.. C.. D..13. 设粒子的波函数为,在范围内找到粒子的几率为A.. B..C.. D..14.设和分别表示粒子的两个可能运动状态,则它们线性迭加的态的几率分布为A..B.+.C.+.D.+.15.波函数应满足的标准条件是A.单值、正交、连续.B.归一、正交、完全性.C.连续、有限、完全性.D.单值、连续、有限.16.有关微观实物粒子的波粒二象性的正确表述是A.波动性是由于大量的微粒分布于空间而形成的疏密波.B.微粒被看成在三维空间连续分布的某种波包.C.单个微观粒子具有波动性和粒子性.D. A, B, C.17.已知波函数,,,.其中定态波函数是A.. B.和. C.. D.和.18.若波函数归一化,则A.和都是归一化的波函数.B.是归一化的波函数,而不是归一化的波函数.C.不是归一化的波函数,而是归一化的波函数.D.和都不是归一化的波函数.(其中为任意实数)19.波函数、(为任意常数),A.与描写粒子的状态不同.B.与所描写的粒子在空间各点出现的几率的比是1:.C.与所描写的粒子在空间各点出现的几率的比是.D.与描写粒子的状态相同.20.波函数的傅里叶变换式是A..B..C..D..21.量子力学运动方程的建立,需满足一定的条件:(1)方程中仅含有波函数关于时间的一阶导数. (2)方程中仅含有波函数关于时间的二阶以下的导数.(3)方程中关于波函数对空间坐标的导数应为线性的. (4) 方程中关于波函数对时间坐标的导数应为线性的.(5) 方程中不能含有决定体系状态的具体参量. (6) 方程中可以含有决定体系状态的能量. 则方程应满足的条件是A. (1)、(3)和(6).B. (2)、(3)、(4)和(5).C. (1)、(3)、(4)和(5).D.(2)、(3)、(4)、(5)和(6).22.两个粒子的薛定谔方程是A.B.C.D.23.几率流密度矢量的表达式为A..B..C..D..24.质量流密度矢量的表达式为A...C..D..25. 电流密度矢量的表达式为A..B..C..D..26.下列哪种论述不是定态的特点A.几率密度和几率流密度矢量都不随时间变化.B.几率流密度矢量不随时间变化.C.任何力学量的平均值都不随时间变化.D.定态波函数描述的体系一定具有确定的能量.27.在一维无限深势阱中运动的质量为的粒子的能级为A.,B., D..28. 在一维无限深势阱中运动的质量为的粒子的能级为A., B., C., D..29. 在一维无限深势阱中运动的质量为的粒子的能级为A.,B., C., D..30. 在一维无限深势阱中运动的质量为的粒子处于基态,其位置几率分布最大处是A., B., C., D..31. 在一维无限深势阱中运动的质量为的粒子处于第一激发态,其位置几率分布最大处是 A., B., C., D..32.在一维无限深势阱中运动的粒子,其体系的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的.33.线性谐振子的能级为A..B..C..D..34.线性谐振子的第一激发态的波函数为,其位置几率分布最大处为A.. B.. C.. D..35.线性谐振子的A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的.36.线性谐振子的能量本征方程是A..B..C..D..37.氢原子的能级为A..B..C.. D..38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为A.. B..C.. D..39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为A.. B..C.. D..40.波函数和是平方可积函数,则力学量算符为厄密算符的定义是A..B..C..D..41.和是厄密算符,则A.必为厄密算符. B.必为厄密算符.C.必为厄密算符.D.必为厄密算符.42.已知算符和,则A.和都是厄密算符. B.必是厄密算符.C.必是厄密算符.D.必是厄密算符.43.自由粒子的运动用平面波描写,则其能量的简并度为A.1.B. 2.C. 3.D. 4.44.二维自由粒子波函数的归一化常数为(归到函数)A.. B..C.. D.45.角动量Z分量的归一化本征函数为A.. B..C.. D..46.波函数A. 是的本征函数,不是的本征函数.B. 不是的本征函数,是的本征函数.C. 是、的共同本征函数.D. 即不是的本征函数,也不是的本征函数.47.若不考虑电子的自旋,氢原子能级n=3的简并度为A. 3.B. 6.C. 9.D. 12.48.氢原子能级的特点是A.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为,这种性质是A. 库仑场特有的.B.中心力场特有的.C.奏力场特有的.D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为,则其几率分布最大处对应于Bohr原子模型中的圆轨道半径是 A.. B.. C.. D..51.设体系处于状态,则该体系的能量取值及取值几率分别为A.. B..C.. D..52.接51题,该体系的角动量的取值及相应几率分别为A.. B.. C.. D..53. 接51题,该体系的角动量Z分量的取值及相应几率分别为A.. B..C.. D..54. 接51题,该体系的角动量Z分量的平均值为A.. B.. C.. D..55. 接51题,该体系的能量的平均值为A..B..C.. D..56.体系处于状态,则体系的动量取值为A.. B.. C.. D..57.接上题,体系的动量取值几率分别为A. 1,0.B. 1/2,1/2.C. 1/4,3/4/ .D. 1/3,2/3.58.接56题, 体系的动量平均值为A.. B.. C.. D..59.一振子处于态中,则该振子能量取值分别为A.. B..C.. D..60.接上题,该振子的能量取值的几率分别为A.. B.,.C.,. D..61.接59题,该振子的能量平均值为A. .B..C.. D..62.对易关系等于(为的任意函数) A..B..C.. D..63. 对易关系等于A.. B..C.. D..64.对易关系等于A.. B.. C.. D..65. 对易关系等于A.. B.. C.. D..66. 对易关系等于A.. B.. C.. D..67. 对易关系等于A.. B.. C.. D..68. 对易关系等于A.. B.. C.. D..69. 对易关系等于A.. B.. C.. D..70. 对易关系等于A.. B.. C.. D..71. 对易关系等于A.. B.. C.. D..72. 对易关系等于A.. B.. C.. D..73. 对易关系等于A.. B.. C.. D..74. 对易关系等于A.. B.. C.. D..75. 对易关系等于A.. B.. C.. D..76. 对易关系等于A.. B.. C.. D..77.对易式等于A.. B.. C.. D..78. 对易式等于(m,n为任意正整数) A.. B.. C.. D..79.对易式等于A.. B.. C.. D..80. .对易式等于(c为任意常数) A.. B.. C.. D..81.算符和的对易关系为,则、的测不准关系是A.. B..C.. D..82.已知,则和的测不准关系是 A.. B..C.. D..83. 算符和的对易关系为,则、的测不准关系是A..B..C..D..84.电子在库仑场中运动的能量本征方程是A..B..C..D..85.类氢原子体系的能量是量子化的,其能量表达式为A.. B..C.. D..86. 在一维无限深势阱中运动的质量为的粒子,其状态为,则在此态中体系能量的可测值为A., B.,C., D..87.接上题,能量可测值、出现的几率分别为A.1/4,3/4.B. 3/4,1/4.C.1/2, 1/2.D. 0,1.88.接86题,能量的平均值为A., B., C., D..89.若一算符的逆算符存在,则等于A. 1.B. 0.C. -1.D. 2.90.如果力学量算符和满足对易关系, 则A.和一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值.B.和一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.C.和不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值.D.和不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.91.一维自由粒子的能量本征值A. 可取一切实数值.B.只能取不为负的一切实数.C.可取一切实数,但不能等于零.D.只能取不为正的实数.92.对易关系式等于A.. B..C.. D..93.定义算符, 则等于A.. B.. C.. D..94.接上题, 则等于A.. B.. C.. D..95. 接93题, 则等于A.. B.. C.. D..96.氢原子的能量本征函数A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z分量算符的本征函数.B.只是体系能量算符、角动量Z分量算符的本征函数,不是角动量平方算符的本征函数.C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z分量算符的本征函数.D.是体系能量算符、角动量平方算符、角动量Z分量算符的共同本征函数.97.体系处于态中,则A.是体系角动量平方算符、角动量Z分量算符的共同本征函数.B.是体系角动量平方算符的本征函数,不是角动量Z分量算符的本征函数.C.不是体系角动量平方算符的本征函数,是角动量Z分量算符的本征函数.D.即不是体系角动量平方算符的本征函数,也不是角动量Z分量算符的本征函数.98.对易关系式等于A.. B.C.. D..99.动量为的自由粒子的波函数在坐标表象中的表示是,它在动量表象中的表示是A.. B.. C.. D..100.力学量算符对应于本征值为的本征函数在坐标表象中的表示是A.. B.. C.. D..101.一粒子在一维无限深势阱中运动的状态为,其中、是其能量本征函数,则在能量表象中的表示是A..B..C..D..102.线性谐振子的能量本征函数在能量表象中的表示是A.. B.. C.. D..103. 线性谐振子的能量本征函数在能量表象中的表示是A.. B..C.. D..104.在()的共同表象中,波函数,在该态中的平均值为A.. B.. C.. D. 0.105.算符只有分立的本征值,对应的本征函数是,则算符在表象中的矩阵元的表示是A..B..C..D..106.力学量算符在自身表象中的矩阵表示是A. 以本征值为对角元素的对角方阵.B. 一个上三角方阵.C.一个下三角方阵.D.一个主对角线上的元素等于零的方阵.107.力学量算符在动量表象中的微分形式是A.. B.. C.. D..108.线性谐振子的哈密顿算符在动量表象中的微分形式是 A.. B..C.. D..109.在表象中,其本征值是A.. B. 0. C.. D..110.接上题,的归一化本征态分别为 A.. B..C.. D..111.幺正矩阵的定义式为 A.. B.. C.. D..112.幺正变换A.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢. 113.算符,则对易关系式等于A.. B..C.. D..114.非简并定态微扰理论中第个能级的表达式是(考虑二级近似)A..B..C..D..115. 非简并定态微扰理论中第个能级的一级修正项为A.. B.. C.. D..116. 非简并定态微扰理论中第个能级的二级修正项为A.. B..C.. D..117. 非简并定态微扰理论中第个波函数一级修正项为A..B..C..D..118.沿方向加一均匀外电场,带电为且质量为的线性谐振子的哈密顿为A..B..C..D..119.非简并定态微扰理论的适用条件是 A.. B..C.. D..120.转动惯量为I,电偶极矩为的空间转子处于均匀电场中,则该体系的哈密顿为A.. B..C.. D..121.非简并定态微扰理论中,波函数的一级近似公式为A..B..C..D..122.氢原子的一级斯塔克效应中,对于的能级由原来的一个能级分裂为A. 五个子能级.B. 四个子能级.C. 三个子能级.D. 两个子能级.123.一体系在微扰作用下,由初态跃迁到终态的几率为A..B..C..D..124.用变分法求量子体系的基态能量的关键是A. 写出体系的哈密顿.B. 选取合理的尝试波函数.C. 计算体系的哈密顿的平均值.D. 体系哈密顿的平均值对变分参数求变分. 125.Stern-Gerlach实验证实了A. 电子具有波动性.B.光具有波动性.C. 原子的能级是分立的.D. 电子具有自旋. 126.为自旋角动量算符,则等于A.. B.. C..D..127.为Pauli算符,则等于A.. B.. C.. D..128.单电子的自旋角动量平方算符的本征值为A.. B.. C.. D..129.单电子的Pauli算符平方的本征值为 A. 0. B. 1. C. 2. D. 3.130.Pauli算符的三个分量之积等于A. 0.B. 1.C.. D..131.电子自旋角动量的分量算符在表象中矩阵表示为A.. B..C.. D..132. 电子自旋角动量的y分量算符在表象中矩阵表示为A.. B..C.. D..133. 电子自旋角动量的z分量算符在表象中矩阵表示为A.. B..C.. D..134.是角动量算符,,则等于A.. B.. C. 1 . D. 0 .135.接上题,等于A.. B.. C.. D. 0.136.接134题,等于A.. B.. C.. D. 0.137.一电子处于自旋态中,则的可测值分别为A.. B..C.. D..138.接上题,测得为的几率分别是A.. B.. C..D..139.接137题,的平均值为A. 0.B..C.. D..140.在表象中,,则在该态中的可测值分别为A.. B.. C.. D..141.接上题,测量。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。

A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。

答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。

答案:±1/23. 薛定谔方程描述的是粒子的_________。

答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。

答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。

答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。

答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。

在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。

波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。

2. 请简要说明量子力学中的不确定性原理。

答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。

(完整版)量子力学期末考试题及解答

(完整版)量子力学期末考试题及解答

一、 波函数及薛定谔方程1.推导概率(粒子数)守恒的微分表达式;()(),,w r t J r t o t∂+∇•=∂解答:由波函数的概率波解释可知,当(),r t ψ已经归一化时,坐标的取值概率密度为()()()()2,,,,w r t r t r t r t ψψψ*== (1) 将上式的两端分别对时间t 求偏微商,得到()()()()(),,,,,w r t r t r t r t r t t t tψψψψ**∂∂∂=+∂∂∂ (2) 若位势为实数,即()()V r V r *=,则薛定谔方程及其复共轭方程可以分别改写如下形式()()()()2,,,2r t ih ir t V r r t t m h ψψψ∂=∇-∂ (3)()()()()2,,,2r t ih ir t V r r t t m hψψψ***∂=-∇+∂ (4) 将上述两式代入(2)式,得到()()()()()22,,,,,2r t ih r t r t r t r t t mψψψψψ**∂⎡⎤=∇-∇⎣⎦∂ ()()()(),,,,2ihr t r t r t r t mψψψψ**⎡⎤=∇•∇-∇⎣⎦ (5) 若令()()()()(),,,,,2ih J r t r t r t r t r t mψψψψ**⎡⎤=∇-∇⎣⎦ (6) 有()(),,0w r t J r t t∂+∇•=∂ (7) 此即概率(粒子数)守恒的微分表达式。

2.若线性谐振子处于第一激发态()2211exp 2x C x α⎛⎫ψ=- ⎪⎝⎭求其坐标取值概率密度最大的位置,其中实常数0α>。

解答:欲求取值概率必须先将波函数归一化,由波函数的归一化条件可知()()222221exp 1x dx Cx x dx ψα∞∞-∞-∞=-=⎰⎰(1)利用积分公示())2221121!!exp 2n n n n x x dx αα∞++--=⎰ (2) 可以得到归一化常数为C = (3)坐标的取值概率密度为 ()()()322221exp w x x x x ψα==- (4)由坐标概率密度取极值的条件())()3232222exp 0d w x x x x dx αα=--= (5) 知()w x 有五个极值点,它们分别是 10,,x α=±±∞(6)为了确定极大值,需要计算()w x 的二阶导数()()()232222322226222exp d w x x x x x x dx αααα⎤=----⎦)()32244222104exp x x x ααα=-+- (7)于是有()23200x d w x dx ==> 取极小值 (8)()220x d w x dx =±∞= 取极小值 (9)()23120x d w x dx α=±=< 取极大值 (10)最后得到坐标概率密度的最大值为2111w x x ψαα⎛⎫⎛⎫=±==±= ⎪ ⎪⎝⎭⎝⎭(11)3.半壁无限高势垒的位势为()()()()000x v x x a v x a ∞<⎧⎪=≤≤⎨⎪>⎩求粒子能量E 在00E v <<范围内的解。

量子力学试题含答案

量子力学试题含答案

量子力学试题含答案1. 选择题a) 以下哪个说法正确?A. 量子力学只适用于微观领域B. 量子力学只适用于宏观领域C. 量子力学适用于微观和宏观领域D. 量子力学不适用于任何领域答案:A. 量子力学只适用于微观领域b) 以下哪个量不是量子力学的基本量?A. 质量B. 电荷C. 动量D. 能量答案:D. 能量c) 下面哪个原理是量子力学的基础?A. 相对论B. Newton力学定律C. 不确定性原理D. 统计力学答案:C. 不确定性原理2. 填空题a) 波粒二象性指的是在特定条件下,微观粒子既可表现出波动性,又可以表现出粒子性。

这种相互转化的现象称为________。

答案:波粒二象性的相互转化b) ____________________是描述微观粒子运动的方程。

答案:薛定谔方程c) Ψ(x, t)代表粒子的波函数,那么|Ψ(x, t)|^2表示__________________。

答案:粒子在坐标x处被测量到的概率密度3. 简答题a) 请简要说明波粒二象性的原理和实验观察。

答案:波粒二象性原理指出,微观粒子既可表现出波动性,又可以表现出粒子性。

这意味着微观粒子的行为既可以用波动的方式来描述(例如干涉和衍射现象),也可以用粒子的方式来描述(例如在特定的位置进行观测)。

实验观察可以通过使用干涉仪和双缝实验等经典实验来验证波动性质。

当光或电子通过干涉仪或双缝实验时,会出现干涉和衍射现象,这表明了粒子具有波动性。

同时,通过探测器对光或电子的位置进行测量,可以观察到粒子的粒子性。

b) 请解释量子力学中的不确定性原理及其意义。

答案:不确定性原理是由德国物理学家海森伯提出的,它指出在测量某个粒子的某个物理量的同时,不可避免地会对另一个物理量的测量结果带来不确定性。

不确定性原理的意义在于限制了我们对微观世界的认知。

它告诉我们,粒子的位置和动量无法同时被精确地确定。

这是由于测量过程中的不可避免的干扰和相互关联性导致的。

量子力学习题及详细解答

量子力学习题及详细解答

1、设一量子体系处于用波函数()()θθπϕθψϕcos sin 41,+=i e所描述的量子态。

求(1)在该态下,z L ˆ的可能测值和各个值出现的概率;(2) z L ˆ的平均值。

解:因为球谐函数ϕθπθπi e Y Y ±±==sin 83,cos 431110 ()()⎥⎦⎤⎢⎣⎡+=+=θπθπθθπϕθψϕϕcos 43sin 83231cos sin 41,i i e e()111010113231231Y Y Y Y -=+-=可见,体系的1,0,1==m l 。

因此z L ˆ的可能测值为0或 ,且测值为0的几率为1/3,测值为 的几率为2/3。

zL ˆ的平均值为 3203132ˆ=⋅+=z L2、已知在阱宽为a 的无限深势阱中运动粒子的能量的本征值与本征函数分别为3,2,1,sin 2,22222===n ax n a ma n E n n πψπ设阱内粒子处于()x x =ψ的状态,求在该态下,能量的测值为E 1的几率。

解:对应于本征值E 1的本征函数为axa πψsin 21=。

因为在任意态ψ下,能量测值为E k 的几率为22⎰*=dx a kkψψ,因此能量测值为E 1的几率 ππψψ2012sin 2a a xdx a x a dx a ∙==⎰⎰*23212πa a =∴3、设粒子在一维无限深势阱()⎩⎨⎧><∞<<=ax x ax x U ,0,0,0中运动。

(1)求坐标的几率分布和粒子出现几率最大的位置;(2)求p x ,,并证明()⎪⎭⎫⎝⎛-=∆22226112πn a x 。

解:(1)在一维无限深势阱中,粒子能量的本征函数为()⎪⎩⎪⎨⎧><<<=a x x a x x an a x n ,0,00,sin 2πψ 坐标的几率分布为()()==2x x n ψω⎪⎩⎪⎨⎧><<<a x x a x x a n a ,0,00,sin22π粒子出现的几率最大的位置是 5,3,1,3,2,1,2===m n nmax (2)()()2sin 2020a xdx a n x a dx x x x x a n a n===⎰⎰*πψψ 0sin sin 20=⎪⎭⎫ ⎝⎛-=⎰dx x a n dx d i x a n a p a ππ ()()222220223πψψn a a dx x x x x n an-==⎰*故()⎪⎭⎫⎝⎛-=-=∆2222226112πn a x x x4、设体系处在102111Y c Y c +=ψ的状态中,式中c 1和c 2为常数。

量子力学考试题库及答案

量子力学考试题库及答案

量子力学考试题库及答案一、选择题1. 量子力学中,波函数的平方代表粒子在空间某点出现的概率密度。

下列关于波函数的描述中,哪一项是正确的?A. 波函数的绝对值平方代表粒子在空间某点出现的概率密度B. 波函数的绝对值代表粒子在空间某点出现的概率密度C. 波函数的平方代表粒子在空间某点出现的概率D. 波函数的绝对值平方代表粒子在空间某点出现的概率答案:A2. 海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。

以下哪项是海森堡不确定性原理的数学表达式?A. ΔxΔp ≥ ħ/2B. ΔxΔp ≤ ħ/2C. ΔxΔp = ħ/2D. ΔxΔp = ħ答案:A二、填空题3. 在量子力学中,粒子的波函数ψ(x,t)满足________方程,该方程由薛定谔提出,是量子力学的基本方程之一。

答案:薛定谔方程4. 根据泡利不相容原理,一个原子中的两个电子不能具有相同的一组量子数,即不能同时具有相同的________、________、________和________。

答案:主量子数、角量子数、磁量子数、自旋量子数三、简答题5. 简述量子力学中的隧道效应,并给出一个实际应用的例子。

答案:量子隧道效应是指粒子通过一个势垒的概率不为零,即使其能量低于势垒的高度。

这一现象在经典物理学中是不可能发生的。

一个实际应用的例子是扫描隧道显微镜(STM),它利用量子隧道效应来探测物质表面的原子结构。

6. 描述量子力学中的波粒二象性,并解释为什么这一概念是重要的。

答案:波粒二象性是指微观粒子如电子和光子等,既表现出波动性也表现出粒子性。

这一概念重要,因为它揭示了物质在微观尺度上的基本行为,是量子力学的核心概念之一,对理解原子和分子结构、化学反应以及材料的电子性质等方面都有深远的影响。

四、计算题7. 假设一个粒子被限制在一个宽度为L的一维无限深势阱中,求该粒子的基态能量。

答案:基态能量E1 = (π²ħ²)/(2mL²),其中ħ是约化普朗克常数,m是粒子的质量,L是势阱的宽度。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题1. 量子力学中,描述一个量子态最基本的方法是()。

A. 波函数B. 哈密顿算符C. 薛定谔方程D. 路径积分答案:A2. 海森堡不确定性原理表明,粒子的()和()不能同时被精确测量。

A. 位置,速度B. 能量,时间C. 动量,位置D. 时间,动量答案:C3. 波函数的绝对值平方代表的是()。

A. 粒子的速度B. 粒子的能量C. 粒子在某一位置出现的概率密度D. 粒子的动量答案:C4. 薛定谔方程是一个()。

A. 线性偏微分方程B. 非线性偏微分方程C. 线性常微分方程D. 非线性常微分方程答案:A5. 在量子力学中,泡利不相容原理指的是()。

A. 两个费米子不能处于同一个量子态B. 两个玻色子不能处于同一个量子态C. 所有粒子都不能处于同一个量子态D. 所有粒子都必须处于同一个量子态答案:A二、填空题1. 在量子力学中,一个粒子的波函数必须满足__________方程,才能保证波函数的归一化条件。

答案:连续性2. 量子力学的基本原理之一是观测者效应,即观测过程会影响被观测的__________。

答案:系统3. 量子纠缠是量子力学中的一种现象,其中两个或多个粒子的量子态以某种方式相互关联,以至于一个粒子的状态立即影响另一个粒子的状态,这种现象被称为__________。

答案:非局域性三、简答题1. 请简述德布罗意假说的内容及其对量子力学的贡献。

德布罗意假说提出了物质波的概念,即所有物质都具有波粒二象性。

这一假说不仅解释了电子衍射实验的现象,而且为量子力学的发展奠定了基础,使得物理学家开始将波动性质引入到粒子的描述中,从而推动了波函数理论的发展。

2. 什么是量子隧穿效应?请给出一个实际应用的例子。

量子隧穿效应是指粒子在遇到一个能量势垒时,即使其能量低于势垒高度,也有可能穿透势垒出现在另一侧的现象。

这一效应是量子力学中特有的,与经典物理学预测的结果不同。

一个实际应用的例子是半导体器件中的隧道二极管,它利用量子隧穿效应来实现电流的传导,具有非常快的开关速度和低功耗的特性。

量子力学简答100题及答案

量子力学简答100题及答案

1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么?3、力学量Gˆ在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。

6、何为束缚态?7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。

8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,)r t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。

10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关?14、在简并定态微扰论中,如 ()H0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H HH'+=ˆˆˆ0的零级近似波函数? 15、在自旋态χ12()s z 中, S x 和 S y的测不准关系( )( )∆∆S S x y 22•是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger 方程的解?17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。

18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。

19何谓选择定则。

20、能否由Schrodinger 方程直接导出自旋?21、叙述量子力学的态迭加原理。

22、厄米算符是如何定义的?23、据[aˆ,+a ˆ]=1,a a Nˆˆˆ+=,n n n N =ˆ,证明:1ˆ-=n n n a 。

量子力学习题以及课堂练习答案

量子力学习题以及课堂练习答案

一.微观粒子的波粒二象性1、在温度下T=0k 附近,钠的价电子能量约为3电子伏特,求其德布罗意波长。

2、求与下列各粒子相关的德布罗意波长。

(1)能量为100电子伏特的自由电子;(2)能量为0.1电子伏特的自由中子;(3)能量为0.1电子伏特,质量为1克的自由粒子; (4)温度T=1k 时,具有动能kTE 23=的氦原子,其中k 为玻尔兹曼常数。

3、若电子和中子的德布罗意波长等于oA 1,试求它们的速度、动量和动能。

4、两个光子在一定条件下可以转化为正负电子对,如果两电子的能量相等,问要实现这种转化,光子的波长最大是多少?5、设一电子为电势差U 所加速,最后打在靶上,若电子的动能转化为一光子,求当这光子相应的光波波长分别为5000oA (可见光)o A 1(x 射线),oA001.0(γ射线)时,加速电子所需的电势差各是多少?二.波函数与薛定谔方程1、设粒子的归一化波函数为 ),,(z y x ϕ,求 (1)在),(dx xx +范围内找到粒子的几率;(2)在),(21y y 范围内找到粒子的几率; (3)在),(21x x 及),(21z z 范围内找到粒子的几率。

2、设粒子的归一化波函数为 ),,(ϕθψr ,求:(1)在球壳),(dr rr +内找到粒子的几率;(2)在),(ϕθ方向的立体角Ωd 内找到粒子的几率; 3、下列波函数所描述的状态是否为定态?为什么?(1)Eti ix Eti ix ex ex t x---+=ψ)()(),(211ψψ[])()(21x x ψψ≠(2)tE i t E i ex ex t x 21)()(),(2--+=ψψψ)(21E E ≠(3)EtiEti ex ex t x)()(),(3ψψ+=ψ-4、对于一维粒子,设 xp i o e xπψ21)0,(=,求 ),(t x ψ。

5、证明在定态中,几率密度和几率流密度均与时间无关。

6、由下列两个定态波函数计算几率流密度。

2023高考物理量子力学练习题及答案

2023高考物理量子力学练习题及答案

2023高考物理量子力学练习题及答案一、单项选择题1. 根据量子力学的原理,下列哪个量是离散的?A. 电子的动量B. 电子的位置C. 粒子的质量D. 粒子的速度答案:B2. 在量子力学中,波粒二象性指的是什么?A. 粒子存在着波动性B. 粒子的波动速度与光速相等C. 粒子的波动性与粒子性同时存在D. 粒子的波动性只存在于空间中答案:C3. 下列哪个现象不能用经典物理学解释?A. 光的干涉与衍射现象B. 光电效应C. 康普顿效应D. 高速电子的波动性答案:D4. 以下哪项不是量子力学的基本假设之一?A. 波函数包含了粒子的全部信息B. 波函数的平方描述了粒子在不同位置出现的概率C. 粒子的位置和速度可以同时确定D. 波函数的演化遵循薛定谔方程答案:C5. 根据薛定谔方程,粒子波函数的时间演化是:A. 线性的B. 非线性的C. 随机的D. 不可逆的答案:A二、计算题1. 一束入射光照射到金属表面,发生了光电效应。

入射光的波长为550 nm,逸出功为2 eV,求最大能量的光电子的动能。

答案:入射光的能量E = hc/λ = (6.63 × 10^-34 J·s × 3.00 × 10^8 m/s) / (550 ×10^-9 m) = 1.20 × 10^-19 J最大动能K = E - φ = 1.20 × 10^-19 J - (2 × 1.60 × 10^-19 J) = -0.40 ×10^-19 J2. 一束入射电子的波长为1 nm,通过一个宽度为1 μm的狭缝后,到达屏幕上的交叉区域。

求交叉区域的宽度。

答案:交叉区域的宽度Δx = λL / d,其中L为屏幕到狭缝的距离,d为狭缝的宽度。

根据德布罗意关系,电子的波长λ = h / mv,其中h为普朗克常量,m为电子质量,v为电子速度。

将已知值代入计算,可得Δx ≈ (6.63 × 10^-34 J·s) / (9.1 × 10^-31 kg × 1 × 10^6 m/s) × (1 × 10^-9 m) / (1 × 10^-6 m) ≈ 7.3 × 10^-6 m三、解答题1. 请简要阐述波粒二象性的概念,并说明量子力学中的波函数是如何描述粒子的。

量子力学经典题目及解答.ppt

量子力学经典题目及解答.ppt

00
2 er2 d ( r 2 ) er2 0
0
2
I
,A
1
1/4
,
1
1/4
ex2 /2
<2>
2d xA 2x2 e 2xd x 1 ,(分 部 积 分 )
0
A 2 x 2e 2 xdx
A2
[ x 2e 2 x 2 xe 2 xdx ]
0
2
0 0
A2 [ 1
偶宇称解)。
解:定态schr.eq
2
2
d2 dx2
u(x)
E
(1)
u0
(x) 2(E u) 0 (1)
2
ⅠⅡ
-a
o
Ⅲ a
即,222E(u02E0), 0
xa x a
(2) (3)
令 k 2 2 2 E ,2 2 ( u 0 2 E ), 解 为 : , ( x ( ) x ) A a e e ik x x B b e e i k x x
4
f1 f
sin(
)x
2.试将以下波函数归一化:(1)Aex2/2,(2)Ax0e, xx,x00
(3)(x)Ax(ax),0xa
解:<1> 2 dx A2 ex2 dx A2I 1
2
I 2 ex2 dx e y2 dy e(x2 y2 )dxdy er2 rdrd
1khTv1c2Tv
decc2 1vv/T 3d v1c c1 2vv3/dT vc c1 2Tv2dv
----R-J公式
2.由玻尔角动量量子化条件导出氢原子能级公式E n
解: 角动量量子化条件,
ers22
Ln

30道量子力学知识选择题和答案

30道量子力学知识选择题和答案

30道量子力学知识选择题和答案1. 关于量子态,以下说法正确的是()A. 量子态是可连续变化的B. 量子态是离散的答案:B2. 量子叠加原理是指()A. 多个量子态可以同时存在B. 量子态只能有一个答案:A3. 量子纠缠现象说明了()A. 量子之间存在相互作用B. 量子之间存在非定域性关联答案:B4. 在量子力学中,测量会导致()A. 量子态的改变B. 量子态的保持不变答案:A5. 关于波函数,以下说法正确的是()A. 描述了量子系统的状态B. 是一个实数函数答案:A6. 海森堡不确定性原理涉及到哪两个物理量的不确定性()A. 位置和动量B. 能量和时间答案:A7. 量子力学中的算符表示()A. 物理量B. 对量子态的操作答案:B8. 泡利不相容原理适用于()A. 电子B. 所有费米子答案:B9. 以下哪种现象与量子力学有关()A. 黑体辐射B. 光电效应答案:B10. 在量子力学中,能量的量子化表现为()A. 能量只能取特定的值B. 能量可以连续变化答案:A11. 关于量子隧道效应,以下说法正确的是()A. 粒子可以穿过势垒B. 粒子不能穿过势垒答案:A12. 量子力学中的可观测量对应的是()A. 厄米算符B. 非厄米算符答案:A13. 狄拉克方程描述的是()A. 电子的运动B. 所有粒子的运动答案:B14. 关于量子力学的诠释,以下说法正确的是()A. 只有一种诠释是正确的B. 有多种诠释,且都有实验支持答案:B15. 量子力学中的全同粒子()A. 是完全相同的B. 可以区分答案:A16. 关于量子力学的基本假设,以下说法错误的是()A. 物理量都可以用实数来描述B. 量子态的演化是确定性的答案:AB17. 量子力学中的概率幅表示()A. 概率的大小B. 概率的相位答案:B18. 以下哪种实验验证了量子力学的基本原理()A. 双缝干涉实验B. 迈克尔逊-莫雷实验答案:A19. 量子力学中的守恒量对应的是()A. 不变的物理量B. 随时间变化的物理量答案:A20. 关于量子力学中的对称性,以下说法正确的是()A. 存在多种对称性B. 对称性与物理规律无关答案:A21. 量子力学中的密度算符描述的是()A. 量子系统的概率分布B. 量子系统的能量分布答案:A22. 以下哪种量子系统具有简并性()A. 氢原子B. 自由粒子答案:A23. 量子力学中的散射理论主要研究()A. 粒子的碰撞过程B. 粒子的传播过程答案:A24. 关于量子力学中的表象,以下说法正确的是()A. 有多种表象可以选择B. 表象是唯一确定的答案:A25. 量子力学中的时间演化算符描述的是()A. 量子态随时间的变化B. 物理量随时间的变化答案:A26. 以下哪种量子系统的能级是分立的()A. 谐振子B. 自由电子答案:A27. 量子力学中的角动量算符具有()A. 分立的本征值B. 连续的本征值答案:A28. 关于量子力学中的路径积分表述,以下说法正确的是()A. 是一种量子力学的表述方式B. 与薛定谔方程等价答案:AB29. 量子力学中的对称性破缺会导致()A. 新的物理现象B. 物理规律的改变答案:A30. 以下哪种量子系统的波函数可以用球谐函数来描述()A. 氢原子B. 原子核答案:A。

量子力学基础知识习题解答可修改全文

量子力学基础知识习题解答可修改全文

01.量子力学基础知识本章主要知识点一、微观粒子的运动特征 1. 波粒二象性:,hE h p νλ==2. 测不准原理:,,,x y z x p h y p h z p h t E h ∆∆≥∆∆≥∆∆≥∆∆≥3. 能量量子化; 二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数(,,,)x y z t ψ来描述,它包括体系的全部信息。

这一函数称为波函数或态函数,简称态。

不含时间的波函数(,,)x y z ψ称为定态波函数。

在本课程中主要讨论定态波函数。

由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于*ψψ,所以通常将用波函数ψ描述的波称为几率波。

在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将*ψψ称为几率密度,它就是通常所说的电子云;*d ψψτ为空间某点附近体积元d τ中电子出现的几率。

对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born )统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。

波函数ψ可以是复函数,ψψψ⋅=*2合格(品优)波函数:单值、连续、平方可积。

2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。

算符:作用对象是函数,作用后函数变为新的函数。

线性算符:作用到线性组合的函数等于对每个函数作用后的线性组合的算符。

11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 自厄算符:满足**2121ˆˆ()d ()d A A ψψτψψτ=∫∫的算符。

自厄算符的性质:(1)本证值都是实数;(2)不同本证值的本证函数相互正交。

3. 假设3:若某一物理量A 的算符ˆA作用于某一状态函数ψ,等于某一常数a 乘以ψ,即:ˆAa ψψ=,那么对ψ所描述的这个微观体系的状态,物理量A 具有确定的数字a 。

量子力学考试题讲解及答案

量子力学考试题讲解及答案

量子力学考试题讲解及答案一、单项选择题(每题2分,共10分)1. 量子力学中,波函数的平方代表的是:A. 粒子的位置B. 粒子的动量C. 粒子出现的概率密度D. 粒子的能量答案:C2. 根据海森堡不确定性原理,下列说法正确的是:A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和时间不能同时精确测量答案:B3. 薛定谔方程是用来描述:A. 经典力学系统B. 热力学系统C. 量子力学系统D. 电磁学系统答案:C4. 量子力学中的波粒二象性是指:A. 粒子有时表现为波动性,有时表现为粒子性B. 粒子总是同时具有波动性和粒子性C. 粒子只具有波动性D. 粒子只具有粒子性答案:B5. 量子力学中,哪个假设是关于测量的?A. 叠加原理B. 波函数坍缩C. 泡利不相容原理D. 量子纠缠答案:B二、填空题(每题2分,共10分)1. 量子力学中的波函数通常用希腊字母________表示。

答案:Ψ2. 量子力学中的德布罗意波长公式为λ = ________。

答案:h/p3. 在量子力学中,一个粒子的总能量可以表示为E = ________ + V。

答案:K.E.4. 费米子遵循的统计规律是________统计。

答案:费米-狄拉克5. 量子力学中的测不准原理是由海森堡提出的,其数学表述为ΔxΔp ≥ ________。

答案:h/4π三、简答题(每题5分,共20分)1. 简述量子力学中的波函数坍缩概念。

答案:波函数坍缩是指在量子力学中,当一个量子系统的状态被测量时,系统的波函数会从多个可能的状态中“选择”一个确定的状态,这个过程称为波函数坍缩。

2. 解释量子力学中的叠加原理。

答案:叠加原理是指在量子力学中,一个量子系统可以同时处于多个状态的叠加,即系统的波函数可以是多个不同状态波函数的线性组合。

3. 描述量子力学中的泡利不相容原理。

答案:泡利不相容原理指出,两个相同的费米子(如电子)不能处于同一个量子态,即它们不能具有相同的一组量子数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能显现。
1.3 氦原子的动能是 E 3 kT(k 为玻耳兹曼常数),求 T=1K 时,氦原子的德布罗意波长。 2
解 根据
1k K 103 eV ,
2
知本题的氦原子的动能为
E 3 kT 3 k K 1.5 103 eV , 22
显然远远小于 核 c 2 这样,便有
hc 2核c2E
即 0.51106 eV ,因此利用非相对论性的电子的能量——动量关系式,这样,便有
h p
h 2e E
hc 2ec2E
1.24 106 m 2 0.51106 3
0.71109 m
在这里,利用了
0.71nm
hc 1.24 106 eV m
以及
最后,对
ec 2 0.51 10 6 eV
1.24 106
m
2 3.7 109 1.5103
0.37109 m
这里,利用了
0.37nm
核c 2 4 931 10 6 eV 3.7 10 9 eV
最后,再对德布罗意波长与温度的关系作一点讨论,由某种粒子构成的温度为 T 的体系,
其中粒子的平均动能的数量级为 kT,这样,其相庆的德布罗意波长就为
个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则

mT
hc xk
1
把 x 以及三个物理常量代入到上式便知
mT 2.9 10 3 m K
这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波 长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
AB
2
2E
2
d 2E k
, kAB Βιβλιοθήκη 2 2E2
cos2d k
(1)
2
E
2
cos2d (2 ) k
这里 =2θ,这样,就有
2
E
2
cosd, k
根据式(1)和(2),便有
AB E
d sin 0
k
这样,便有
A E k
E n h k2
E n h
2 k
4
(2)
nh , k
x
2
2
为了积分上述方程的左边,作以下变量代换;
这样,便有
x 2E sin k
2 2
2E cos2 d
2E k
sin
n 2
h
2 2
2E cos
2E cosd n h
k
2
2
2E
2
cos2 d n h
k
2
这时,令上式左边的积分为 A,此外再构造一个积分
这样,便有
B
2
2E
2
sin 2 d k
其中 h h 2
最后,对此解作一点讨论。首先,注意到谐振子的能量被量子化了;其次,这量子化的 能量是等间隔分布的。
(2)当电子在均匀磁场中作圆周运动时,有
E 1 kx2 2
可解出
x
2E k
这表示谐振子的正负方向的最大位移。这样,根据玻尔——索末菲的量子化条件,有
3
x 2(E 1 kx2 )dx x() 2(E 1 kx2 )dx nh
x
2
x
2
x 2(E 1 kx2 )dx x 2(E 1 kx2 )dx nh
x
2
x
2
x 2(E 1 kx2 )dx n h
pdq nh
其中 q 是微观粒子的一个广义坐标,p 是与之相对应的广义动量,回路积分是沿运动轨道积 一圈,n 是正整数。
(1)设一维谐振子的劲度常数为 k,谐振子质量为μ,于是有
E p2 1 kx2 2 2
这样,便有
p 2(E 1 kx2 ) 2
这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好表示一个来 回,运动了一圈。此外,根据
处的取值是否小于零,如果小于零,那么前面求得的 m 就是要求的,具体如下:
'
8hc 6
e
1
hc kT
1
5
hc kT
1
hc
1 e kT
0
5 hc kT
1
hc
0
1 e kT
hc
5(1 e kT )
hc
kT
如果令 x= hc ,则上述方程为 kT
5(1 e x ) x
这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一
hc hc 2c2 E 2kc2T
据此可知,当体系的温度越低,相应的德布罗意波长就越长,这时这种粒子的波动性就越明
显,特别是当波长长到比粒子间的平均距离还长时,粒子间的相干性就尤为明显,因此这时
就能用经典的描述粒子统计分布的玻耳兹曼分布,而必须用量子的描述粒子的统计分布——
玻色分布或费米公布。
1.2 在 0K 附近,钠的价电子能量约为 3eV,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知
E=hv,
P h
如果所考虑的粒子是非相对论性的电子( E动 e c 2 ),那么
如果我们考察的是相对性的光子,那么
p2 E
2e
E=pc
注意到本题所考虑的钠的价电子的动能仅为 3eV,远远小于电子的质量与光速平方的乘积,
1.4 利用玻尔——索末菲的量子化条件,求: (1)一维谐振子的能量; (2)在均匀磁场中作圆周运动的电子轨道的可能半径。
已知外磁场 H=10T,玻尔磁子 M B 9 10 24 J T 1 ,试计算运能的量子化间隔△E,
并与 T=4K 及 T=100K 的热运动能量相比较。 解 玻尔——索末菲的量子化条件为
v dv v d ,
(3)

dv d
d c
v ()
d
v () c
8hc 1
,
5
hc
e kT 1
这里的 的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。
本题关注的是λ取何值时, 取得极大值,因此,就得要求 对λ的一阶导数为零,
由此可求得相应的λ的值,记作 m 。但要注意的是,还需要验证 对λ的二阶导数在 m
量子力学习题及解答
第一章 量子理论基础
1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长 m 与温度 T 成反比,

m T=b(常量);
并近似计算 b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式
vdv
8hv 3 c3
1
hv
dv ,
e kT 1
(1)
以及
v c ,
(2)
hc 2ec2 E
作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒
子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,
因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动
性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才
相关文档
最新文档