曾量子力学题库(网用)教程

合集下载

曾谨言《量子力学教程》(第3版)配套题库【课后习题-中心力场】

曾谨言《量子力学教程》(第3版)配套题库【课后习题-中心力场】

十万种考研考证电子书、题库视频学习平台
,即得
最后,计算(r-3). 对于 S 态(l=0),r→0 处φ→C(常数),所以
当 l≠0,利用题(5.7)式(7b),即得
因此
当 l→0,上式右端→∞,所以上式实际上适用于一切 l 值.
讨论:由于总能量算符及径向方程均与磁量子数优无关,所以 与 m 无关.但
2 / 18
圣才电子书 十万种考研考证电子书、题库视频学习平台

(c)μ子偶素(muonium,指μ+-μ-束缚体系). 解:(a)由于正负电子的质量均为 me,电子偶素的约化质量为
此体系的能谱为
(b)μ原子中μ子质量为mμ≈207me,原子核的质量为 M,而约化质量为:
a 为 Bohr 半径,上式右边第 2 项为屏蔽 Coulomb 势,求价电子的能级.
(c)r2 的平均值也已在题 5.9 中算出.对于本题,
因此,r 的涨落为
可见 n 越大,
越小,量子力学的结果和 Bohr 量子化轨道的图像越加接近.
5.7 按(5.1)节,式(8),中心力场V(r)中的粒子的径向方程可以写成
利用 Feynman-Hellmann 定理(见 4.7 题),证明对于处在能量本征态下的三维各向同性 谐振子,有
体系的能谱为
(c)设μ子质量为 mμ,则μ子偶素的约化质量为
,体系的能谱为
概括起来,如采用自然单位(能量自然单位是
,则这几个体系的能级公式都与
氢原子相同,即 μ的大小,其顺序如下
但每个体系的约化质量μ不同.按能量自然单位或按约化质量
电子偶素 氢原子
μ子偶素
μ原子
5.4 对于氢原子基态,计算△x△p.
解:氢原子基态波函数为

曾谨言量子力学练习题答案

曾谨言量子力学练习题答案

曾谨言量子力学练习题答案量子力学是物理学中描述微观粒子行为的一门基础理论,它在20世纪初由普朗克、爱因斯坦、波尔、薛定谔、海森堡等科学家共同发展起来。

曾谨言教授的量子力学练习题是帮助学生深入理解量子力学概念和计算方法的重要工具。

以下是一些练习题及其答案的示例:练习题1:波函数的归一化某粒子的波函数为 \( \psi(x) = A \sin(kx) \),其中 \( A \) 和\( k \) 是常数。

求波函数的归一化常数 \( A \)。

答案:波函数的归一化条件为 \( \int |\psi(x)|^2 dx = 1 \)。

将\( \psi(x) \) 代入归一化条件中,得到:\[ \int |A \sin(kx)|^2 dx = 1 \]\[ A^2 \int \sin^2(kx) dx = 1 \]利用三角恒等式 \( \sin^2(kx) = \frac{1 - \cos(2kx)}{2} \),积分变为:\[ A^2 \int \frac{1 - \cos(2kx)}{2} dx = 1 \]\[ A^2 \left[ \frac{x}{2} - \frac{\sin(2kx)}{4k} \right] = 1 \]由于波函数在 \( x = 0 \) 到 \( x = \frac{\pi}{k} \) 之间归一化,所以:\[ A^2 \left[ \frac{\pi}{2k} - 0 \right] = 1 \]\[ A = \sqrt{\frac{2k}{\pi}} \]练习题2:薛定谔方程的解考虑一个一维无限深势阱,其势能 \( V(x) = 0 \) 当 \( 0 < x < a \),\( V(x) = \infty \) 其他情况下。

求粒子的能级。

答案:在无限深势阱中,薛定谔方程为:\[ -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} = E\psi(x) \]设 \( \psi(x) = \sin(kx) \),其中 \( k = \frac{n\pi}{a} \),\( n \) 为正整数。

曾谨言《量子力学教程》(第3版)配套题库【课后习题-量子跃迁】

曾谨言《量子力学教程》(第3版)配套题库【课后习题-量子跃迁】

第11章量子跃迁11.1 荷电q的离子在平衡位置附近作小振动(简谐振动),受到光照射而发生跃迁,设照射光的能量密度为ρ(w),波长较长.求:(a)跃迁选择定则;(b)设离子原来处于基态,求每秒跃迁到第一激发态的概率.解:(a)具有电荷为q的离子,在波长较长的光的照射下,从n→n'的跃迁速率为而根据谐振子波函数的递推关系(见习题2.7)可知跃迁选择定则为(b)设初态为谐振子基态(n=0),利用可求出而每秒钟跃迁到第一激发态的概率为11.2 氢原子处于基态,受到脉冲电场的作用.试用微扰论计算它跃迁到各激发态的概率以及仍然处于基态的概率(取E0沿z轴方向来计算).【解答与分析见《量子力学习题精选与剖析》[上],10.2题,l0.3题】10.2 氢原子处于基态,受到脉冲电场作用,为常数.试用微扰论计算电子跃迁到各激发态的概率以及仍停留在基态的概率.解:自由氢原子的Hamilton量记为H0,能级记为E n,能量本征态记为代表nlm 三个量子数),满足本征方程如以电场方向作为Z轴,微扰作用势可以表示成在电场作用过程中,波函数满足Schr6dinger方程初始条件为令初始条件(5)亦即以式(6)代入式(4),但微扰项(这是微扰论的实质性要点!)即得以左乘上式两端,并对全空间积分,即得再对t积分,由即得因此t>0时(即脉冲电场作用后)电子已经跃迁到态的概率为根据选择定则终态量子数必须是即电子只跃迁到各np态(z=1),而且磁量子数m=0.跃迁到各激发态的概率总和为其中a o为Bohr半径.代入式(9)即得电场作用后电子仍留在基态的概率为10.3 氢原子处于基态,受到脉冲电场作用,为常数.求作用后(t >0)发现氢原子仍处于基态的概率(精确解).解:基态是球对称的,所求概率显然和电场方向无关,也和自旋无关.以方向作z 轴,电场对原子的作用能可以表示成以H0表示自由氢原子的Hamilton量,则电场作用过程中总Hamilton量为电子的波函数满足Schr6dinger方程初始条件为为了便于用初等方法求解式(3),我们采取的下列表示形式:的图形如下图所示.注意图11-1式(5)显然也给出同样的结果.利用式(5).,可以将式(1)等价地表示成下面将在相互作用表象中求解方程(3),即令代入式(3),并用算符左乘之,得到其中一般来说,H'和H0不对易,但因H'仅在因此一H',代入式(8)即得再利用式(1'),即得初始条件(4)等价于方程(11)满足初始条件的解显然是代入式(7),即得这是方程(3)的精确解.t>0时(电场作用以后)发现电子仍处于基态的概率为计算中利用了公式利用基态波函数的具体形式容易算出a o为Bohr半径.将上式代入式(15),即得所求概率为这正是上题用微扰论求得的结果,为跃迁到各激发态的概率总和.11.3 考虑一个二能级体系,Hamilton量H0表示为(能量表象)设t=0时刻体系处于基态,后受到微扰H'作用(α,β,γ为实数)求t时刻体系跃迁到激发态的概率.【解答与分析见《量子力学习题精选与剖析》[上],10.4题】10.4 有一个二能级体系,Hamilton量记为H0,能级和能量本征态记为E1,。

曾谨言《量子力学教程》(第3版)配套模拟试题及详解(一)

曾谨言《量子力学教程》(第3版)配套模拟试题及详解(一)

曾谨言《量子力学教程》(第3版)配套模拟试题及详解(一)一、简答题(每小题5分,共20分。

) 1.什么是光电效应?解:光照到金属表面导致大量电子从金属中逸出的现象即为光电效应。

2.厄密算符的本征值是实数吗?量子力学中表示力学量的算符是不是都是厄密算符? 答:是。

以λ表示F 的本征值,ψ表示所属的本征函数,则λψψ=F ,因为F 是厄密算符,于是有⎰⎰=dx dx ψψλψψλ***,由此得λλ=*,即λ是实数。

3.氢原子处于3p 态的电子径向Schr ōdinger 方程是什么?该态下哈密顿算符H ˆ和角动量平方算符2ˆL的本征值呢? 答:氢原子电子径向薛定谔方程为:0)1(2122222=⎥⎦⎤⎢⎣⎡+-⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛R r l l r e E dr dR r dr d r μ 对于3p 态电子,2418e E μ-=。

哈密顿算符本征值为2418e μ-,角动量平方算符本征值222)1(=+l l 。

4.自旋可以在坐标表象中表示吗?答:自旋是内禀角动量,与空间运动无关,故不能在坐标空间表示出来。

二、(25分)粒子在一维势场中运动,设其束缚态波函数为试求粒子相应的能量及势场。

解:由波函数得代入下式得取x =0时,V (x )=0,则,故本题所求为三、(25分)一粒子在一维势场0()00x U x x a x a ∞<⎧⎪=⎨⎪∞>⎩,, ≤≤,中运动。

(1)求粒子的能级和对应的波函数。

(2)若已知t =0时,该粒子状态为))()((21)0,(21x x x ψψψ+=,求t 时刻该粒子的波函数。

(3)求t 时刻测量到粒子的能量分别为1E 和2E 的几率是多少? (4)求t 时刻粒子的平均能量E 和平均位置x 。

解:(1)22222n maE n π=(n=1,2,3,…)可见E 是量子化的。

对应于n E 的归一化的定态波函数为:⎪⎩⎪⎨⎧><≤≤=-a x a x ax xea n at x t E n in n ,,00,sin 2),(πψ(2)t 时刻的波函数:1212(,)()()iE t iE tx t x e x e ψψψ--⎡⎤=+⎥⎦(3)t 时刻测量到粒子的能量为1E 的几率是:21),(),(21=t x t x ψψt 时刻测量到粒子的能量为2E 的几率是:21),(),(22=t x t x ψψ (4)平均能量:ˆ(,)(,)(,)(,)E x t Ex t x t i x t tψψψψ∂==∂ 22122524E E maπ+== 平均位置:12216()(,)(,)cos 29a a E E t x x t x x t ψψπ-⎡⎤==-⎢⎥⎣⎦四、(25分)对于自旋2的体系,求x y σσ+的本征值和本征态,并在较小的本征值对应的本征态中,求测量y S 得2的概率和x S 的平均值。

曾谨言《量子力学教程》(第3版)配套题库【课后习题-微扰论】

曾谨言《量子力学教程》(第3版)配套题库【课后习题-微扰论】

第10章微扰论10.1 设非简谐振子的Hamilton量表示为为实数)用微扰论求其能量本征值(准到二级近似)和本征函数(准到一级近似).解:能量的本征值和归一化本征态(无简并)为利用Hermite多项式的递推关系得对于非简并态的微扰论,能量的一级修正为0,因为能量的二级修正值为由式(6)可知,只当m取(n-3),(n-1),(n+1),(n+3)四个值时才有贡献,即由此可得在准确到二级近似下体系能量值为在准确到一级近似下,能量本征函数为10.2 考虑耦合谐振子(λ为实常数,刻画耦合强度).(a)求出的本征值及能级简并度;(b)以第一激发态为例,用简并微扰论计算对能级的影响(一级近似);(c)严格求解H的本征值,并与微扰论计算结果比较,进行讨论,提示作坐标变换,令称为简正坐标,则H可化为两个独立的谐振子。

【详细分析和解答见《量子力学》卷Ⅰ,518~521页】答:Hamilton量为其中与a分别表示两个谐振子的坐标,最后一项是刻画两个谐振子相互作用的耦合项表示耦合的强度,设比较小,把H中的看成微扰,而取为它表示两个彼此独立的谐振子,它的本征函数及本征能量可分别表为令则能量表示式可改为由式(6)可以看出,对于情况,能级是简并的,简并度为(N+1).(为什么?)以N=1为例,能级为二重简并,能量本征值为相应的本征函数为与(或者它们的线性叠加).为表示方便,记并选与为基矢,利用谐振子的坐标的矩阵元公式,可以求得微扰W=的矩阵元如下:可得出能量的一级修正为因此,原来二重简并的能级变成两条,能量分别为能级简并被解除,类似还可以求其他能级的分裂,如下图所示.本题还可以严格求解,作坐标变换,令其逆变换为容易证明因此,Schrodinger方程化为令即于是方程(13)变为是两个彼此独立的谐振子,其解可取为相应的能量为当时,由式(14),得此时例如,N=1的情况,(n1,n2)=(1,O)与(0,1),相应的能量分别为能级分裂这与微扰论计算结果式(8)一致.10.3 一维无限深势阱(0<x<a)中的粒子,受到微扰作用求基态能量的一级修正。

曾谨言《量子力学教程》(第3版)配套题库【课后习题-力学量随时间的演化与对称性】

曾谨言《量子力学教程》(第3版)配套题库【课后习题-力学量随时间的演化与对称性】

第4章力学量随时间的演化与对称性4.1 判断下列提法的正误:(正确○,错误×)(a)在非定态下,力学量的平均值随时间变化;(×)(b)设体系处于定态,则不含时力学量的测值的概率分布不随时间变化;(○)(c)设Hamilton量为守恒量,则体系处于定态;(×)(d)中心力场中的粒子,处于定态,则角动量取确定值;(×)(e)自由粒子处于定态,则动量取确定值;(×)(f)一维粒子的能量本征态无简并;(×)(g)中心力场中的粒子能级的简并度至少为(2ι/+1),ι=0,1,2,….(○)4.2 设体系有两个粒子,每个粒子可处于三个单粒子态φ1、φ2、φ3中的任何一个态.试求体系可能态的数目,分三种情况讨论:(a)两个全同Bose子;(b)两个全同Fermi子;(c)两个不同粒子.【解答与分析见《量子力学习题精选与剖析》[下],7.1题.】7.1 考虑由两个全同粒子组成的体系.设可能的单粒子态为φ1、φ2、φ3,试求体系的可能态数目.分三种情况讨论:(a)粒子为Bose子(Bose统计);(b)粒子为Fermi 子(Fermi统计);(c)粒子为经典粒子(Boltzmann统计).解:以符号△、○、口分别表示φ1、φ2、φ3态.Bose子体系的量子态对于两个粒子的交换必须是对称的,Fermi子体系则必须是反对称的,经典粒子被认为是可区分的,体系状态没有对称性的限制.当两个粒子处于相同的单粒子态时,体系的状态必然是交换对称的,这种状态只能出现于Bose子体系和经典粒子体系,体系波函数的构造方式为当两个粒子处于不同的单粒子态(φi和φj,i≠j)时,如果是经典粒子,有两种体系态,即由单粒子态φi和φj可以构成对称和反对称的体系态各一种,即对称态适用于Bose子体系,反对称态适用于Fermi子体系.对于两粒子体系来说,Bose子体系的可能态总数与Fermi子体系的可能态总数之和,显然正好等于经典粒子(可区分粒子)体系的可能态总数.如可能的单粒子态为k个,则三种两粒子体系的可能态数目如下:经典粒子N=k2本题k=3,Fermi子、Bose子、经典粒子体系的可能态数目分别为3、6、9.体系态的构造方式如下:Bose子体系态(共6种,均为交换对称态)有Fermi子体系态(反对称态)只有3种:当全同粒子体系的粒子数超过两个时,一般来说,对于粒子间的交换完全对称的状态(适用于Bose子)数目与完全反对称的状态(适用于Fermi子)数目之和,总是小于没有对称性限制的体系状态(适用于经典粒子)总数.亦即,后者除了完全对称态和完全反对称态,还有一些没有对称性或只有混杂对称性的状态.例如,由三个全同粒子组成的体系,如可能的单粒子态有3种,则在Boltzmann统计、Bose统计、Fermi统计下,体系的可能态数目分别为27、10和1.4.3 设体系由3个粒子组成,每个粒子可能处于3个单粒子态(φ1,φ2和φ3)中任何一个态,分析体系的可能态的数目,分三种情况:(a)不计及波函数的交换对称性;(b)要求波函数对于交换是反对称;(c)要求波函数对于交换是对称.试问:对称态和反对称态的总数为多少?与(a)的结果是否相同?对此做出说明.解:(a)不计及波函数的交换对称性,其可能态的数目为33=27;(b)要求波函数对于交换是反对称的,其可能态的数目为1;(c)要求波函数对于交换是对称的,其可能态的数目为1+6+3=10(参见《量子力学教程》4.5.4节,94页的例题).对称态和反对称态的总数=10+1=11,而不计及交换对称性的量子态的数目(即(a)的结果)为27,两者并不相同.原因在于全同粒子的交换对称性对量子态的限制所造成.4.4 设力学量A不显含t,H为体系的Hamilton量,证明证明:对于不显含t的力学量A,有上式两边再对t求导,则有即4.5 设力学量A不显含t,证明在束缚定态下证明:定态是能量本征态,满足对于束缚态,是可以归一化的,即取有限值.而对于不显含t的力学量A,因此4.6 表示沿z方向平移距离口的算符.证明下列形式波函数(Bloch波函数):是D x(a)的本征态,相应本征值为证明:利用可得而对于形式为的波函数所以,即是D x(a)的本征态,相应本征值为e-ika.4.7 设体系的束缚能级和归一化能量本征态分别为En和,n为标记包含Hamilton 量H在内的力学量完全集的本征态的一组好量子数.设H含有一个参数A,证明此即Feynman-Hellmann定理.【证明见《量子力学习题精选与剖析》[下],5.1题.】5.1 设量子体系的束缚态能级和归一化能量本征态分别为E n和(n为量子数或编号数),设λ为Hamilton算符H含有的任何一个参数.证明(1)这称为Feynman-Hellmann定理.以后简称F-H定理.证明:满足能量本征方程(2)其共轭方程为(2')视λ为参变量,式(2)对λ求导,得到(3)以左乘式(3),利用式(2')和归一化条件,即得式(1).4.8 设包含Hamilton量H在内的一组守恒量完全集的共同本征态和本征值分别为丨n>和E n,n为一组完备好量子数.证明,力学量(算符)F随时间的变化,在此能量表象中表示为【证明见《量子力学习题精选与剖析》[下],2.1题.】2.1 给定总能量算符H(,,p),以表示其本征值和本征函数.态矢量简记为按照Heisenber9运动方程,力学量算符A(r,p)的时间变化率为(1)定义能量表象中矩阵元(2)证明(3)其中。

曾谨言《量子力学教程》(第3版)配套题库【名校考研真题-波函数与Schr

曾谨言《量子力学教程》(第3版)配套题库【名校考研真题-波函数与Schr
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 1 章 波函数与 Schrödinger 方程
一、选择题
1.光子和电子的波长都为 5.0 埃,光子的动量与电子的动量之比是多少?( )[中
南大学 2009 研]
A.1
B.3×1010
C.3.3×10-11
D.8.7×10-21
涉图像位置.C 项,电子能量增加并不会改变屏的特征光谱,不会变蓝.D 项,题中提到狭
2/7
圣才电子书 十万种考研考证电子书、题库视频学习平台

缝间距尺寸在德布罗意波长数量级,在电子能量变化不是很大时,电子波长应该仍与狭缝间 距相当,干涉图样不会消失.
4.题 2 中,如果两缝之间距离加倍,则干涉图样中相邻最大值之间距离( ).[中 南大学 2009 研]
A.干涉图样向装探测器的狭缝移动 B.干涉图样中相邻最大值之间距离改变 C.干涉图样பைடு நூலகம்失 D.干涉图样变弱
4/7
圣才电子书

【答案】C
十万种考研考证电子书、题库视频学习平台
【解析】由题意,通过该狭缝的电子位置将会由于测不准原理导致光子动量 P h 不
确定,以至于电子波长和频率会受到极大干扰,从狭缝射出的光波将不再是相干光,而干涉
2.试表述量子态的叠加原理并说明叠加系数是否依赖于时空变量及其理由.[南京大学 2009 研]
图 1-1
1/7
圣才电子书

A.向上移动距离 d
十万种考研考证电子书、题库视频学习平台
B.向下移动距离 d
C.向上移动距离 d/2
D.向下移动距离 d/2
【答案】B
【解析】分析未移动前位于屏幕正中间的点,令偏上的光线为 a,偏下的光线为 b,未

曾谨言《量子力学教程》(第3版)配套题库【课后习题-量子力学的矩阵形式与表象变换】

曾谨言《量子力学教程》(第3版)配套题库【课后习题-量子力学的矩阵形式与表象变换】

圣才电子书 十万种考研考证电子书、题库视频学习平台

在能量本征态 下逐项计算平均值,并利用公式
即得
式(3)加式(4),再减式(5)和(6),即得式(1).
注意:如
和 并无简单关系.如 F 为厄米算符,即
,则

这时
,式(1)就变成《量子力学习题精选与剖析》[下]题 2.4 式(1).
类似有
AC+CA=0
(b)由于
,可知其本征值为±1,又按假定,A 本征态无简并,所以,在 A 表象
中 A 的对角矩阵表示为
设 B 的矩阵为
由 AB+BA=0,得

1/8
圣才电子书 十万种考研考证电子书、题库视频学习平台

所以
,即
又由
,有
所以 bc=1,因而 B 的矩阵表示为
8/8
在 sz 表象中可以表示为
证明:按假设, 不妨取
.基矢的正交完备性表现为
可以验证,假想的自旋算符的 2 维矩阵表示分别为
与《量子力学教程》8.1 节,(21)式(Pauli 矩阵)比较. 【参见《量子力学教程》8.1 节,(21)式.】
7.9 设 F 为体系的一个可观测量(厄米算符),H 为体系的 Hamilton 量,证明在能量 表象中的下列求和规则:
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 7 章 量子力学的矩阵形式与表象变换
7.1 设矩阵 A、B、C 满足
(a)证明

(b)在 A 表象中(设无简并),求出 B 和 C 的矩阵表示.
解:(a)对
分别右乘 B 和左乘 B,利用
,得
(1)+(2)得
AB+BA=0
式(2)取共轭,得到 和式(2)相加,即得式(1)。

曾谨言《量子力学教程》(第3版)配套题库【章节题库-自 旋】

曾谨言《量子力学教程》(第3版)配套题库【章节题库-自 旋】

第8章 自 旋一、填空题1.称______等固有性质______的微观粒子为全同粒子。

【答案】质量;电荷;自旋;完全相同2.对氢原子,不考虑电子的自旋,能级的简并度为______,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为______。

【答案】n 2;2n 23.一个电子运动的旋量波函数为,则表示电子自旋向上、位置在处的几率密度表达式为______,表示电子自旋向下的几率的表达式为______。

【答案】;二、名词解释题 电子自旋。

答:电子的内禀特性之一:(1)在非相对论量子力学中。

电子自旋是作为假定由Uhlenbeck 和Goudsmit 提出的:每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值:;每个电子具有自旋磁矩M s ,它和自旋角动量的关系式:。

(2)在相对论量子力学中,自旋象粒子的其他性质—样包含在波动方程中,不需另作假定。

三、简答题 1.请用泡利矩阵,,定义电子的自旋算符,并验证它们满足角动量对易关系。

答:电子的自旋算符,其中,i =x ,y ,z 。

()()()z ,2,,2r r s r ψψψ⎛⎫= ⎪ ⎪-⎝⎭r ()2,/2r ψ()23d ,/2rr ψ-⎰2±=z s μμ2e M S e M sz s ±=→-=⎪⎪⎭⎫ ⎝⎛=0110xσ⎪⎪⎭⎫ ⎝⎛-=00i i y σ⎪⎪⎭⎫ ⎝⎛-=1001zσi iS σˆ2ˆ=2.写出由两个自旋态矢构成的总自旋为0的态矢和自旋为1的态矢。

答:总自旋为0。

总自旋为1: 。

3.写出泡利矩阵。

答:,,4.试设计一实验,从实验角度证明电子具有自旋,并对可能观察到的现象作进一步讨论。

答:让电子通过一个均匀磁场,则电子在磁场方向上有上下两取向,再让电磁通过一非均匀磁场,则电子分为两束。

5.完全描述电子运动的旋量波函数为,试述及分别表示什么样的物理意义。

答:表示电子自旋向下,位置在处的几率密度;表示电子自旋向上的几率。

曾量子力学题库

曾量子力学题库

一、简述题:1. (1)试述Wien 公式、Rayleigh-Jeans 公式和Planck 公式在解释黑体辐射能量密度随频率分布的问题上的差别2. (1)试给出原子的特征长度的数量级(以m 为单位)及可见光的波长范围(以Å为单位)3. (1)试用Einstein 光量子假说解释光电效应4. (1)试简述Bohr 的量子理论5. (1)简述波尔-索末菲的量子化条件6. (1)试述de Broglie 物质波假设7. (2)写出态的叠加原理8. (2)一个体系的状态可以用不同的几率分布函数来表示吗?试举例说明。

9. (2)按照波函数的统计解释,试给出波函数应满足的条件10.(2)已知粒子波函数在球坐标中为),,(ϕθψr ,写出粒子在球壳),(dr r r +中被测到的几率以及在),(ϕθ方向的立体角元ϕθθΩd d d sin =中找到粒子的几率。

11.(2)什么是定态?它有哪些特征? 12.(2))()(x x δψ=是否定态?为什么? 13.(2)设ikre r1=ψ,试写成其几率密度和几率流密度 14.(2)试解释为何微观粒子的状态可以用归一化的波函数完全描述。

15.(3)简述和解释隧道效应16.(3)说明一维方势阱体系中束缚态与共振态之间的联系与区别。

17.(4)试述量子力学中力学量与力学量算符之间的关系 18.(4)简述力学量算符的性质 19.(4)试述力学量完全集的概念20.(4)试讨论:若两个厄米算符对易,是否在所有态下它们都同时具有确定值?21.(4)若算符Aˆ、B ˆ均与算符C ˆ对易,即0]ˆ,ˆ[]ˆ,ˆ[==C B C A ,A ˆ、B ˆ、C ˆ是否可同时取得确定值?为什么?并举例说明。

22.(4)对于力学量A 与B ,写出二者在任何量子态下的涨落所满足的关系,并说明物理意义。

23.(4)微观粒子x 方向的动量x p ˆ和x 方向的角动量xL ˆ是否为可同时有确定值的力学量?为什么? 24.(4)试写出态和力学量的表象变换的表达式25.(4)简述幺正变换的性质26.(4)在坐标表象中,给出坐标算符和动量算符的矩阵表示 27.(4)粒子处在2221)(x x V μω=的一维谐振子势场中,试写出其坐标表象和动量表象的定态Schr ödinger 方程。

曾谨言《量子力学教程》(第3版)配套题库【名校考研真题-一维势场中的粒子】

曾谨言《量子力学教程》(第3版)配套题库【名校考研真题-一维势场中的粒子】

第2章 一维势场中的粒子一、选择题一维自由电子被限制在x 和x +Δx 处两个不可穿透壁之间,Δx =0.5埃,如果E 0是电子最低能态的能量,则电子的较高一级能态的能量是多少?( )[中南大学2009研]A .2E 0B .3E 0C .4E 0D .8E 0 【答案】C【解析】一维无限深方势阱中能级公式为2222n 2a n E μπ =,则可知,较高级能量与基态能量比值为412212=⎪⎭⎫⎝⎛=E E ,由题意,基态能量为01E E =,则第一激发态能量为024E E =二、填空题1.自由粒子被限制在x 和x +1处两个不可穿透壁之间,按照经典物理.如果没有给出其他资料,则粒子在x 和x +1/3之间的概率是______.[中南大学2010研]A .025B .033C .011D .067 【答案】B【解析】按照经典力学,粒子处于空间的概率密度为常数,故概率与体积成正比,即所求概率为2.上题中,按照量子力学.处于最低能态的粒子在x 和x +l/3之间被找到的概率是______.[中南大学2010研]A .019B .072C .033D .050 【答案】A【解析】取x 为原点,则有波函数为ax a x πsin 2)(=ψ 所求概率即19.04331)2sin 23(1sin 2)(3030322≈-=-==ψ=⎰⎰ππππlll l x l x l l x l dx x P三、计算题1.在一维情况下,若用P ab (t )表示时刻t 在a <x <b 区间内发现粒子的几率. (a )从薛定谔方程出发,证明=J (a ,t )-J (b ,t ),其中J (x ,t )是几率流密度.(b )对于定态,证明几率流密度与时间无关.[华南理工大2009研] 解:(a )设t 时刻粒子的波函数ψ(x,t),波函数满足薛定谔方程:22(,)2ˆ(,)(,)(,)i x t H x V x x t t t t μψψψ-∇⎛⎫∂== ⎪∂+⎝⎭(1)对(1)两端取复共轭得,***22ˆ(,)(,)(,(,))2i x t H x t x t t V x t μψψψ-⎛⎫∂-== ⎪∂⎝⎭∇+ (2)做运算*(,)(1)(,)(2)x t x t ψψ⨯-⨯得()()∙**2*222**2(,)(,)(,)(,)(,)(,)(,)(,)(,)(,2)i x t x t x t x t x t x t t x t x t x t x t ψψψψψψψψψμψμ-∇∇-∇∇∂⎡⎤=⎣⎦∇-∂=-上式两边同除以i 移项得,()∙***(,)(,)(,)(,)(,)(,)02x t x t x t x t x t x i t t ψψψψψμψ-∇∇∂⎡⎤-=⎣⎦∇∂ 则几率流密度公式为**(,)2i j x t mψψψψ∇∇⎡⎤=⎣⎦(x,t)(x,t)-(x,t)(x,t), 上式可表示为∙*(,)(j x t ,)0(,)x t x t tψψ∂⎡∂-∇⎤=⎣⎦,两端积分得: ∙*a b a b (,),0j ()(x,t)x t x t t ψψ∂⎡⎤-∇=⎣⎦∂⎰⎰又由于t 时刻在区间(a ,b )内发现粒子的几率为:*b ()ba aP t dx ψψ=⎰(x,t)(x,t)代入上式可得,b ()(,)(,t )a dP t J a t J b dt=- (b )对于定态波函数=()iEtx eψϕ-(x,t),代入几率流密度方程**(,)2i j x t mψψψψ∇∇⎡⎤=⎣⎦(x,t)(x,t)-(x,t)(x,t)可得, **()2()()()()x x i j x mx x ϕϕϕϕ∇∇⎡⎤=⎣⎦- 是一个与t 无关的量,故定态的几率流密度与时间无关.2.证明ψ(x )=A (2α2x 2-1)是线性谐振子的本征波函数,并求此本征态对应的本征能量.式中A 为归一化常数,[华南理工大2009研]解:已知线性谐振子的定态波函数和本征能量为22/2()()x n n n x N eH x αψα-=,12n E n ω⎛⎫=+ ⎪⎝⎭,0,1,2,,n n N ==22012()1,()2,()42,...H x H x x H x x ααααα===-本题中波函数2222/22222/2()(21)42)2(x x A x A x e x eααψαα--=--=()22/2222()22x A A H x e x N ααψ-== 所以()x ψ是线性谐振子的本征波函数,对应量子数n =2,因此容易得到其,本征能量为252E ω=3.质量为m 的粒子在宽度为a 的一维无限深势阱中运动.(a )建立适当的坐标系,写出哈密顿算符,求解定态薛定谔方程. (b )当粒子处于状态ψ(x )=ψ1(x )+ψ2(x )时,求测量粒子能量时的可能取得及相应的概率.其中ψ1(x )和ψ2(x )分别是基态和第一激发态.(c )若上式的ψ(x )是t =0时刻的波函数,求粒子在其后任意时刻的波函数.[华南理工大学2010研]解:(a )如图建立坐标系,图2-1设0,0(),0,x aV x x x a <<⎧=⎨∞<>⎩,哈密顿算符222()2d V x dx H μ-+= 波函数()x ψ满足薛定谔方程22()()()2V x x E x ψψμ⎡⎤-∇+=⎢⎥⎣⎦当0,x x a <>时,()x ψ=0;当0x a <<时,222()()2d x E x dxψψμ-= 令22Ek μ=,则 222()()0d x k x dxψψ+=的通解可表示为 ()sin cos x A kx B kx ψ=+利用边界条件(0)0,()0a ψψ==得,0,1,2,3,...,k=n B n aπ== ()sin x A kx ψ= 由归一化可解得A =,0(),0,n0n n x ax a x x x a πψ<<=<>⎩对应的定态能量为2222,1,2,2nn E n aπμ==(b )当粒子处于态()()()1212x x x ψψ=+时,能量的可能值及几率为: 2212,2E a πμ=几率1/4 ; 22222,E aπμ=几率3/4(c )任意时刻t 的波函数可以表示为下面形式()(),n iE tn n x t C x eψψ-=∑,其中()()*,0n n C x x dx ψψ=⎰,在此题中112C =,1C =故任意时刻t 的波函数()()()121213,22iE t iE t x t x ex e ψψψ--=+,其中2212,2E aπμ=22222,E aπμ=4.粒子的一维运动满足薛定谔方程:.(1)若ψ1(x ,t )和ψ2(x ,t )是薛定谔方程的两个解,证明与时间无关.(2)若势能V 不显含时间t ,用分离变数法导出不含时的薛定谔方程,并写出含时薛定谔方程的通解形式.[华南理工大学2011研]解:(1) 证:)2.........()2(),1........()2(22221221ψψψψV mt i V mt i +∇-=∂∂+∇-=∂∂取式(1)之复共轭,得........)2(*122*1ψψV mt i +∇-=∂∂-。

曾量子力学题库(网用)(1)讲解

曾量子力学题库(网用)(1)讲解

一、简述题:1. (1)试述Wien 公式、Rayleigh-Jeans 公式和Planck 公式在解释黑体辐射能量密度随频率分布的问题上的差别2. (1)试给出原子的特征长度的数量级(以m 为单位)及可见光的波长范围(以Å为单位)3. (1)试用Einstein 光量子假说解释光电效应4. (1)试简述Bohr 的量子理论5. (1)简述波尔-索末菲的量子化条件6. (1)试述de Broglie 物质波假设7. (2)写出态的叠加原理8. (2)在给定的状态中测量某一力学量可得一测值概率分布。

问在此状态中能否测得其它力学量的概率分布?试举例说明。

9. (2)在给定状态下测量某一力学量,能测量到什么程度? 10.(2)按照波函数的统计解释,试给出波函数应满足的条件11.(2)假设一体系的基态波函数在全空间上都大于零,试解释是否存在某一激发态,该激发态在全空间范围内也都大于零。

12.(2)已知粒子波函数在球坐标中为),,(ϕθψr ,写出粒子在球壳),(dr r r +中被测到的几率以及在),(ϕθ方向的立体角元ϕθθΩd d d sin =中找到粒子的几率。

13.(2)什么是定态?它有哪些特征? 14.(2))()(x x δψ=是否定态?为什么? 15.(2)设ikre r1=ψ,试写成其几率密度和几率流密度 16.(2)试解释为何微观粒子的状态可以用归一化的波函数完全描述。

17.(3)简述和解释隧道效应18.(3)一维无限深势阱体系⎩⎨⎧><∞≤≤=a x x a x x V or 000)(⎩⎨⎧><∞≤≤=ax x a x x V or 000)(处于状态 )(21)(ikx ikx e e a x --=ψ,其中ak π2=,请问该状态是否是定态?为什么? 19.(3)说明一维方势阱体系中束缚态与共振态之间的联系与区别。

20.(3)某一维体系,粒子的势能为222x μγ,其中μ为粒子质量,说明该体系是什么体系,并写出体系能量的可能取值。

曾谨言《量子力学教程》(第3版)配套题库【课后习题-力学量用算符表达】

曾谨言《量子力学教程》(第3版)配套题库【课后习题-力学量用算符表达】

第3章力学量用算符表达3.1 设A与B为厄米算符,则和也是厄米算符,由此证明:任何一个算符F均可分解为,F+与F-均为厄米算符.证明:因为即和均为厄米算符而F+与F-显然均为厄米算符.3.2 已知粒子的坐标r和动量p为厄米算符,判断下列算符是否为厄米算符:如果不是,试构造相应的厄米算符.解:对于l=r×P,有同理所以是厄米算符,对于r·P,有所以r·P不是厄米算符,而相应的厄米算符为类似有,本身非厄米算符,但可以构造相应的厄米算符如下:(参见3.8题),本身也非厄米算符,但可以构造相应的厄米算符如下:3.3 设F(x,p)是x和p的整函数,证明整函数是指F(x,p)可以展开成.证明:利用类似可证明.3.4 定义反对易式,证明证明:所以类似所以3.5 设A、B、C为矢量算符,A和B的标积和矢积定义为α、β、γ分别取为为Levi-Civita符号,试验证【证明见《量子力学习题精选与剖析》[上],4.1题】4.1 设A、B、C为矢量算符,其直角坐标系分量为A=(A x,A y,A z)=(A1,A2,A3)等等,A、B的标积和矢积定义为等等,试验证下列各式:A·(B×C)=(A×B)·C (3)[A×(B×C)]α=A·(BαF)-(A·B)Cα(4)[(A×B)×C]α=A·(BαC)-Aα(B·C)(5)证明:式(3)左端写成分量形式,为其中εαβγ为Levi—CiVita符号,即ε123=ε231=ε312=1ε132=ε213=ε321=-1 (6)εαβγ=α、β、γ中有两个或三个相同式(3)右端也可化成故得验证式(4),以第一分量为例,左端为[A×(B×C)]1 =A2(B×C)3 A3(B×C)2=A2(B1C2-B2C1)-A3(B3C1-B1C3)=A2B1C2+A3B1C3-(A2B2+A383)C1 (8)而式(4)右端第一分量为A(B1C)-(A·B)C1=A1B1C1+A2B1C2+A3b1C3-(A1B1+A2B2+A3B3)C1=A2B1C2+A3B1C3-(A2B2+A3B3)C1和式(8)相等,故式(4)成立.同样可以验证式(5).式(4)和(5)有时写成下列矢量形式:A与C间联线表示A和C取标积.(但是B的位置在A、C之间)如果A、B、C互相对易,上二式就可写成A×(B×C)=(A·C)B-(A·B)C(A×B)×C=(A·C)B-A(B·C)这正是经典物理中的三重矢积公式.3.6 设A与B为矢量算符,F为标量算符,证明【证明见《量子力学习题精选与剖析》[上],4.2题】4.2 设A、B为矢量算符,F为标量算符,证明[F,A·B]=[F,A]·B+A·[F,B] (1)[F,A×B]=[F,A]×B+A×[F,B] (2)证明:式(1)右端等于(FA-AF)·B+A·(FB-BF)=FA·B-A·BF=[F,A·B] 这正是式(1)左端,故式(1)成立.同样可以证明式(2).3.7 设F是由r与p的整函数算符,证明【证明见《量子力学习题精选与剖析》[上],4.3题】4.3 以,r、表示位置和动量算符,为轨道角动量算符,为由r、构成的标量算符.证明证明:利用对易式以及题4.2式(2),即得此即式(1)。

曾谨言《量子力学教程》(第3版)配套题库【课后习题-一维势场中的粒子】

曾谨言《量子力学教程》(第3版)配套题库【课后习题-一维势场中的粒子】

第2章一维势场中的粒子2.1 设粒子限制在矩形匣子中运动,即求粒子的能量本征值和本征波函数,如a=b=c,讨论能级的简并度。

解:在匣子内即其中采用直角坐标系,方程的解可以分离变量。

再考虑到边条件能量本征函数可表示为再考虑到可以求出粒子的能量本征值为而归一化的能量本征函数为对于方匣子a=b=c,能级的简并度为满足条件的正整数解的个数。

【参阅:《量子力学》,卷Ⅱ,PP.420~421,练习2】2.2 设粒子处于一维无限深方势阱中,证明处于能量本征态的粒子,讨论的情况,并与经典力学计算结果比较.证明:设粒子处于第n个本征态,其本征函数为在经典情况下,在区域(0,a)中粒子处于dx范围中的概率为,所以当,量子力学的结果与经典力学计算值一致.2.3 设粒子处于一维无限深方势阱中处于基态(n=1,见2.2节式(12)),求粒子的动量分布.解:基态波函数测量粒子的动量的概率分布为。

【参阅:《量子力学》,卷I,PP.87~88,练习4和练习5】2.4 设粒子处于无限深方势阱中,粒子波函数为A为归一化常数,(a)求A;(b)求测得粒子处于能量本征态的概率特别是作图,比较与曲线.从来说明两条曲线非常相似,即几乎与基态完全相同,解:(a)根据归一化条件可得,所以(b)用展开,,只当n=1,3,5,…时,才不为0,特别是,非常接近于1.考虑到归一化条件,,可知概率几乎为0,即与概率几乎完全相同.(c)图2-1(实线)(虚线)2.5 同上题,设粒子处于基态(n=1),.设t=0时刻阱宽突然变为2a,粒子波函数来不及改变,即试问:对于加宽了的无限深方势阱是否还是能量本征态?求测得粒子处于能量本征值的概率.解:对于加宽了的无限深方势阱,能量本征值和能量本征态分别为可见不再是它的能量本征态,.由于势阱突然变宽,粒子波函数和能量来不及改变,粒子能量仍保持为,而可以按展开,经过计算可得所以粒子处于,即能量仍为的概率为.2.6 设粒子(能量E>0)从左入射,碰到下图所示的势阱,求透射系数与反射系数.图2-2解:考虑上图所示势阱中粒子,可证明粒子碰到侧壁的透射系数为其中反射系数为其中不难验证概率守恒关系式2.7 利用Hermite多项式的递推关系(附录A3,式(13)),证明谐振子波函数满足下列关系:并由此证明,在态下证明:已知所以利用本征函数的正交性,可得.。

曾谨言量子力学课后答案

曾谨言量子力学课后答案

h2 2m


(rv,
t
)
+
[V1
(rv
)
+
iV2
(rv
)]ψ
(rv,
t
)
V1 与V2 为实函数。
4
(1)
(a)证明粒子的几率(粒子数)不守恒。
(b)证明粒子在空间体积τ 内的几率随时间的变化为
( ) d
dt
∫∫∫ τ
d
3 rψ

=

h 2im
∫∫
S
ψ
*∇ψ
−ψ∇ψ *
v ⋅ dS +
2V2 h
第一章、量子力学的诞生
1.1 设质量为 m 的粒子在一维无限深势阱中运动,
V
( x)
=
∞,
0,
x < 0, x > a 0< x<a
试用 de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有
a = n⋅λ 2
∴λ = 2a / n
(n = 1, 2, 3,L)
又据 de Broglie 关系
动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为 x, y, z 轴方向,把粒子沿 x, y, z 轴三个方向的运动
分开处理。利用量子化条件,对于 x 方向,有
∫ px ⋅ dx = nx h , (nx = 1, 2 ,3,L)

px ⋅ 2a = nx h ( 2a :一来一回为一个周期)
∫∫∫d 3rψ *ψ τ
证:(a)式(1)取复共轭, 得
− ih
∂ ∂t
ψ
*
=

曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解-力学量用算符表达(圣才出品)

曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解-力学量用算符表达(圣才出品)
则可定义算符 Â 的函数 F(Â)为
3 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台

(2)算符的标积
定义一个量子体系的任意两个波函数(态)ψ 与 的“标积”
以下为常用算符标积运算公式:
式中 c1 与 c2 为任意常数.
7.转置算符 算符 Â 的转置算符 A 定义为
特例 对于
利用
(h 是一个普适常数,不为 0),则有
2.(l2,lz)的共同本征态 称为球谐(spherical harmonic)函数,它们满足
l2 和 lz 的本征值者都是量子化的.l 称为轨道角动量量子数.m 称为磁量子数.
6 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台


式中
称为 Levi—Civita 符号,是一个三阶反对称张量,定义如下:
②角动量算符与动量算符之间的对易关系 ③角动量算符之间的对易关系 分开写出,即
5.逆算符 设
能够唯一地解出 ψ,则可以定义算符 Â 之逆 Â-1 为
6.算符的函数与标积 (1)算符函数 给定一函数 F(x),其各阶导数均存在,幂级数展开收敛,
3.对易力学量完全集(CSCO)与对易守恒量完全集(CSCCO)
(1)对易力学量完全集
设有一组彼此独立而且互相对易的厄米算符
,它们的共同本征态记为
也,表示一组完备的量子.设给定一组量子数 a 之后,就能够确定体系的唯一一个可能状
态,则我们称(Aˆ1,Aˆ2, )构成体系的一组对易可观测量完全集(complete set of
式中 ψ 与 φ 是任意两个波函数.
8.复共轭算符与厄米共轭算符 算符 Â 的复共轭算符 Â*.定义为

曾谨言《量子力学教程》(第3版)配套题库【课后习题-自 旋】

曾谨言《量子力学教程》(第3版)配套题库【课后习题-自 旋】

第8章自旋8.1 (a)在σz表象中,求σx的本征态;(b)求σz表象→σx表象的变换矩阵;(c)验证注意:不因表象变换而异.解:(a)在σz表象中,.设σx的本征值为λ,本征方程为即b=λa,a=2b.所以σx的归一化的本征态为(b)σz表象→σx表象的变换矩阵S为8.2 在σz表象中,求σn的本征态,是(θ,φ)方向的单位矢.解:设σ·n的本征态为本征方程为久期方程为可得出C2=1,C=±1.对于C=1有类似,对于C=-1,可得出8.3 在S z本征态下,求解:因为而所以类似有所以8.4 (a)在S z本征态下,求的可能测值及相应概率;(b)同8.2题,若电子处于σ·n=+1的自旋态下,求σ的各分量的可能测值和相应的概率以及σ的平均值.解:(a)按8.2题,σ·n的本征态为将S z的本征态按σ·n的本征态展开式中则σ·n=1的概率为σ·n=-1的概率为.(b)将σ·n=1的本征态,按σz的本征态展开σz的测值为1的概率cos2(θ/2),σz的测值为-1的概率.σz的平均值为类似将σn=1的本征态,按σx的本征态展开所以σx的测值为1的概率为.σx的测值为-1的概率为.σx的平均值.类似有σy的测值为l的概率为.σy的测值为-1的概率为.σy的平均值.8.5 (a)证明(λ为常数);(b)证明,n为A方向的单位矢量,A为常矢量;(C)证明,t r为求矩阵的对角元之和.【证明见《量子力学习题精选与剖析》[上],6.22题与6.23题.】6.22 设λ为常数,证明(1)证一:将展开成σz的级数,(2)由于,所以代入式(2),即得(2')其中故得(1)证二:由于,σz的任何正幂级数必定可以简化成(σ+bσ)的形式.因此可令(3)a、b为待定常数.将上式作用于σz的本征态,得到容易解出(4)代入式(3),即得式(1).证三:是σz的函数,在σz表象中可以表示成对角化矩阵,对角元等于其本征值.σz的本征值为的本征值为因此,在σz表象中的矩阵表示为(5)由于故得(1)算符间的关系式与表象的选择无关,故上式可以脱离σz表象而普遍成立.讨论:以上的证明过程,主要利用了σz的本征值以及如将σz改成σ在n方向的投影σn,由于σn的本征值仍为±l,而且,因此显然仍可证明(6)6.23 设A、B为实常数矢量,试将和表示成,及σx、σy、σz 的线性叠加,并计算它们的迹.解:将A写成An,n为A方向单位矢量,则(1)利用上题式(6),即得(2)其中第一项应理解成-IcosA,I为单位矩阵.第二项为σ的线性项,对迹无贡献.因此(3)类似地可以写出的表示式.因此。

曾谨言《量子力学教程》(第3版)配套题库【课后习题-电磁场中粒子的运动】

曾谨言《量子力学教程》(第3版)配套题库【课后习题-电磁场中粒子的运动】
取守恒量完全集为(H,Py,Pz),它们的共同本征函数可以写成 其中 py 和 pz 为本征值,可取任意实数.
φ (x,y,z)满足能量本征方程
5 / 10
圣才电子书

因此 φ (x)满足方程
十万种考研考证电子书、题库视频学习平台
亦即,对于 φ (x)来说,H 和下式等价:

(a)求电子的能级和本征函数;
6 / 10
,如再受到沿 z 轴
圣才电子书 十万种考研考证电子书、题库视频学习平台

(b)分别讨论 B→∞和 B→∞两种极限情况以及能级简并度的变化. 提示:电子的 Hamilton 量
节,式(3) 【详细分析及解答见《量子力学》,卷 I,7.4 节,376~379 页】
7 / 10
圣才电子书

能级简并度为∞.
十万种考研考证电子书、题库视频学习平台
在一般情况下,式(4)所示能级是不简并的.但我们有趣地注意到,在磁场强度合适
的情况下,使得
则能级会出现新的简并和新的壳结构。以下先讨论两个特殊的情况.(一般情况下的能级分 布和壳结构随磁场强度的变化,见下页图.)
Hamilton 算符为
其中
是速度算符.容易求出 v 的各分量间的对易式为
3 / 10
圣才电子书 十万种考研考证电子书、题库视频学习平台

如 q>0,令
(如 q<0,则 Q、P 的定义互换.)显然就有关系 [Q,P]=i
而 Hamilton 算符则可以写成
(6)
其中
即经典 Larrnor 频率.pz(即μvz)和 Q,P 对易.式(7)中第一

所以
利用公式
,可得
1 / 10
圣才电子书
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曾谨言量子力学题库一简述题:1. (1)试述Wien 公式、Rayleigh-Jeans 公式和Planck 公式在解释黑体辐射能量密度随频率分布的问题上的差别2. (1)试给出原子的特征长度的数量级(以m 为单位)及可见光的波长范围(以Å为单位)3. (1)试用Einstein 光量子假说解释光电效应4. (1)试简述Bohr 的量子理论5. (1)简述波尔-索末菲的量子化条件6. (1)试述de Broglie 物质波假设7. (2)写出态的叠加原理8. (2)一个体系的状态可以用不同的几率分布函数来表示吗?试举例说明。

9. (2)按照波函数的统计解释,试给出波函数应满足的条件10.(2)已知粒子波函数在球坐标中为),,(ϕθψr ,写出粒子在球壳),(dr r r +中被测到的几率以及在),(ϕθ方向的立体角元ϕθθΩd d d sin =中找到粒子的几率。

11.(2)什么是定态?它有哪些特征? 12.(2))()(x x δψ=是否定态?为什么? 13.(2)设ikre r1=ψ,试写成其几率密度和几率流密度 14.(2)试解释为何微观粒子的状态可以用归一化的波函数完全描述。

15.(3)简述和解释隧道效应16.(3)说明一维方势阱体系中束缚态与共振态之间的联系与区别。

17.(4)试述量子力学中力学量与力学量算符之间的关系 18.(4)简述力学量算符的性质 19.(4)试述力学量完全集的概念20.(4)试讨论:若两个厄米算符对易,是否在所有态下它们都同时具有确定值?21.(4)若算符Aˆ、B ˆ均与算符C ˆ对易,即0]ˆ,ˆ[]ˆ,ˆ[==C B C A ,A ˆ、B ˆ、C ˆ是否可同时取得确定值?为什么?并举例说明。

22.(4)对于力学量A 与B ,写出二者在任何量子态下的涨落所满足的关系,并说明物理意义。

23.(4)微观粒子x 方向的动量x p ˆ和x 方向的角动量xL ˆ是否为可同时有确定值的力学量?为什么? 24.(4)试写出态和力学量的表象变换的表达式25.(4)简述幺正变换的性质26.(4)在坐标表象中,给出坐标算符和动量算符的矩阵表示 27.(4)粒子处在2221)(x x V μω=的一维谐振子势场中,试写出其坐标表象和动量表象的定态Schr ödinger 方程。

28.(4)使用狄拉克符号导出不含时间的薛定谔方程在动量表象中的形式。

29.(4)如果C B Aˆ,ˆ,ˆ均为厄米算符,下列算符是否也为厄米算符?a)3ˆ21A b) )ˆˆˆˆ(21A B B A- b) )ˆˆˆˆ(21A B i B A - 30.(5)试述守恒量完全集的概念31.(5)全同粒子有何特点?对波函数有什么要求? 32.(5)试述守恒量的概念及其性质33.(5)自由粒子的动量和能量是否为守恒量?为什么?34.(5)电子在均匀电场),0,0(ε=E 中运动,哈密顿量为z e mp Hε-=2ˆˆ2。

试判断z y x p p p ˆ,ˆ,ˆ各量中哪些是守恒量,并给出理由。

35.(5)自由粒子的动量和能量是否为守恒量?为什么?36.(6)中心力场中粒子处于定态,试讨论轨道角动量是否有确定值 37.(6)写出中心力场中的粒子的所有守恒量38.(6)试给出氢原子的能级简并度并与一般中心力场中运动粒子的能级简并度进行比较39.(6)二维、三维各向同性谐振子及一维谐振子的能级结构有何异同,并给出二维、三维各向同性谐振子能级简并度。

40.(6) 氢原子体系处于状态 ),()(23),()(21),,(1,22,31,11,3ϕθϕθϕθψ-+=Y r R Y r R r ,给出2L 和z L 可能取值及取值几率,并说明该状态是否是定态?为什么?41(6)已知中心力场中运动的粒子哈密顿表示为)(2ˆ)(2ˆ22222r V rL r r r r H ++∂∂∂∂-=μμ ,试列举出几种该量子体系力学量完全集的选取方案。

42.(7)什么是正常Zeeman 效应?写成与其相应的哈密顿量,并指出系统的守恒量有哪些。

43.(8)试给出电子具有自旋的实验依据44.(8)写出z σ表象中x σ、y σ和z σ的本征值与本征态矢 45.(8)试述旋量波函数的概念及物理意义46.(8)以α和β分别表示自旋向上和自旋向下的归一化波函数,写出两电子体系的自旋单态和自旋三重态波函数(只写自旋部分波函数)。

47.(8)若|α>和|β>是氢原子的定态矢(电子和质子的相互作用为库仑作用,并计及电子的自旋—轨道耦合项),试给出|α>和|β>态的守恒量完全集48.(10)若在0ˆH 表象中,H H H '+=ˆˆˆ0,0ˆH 与H 'ˆ的矩阵分别为 ⎪⎪⎪⎪⎪⎭⎫⎝⎛='⎪⎪⎪⎪⎪⎭⎫⎝⎛=--25015100002.01.0101.01.0ˆ,10000010000010000010ˆ64130H H , 是否可以将H'ˆ看作微扰,从而利用微扰理论求解H ˆ的本征值与本征态?为什么? 49.(11)利用Einstein 自发辐射理论说明自发辐射存在的必然性。

50.(11)是否能用可见光产生 1阿秒(1810-s) 的激光短脉冲,利用能量—时间测不准关系说明原因。

51.(11)试给出跃迁的Fermi 黄金规则(golden rule )公式,并说明式中各个因子的含义。

52. (8)在质心坐标系中,设入射粒子的散射振幅为)(θf ,写出靶粒子的散射振幅,并分别写出全同玻色子碰撞和无极化全同费米子碰撞的微分散射截面表达式。

二、判断正误题(请说明理由)1. (2)由波函数可以确定微观粒子的轨道2. (2)波函数本身是连续的,由它推求的体系力学量也是连续的3. (2)平面波表示具有确定能量的自由粒子,故可用来描述真实粒子4. (2)因为波包随着时间的推移要在空间扩散,故真实粒子不能用波包描述5. (2)正是由于微观粒子的波粒二象性才导致了测不准关系6. (2)测不准关系式是判别经典力学是否适用的标准7. (2)设一体系的哈密顿Hˆ与时间t 无关,则体系一定处于定态 8. (2)不同定态的线性叠加还是定态9. (3)对阶梯型方位势,定态波函数连续,则其导数必然连续10.(3)Hˆ显含时间t ,则体系不可能处于定态,H ˆ不显含时间t ,则体系一定处于定态 11.(3)一维束缚态能级必定数非简并的12.(3)一维粒子处于势阱中,则至少有一条束缚态13.(3)粒子在一维无限深势阱中运动,其动量一定是守恒量 14.(3)量子力学中,静止的波是不存在的 15.(3)δ势阱不存在束缚态16.(4)自由粒子的能量本征态可取为kx sin ,它也是xi px ∂∂-= ˆ的本征态 17.(4)若两个算符有共同本征态,则它们彼此对易18.(4)在量子力学中,一切可观测量都是厄米算符19.(4)如果B Aˆ,ˆ是厄米算符,其积B A ˆˆ不一定是厄米算符 20.(4)能量的本征态的叠加态仍然是能量的本征态21.(4)若B Aˆ,ˆ对易,则B A ˆ,ˆ在任意态中可同时确定 22.(4)若B Aˆ,ˆ不对易,则B A ˆ,ˆ在任何情况下不可同时确定 23.(4)x p ˆ和xL ˆ不可同时确定 24.(4)若B Aˆ,ˆ对易,则Aˆ的本征函数必是B ˆ的本征函数 25.(4)对应一个本征值有几个本征函数就是几重简并26.(4)若两个三个,则它们不可能同时有确定值 27.(4)测不准关系只适用于不对易的物理量28.(4)根据测不准原理,任一微观粒子的动量都不能精确测定,只能求其平均值 29.(4)力学量的平均值一定是实数30.(5)体系具有空间反演不变性,则能量本征态一定具有确定的宇称 31.(5)在非定态下力学量的平均值随时间变化32.(5)体系能级简并必然是某种对称性造成的33.(5)量子体系的守恒量无论在什么态下,平均值和几率分布都不随时间改变 34.(5)全同粒子系统的波函数必然是反对称的35.(5)全同粒子体系波函数的对称性将随时间发生改变36.(5)描述全体粒子体系的波函数,对内部粒子的随意交换有确定的对称性37.(6)粒子在中心力场中运动,若角动量z L ˆ是守恒量,那么xL ˆ就不是守恒量 38.(6)在中心力场)(r V 中运动的粒子,轨道角动量各分量都守恒 39.(6)中心力场中粒子的能量一定是简并的40.(6)中心力场中粒子能级的简并度至少为 ,2,1,0,12=+l l 41.(8)电子的自旋沿任何方向的投影只能取2/42.(8)两电子的自旋反平行态为三重态三、证明题:1. (2)试由Schrödinger 方程出发,证明0ˆ=⋅∇+ρ∂∂j t ,其中⎪⎩⎪⎨⎧-ψ∇ψ-=ψψ=ρ.).(2),(ˆ),(),(),(**c c m i t r j t r t r t r 2. (3)一维粒子波函)(x ψ数满足定态Schrödinger 方程,若)(1x ψ、)(2x ψ都是方程的解,则有无关)(与常数x =ψψ-ψψ''1221 3. (3)设)(x ψ是定态薛定谔方程对应于能量E 的非简并解,则此解可取为实解4. (2)设)(1x ψ和)(2x ψ是定态薛定谔方程对应于能量E 的简并解,试证明二者的线性组合也是该定态方程对应于能量E 的解。

5. (3)对于δ势垒,)()(x x V γδ=,试证δ势中)('x ψ的跃变条件6. (3)设)(x ψ是定态薛定谔方程)()()(2222x E x x V dx d m ψψ=⎥⎦⎤⎢⎣⎡+- 的一个解,对应的能量为E ,试证明)(*x ψ也是方程的一个解,对应的能量也为E7. (3)一维谐振子势场2/22x m ω中的粒子处于任意的非定态。

试证明该粒子的位置概率分布经历一个周期ωπ/2后复原。

8. (3)对于阶梯形方势场 ⎩⎨⎧><=ax V a x V x V 21,)( ,若)(12V V -有限,则定态波函数)(x ψ及其导数)(x ψ'必定连续。

9. (3)证明一维规则势场中运动的粒子,其束缚态能级必定是非简并的 10.(4)证明定理:体系的任何状态下,其厄米算符的平均值必为实数11.(4)证明定理:厄米算符的属于不同本征值的本征函数彼此正交 12.(4)证明:在定态中几率流密度矢量与时间无关13.(4)令2222ˆxp x∂∂-= ,试证2ˆx p 为厄密算符 14.(4)试证m p T2/ˆˆ2=为厄密算符 15.(4)设)(ˆt U 是一个幺正算符且对t 可导,证明U dt U d i t H ˆˆ)(ˆ =†是厄米算符。

相关文档
最新文档