曾量子力学题库网用

合集下载

量子力学基本知识练习题_ppt课件

量子力学基本知识练习题_ppt课件
量子力学基本知识练习题
1.光电效应中逸出光电子数的多少依赖 于: A. 入射光的强度和频率 B. 入射光的强度和相位 C. 入射光的频率和相位 D. 入射光的振动方向和相位
发射的光电子数与入射的光电子数有 关,根据光的强度 可 知 ,所以光电子数与入射光 的强度及频率有关。 正确答案是A
2. 当能量为5.0eV的光子射向某金属表面时, 从金属表面逸出的电子的最大初动能为 1.5eV。为使该金属能产生光电效应,入射 光的最低能量必须是多少?(用eV表示) A. 1.5 B. 2.5 C. 3.5 D. 5.0
4. 氢原子中电子从n=2的轨道上电离所需的 最小能量是 A. 3.4 eV B. 13.6 eV C. 10.2 eV D. 6.8 eV
答案A. 电离意味着电子从 所需最小能量为
跃迁到
的状态, (eV)
5. 根据德布罗意假设 A. 辐射不具有粒子性, 但具有波动性 B. 粒子具有波动性 C. 波长非常短的辐射具有粒子性,但长波辐 射却不然 D. 辐射具有粒子性, 但粒子绝不可能有波 动性
答案C. 可得
由 (nm)
16. 已知中子的质量为1.6× 10-27kg. 假定一 个中子沿x方向以2000m.s-1的速率运动, 速率的误差为0.01%,则中子位置的不确 定量至少为: (用不确定关系Dx﹒ D px ≥h 计算) -17 -13 A. 3.28× 10 m B. 3.28× 10 m -10 -7 C. 3.28× 10 m D. 3.28× 10 m
正确答案:B. 由爱因斯坦光电效应方程可知:
所以光电子动量大小(非相对论)为
量子力学 练习题

1. 由氢原子理论可知, 当氢原子处于n=3的激 发态时, 可观察到可见光谱线为 A. 一种波长的光 B. 二种波长的光 C. 三种波长的光 D. 各种波长的光 答案A 可见光是电子从较高能级 向n=2跃迁时发出的。 由图可知,从n=3 能级跃迁, 只能发射一条可见光谱线。

量子力学题库

量子力学题库

目录第二章波函数和薛定谔方程 (2)一、简答题 (2)二、证明题 (6)三、计算题 (7)第二章 波函数和薛定谔方程一、简答题1.何谓微观粒子的波粒二象性?2.粒子的德布罗意波长是否可以比其本身限度长或短?二者之间是否有必然联系?3.粒子按轨道运动这个概念的实质是什么?试直接从德布罗意假设出发,论证对微观粒子不存在轨道的概念。

4.波动性与粒子性是如何统一于统一客体之中的?物质在运动过程中是如何表现波粒二象性的?5.“电子是粒子,又是波”,“电子不是粒子,又不是波”,“电子是粒子,不是波”,“电子是波,不是粒子”,以上哪一种说法是正确的?6.试述牛顿力学与量子力学中的自由粒子运动状态。

7.在量子力学中,能不能同时用粒子坐标和动量的确定值来描述粒子的量子状态?8.判别一个物理体系是经典体系还是量子体系的基本标准是什么? 9.是比较粒子和波这两个概念在经典物理和量子力学中的含义。

10.微观粒子体系的状态完全由波函数),(t r描述,波函数应满足什么样的标准条件? 波函数的物理意义是什么?11.叙述波函数的统计解释(物理意义),并写出薛定谔方程的一般数学形式。

12.什么是波函数的统计解释?量子力学的波函数与声波和光波的主要区别是什么?13.写出波函数的物理意义和标准条件,并说明如何理解波函数可以完全表述微 观粒子的状态及波函数的标准条件。

14.简述玻恩关于波函数的统计解释,按这种解释,描写粒子的波是什么波? 15.根据量子力学中波函数的几率解释,说明量子力学中的波函数与描述声波、光波等其它波动过程的波函数的区别。

16.简要说明波函数和它所描写的粒子之间的关系。

17. 波函数的物理意义-微观粒子的状态完全由其波函数描述,这里“完全”的含义是什么?18.波函数归一化的含义是什么?什么样的波函数可以归一化?归一化随时间变化吗?19. Bron 对波函数的统计解释什么?()()2,,,t r t r ψψ和()dxdydz t r 2, ψ分别表示什么含义?20.将描写体系量子状态的波函数乘上一个常数后,所描写体系的量子状态是否改变?21.若)(1x ψ是归一化的波函数,问: )(1x ψ, 1)()(12≠=c x c x ψψ ,)()(13x e x i ψψδ= δ为任意实数是否描述同一态?分别写出它们的位置几率密度公式。

曾谨言《量子力学教程》(第3版)配套模拟试题及详解(一)

曾谨言《量子力学教程》(第3版)配套模拟试题及详解(一)

曾谨言《量子力学教程》(第3版)配套模拟试题及详解(一)一、简答题(每小题5分,共20分。

) 1.什么是光电效应?解:光照到金属表面导致大量电子从金属中逸出的现象即为光电效应。

2.厄密算符的本征值是实数吗?量子力学中表示力学量的算符是不是都是厄密算符? 答:是。

以λ表示F 的本征值,ψ表示所属的本征函数,则λψψ=F ,因为F 是厄密算符,于是有⎰⎰=dx dx ψψλψψλ***,由此得λλ=*,即λ是实数。

3.氢原子处于3p 态的电子径向Schr ōdinger 方程是什么?该态下哈密顿算符H ˆ和角动量平方算符2ˆL的本征值呢? 答:氢原子电子径向薛定谔方程为:0)1(2122222=⎥⎦⎤⎢⎣⎡+-⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛R r l l r e E dr dR r dr d r μ 对于3p 态电子,2418e E μ-=。

哈密顿算符本征值为2418e μ-,角动量平方算符本征值222)1(=+l l 。

4.自旋可以在坐标表象中表示吗?答:自旋是内禀角动量,与空间运动无关,故不能在坐标空间表示出来。

二、(25分)粒子在一维势场中运动,设其束缚态波函数为试求粒子相应的能量及势场。

解:由波函数得代入下式得取x =0时,V (x )=0,则,故本题所求为三、(25分)一粒子在一维势场0()00x U x x a x a ∞<⎧⎪=⎨⎪∞>⎩,, ≤≤,中运动。

(1)求粒子的能级和对应的波函数。

(2)若已知t =0时,该粒子状态为))()((21)0,(21x x x ψψψ+=,求t 时刻该粒子的波函数。

(3)求t 时刻测量到粒子的能量分别为1E 和2E 的几率是多少? (4)求t 时刻粒子的平均能量E 和平均位置x 。

解:(1)22222n maE n π=(n=1,2,3,…)可见E 是量子化的。

对应于n E 的归一化的定态波函数为:⎪⎩⎪⎨⎧><≤≤=-a x a x ax xea n at x t E n in n ,,00,sin 2),(πψ(2)t 时刻的波函数:1212(,)()()iE t iE tx t x e x e ψψψ--⎡⎤=+⎥⎦(3)t 时刻测量到粒子的能量为1E 的几率是:21),(),(21=t x t x ψψt 时刻测量到粒子的能量为2E 的几率是:21),(),(22=t x t x ψψ (4)平均能量:ˆ(,)(,)(,)(,)E x t Ex t x t i x t tψψψψ∂==∂ 22122524E E maπ+== 平均位置:12216()(,)(,)cos 29a a E E t x x t x x t ψψπ-⎡⎤==-⎢⎥⎣⎦四、(25分)对于自旋2的体系,求x y σσ+的本征值和本征态,并在较小的本征值对应的本征态中,求测量y S 得2的概率和x S 的平均值。

曾量子力学题库(网用)教程

曾量子力学题库(网用)教程

曾谨言量子力学题库一简述题:1. (1)试述Wien 公式、Rayleigh-Jeans 公式和Planck 公式在解释黑体辐射能量密度随频率分布的问题上的差别2. (1)试给出原子的特征长度的数量级(以m 为单位)及可见光的波长范围(以Å为单位)3. (1)试用Einstein 光量子假说解释光电效应4. (1)试简述Bohr 的量子理论5. (1)简述波尔-索末菲的量子化条件6. (1)试述de Broglie 物质波假设7. (2)写出态的叠加原理8. (2)一个体系的状态可以用不同的几率分布函数来表示吗?试举例说明。

9. (2)按照波函数的统计解释,试给出波函数应满足的条件10.(2)已知粒子波函数在球坐标中为),,(ϕθψr ,写出粒子在球壳),(dr r r +中被测到的几率以及在),(ϕθ方向的立体角元ϕθθΩd d d sin =中找到粒子的几率。

11.(2)什么是定态?它有哪些特征? 12.(2))()(x x δψ=是否定态?为什么? 13.(2)设ikre r1=ψ,试写成其几率密度和几率流密度 14.(2)试解释为何微观粒子的状态可以用归一化的波函数完全描述。

15.(3)简述和解释隧道效应16.(3)说明一维方势阱体系中束缚态与共振态之间的联系与区别。

17.(4)试述量子力学中力学量与力学量算符之间的关系 18.(4)简述力学量算符的性质 19.(4)试述力学量完全集的概念20.(4)试讨论:若两个厄米算符对易,是否在所有态下它们都同时具有确定值?21.(4)若算符Aˆ、B ˆ均与算符C ˆ对易,即0]ˆ,ˆ[]ˆ,ˆ[==C B C A ,A ˆ、B ˆ、C ˆ是否可同时取得确定值?为什么?并举例说明。

22.(4)对于力学量A 与B ,写出二者在任何量子态下的涨落所满足的关系,并说明物理意义。

23.(4)微观粒子x 方向的动量x p ˆ和x 方向的角动量xL ˆ是否为可同时有确定值的力学量?为什么? 24.(4)试写出态和力学量的表象变换的表达式25.(4)简述幺正变换的性质26.(4)在坐标表象中,给出坐标算符和动量算符的矩阵表示 27.(4)粒子处在2221)(x x V μω=的一维谐振子势场中,试写出其坐标表象和动量表象的定态Schr ödinger 方程。

量子力学简答题题库 (1)

量子力学简答题题库 (1)

处的几率密度;
d 3r (r, ) 2
2
表示电子自旋向下(s z
) 的几率。 2
19、何谓正常塞曼效应?正常塞曼效应的本质是什么?何谓斯塔克效应? 在强磁场中,原子发出的每条光谱线都分裂为三条的现象称为正常塞曼效应。原 子置于外电场中,它发出的光谱线会发生分裂的现象称为斯塔克效应。 20、何谓反常塞曼效应,有外磁场时的一条谱线在外磁场中分裂为几条? 答:在弱磁场中,原子发出的每条光谱线都分裂为(2j+1)条(偶数)的现象称 为反常塞曼效应。对简单的塞曼效应,没有外磁场时的一条谱线在外磁场中分裂 为三条。 21、简述定态微扰论的基本思想,对哈密顿量 H 有什么样的要求? 答:微扰方法的基本物理思想:在简化系统的解的基础上,把真实系统的哈密顿 算符中没有考虑的因素加进来,得到真实系统的近似解。
3
因此用算符表示力学量是适当的。 力学量必须用线性厄米算符表示,这是由量子态叠加原理所要求的;任何
力学量的实际测量值必须是实数,因此它的本征值也必为实数,这就决定了力学 量必须由厄米算符来表示。 10、简述量子力学的五个基本假设。 (1)微观体系的运动状态由相应的归一化波函数描述; (2)微观体系的运动状态波函数随时间变化的规律遵从薛定谔方程; (3)力学量由相应的线性算符表示; (4)力学量算符之间有想确定的対易关系,称为量子条件;坐标算符的三个直 角坐标系分量之间的対易关系称为基本量子条件;力学量算符由其相应的量子条 件决定。 (5)全同的多粒子体系的波函数对于任意一对粒子交换而言具有对称性:波色 子系的波函数是对称的,费米子系的波函数是反对称的。 11、简并、简并度。 答:量子力学中,把处于不同状态、具有相同能量、对应同一能级的现象称为简 并。把对应于同一能级的不同状态数称为简并度。 12、简述测不准关系的主要内容,并写出时间 t 和能量 E 的测不准关系。 答:某一个微观粒子的某些成对的物理量不可能同时具有确定的数值,例如位置 与动量、力;位角与角动量,其中一个量越确定,另一个量就越不确定。它来源 于物质的波粒二象性,测不准关系是从粒子的波动性中引出来的。测不准关系有 两种形式,一种是动量-坐标的关系,另一种是能量-时间的关系。

曾谨言《量子力学教程》(第3版)配套题库【课后习题-力学量随时间的演化与对称性】

曾谨言《量子力学教程》(第3版)配套题库【课后习题-力学量随时间的演化与对称性】

第4章力学量随时间的演化与对称性4.1 判断下列提法的正误:(正确○,错误×)(a)在非定态下,力学量的平均值随时间变化;(×)(b)设体系处于定态,则不含时力学量的测值的概率分布不随时间变化;(○)(c)设Hamilton量为守恒量,则体系处于定态;(×)(d)中心力场中的粒子,处于定态,则角动量取确定值;(×)(e)自由粒子处于定态,则动量取确定值;(×)(f)一维粒子的能量本征态无简并;(×)(g)中心力场中的粒子能级的简并度至少为(2ι/+1),ι=0,1,2,….(○)4.2 设体系有两个粒子,每个粒子可处于三个单粒子态φ1、φ2、φ3中的任何一个态.试求体系可能态的数目,分三种情况讨论:(a)两个全同Bose子;(b)两个全同Fermi子;(c)两个不同粒子.【解答与分析见《量子力学习题精选与剖析》[下],7.1题.】7.1 考虑由两个全同粒子组成的体系.设可能的单粒子态为φ1、φ2、φ3,试求体系的可能态数目.分三种情况讨论:(a)粒子为Bose子(Bose统计);(b)粒子为Fermi 子(Fermi统计);(c)粒子为经典粒子(Boltzmann统计).解:以符号△、○、口分别表示φ1、φ2、φ3态.Bose子体系的量子态对于两个粒子的交换必须是对称的,Fermi子体系则必须是反对称的,经典粒子被认为是可区分的,体系状态没有对称性的限制.当两个粒子处于相同的单粒子态时,体系的状态必然是交换对称的,这种状态只能出现于Bose子体系和经典粒子体系,体系波函数的构造方式为当两个粒子处于不同的单粒子态(φi和φj,i≠j)时,如果是经典粒子,有两种体系态,即由单粒子态φi和φj可以构成对称和反对称的体系态各一种,即对称态适用于Bose子体系,反对称态适用于Fermi子体系.对于两粒子体系来说,Bose子体系的可能态总数与Fermi子体系的可能态总数之和,显然正好等于经典粒子(可区分粒子)体系的可能态总数.如可能的单粒子态为k个,则三种两粒子体系的可能态数目如下:经典粒子N=k2本题k=3,Fermi子、Bose子、经典粒子体系的可能态数目分别为3、6、9.体系态的构造方式如下:Bose子体系态(共6种,均为交换对称态)有Fermi子体系态(反对称态)只有3种:当全同粒子体系的粒子数超过两个时,一般来说,对于粒子间的交换完全对称的状态(适用于Bose子)数目与完全反对称的状态(适用于Fermi子)数目之和,总是小于没有对称性限制的体系状态(适用于经典粒子)总数.亦即,后者除了完全对称态和完全反对称态,还有一些没有对称性或只有混杂对称性的状态.例如,由三个全同粒子组成的体系,如可能的单粒子态有3种,则在Boltzmann统计、Bose统计、Fermi统计下,体系的可能态数目分别为27、10和1.4.3 设体系由3个粒子组成,每个粒子可能处于3个单粒子态(φ1,φ2和φ3)中任何一个态,分析体系的可能态的数目,分三种情况:(a)不计及波函数的交换对称性;(b)要求波函数对于交换是反对称;(c)要求波函数对于交换是对称.试问:对称态和反对称态的总数为多少?与(a)的结果是否相同?对此做出说明.解:(a)不计及波函数的交换对称性,其可能态的数目为33=27;(b)要求波函数对于交换是反对称的,其可能态的数目为1;(c)要求波函数对于交换是对称的,其可能态的数目为1+6+3=10(参见《量子力学教程》4.5.4节,94页的例题).对称态和反对称态的总数=10+1=11,而不计及交换对称性的量子态的数目(即(a)的结果)为27,两者并不相同.原因在于全同粒子的交换对称性对量子态的限制所造成.4.4 设力学量A不显含t,H为体系的Hamilton量,证明证明:对于不显含t的力学量A,有上式两边再对t求导,则有即4.5 设力学量A不显含t,证明在束缚定态下证明:定态是能量本征态,满足对于束缚态,是可以归一化的,即取有限值.而对于不显含t的力学量A,因此4.6 表示沿z方向平移距离口的算符.证明下列形式波函数(Bloch波函数):是D x(a)的本征态,相应本征值为证明:利用可得而对于形式为的波函数所以,即是D x(a)的本征态,相应本征值为e-ika.4.7 设体系的束缚能级和归一化能量本征态分别为En和,n为标记包含Hamilton 量H在内的力学量完全集的本征态的一组好量子数.设H含有一个参数A,证明此即Feynman-Hellmann定理.【证明见《量子力学习题精选与剖析》[下],5.1题.】5.1 设量子体系的束缚态能级和归一化能量本征态分别为E n和(n为量子数或编号数),设λ为Hamilton算符H含有的任何一个参数.证明(1)这称为Feynman-Hellmann定理.以后简称F-H定理.证明:满足能量本征方程(2)其共轭方程为(2')视λ为参变量,式(2)对λ求导,得到(3)以左乘式(3),利用式(2')和归一化条件,即得式(1).4.8 设包含Hamilton量H在内的一组守恒量完全集的共同本征态和本征值分别为丨n>和E n,n为一组完备好量子数.证明,力学量(算符)F随时间的变化,在此能量表象中表示为【证明见《量子力学习题精选与剖析》[下],2.1题.】2.1 给定总能量算符H(,,p),以表示其本征值和本征函数.态矢量简记为按照Heisenber9运动方程,力学量算符A(r,p)的时间变化率为(1)定义能量表象中矩阵元(2)证明(3)其中。

曾谨言《量子力学教程》(第3版)配套题库【名校考研真题-波函数与Schr

曾谨言《量子力学教程》(第3版)配套题库【名校考研真题-波函数与Schr
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 1 章 波函数与 Schrödinger 方程
一、选择题
1.光子和电子的波长都为 5.0 埃,光子的动量与电子的动量之比是多少?( )[中
南大学 2009 研]
A.1
B.3×1010
C.3.3×10-11
D.8.7×10-21
涉图像位置.C 项,电子能量增加并不会改变屏的特征光谱,不会变蓝.D 项,题中提到狭
2/7
圣才电子书 十万种考研考证电子书、题库视频学习平台

缝间距尺寸在德布罗意波长数量级,在电子能量变化不是很大时,电子波长应该仍与狭缝间 距相当,干涉图样不会消失.
4.题 2 中,如果两缝之间距离加倍,则干涉图样中相邻最大值之间距离( ).[中 南大学 2009 研]
A.干涉图样向装探测器的狭缝移动 B.干涉图样中相邻最大值之间距离改变 C.干涉图样பைடு நூலகம்失 D.干涉图样变弱
4/7
圣才电子书

【答案】C
十万种考研考证电子书、题库视频学习平台
【解析】由题意,通过该狭缝的电子位置将会由于测不准原理导致光子动量 P h 不
确定,以至于电子波长和频率会受到极大干扰,从狭缝射出的光波将不再是相干光,而干涉
2.试表述量子态的叠加原理并说明叠加系数是否依赖于时空变量及其理由.[南京大学 2009 研]
图 1-1
1/7
圣才电子书

A.向上移动距离 d
十万种考研考证电子书、题库视频学习平台
B.向下移动距离 d
C.向上移动距离 d/2
D.向下移动距离 d/2
【答案】B
【解析】分析未移动前位于屏幕正中间的点,令偏上的光线为 a,偏下的光线为 b,未

曾谨言《量子力学教程》(第3版)配套题库【课后习题-量子力学的矩阵形式与表象变换】

曾谨言《量子力学教程》(第3版)配套题库【课后习题-量子力学的矩阵形式与表象变换】

圣才电子书 十万种考研考证电子书、题库视频学习平台

在能量本征态 下逐项计算平均值,并利用公式
即得
式(3)加式(4),再减式(5)和(6),即得式(1).
注意:如
和 并无简单关系.如 F 为厄米算符,即
,则

这时
,式(1)就变成《量子力学习题精选与剖析》[下]题 2.4 式(1).
类似有
AC+CA=0
(b)由于
,可知其本征值为±1,又按假定,A 本征态无简并,所以,在 A 表象
中 A 的对角矩阵表示为
设 B 的矩阵为
由 AB+BA=0,得

1/8
圣才电子书 十万种考研考证电子书、题库视频学习平台

所以
,即
又由
,有
所以 bc=1,因而 B 的矩阵表示为
8/8
在 sz 表象中可以表示为
证明:按假设, 不妨取
.基矢的正交完备性表现为
可以验证,假想的自旋算符的 2 维矩阵表示分别为
与《量子力学教程》8.1 节,(21)式(Pauli 矩阵)比较. 【参见《量子力学教程》8.1 节,(21)式.】
7.9 设 F 为体系的一个可观测量(厄米算符),H 为体系的 Hamilton 量,证明在能量 表象中的下列求和规则:
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 7 章 量子力学的矩阵形式与表象变换
7.1 设矩阵 A、B、C 满足
(a)证明

(b)在 A 表象中(设无简并),求出 B 和 C 的矩阵表示.
解:(a)对
分别右乘 B 和左乘 B,利用
,得
(1)+(2)得
AB+BA=0
式(2)取共轭,得到 和式(2)相加,即得式(1)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曾谨言量子力学题库一简述题:1. (1)试述Wien 公式、Rayleigh-Jeans 公式和Planck 公式在解释黑体辐射能量密度随频率分布的问题上的差别2. (1)试给出原子的特征长度的数量级(以m 为单位)及可见光的波长范围(以Å为单位)3. (1)试用Einstein 光量子假说解释光电效应4. (1)试简述Bohr 的量子理论5. (1)简述波尔-索末菲的量子化条件6. (1)试述de Broglie 物质波假设7. (2)写出态的叠加原理8. (2)一个体系的状态可以用不同的几率分布函数来表示吗?试举例说明。

9. (2)按照波函数的统计解释,试给出波函数应满足的条件10.(2)已知粒子波函数在球坐标中为),,(ϕθψr ,写出粒子在球壳),(dr r r +中被测到的几率以及在),(ϕθ方向的立体角元ϕθθΩd d d sin =中找到粒子的几率。

11.(2)什么是定态?它有哪些特征? 12.(2))()(x x δψ=是否定态?为什么? 13.(2)设ikre r1=ψ,试写成其几率密度和几率流密度 14.(2)试解释为何微观粒子的状态可以用归一化的波函数完全描述。

15.(3)简述和解释隧道效应16.(3)说明一维方势阱体系中束缚态与共振态之间的联系与区别。

17.(4)试述量子力学中力学量与力学量算符之间的关系 18.(4)简述力学量算符的性质 19.(4)试述力学量完全集的概念20.(4)试讨论:若两个厄米算符对易,是否在所有态下它们都同时具有确定值?21.(4)若算符Aˆ、B ˆ均与算符C ˆ对易,即0]ˆ,ˆ[]ˆ,ˆ[==C B C A ,A ˆ、B ˆ、C ˆ是否可同时取得确定值?为什么?并举例说明。

22.(4)对于力学量A 与B ,写出二者在任何量子态下的涨落所满足的关系,并说明物理意义。

23.(4)微观粒子x 方向的动量x p ˆ和x 方向的角动量xL ˆ是否为可同时有确定值的力学量?为什么? 24.(4)试写出态和力学量的表象变换的表达式25.(4)简述幺正变换的性质26.(4)在坐标表象中,给出坐标算符和动量算符的矩阵表示 27.(4)粒子处在2221)(x x V μω=的一维谐振子势场中,试写出其坐标表象和动量表象的定态Schr ödinger 方程。

28.(4)使用狄拉克符号导出不含时间的薛定谔方程在动量表象中的形式。

29.(4)如果C B Aˆ,ˆ,ˆ均为厄米算符,下列算符是否也为厄米算符?a)3ˆ21A b) )ˆˆˆˆ(21A B B A - b) )ˆˆˆˆ(21A B i B A - 30.(5)试述守恒量完全集的概念31.(5)全同粒子有何特点?对波函数有什么要求? 32.(5)试述守恒量的概念及其性质33.(5)自由粒子的动量和能量是否为守恒量?为什么?34.(5)电子在均匀电场),0,0(ε=E 中运动,哈密顿量为z e mp Hε-=2ˆˆ2。

试判断z y x p p p ˆ,ˆ,ˆ各量中哪些是守恒量,并给出理由。

35.(5)自由粒子的动量和能量是否为守恒量?为什么?36.(6)中心力场中粒子处于定态,试讨论轨道角动量是否有确定值 37.(6)写出中心力场中的粒子的所有守恒量38.(6)试给出氢原子的能级简并度并与一般中心力场中运动粒子的能级简并度进行比较39.(6)二维、三维各向同性谐振子及一维谐振子的能级结构有何异同,并给出二维、三维各向同性谐振子能级简并度。

40.(6) 氢原子体系处于状态 ),()(23),()(21),,(1,22,31,11,3ϕθϕθϕθψ-+=Y r R Y r R r ,给出2L 和z L 可能取值及取值几率,并说明该状态是否是定态?为什么?41(6)已知中心力场中运动的粒子哈密顿表示为)(2ˆ)(2ˆ22222r V rL r r r r H ++∂∂∂∂-=μμ ,试列举出几种该量子体系力学量完全集的选取方案。

42.(7)什么是正常Zeeman 效应?写成与其相应的哈密顿量,并指出系统的守恒量有哪些。

43.(8)试给出电子具有自旋的实验依据44.(8)写出z σ表象中x σ、y σ和z σ的本征值与本征态矢 45.(8)试述旋量波函数的概念及物理意义46.(8)以α和β分别表示自旋向上和自旋向下的归一化波函数,写出两电子体系的自旋单态和自旋三重态波函数(只写自旋部分波函数)。

47.(8)若|α>和|β>是氢原子的定态矢(电子和质子的相互作用为库仑作用,并计及电子的自旋—轨道耦合项),试给出|α>和|β>态的守恒量完全集48.(10)若在0ˆH 表象中,H H H '+=ˆˆˆ0,0ˆH 与H 'ˆ的矩阵分别为 ⎪⎪⎪⎪⎪⎭⎫⎝⎛='⎪⎪⎪⎪⎪⎭⎫⎝⎛=--25015100002.01.0101.01.0ˆ,10000010000010000010ˆ64130H H , 是否可以将H'ˆ看作微扰,从而利用微扰理论求解H ˆ的本征值与本征态?为什么? 49.(11)利用Einstein 自发辐射理论说明自发辐射存在的必然性。

50.(11)是否能用可见光产生 1阿秒(1810-s) 的激光短脉冲,利用能量—时间测不准关系说明原因。

51.(11)试给出跃迁的Fermi 黄金规则(golden rule )公式,并说明式中各个因子的含义。

52. (8)在质心坐标系中,设入射粒子的散射振幅为)(θf ,写出靶粒子的散射振幅,并分别写出全同玻色子碰撞和无极化全同费米子碰撞的微分散射截面表达式。

二、判断正误题(请说明理由)1. (2)由波函数可以确定微观粒子的轨道2. (2)波函数本身是连续的,由它推求的体系力学量也是连续的3. (2)平面波表示具有确定能量的自由粒子,故可用来描述真实粒子4. (2)因为波包随着时间的推移要在空间扩散,故真实粒子不能用波包描述5. (2)正是由于微观粒子的波粒二象性才导致了测不准关系6. (2)测不准关系式是判别经典力学是否适用的标准7. (2)设一体系的哈密顿Hˆ与时间t 无关,则体系一定处于定态 8. (2)不同定态的线性叠加还是定态9. (3)对阶梯型方位势,定态波函数连续,则其导数必然连续10.(3)Hˆ显含时间t ,则体系不可能处于定态,H ˆ不显含时间t ,则体系一定处于定态 11.(3)一维束缚态能级必定数非简并的12.(3)一维粒子处于势阱中,则至少有一条束缚态13.(3)粒子在一维无限深势阱中运动,其动量一定是守恒量 14.(3)量子力学中,静止的波是不存在的 15.(3)δ势阱不存在束缚态16.(4)自由粒子的能量本征态可取为kx sin ,它也是xi px ∂∂-= ˆ的本征态 17.(4)若两个算符有共同本征态,则它们彼此对易18.(4)在量子力学中,一切可观测量都是厄米算符19.(4)如果B Aˆ,ˆ是厄米算符,其积B A ˆˆ不一定是厄米算符 20.(4)能量的本征态的叠加态仍然是能量的本征态21.(4)若B Aˆ,ˆ对易,则B A ˆ,ˆ在任意态中可同时确定 22.(4)若B Aˆ,ˆ不对易,则B A ˆ,ˆ在任何情况下不可同时确定 23.(4)x p ˆ和xL ˆ不可同时确定 24.(4)若B Aˆ,ˆ对易,则Aˆ的本征函数必是B ˆ的本征函数 25.(4)对应一个本征值有几个本征函数就是几重简并26.(4)若两个三个,则它们不可能同时有确定值 27.(4)测不准关系只适用于不对易的物理量28.(4)根据测不准原理,任一微观粒子的动量都不能精确测定,只能求其平均值 29.(4)力学量的平均值一定是实数30.(5)体系具有空间反演不变性,则能量本征态一定具有确定的宇称 31.(5)在非定态下力学量的平均值随时间变化32.(5)体系能级简并必然是某种对称性造成的33.(5)量子体系的守恒量无论在什么态下,平均值和几率分布都不随时间改变 34.(5)全同粒子系统的波函数必然是反对称的35.(5)全同粒子体系波函数的对称性将随时间发生改变36.(5)描述全体粒子体系的波函数,对内部粒子的随意交换有确定的对称性37.(6)粒子在中心力场中运动,若角动量z L ˆ是守恒量,那么xL ˆ就不是守恒量 38.(6)在中心力场)(r V 中运动的粒子,轨道角动量各分量都守恒 39.(6)中心力场中粒子的能量一定是简并的40.(6)中心力场中粒子能级的简并度至少为 ,2,1,0,12=+l l 41.(8)电子的自旋沿任何方向的投影只能取2/42.(8)两电子的自旋反平行态为三重态三、证明题:1. (2)试由Schrödinger 方程出发,证明0ˆ=⋅∇+ρ∂∂j t ,其中⎪⎩⎪⎨⎧-ψ∇ψ-=ψψ=ρ.).(2),(ˆ),(),(),(**c c m i t r j t r t r t r 2. (3)一维粒子波函)(x ψ数满足定态Schrödinger 方程,若)(1x ψ、)(2x ψ都是方程的解,则有无关)(与常数x =ψψ-ψψ''12213. (3)设)(x ψ是定态薛定谔方程对应于能量E 的非简并解,则此解可取为实解4. (2)设)(1x ψ和)(2x ψ是定态薛定谔方程对应于能量E 的简并解,试证明二者的线性组合也是该定态方程对应于能量E 的解。

5. (3)对于δ势垒,)()(x x V γδ=,试证δ势中)('x ψ的跃变条件6. (3)设)(x ψ是定态薛定谔方程)()()(2222x E x x V dx d m ψψ=⎥⎦⎤⎢⎣⎡+- 的一个解,对应的能量为E ,试证明)(*x ψ也是方程的一个解,对应的能量也为E7. (3)一维谐振子势场2/22x m ω中的粒子处于任意的非定态。

试证明该粒子的位置概率分布经历一个周期ωπ/2后复原。

8. (3)对于阶梯形方势场 ⎩⎨⎧><=ax V a x V x V 21,)( ,若)(12V V -有限,则定态波函数)(x ψ及其导数)(x ψ'必定连续。

9. (3)证明一维规则势场中运动的粒子,其束缚态能级必定是非简并的 10.(4)证明定理:体系的任何状态下,其厄米算符的平均值必为实数11.(4)证明定理:厄米算符的属于不同本征值的本征函数彼此正交 12.(4)证明:在定态中几率流密度矢量与时间无关13.(4)令2222ˆxp x∂∂-= ,试证2ˆx p 为厄密算符 14.(4)试证m p T2/ˆˆ2=为厄密算符 15.(4)设)(ˆt U 是一个幺正算符且对t 可导,证明U dtU d i t H ˆˆ)(ˆ =†是厄米算符。

相关文档
最新文档