三年级奥数枚举法
三年级奥数.计数综合.枚举法(A级).学生版
胖子的枚举法几个人又坐回到自己的座位上,都是唉声叹气,我让他人省点力气,其实这样盲目的试验,反而会导致思维的中断。
接着事情又回到我睡觉前,我们又开始毫无意义的讨论起来。
讨论中总是有人睡过去,但是好在一个人睡觉,其他几个人都能继续思考。
就这样,我们东一个想法,西一个想法,提出来,然后否决掉,一开始说法还很多,后来几个人话就越来越少,时间不知不觉就过去了六七个小时,我们的肚子又开始叫起来。
最后胖子点起一只烟,想了想,对我们说:“不行,咱们这么零散的想办法是很浪费时间的,我们把所有的可能性全部都写出来,然后归纳成几条,之后直接把这条验证,不就行了。
”我点点头,其实说到最后很多的问题我们都在重复的讨论,几个人都进入到一种混乱状态了 胖子在金器铺满的地面上整理出一块石头面,然后写下来几个数字:1、2、3、4,然后说:“我们想想我们现在有几种假设,你们都回忆一下,不要具体的,要大概的方向就行了。
”潘子就道:“最有可能就是有机关。
”胖子在1那个地方写了机关。
然后顺子就说道:“你的想法,可能有东西在影响我们的感觉,比如说心理暗示或者催眠,让我们自己不知不觉的走回来。
”胖子对他道:“不用说这么详细。
”按着在2的后面写了错觉,然后看向我。
我道:“要说理论上,也有可能是空间折叠。
”“你这个不可能,太玄乎了。
”潘子道。
胖子道:“不管,有万分之一地可能性,我们就承认,我们只是列一个备忘录而已。
”说着也写了上去,在3后面写了空间折叠。
然后自己说:“也可能是有鬼。
”说着写了个4,有鬼。
“你这样写出来有什么意义?”潘子不理解的问。
胖子道:“你们念的书多,不懂,我读书少,凡事都必须用笔写下来,但是这样有个好处,比如说有几件事情,你可以一起做,你事先一理就能知道,可以节省不少时间。
咱们不是只有两天了吗?还是得省点,对了,还有5吗?谁还有5?”我看了看这四点,这确实己经是包括量子力学到玄学到心理学到工程学四大都齐了,第五点一时半会儿还真想不出来。
三年级奥数第七讲 简单枚举一
第七讲简单枚举(一)
例题1从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。
从小华家到文峰公园,有几种不同的走法?
练习一
从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路直达。
从甲地到丙地有多少种不同走法?
例题2用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?
用红、黄、蓝三种颜色涂圆圈,每个圆圈涂一种颜色,一共有多少种不同的涂法?○○○
例题3 一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能?
练习三
一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?
基础练习
1.大合唱表演中每行的人数都相同,小东从前数排第6,从后数排第4,从左数排第5,从右数排第12。
这个合唱队一共有多少人?
2.陈大爷的正方形养牛场边长12米,如果按一头牛占4平方米计算,他一共能养多少头牛?
3.陈云家有一个长30米,宽12米的长方形鸡圈,如果每平方米能养4只鸡,他家一共能养多少只鸡?。
三年级奥数枚举法的无序枚举分堆题
三年级奥数枚举法的无序枚举分堆题
【实用版】
目录
1.枚举法的概念和应用
2.无序枚举分堆题的解题思路
3.举例说明解题过程
4.总结和拓展
正文
一枚举法是一种解决问题的方法,通过穷举所有可能的情况,从而找到符合条件的答案。
在奥数题中,枚举法经常被用来解决一些复杂的问题。
本文将介绍一种枚举法的应用——无序枚举分堆题。
无序枚举分堆题是一种常见的奥数题目,题目通常描述为一个无序的硬币堆,要求通过枚举法找出所有可能的分堆方式。
例如,有一堆 1 元、2 元和 5 元的硬币各 4 枚,要求用其中的一些硬币支付 23 元钱,一共有多少种不同的支付方法?
解决这种问题的关键是先确定每种硬币的取法,然后根据取法进行枚举。
以 23 元钱的例子为例,我们可以先确定 1 元硬币的取法,有 4 种可能:取 0 枚、1 枚、2 枚和 3 枚。
然后,根据每种取法,我们可以枚举出所有可能的组合。
例如,如果 1 元硬币取 0 枚,那么我们需要从2 元和 5 元硬币中取出 23 元,这就需要枚举所有可能的组合。
通过这样的枚举,我们可以找到所有可能的支付方法。
在实际解题过程中,我们还可以运用一些技巧来简化问题。
例如,在枚举过程中,我们可以先枚举 1 元硬币的取法,然后再枚举 2 元和 5 元硬币的取法。
这样,我们可以避免重复计算一些情况,从而提高解题效率。
总的来说,无序枚举分堆题是一种有趣的奥数题目,通过运用枚举法,我们可以找到所有可能的解。
同时,这种题目也锻炼了我们的逻辑思维能力和数学技巧。
三年级奥数简单枚举
4、简单枚举上图中,整个平面被分成了几个部分?枚举,词典里的意思是“一一列举”顾名思义,“枚举法”就是把所有可能的情况一一列举出来,然后数一下总共有几种情况,虽然枚举法看上去很简单,但当情况复杂时,想要不重漏地枚举出所有情况就有一定难度了,需要同学们有严谨的思维。
对于简单的题目,直接按题意一条条地枚就可以了,由于情况较少,枚举出所有情况还是比较容易的,先来看一道简单的题目。
例题1小明、小红、小亮三个人去看电影,他们买了3个相邻座位的票,他们三人的座位顺序一共有多少种不同的安排方法?分析:如果小明在最左边的话,有几种安排方法?练习1、(1)用0、1、2这三个数字各一次,一共能组成多少个不同的三位数?(2)用3、5、6、7这四个数字各一次,一共能组成多少个不同的三位数?当满足条件的方法数较多时,为了达到不重不漏的目的,往往会按照一定的顺序来枚举,可能是“从前往后”、“从大到小”等等。
例题2(1)老师给了小红14个相同的练习本,如果小红把这些本子全都分给了小李和小高,并且每人都要分到练习本,共有几种不同的分法?(2)老师给了小红14个相同的练习本,如果小红只需要把这些本子分成2堆,又有多少种分法?分析:仔细审题,两个小题之间有什么区别?在例题2中,同样是把练习本分成两部分,第(1)小题中给小李10本,小高4本是一种情况,而给小李4本,小高10本又是另一种情况,但到了第(2)小题里,一堆10本、一堆4本和一堆4本,一堆10本是同一种情况,我们可以说第(1)小题是“有顺序”的情况,而第(2)小题是“无顺序”,在枚举时尤其要注意这一点,究竟什么时候是“有顺序”,什么时候是“无顺序”。
练习2、老师把9颗糖分给阿呆阿瓜两个人,每人都有糖,那么一共有多少种不同的分法?(1)小明买回了一袋糖豆,他数了一下,一共有10个,现在他要把这些糖豆分成3堆,一共有多少种不同的分法?(2)如果小明有两袋糖豆,每袋10个,要把这两袋糖豆分成3堆,每堆最少要有5个,那么一共有多少种不同的分法?分析:(1)本题属于“有顺序”还是“无顺序”的情况?(2)每堆至少有5个,那么先在每堆中放上5个,还剩几个糖豆?练习3、阳阳有12颗巧克力,要把这些巧克力分成3堆,并且一堆里的巧克力不能超过8块,有几种不同的分法?要把一个数分成3份,可以先确定其中一份,于是问题就变为把剩下的部分分成2份的问题了这种简化问题的思想在数学中经常运用,最后来看两个较为复杂的问题。
三年级奥数简单枚举省公开课获奖课件市赛课比赛一等奖课件
疯狂操练4
1、上海、北京、天津三个城市分别设有一 种飞机场,它们之间通航一共需要多少种 不同旳机票?
1、一条公路上,共有8个站点。假如每个 起点到终点只用一种车票(中间至少相隔3 个车站),那么共有多少种不同旳车票?
简朴枚举
利用枚举法解应用题时,必须注意无
反复、无漏掉,所以必须有顺序、有规 律地进行枚举。关键是要正确分类,注 意一下两点:一是分类要齐全,不能造 成漏掉;二是枚举要清楚,要将每一种 符合条件旳对象都列举出来。
例题1
从小华家到学校有3条路可走,从学校 到文峰公园有4条路可走。从小华家到文峰 公园,有几种不同旳走法?
例题2
一种长方形旳周长是30厘米,假如它 旳长和宽都是整厘米数,那么这个长方形 旳面积有多少种可能值?
1、一种长方形旳周长是22米,假如它 旳长和宽都是整米数,那么这个长方形旳 面积有多少种可能?
3、3个自然数旳乘积是18,问由这么旳3个数 构成旳数组有多少个?(顺序不同算同一 组如1,2,9和2,9,1算同一组)
3、在长江旳某一航线上共有6个码头,假
如每个起点终点只许用一种船票(中间至 少要相隔2个码头),那么这么旳船票共有 多少种?
例题5、
在1-99中,任取两个和不大于100旳数, 共有多少种不同旳取法?
疯狂操练5
1、在两位整数中,十位数字不大于个位数 字旳共有多少个?
2、从1-9这九个数字中,每次取2个数字, 这两个数旳和都必须不小于10,能有多少 种不同旳取法?
3、十把不同旳锁,每把锁都有一把能打开它旳 钥匙。可是这10把钥匙已混在了一起,不懂 得哪把钥匙开哪把锁 。问最多要试多少次
(三年级奥数)枚举法
(三年级奥数)枚举法教师姓名学科数学上课时间年月日---学生姓名年级三年级课题名称枚举法教学目标1、做到不重补漏,把复杂的问题简单化;2、按照一定的规律,特点去枚举;3、从思想上认识到枚举的重要性。
教学重点枚举法教学过程枚举法【课题引入】枚举法是一种常见的分析问题、解决问题的方法。
一般地,根据问题要求,一一枚举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的。
这种分析问题、解决问题的方法,称之为枚举法。
枚举法是一种常见的数学方法,当然枚举法也存在一些问题,那就是容易遗漏掉一些情况,所以应用枚举法的时候选择什么样的标准尤其重要。
运用枚举法解题的关键是要正确分类,要注意一下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。
【例题学习】例1:用数字1、3、4可以组成多少个不同的三位数?【即时练习】1、用0、3、5可以组成多少个不同的三位数?2、用4、7、8这三个数字,可以组成多少个没有重复数字的三位数,它们有哪些?其中最大的数和最小的数各是多少?【例题学习】例2、用0,2,5,9可以组成多少个是5的倍数的三位数?【即时练习】1、从1、2、3、4、5、6这些数中,任取两个数,使其和不能被3整除,则有_______种取法。
2、从l~9这9个数码中取出3个,使它们的和是3的倍数,则不同取法有_______种。
3、小明的两个口袋中各有6张卡片,每张卡片上分别写着1,2,3,……,6。
从这两个口袋中各拿出一张卡片来计算上面所写两数的乘积,那么,其中能被6整除的不同乘积有_____个。
3、从1~8中每次取两个不同的数相加,和大于10的共有多少种取法?【例题学习】例5:甲、乙、丙三个工厂共订300份报纸,每个工厂至少订了99份,至多101份,问:一共有多少种不同的订法?【即时练习】1、四个学生每人做了一张贺年片,放在桌子上,然后每人去拿一张,但不能拿自己做的一张.问:一共有多少种不同的方法?2、一次,齐王与大将田忌赛马.每人有四匹马,分为四等.田忌知道齐王这次比赛马的出场顺序依次为一等,二等,三等,四等,而且还知道这八匹马跑的最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等,自己的四等.田忌有________种方法安排自己的马的出场顺序,保证自己至少能赢两场比赛.【例题学习】例6:用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法?【即时练习】1、一个文具店橡皮每块5角、圆珠笔每支1元、钢笔每支2元5角.小明要在该店花5元5角购买两种文具,他有多少种不同的选择.2、用1元、5元、10元、50元、100元人民币各一张,20元人民币两张,在不找钱的情况下,最多可以支付种不同的款额。
三年级奥数培优《简单枚举》
简单枚举一、知识梳理枚举是一种常见的分析问题、解决问题的方法。
一般地,要根据问题要求,一一列举问题解答。
运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。
二、例题精讲例题1. 从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。
从小华家到文峰公园,有几种不同的走法?例题2.用红、黄、蓝三种颜色涂三个圆圈,每个圆圈涂一种颜色,一共有多少种不同的涂法?例题3. 一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能?例题4. 有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?例题5. 两个站点之间需要两种车票,例如:漳州和厦门两个站点,车站需要准备“漳州-厦门”和“厦门-漳州”这两种车票,如图所示,四个站点需要准备多少种车票?三、课堂小测6.新华书店有3种不同的英语书,4种不同的数学读物销售。
小明想买一种英语书和一种数学读物,共有多少种不同买法?7.用数字1、2、3可以组成多少个不同的三位数?分别是哪几个数?8. 有8位小朋友,要互通一次电话,他们一共打了多少次电话?9. 一条公路上,共有6个站点。
如果每个起点到终点只用一种车票,那么共有多少种不同的车票?10. 明明有2件不同的上衣,3条不同的裤子,2双不同的鞋子。
最多可搭配成多少种不同的装束?11. 用2、3、5、7四个数字,可以组成多少个不同的四位数?12. 小芳出席由19人参加的联欢会,散会后,每两人都要握一次手,他们一共握了多少次手?13. 在长江的某一航线上共有10个码头,如果每个起点终点只许用一种船票,那么这样的船票共有多少种?四、拓展提高14. 把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?简单枚举一、知识梳理枚举是一种常见的分析问题、解决问题的方法。
一般地,要根据问题要求,一一列举问题解答。
运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。
三年级奥数专题简单枚举
三年级奥数专题简单枚举【一】从小华家到学校有2条路可以走,从学校到岐江公园有3条路可以走,从小华家到岐江公园,有几种不同的走法?练习1、丽丽有红、蓝、黑帽子各一顶,红、蓝、黑围巾各一条。
冬天,丽丽每天戴一顶帽子、围一条围巾,有几种不同的搭配方式?2、新华书店有3种不同的英语书,4种不同的数学读物,小明想买一种英语书和一种数学读物,共有多少种不同的买法?【二】把4个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?练习1、把5个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?2、把7个同样的苹果放在三个同样的盘子里,不允许有的盘子空着不放,问共有多少种不同的分法?【三】从1~6这六个数中,每次取2个数,这两个数的和都必须大于7,能有多少种取法?练习1、从1~4这四个数中,如果每次取2个数,要使两个数的和都大于5,能有多少种取法?2、从1~7这七个数中,任取两个和大于8的数,能有多少种取法?【四】一个长方形花圃的周长是18米,如果它的长和宽都是整厘米数,那么这个花圃的面积有多少种可能值?练习1、一个长方形的周长是12厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?2、把10个彩色气球分成数量不同的3堆,共有多少种不同的分法?【五】中、日、韩、美进行四国足球赛,每两队踢一场。
按积分排名次,一共要踢多少场?练习1、五个同学参加乒乓球赛,每两个人都要比赛一场,一共要赛多少场?2、某学校乒乓球队员8人,其中女队员6人,现在要组成双打混合队去参加比赛,有几种组队方法?【六】往返于南京和上海之间的沪宁高速列车沿途要停靠常州、无锡、苏州三站,问:铁路部门要为这趟车准备多少种车票?练习1、上海、北京、天津、广州四个城市分别设有一个飞机场,它们之间通航一共需要多少种不同的机票?2、从广州到长沙的特快列车,中途要停靠8个站。
有几种不同的标价的车票?【七】在1~19中,任取两个和小于20的数,共有多少种不同的取法?练习1、在两位整数中,十位数字小于个位数字的共有多少个?2、在1~29中,每次取2个数,这两个数的和都必须大于30,能有多少种取法?课外作业1、小红有2件不同的上衣,3条不同的裤子,最多可以搭配多少种不同的装束?2、明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子,最多可以搭配多少种不同的装束?3、用0、1、2、3可组成多少个不同的三位数?分别是哪几个数?4、2个自然数的乘积是24,问由这样的2个数所组成的数有多少组?5、某校老师17人举行乒乓球赛,每两人都要比赛一场,一共要比赛多少场?6、在珠江的某一航线上共有7个码头,它们之间通航需要多少种不同的船票?7、有9把不同的锁,开这9把锁的9把钥匙混在一起了,最多要试多少次就可以找到相应的锁?最多要试多少次就能打开相应的锁?。
小学三年级奥数 第07讲枚举法(二)
【课前回顾】 枚举法:将符合要求的结果一一列举出来。 宗旨:
重要思想:
【铺垫】(★★) 集市上的大马商史小乐购买了三匹绝世宝马——汗血马,奔雷马,惊 帆马,为了达到震撼效果,史小乐决定分三天展出,每天展出一匹, 不同的展出顺序有多少种?
【例1】(★★★) 乐乐老师拿来三张卡片,上面分别写着数字1,2,3,猫咪可以 用这些卡片拼出多少个不同的数?
【例6】(★★★★) 乐乐老师要从巍巍、涛涛、昊昊、铮铮、包包这5个小朋友里面 选出四人参加羽毛球赛,有多少种不同的选法?如果已经选出了 巍巍、涛涛、昊昊、铮铮,现在要将它们分成两组打比赛,有多 少种不同的方法?
【本讲总结】 枚举法
一、定义 宗旨:不重不漏
Байду номын сангаас二、树形图 适合:
三、分类枚举 四、整数拆分
【拓展】(★ ★ ★ ★) 集市上的水果大王史果批发了一大堆橘子,苹果和香蕉。史果 给他的三个儿子——史大果,史二果,史小果分水果吃,每人 一个水果,他有多少种不同的分法?
1
【例4】(★ ★ ★ ★) 乐乐老师买了7个鸡蛋,每天至少吃2个,吃完为止,如果天数不 限,可能的吃法共有多少种?
【例5】(★ ★ ★ ★ ★) 乐乐老师买了些大熊和小熊娃娃玩具,一共不到10个,且两种娃 娃的个数不一样,请问,两种娃娃的个数可能有多少种不同的情 况?
【拓展】(★★) 把4颗算珠放在计数器上,可以组成多少个数?
【例3】(★★★) 下午茶的时候,乐乐老师给同学们准备了苹果、香蕉和橘子三种 水果,每种都有足够多个。安迪想挑3个水果吃,请问:他一共 有多少种选择?
【例2】(★★★) 乐乐老师游览A,B,C 三个风景区,计划旅游5 天,最后要回到 A区(不能连续两天在同一个风景区),符合条件的游览路线可以 有几条?
解读小学三年级奥数题及解析枚举法问题
解读小学三年级奥数题及解析枚举法问题如何把小学各门基础学科学好大致是专门多学生都发愁的问题,查字典数学网为大伙儿提供了三年级奥数题枚举法问题,期望同学们多多积存,不断进步!在一个圆周上放了1个红球和1994个黄球。
一个同学从红球开始,按顺时针方向,每隔一个球,取走一个球;每隔一个球,取走一个球;……他一直如此操作下去,当他取到红球时就停止。
你明白这时圆周上还剩下多少个黄球吗?答案与解析:依照题中所说的操作方法,他在第一圈的操作中,取走的是排在黄球中第2、4、6、……1994位置上的黄球,这时圆周上除了一个红球外,还剩下1994÷2=997个黄球。
在第二圈操作时,他取走了这997个黄球中,排在第1、3、5、7、……995、997位置上的黄球,这时圆周上除了一个红球外,还剩下997—(997+ 1)÷2=498个黄球。
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新奇事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积存的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
如此,即巩固了所学的材料,又锤炼了学生的写作能力,同时还培养了学生的观看能力、思维能力等等,达到“一石多鸟”的成效。
他又要连续第三圈操作了,他隔过红球,又取走了这498个黄球中,排在第1、3、5、……495、497的位置上的黄球,这时圆周上除了一个红球外,还剩下498÷2=249个黄球。
因为在上一圈操作时,排在这498个黄球中最后一个位置上的黄球没有被取走,因此他再进行操作时,第一个被取走的确实是那个红球,这时,他的操作停止,圆周上剩下249个黄球。
教师范读的是阅读教学中不可缺少的部分,我常采纳范读,让幼儿学习、仿照。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
三年级奥数枚举法的无序枚举分堆题
三年级奥数枚举法的无序枚举分堆题(原创版)目录1.题目背景及要求2.枚举法的概念和分类3.无序枚举分堆题的解题思路4.举例说明5.结论正文1.题目背景及要求三年级的奥数题目中,有一类涉及到枚举法的问题,被称为无序枚举分堆题。
这类题目的特点是,题目中会给出一些条件,要求我们根据这些条件,将一些元素分堆。
分堆的方式可以有多种,但每种分堆方式都必须满足题目中给出的所有条件。
2.枚举法的概念和分类枚举法是解决这类问题的常用方法。
枚举法,就是将所有可能的情况一一列举出来,然后根据题目的条件进行筛选,找到满足所有条件的解。
枚举法可以分为有序枚举和无序枚举两种。
有序枚举是按照一定的顺序进行枚举,而无序枚举则是没有固定的顺序,直接将所有可能的情况列举出来。
3.无序枚举分堆题的解题思路对于无序枚举分堆题,我们首先要理解题目的条件,明确题目要求的是什么。
然后,我们可以开始进行枚举。
在枚举的过程中,我们需要注意,每一种分堆方式都必须满足题目的所有条件。
如果一种分堆方式不满足题目的条件,那么就需要舍弃,继续尝试其他的分堆方式。
4.举例说明例如,有一道题目要求我们将 10 个数分为三堆,每堆的和都相等。
那么,我们就可以开始进行枚举。
首先,我们可以将这 10 个数从小到大排序,然后,我们可以从第一个数开始,尝试将它分为三堆。
如果分堆后的三堆的和都相等,那么就找到了一种满足题目条件的分堆方式。
如果没有找到,那么就需要继续尝试其他的分堆方式。
5.结论总的来说,无序枚举分堆题的解题思路就是理解题目条件,进行无序枚举,然后根据题目条件进行筛选,找到满足所有条件的解。
小学三年级奥数题枚举法、填算式
小学三年级奥数题枚举法、填算式1.小学三年级奥数题枚举法1、一本书共100页,在排页码时要用多少个数字是6的铅字?解:把个位是6和十位是6的数一个一个地列举出来,数一数。
个位是6的数字有:6、16、26、36、46、56、66、76、86、96,共10个。
十位是6的数字有:60、61、62、63、64、65、66、67、68、69,共10个。
10+10=20(个)答:在排页码时要用20个数字是6的铅字。
2、印刷工人在排印一本书的页码时共用1890个数码,这本书有多少页?解:(1)数码一共有10个:0、1、2……8、9。
0不能用于表示页码,所以页码是一位数的页有9页,用数码9个。
(2)页码是两位数的从第10页到第99页。
因为99-9=90,所以,页码是两位数的页有90页,用数码:2×90=180(个)(3)还剩下的数码:1890-9-180=1701(个)(4)因为页码是三位数的页,每页用3个数码,100页到999页,999-99=900,而剩下的1701个数码除以3时,商不足600,即商小于900。
所以页码最高是3位数,不必考虑是4位数了。
往下要看1701个数码可以排多少页。
1701÷3=567(页)(5)这本书的页数:9+90+567=666(页)2.小学三年级奥数题枚举法1、15个球分成数量不同的四堆,数量最多的一堆至少有多少个球?2、经理有4封信先后交给打字员,要求打字员总是先打最近接到的信,比如打完第3封信时第4封信还未到,此时如果第2封信还未打完,那么就应先打第2封信而不能打第1封信。
打字员打完这4封信的先后顺序有多少种可能?3、甲、乙比赛乒乓球,五局三胜。
已知甲胜了第一盘,并最终获胜。
问:各盘的胜负情况有多少种可能?4、现在1元、2元和5元的硬币各4枚,用其中的一些硬币支付23元钱,一共有多少种不同的支付方法?5、小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。
三年级上册数学奥数第二讲枚举法中的数字排列人教版
例3、有7个按键,上面分别写着:1、2、3、4、5、6、 7这七个数字.请问: (1)从中选出2个按键,使它们上面的数字的差等于2, 一 共有多少种选法?
第二讲 枚举法中的数字排列
例1、卡莉娅、墨莫、小高三个人去游乐园玩,三人在藏宝 屋中一共发现了5件宝物,三人找到的宝物数量共有多少种 不同的可能?(可能有人没有发现宝物)
练习1、师准备了6本笔记本奖励
萱萱、小高和墨莫三人,每人至少 得到1本笔记本,请问: 老师肴多少 种不同的奖励方法?
例2、老师要求每个同学写出3个自然数,并且要求这3 个数的和是8.如果两个同学写出的3个自 然数相同,只 是顺序不一样,则算是同一种写法.试问:同学们最多能 得出多少种不同的写法?
练习2、三个大于0的整数之和(数与数可以相同)等 于10,共有多少组这样的三个数?
用字典排列法枚举的时候,判断题目要求到底是“交换顺序后 算作两种”还是“交换顺序后 仍然是同一种”非常关键.往往 题目中要求“交换顺序后仍然是同一种”,那么枚举的每个结 果里 就没有明确的顺序关系;反之,那么枚举时要注意每个
☆
练习4、如图,数一数图中包含星星的正方形有多少个?
☆
例5、妈妈买来7个鸡蛋,每天至少吃2个,吃完为 止.如果天数不限.可能的吃法一共有多少种?
例6、午餐的时候,食堂为同学们准备了苹果、桃子和桔 子三种水果,每种都有很多.东东 想要挑3个水果吃.请问 东东有多少种不同的选法?
谢谢观看
三年级奥数枚举法的无序枚举分堆题
三年级奥数枚举法的无序枚举分堆题摘要:一、奥数简介二、三年级奥数内容概述三、枚举法的概念和分类四、无序枚举分堆题的解题方法与技巧五、总结与展望正文:【奥数简介】奥数,即奥林匹克数学竞赛,是一项国际性的数学竞赛活动。
我国从1986 年开始组织学生参加国际奥数竞赛,旨在选拔和培养具有数学天赋和潜力的青少年。
奥数的题目涵盖了丰富的数学知识,对于提高学生的数学素养和培养学生的创新能力具有重要的意义。
【三年级奥数内容概述】三年级奥数主要涉及基本的数学知识,如四则运算、分数、小数、简单的几何图形等。
此外,还包括了一些简单的组合、排列、逻辑推理等题目,为更高年级的奥数学习打下基础。
【枚举法的概念和分类】枚举法是一种基本的数学解题方法,通过对问题中可能的情况逐一列举,从中找出符合题意的答案。
根据问题特点,枚举法可以分为有序枚举和无序枚举。
有序枚举是按照一定的顺序进行列举,而无序枚举是不考虑顺序,直接列举所有可能的情况。
【无序枚举分堆题的解题方法与技巧】无序枚举分堆题是三年级奥数中的一种题目类型。
这类题目要求学生在无序的情况下,对若干个元素进行分组,满足特定的条件。
解题的关键是正确地分类和归纳,并运用排除法筛选出符合题意的答案。
具体解题步骤如下:1.仔细阅读题目,理解题意,找出题目中的已知条件和所求问题。
2.列举所有可能的分组情况,不考虑顺序。
3.筛选出符合题意的分组情况,排除不符合条件的答案。
4.根据筛选出的答案,总结解题方法与技巧。
【总结与展望】无序枚举分堆题是三年级奥数中的一个重要知识点,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
通过这类题目的学习和训练,学生可以更好地理解数学知识,提高数学素养,为以后的学习打下坚实的基础。
奥数班三年级第1讲 枚举法a
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
4 8 12 16 20 24 28
6
【典型例题】
9克 3克
1克
用1个砝码: 1克
3克
9克
用2个砝码: 1+3=4克 1+9=10克 3+9=12克
用3个砝码: 1+3+9=13克
一共:
3+3+1=7种
5
【典型例题】 例3:课外小组组织30人做游戏,按1~30号排队报数。第一次报数后, 单号全部站出来,然后每次余下的人中第一个开始站出来,隔一人站出 来一个人,到第几次这些人全部站出来?最后站出的人应该是第几号?
三年级奥数班
第1讲 枚举法解决问题
LOGO HERE
【知识点拨】
一般的,根据问题要求,一一列举问题的 解答,或者为了解决问题的方便把问题分成不遗 漏不重复的优先种情况,并加以解决,最终达到 解决整个问题的目的。这种分析问题解决问题的 方法,称之为枚举法。
注意:运用枚举法解决问题时,必须注意无重复, 无遗漏。为此必须要求有次序有规律的进行枚举。
1+1+1+2 1+2+2
1+1+2+1 2+1+2
1+2+1+1
2开头
1+2+2 2+1+1+1
2+1+2
一共 5+3=8种
2+2+1
8
【课堂精练】
1.商店出售饼干,现有每箱2千克重的,每箱1千克重的。顾客要买9千 克重的饼干,为了便于携带又不开箱,售货员有多少种发货办法?
1千克/箱
枚举法问题三年级奥数题及答案
枚举法问题三年级奥数题及答案
枚举法问题三年级奥数题及答案
【试题】
现在1元、2元和5元的.硬币各4枚,用其中的一些硬币支付23元钱,一共有多少种不同的支付方法?
【答案解析】
23=5×4+2×1+1×1, 23=5×4+1×3, 23=5×3+2×4, 23=5×3+2×3+1×2, 23=5×3+2×2+1×4。所以共有5不同的取法。 Nhomakorabea【小结】
对于简单的计数问题,可以用枚举法,列出满足条件的所有情况。但是对于种数比较多的计数问题常用到排列组合来解决,排列组合的知识我们将在四年级学习。
三年级奥数枚举法(C级)
胖子的枚举法(下)胖子看我们都没反应,道:“好,咱们先来验证第一点和第二点,这两点正好就可以一起处理。
” “你用什么办法验证?”我奇怪道。
事实上我们能做地试验大部分都做了,但是因为墓道过长的关系,很多试验其实都没有用处。
胖子突然笑了笑:“其实我刚才想到了一个好办法,要证明到底是一还是二影响我们,估计是不可能的,但是要证明不是还有是办法的,你看好吧。
”我看着胖子得意满满,大有胸有成竹的感觉,顿时觉得不妙,这家伙是不是有什么打算了。
只见他拾起地上的步枪,对我们道:“这条墓道大概1000米到2000米,56式满杀伤射程是400米,但是子弹能打到3000米外,我在这里放一枪,看看会有什么结果。
”我一听顿时就醍醐灌顶了,心里哎呀了一声:这天才啊!如果是因为我们自己感觉上问题,那子弹是没有感觉的,墓道能够影响我们,但是影响不了子弹,如果这里的情况用常理还可以解释,那么,子弹必然会消失在墓道的尽头,不会回来。
这个实验之完美的地方,就是子弹的速度,这么短地墓道,2.3秒之内,子弹就能完全走完,没有任何地机关陷阶,可以在这么短的时间内发挥作用。
但是如果这里的情况真的超出了常理可以解释的范围,进入玄学的范围了,那么子弹就会像我们一样,在笔直的墓道中超越空间而180度转向。
简单而漂亮,非常符合科学精神,我实在有点惭愧为什么我这个大学生想不出这种办法来。
不过一想,这一招也只有他这样地人才能想的出来,这是最简单的逻辑思维。
要判断是不是有错觉的影响,就要找不会受错觉的影响的东西,要找东西就要就近找,三段式一考虑,马上就出来了这个办法,也并不复杂。
我突然就感觉到了,汪藏海可能遇到对手了,像他这么处心积虑的人,可能就怕胖子这种单板的思考方法,任何诡计都会给最简单化。
胖子说做就做,我们跟了过去,他走到墓道里,拉上枪栓,就想对着墓道开枪。
我忙大叫:“等等!” “怎么了?”他问道。
“不要这样。
”我道,“如果,我是说如果,这里真的邪门到那种地步,那你开枪出去,几乎是一瞬间,自己就会中弹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三年级奥数枚举法
三年级奥数枚举法
例1、用4、9、6、这三个数字排成三位数,一共可排成()个没有重复数字大小不等的三位数。
并写出这些所有三位数的总和。
用2、6、7按同上要求做,所有三位数的总和是()
你发现什么规律?
例5、有面值1分、2分、5分的硬币各4枚,用它们去支付2角3分钱。
有多少种不同的支付方法?
例6、用足够多的4和5两种数字卡片相加,可以凑成无穷多个数。
用这两种卡片不能凑成的最大的自然数是几?
练习
1、在4、6、7、8四个数字中,任意选出三个数字排成三位数、问一共可排成多少个大小不等的三位数?
2、在1、2、0、4四个数字中,任意选出三个数字排成三位数、问一共可排成多少个大小不等的三位数?
3、每个茶杯的价格分别是9角、8角、6角、4角和3角,每个茶盘的价格分别是7角、5角和2角。
如果一个茶杯配一个盘,一共可以配成多少种不同的价格的茶具?
4、有18人进行象棋比赛,若采用单循环制,一共
要赛多少场?若采用淘汰制,一共要赛多少场?
5、商店里卖的电池有3节一盒和5节一盒两种包装,请找出一个尽可能小的数,凡购买的节数超过这个数时,售货员就不必拆盒?
6、口袋中1分、2分、5分和1角的硬币若干枚,小红从中取出三枚,小军从中取出两枚,结果小军的两枚硬币比小红的三枚硬币还多2分钱。
小红和小军取出的五枚硬币的总价值是多少分?
7、一条小街上顺次安装有10盏路灯,为了节约用电又不影响路面的照明,要关闭除首尾两端外的8盏灯中的4盏灯,但被关的灯不能相邻。
问:共有几种不同的关法?
8、新华小学每周安排4次课外活动,内容有体育、文艺、科技三种。
如果要求一周内各种活动至少有一次,并且同一种活动不能连着安排,那么共有多少种不同的安排方法?
9、有八张卡片,上面分别写着自然数1至8.从中取
出3张,要使这3张卡片的数字之和为9,问有多少种不同的取法?
10、从1至8这八个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法?
11、有3个工厂共订300份《吉林日报》,每个工厂最少订99份,最多101份。
问一共有多少种不同的定法?
家庭作业
1、若小明从1—9中挑了三个数字,把这三个数字
组成所有的三位数的总和是4218,你知道小明选了那三个数吗?
2、甲、乙、丙、丁四个同学进行象棋比赛,每两人
都要比赛一场,规定胜者得2分,平局各得1分,输者得0分。
结果甲得第一,乙、丙并列第二,丁最后一名。
那么乙得几分?
3、小明去同学家玩,走进了弄堂,但记不起门牌号
码。
怎么办?他忽然想起,这个门牌号码是一个三位数,个位数字比百位数字大4,十位数字比个位数字也大4根据这些,你能帮小明找到同学家吗?门牌号码是多少?
4、每只完整的螃蟹有两只螯、8只脚。
现有一批螃蟹,共有25只螯。
120只脚。
其中可以有一些缺螯少脚的,但每只螃蟹至少保留1只螯,4只脚。
这批螃蟹至多有多少只?至少有多少只?
5、若干个硬币排成下图,每个硬币所在行的硬币与所在列的硬币数相减得出一个差(大数减小数),如对于差为7-5=2.所有差的总和为多少?
6、24枚棋子排成三行,第一行6枚,第二行7枚,第三行11枚,每次可将一些棋子从一行移入另一行,但移动的棋子数必须等于移入一行的棋子数,只移动三次,使每行都变成8个。
把移动过程写下来。
7、王芳大学毕业找工作,她找了两家公司,都要求签五年的合同,年薪开始都是10000元,但两家公司的加薪方式不同。
甲公司承诺每年加薪1000元,
乙公司答应每半年加薪300元。
以五年计算,王芳应聘哪家公司工作收入更高?
8、3根火柴可以摆成一个三角形,右图用很多根火柴摆成了一个中空的大三角形,已知大三角形外沿上每条边都是20根火柴。
摆成这个图共需要多少根火柴?
9、用若干个1分、2分、5分的硬币组成1角钱(不要求每种硬币都要)。
共有多少种不同的方法?
10、将一个两位数的数字相乘,成为一次操作,如果积仍然是一个两位数,重复以上操作,直到得到一个一位数,如:29---2*9=18---1*8=8(停止),共经历两次操作,最终得到一个一位数。
这个两位数最小是多少?
11、两个自然数,它们的和加上它们的积恰好为34.这两个数中较大数为多少?。