纳米材料认识浅谈

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米材料认识浅谈

纳米材料认识浅谈 (1)

摘要:纳米技术和纳米材料在科技领域扮演着越来越重要的重要角色,纳米技术是当今世界最有前途的决定性技术之一。本文主要概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并展望了纳米材料的应用前景。 (1)

关键词:纳米材料功能应用; (1)

一、纳米材料和纳米技术的基本特点 (1)

二、纳米材料的特性 (2)

1.小尺寸效应 (2)

2.表面效应 (2)

三.纳米材料的制备(举例) (3)

1.碳纳米管 (3)

2. 碳60 (4)

四.纳米科技具有非常重要的科技意义 (5)

1.纳米科技将促使人类认知的革命 (5)

2.纳米科技将引发一场新的工业革命 (5)

五.纳米科技前景的展望 (5)

1.材料和制备 (5)

2.微电子和计算机技术 (5)

3.环境和能源 (6)

4.医学与健康 (6)

5.生物技术 (6)

6.航天和航空 (6)

7.国家安全 (6)

摘要:纳米技术和纳米材料在科技领域扮演着越来越重要的重要角色,纳米技术是当今世界最有前途的决定性技术之一。本文主要概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并展望了纳米材料的应用前景。

关键词:纳米材料功能应用;

一、纳米材料和纳米技术的基本特点

所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100nm或者由他们形成的材料。所以在纳米尺寸上对物质和材料进行研究处理的技术称为纳米技术。纳米材料是指显微结构中的物相具有纳米级尺度的材料。它包含了三个层次,即:纳米微粒、纳米固体和纳米组装体系。

由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。

纳米技术本质上是一种用单个原子、分子制造物质的科学技术,旨在创造和制备优异性能的纳米材料,设计、制备各种纳米器件和装置,探测分析纳米区域的性质和现象。纳米科技主要包括:①纳米体系物理学;②纳米化学;③纳米材料学;④纳米生物学;⑤纳米电子学;⑥纳米加工学;⑦纳米力学。

二、纳米材料的特性

1.小尺寸效应

⑴特殊的光学性质

当黄金(Au)被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在纳米颗粒状态都呈为黑色,而且尺越小,颜色愈黑.

⑵特殊的电学性质

介电和压电特性是材料的基本物性之一。纳米半导体的介电行为(介电常数、介电损耗)及压电特性同常规的半导体材料有和很大的不同。

⑶特殊的磁性

小尺寸超微颗粒的磁性比大块材料强许多倍,大块的纯铁矫顽力约为80A/m,而当颗粒尺寸减小到20nm以下时,其矫顽力可增加1000倍,若进一步减小其尺寸,大约小于6nm时,其矫顽力反而降低到零,表现出所谓超顺磁性

⑷特殊的热学性质

纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。

⑸特殊的力学性质

由纳米超微粒压制成的纳米陶瓷材料却具有良好的韧性,这是因为纳米超微粒制成的固体材料具有大的界面,界面原子的排列相当混乱。原子在外力变形条件下容易迁移,因此表现出很好的韧性与一定的延展性,使陶瓷材料具有新奇的力学性能。这就是目前的一些展销会上推出的所谓“摔不碎的陶瓷碗”。

2.表面效应

纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减

小,表面原子数迅速增加,这是由于粒径小,表面急剧变大所致。当直径小于100nm时,其表面原子百分数急剧增长,甚至1g纳米颗粒表面的总和可高达100m2,这时的表面效应将不容忽略。

三.纳米材料的制备(举例)

1.碳纳米管

碳纳米管是由碳原子按一定规则排列形成的空心笼状管式结构,其直径不超过几十纳米(一纳米为十亿分之一米)。导电性强、场发射性能优良、强度是钢的100倍、韧度高等,是一种用途广泛的新材料。

目前,科学家们已发明3种方法制备含量相当高的碳纳米管的烟尘。但至今这三种方法还有严重的局限性,制取的碳纳米管长短不一,有许多缺陷和多种扭曲。火花法是通过石墨气化成为等离子体,其中一些以碳纳米管的形式重新凝聚,按质量计算,一般产率为30%。优点是使用高温并在石墨棒上加金属催化剂,可以制备几乎没有缺陷的单层或多层碳纳米管。缺点是管较短(不超过50μm),沉积时尺寸和取向都是随机的。热气法是将一块基板放进加热炉里加热后充入含碳气体,气体分解时产生自由的碳原子重新结合可能形成碳纳米管。优点是在三种方法中最容易实现产业化,也可能制备很长的碳纳米管。缺点是制得的碳纳米管是多壁的,常常有许多缺陷。与电弧放点法制备的碳纳米管相比,这种碳纳米管抗张强度只有前者的十分之一。

Rice大学的Richard Smally和他的合作者用脉冲激光代替电加热使碳气化,得到碳纳米管。在实验了多种催化剂后,该小组发现了可大量制备单层碳纳米管的条件,一般产率可达70%。优点是主产物为单层碳纳米管,通过改变反应温度可控制管的直径。缺点是需要非常昂贵的激光器,所以此法耗费最的大。

莫斯科大学的研究人员为了弄清纳米管的受压强度,将少量纳米管置于29Kpa的水压下(相当于水下18000千米深的压力)做实验。不料未加到预定压

相关文档
最新文档