2017年北京市中考数学试卷

合集下载

2017年中考数学真题试题(含答案)

2017年中考数学真题试题(含答案)

2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。

2017年中考数学真题试题与答案(word版)

2017年中考数学真题试题与答案(word版)

XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。

2017年北京市中考数学试卷及答案

2017年北京市中考数学试卷及答案

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前北京市2017年高级中等学校招生考试数学 .......................................................................... 1 北京市2017年高级中等学校招生考试数学答案解析 . (6)北京市2017年高级中等学校招生考试数学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度2.若代数式4xx -有意义,则实数x 的取值范围是( ) A .0x =B .4x =C .0x ≠D .4x ≠ 3.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱4.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a ->B .0bd >C .|||d |>aD .0b c +>5.下列图形中,是轴对称图形但不是中心对称图形的是( )A B C D6.若正多边形的一个内角是150︒,则该正多边形的边数是 ( ) A .6 B .12 C .16 D .187.如果2210a a +-=,那么代数式24()2a a a a --的值是( ) A .3- B .1- C .1 D .3 8.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011年—2016年我国与东南亚地区和东欧地区的贸易额统计图毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推断不合理的是( )A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011—2016年,我国与东南亚地区的贸易额逐年增长C.2011—2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.小苏和小林在如图所示的跑道上进行450⨯米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图所示.下列叙述正确的是( )A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“针尖向上”的频率一定是0.620.其中合理的是( )A.①B.②C.①②D.①③第Ⅱ卷(非选择题共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上)11.写出一个比3大且比4小的无理数:.12.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.13.如图,在ABC△中,M,N分别为AC,BC的中点,若1CMNS=△,则ABNMS=四边形.14.如图,AB为O的直径,C,D为O上的点,AD CD=.若40∠=︒CAB,则CAD∠=︒.15.如图,在平面直角坐标系xOy中,AOB△可以看作是OCD△经过若干次图形的变化数学试卷第3页(共22页)数学试卷第4页(共22页)数学试卷 第5页(共22页) 数学试卷 第6页(共22页)(平移、轴对称、旋转)得到的,写出一种由OCD △得到AOB △的过程: .16.下面是“作已知直角三角形的外接圆”的尺规作图过程.请回答:该尺规作图的依据是 .三、解答题(本大题共13小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分5分)计算:4cos30(1|2|︒+︒-.18.(本小题满分5分)解不等式组:2(1)57,102.3x x x x +-⎧⎪+⎨⎪⎩>>19.(本小题满分5分)如图,在ABC △中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .求证:AD BC =.20.(本小题满分3分)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S =-+△△△矩形,ABC EBMF S S =-△矩形( + ).易知,ADC ABC S S =△△, = , = . 可得NFGD EBMF S S =矩形矩形.21.(本小题满分5分)关于x 的一元二次方程2(3)220x k x k -+++=. (1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k 的取值范围.22.(本小题满分5分)如图,在四边形ABCD 中,BD 为一条对角线,BC AD ∥,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE . (1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.23.(本小题满分5分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。

(完整版)2017年北京市中考数学试题及答案

(完整版)2017年北京市中考数学试题及答案

2017年北京市高级中等学校招生考试数 学 试 题一、选择题(本题共30分,每小题3分)1.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B . 线段PB 的长度C .线段PC 的长度D .线段PD 的长度 2.若代数式4xx -有意义,则实数x 的取值范围是( ) A .0x = B .4x = C .0x ≠ D .4x ≠ 3. 右图是某个几何题的展开图,该几何体是( )A . 三棱柱B . 圆锥C .四棱柱D . 圆柱4. 实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd > C. a b > D .0b c +> 5.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B . C. D .6.若正多边形的一个内角是150°,则该正多边形的边数是( ) A . 6 B . 12 C. 16 D .187. 如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭g 的值是( )A . -3B . -1 C. 1 D .38.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A .两人从起跑线同时出发,同时到达终点B .小苏跑全程的平均速度大于小林跑全程的平均速度 C. 小苏前15s 跑过的路程大于小林前15s 跑过的路程 D .小林在跑最后100m 的过程中,与小苏相遇2次10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:① 当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616; ② 随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③ 若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620. 其中合理的是( )A .①B .② C. ①② D .①③二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:______________.12. 某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________. 13.如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S ∆=,则ABNM S =四边形 .14.如图,AB 为O e 的直径,C D 、为O e 上的点,AD CD =.若040CAB ∠=,则CAD ∠= .15.如图,在平面直角坐标系xOy 中,AOB ∆可以看作是OCD ∆经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD ∆得到AOB ∆的过程: .16.下图是“作已知直角三角形的外接圆”的尺规作图过程 已知:0,90Rt ABC C ∆∠=,求作Rt ABC ∆的外接圆.作法:如图.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,P Q 两点; (2)作直线PQ ,交AB 于点O ; (3)以O 为圆心,OA 为半径作O e .O e 即为所求作的圆.请回答:该尺规作图的依据是 .三、解答题 (本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17.计算:(4cos3012+--.18. 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩19.如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D . 求证:AD BC =.20. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.21.关于x 的一元二次方程()23220x k x k -+++=. (1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.22. 如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 23. 如图,在平面直角坐标系xOy 中,函数()0ky x x=>的图象与直线2y x =-交于点()3,A m . (1)求k m 、的值;(2)已知点()(),0P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数()0ky x x=>的图象于点N . ①当1n =时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN PM ≥,结合函数的图象,直接写出n 的取值范围.24.如图,AB 是O e 的一条弦,E 是AB 的中点,过点E 作EC OA ⊥于点C ,过点B 作O e 的切线交CE 的延长线于点D . (1)求证:DB DE =;(2)若12,5AB BD ==,求O e 的半径.25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下: 甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77 乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40 整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格) 分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论:a .估计乙部门生产技能优秀的员工人数为____________;b .可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)26.如图,P 是AB 所对弦AB 上一动点,过点P 作PM AB ⊥交AB 于点M ,连接MB ,过点P 作PN MB ⊥于点N .已知6AB cm =,设A P 、两点间的距离为xcm ,P N 、两点间的距离为ycm .(当点P 与点A 或点B 重合时,y 的值为0)小东根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当PAN ∆为等腰三角形时,AP 的长度约为____________cm . 27.在平面直角坐标系xOy 中,抛物线243y x x =-+与x 轴交于点A B 、(点A 在点B 的左侧),与y 轴交于点C .(1)求直线BC 的表达式;(2)垂直于y 轴的直线l 与抛物线交于点()()1122,,,P x y Q x y ,与直线BC 交于点()33,N x y ,若123x x x <<,结合函数的图象,求123x x x ++的取值范围.28.在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M . (1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.29.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当O e 的半径为2时,①在点123115,0,,,,02222P P P ⎛⎛⎫⎛⎫⎪ ⎪ ⎝⎭⎝⎭⎝⎭中,O e 的关联点是_______________. ②点P 在直线y x =-上,若P 为O e 的关联点,求点P 的横坐标的取值范围.(2)C e 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y 轴交于点A B 、.若线段AB 上的所有点都是C e 的关联点,直接写出圆心C 的横坐标的取值范围.。

北京市房山区中考数学一模试卷(含解析)

北京市房山区中考数学一模试卷(含解析)

2017年北京市房山区中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是()A.a B.b C.c D.d2.下列图案是轴对称图形的是( )A.B.C.D.3.北京地铁燕房线,是北京地铁房山线的西延线,现正在紧张施工,通车后将是中国大陆第二条全自动无人驾驶线路,预测初期客流量日均132300人次,将132300用科学记数法表示为( )A.1。

323×105B.1。

323×104C.1.3×105 D.1.323×1064.如图,直线a∥b,三角板的直角顶点放在直线b上,两直角边与直线a相交,如果∠1=55°,那么∠2等于()A.65°B.55°C.45°D.35°5.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D6.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,从这个盒子中随机摸出一个球,摸到红球的概率为( )A.B.C.D.7.雷达二维平面定位的主要原理是:测量目标的两个信息﹣﹣距离和角度,目标的表示方法为(γ,α),其中,γ表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A (5,30°),目标B的位置表示为F(4,150°).用这种方法表示目标C的位置,正确的是( )A.(﹣3,300°)B.(3,60°)C.(3,300°)D.(﹣3,60°)8.2022年将在北京﹣﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市,某校开设了冰球选修课,12名同学被分成甲、乙两组进行训练,他们的身高(单位:cm)如表所示:队员1队员2队员3队员4队员5队员6甲组176177175176177175乙组178175170174183176设两队队员身高的平均数依次为甲,乙,方差依次为S甲2,S乙2,下列关系中正确的是()A.甲=乙,S甲2<S乙2B.甲=乙,S甲2>S乙2C.甲<乙,S甲2<S乙2D.甲>乙,S甲2>S乙29.在同一平面直角坐标系中,正确表示函数y=kx+k(k≠0)与y=(k≠0)的图象的是()A.B.C.D.10.如图1,已知点E,F,G,H是矩形ABCD各边的中点,AB=6,BC=8,动点M从点E出发,沿E→F→G→H→E匀速运动,设点M运动的路程x,点M到矩形的某一个顶点的距离为y,如果表示y关于x函数关系的图象如图2所示,那么这个顶点是矩形的()A.点A B.点B C.点C D.点D二、填空题(本小题共6小题,每小题3分,共18分)11.二次根式有意义,则x的取值范围是.12.分解因式:2m2﹣18= .13.如图中的四边形均为矩形,根据图形,利用图中的字母,写出一个正确的等式: .14.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章,记载了一道“折竹抵地"问题,叙述为:“今有竹高一丈,末折抵地,去本三尺,问折者几何?”翻译成数学问题是:在Rt△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,可列出的方程为.15.中国国家邮政局公布的数据显示,2016年中国快递业务量突破313.5亿件,同比增长51。

2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117

2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117

专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。

中考数学:以三角形为载体的几何压轴问题真题+模拟(原卷版北京专用)

中考数学:以三角形为载体的几何压轴问题真题+模拟(原卷版北京专用)

中考数学以三角形为载体的几何压轴问题【方法归纳】北京市中考的倒数第二道大题多数是已三角形为载体的几何综合问题,主要涉及特殊的三角形及相似三角形,这类问题的解决要熟知知各种图形的性质与判定,并且这类题目的解决有时还需要全等三角形和相似三角形、勾股定理、方程思想与分类讨论的相关知识,因此能熟练应用各种知识是解决此类问题的关键.常用到的三角形的知识有:(1)涉及全等问题解题要领:①探求两个三角形全等的条件:SSS,SAS,ASA,AAS及HL,注意挖掘问题中的隐含等量关系,防止误用“SSA”;②掌握并记忆一些基本构成图形中的等量关系;③把握问题中的关键,通过关键条件,发现并添加辅助线.(2)涉及到计算边的关系解题要领:①线段的垂直平分线常常用于构造等腰三角形;②在直角三角形中求边的长度,常常要用到勾股定理;③根据三角形的三边长度,利用勾股定理的逆定理可判断其为直角三角形;④已知直角三角形斜边的中点,考虑运用直角三角形斜边上中线的性质;⑤直角三角形斜边上中线的性质存在逆定理.(3)涉及角平分线问题的解题要领:①已知角的平分线及角平分线上的点到角一边的垂线段,考虑用角平分线的性质;②角平分线的性质常常与三角形的面积相结合.解题要领:(4)涉及到直角三角形方面的解题要领:①已知直角三角形及其锐角求线段长度时,运用锐角三角函数是最常用的方法;②通过等腰三角形的性质,特殊平行四边形的性质及圆的性质构建直角三角形,再运用锐角三角函数求解;③熟记特殊直角三角形的三边关系:30°角的直角三角形的三边的比为1∶∶2,等腰直角三角形的三边关系为1∶1∶;④锐角三角函数也常常作为相似三角形中,求对应边的比值的补充.【典例剖析】【例1】(2021·北京·中考真题)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.6.(2022·北京·中考真题)在△ABC中,∠ACB=90∘,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF,若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2,若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【真题再现】1.(2013·北京·中考真题)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.2.(2017·北京·中考真题)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.3.(2019·北京·中考真题)已知∠AOB=30°,H为射线OA上一定点,OH=√3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.4.(2020·北京·中考真题)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线上一动点,连接DE,过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.【模拟精练】一、解答题1.(2022·北京市广渠门中学模拟预测)如图,等腰Rt△ABC中,∠BAC=90°,AB=AC,点P为射线BC上一动点(不与点B、C重合),以点P为中心,将线段PC逆时针旋转α角,得到线段PQ,连接AP、BQ、M为线段BQ的中点.(1)若点P在线段BC上,且M恰好也为AP的中点,的值;①依题意在图1中补全图形:②求出此时α的值和BPPC(2)写出一个α的值,使得对于任意线段BC延长线上的点P,总有AP的值为定值,并证明;PM2.(2022·北京房山·二模)如图1,在四边形ABCD中,∠ABC=∠BCD,过点A作AE∥DC交BC边于点E,过点E作EF∥AB交CD边于点F,连接AF,过点C作CH∥AF交AE于点H,连接BH.(1)求证:△ABH≌△EAF;(2)如图2,若BH的延长线经过AF的中点M,求BE的值.EC3.(2022·北京东城·二模)如图,在△ABC中,AB=AC,∠CAB=2α,在△ABC的外侧作直线AP(90°−a<∠PAC<180°−2a),作点C关于直线AP的对称点D,连接AD,BD,BD交直线AP于点E.(1)依题意补全图形;(2)连接CE,求证:∠ACE=∠ABE;(3)过点A作AF⊥CE于点F,用等式表示线段BE,2EF,DE之间的数量关系,并证明.4.(2022·北京·二模)在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连接CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°①如图1,DE与BE之间的数量关系是______②如图2,点P在线段CB上,连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论.(2)如图3,若点P在线段CB的延长线上,且∠A=α(0°<α<90°),连接DP,将线段DP 绕点逆时针旋转2α得到线段DF,连接BF,请直接写出DE、BF、BP三者的数量关系(不需证明).5.(2022·北京密云·二模)如图,在等边△ABC中,点D在BA的延长线上,点P是BC边上的一个动点(点P不与点B重合),将线段PD绕点P逆时针旋转60°得到线段PE,连接BE和DE.(1)依据题意,补全图形;(2)比较∠BDE与∠BPE的大小,并证明;(3)用等式表示线段BE、BP与BD之间的数量关系,并证明.6.(2022·北京西城·二模)在△ABC中,AB=AC,过点C作射线CB′,使∠ACB′=∠ACB(点B′与点B在直线AC的异侧)点D是射线CB′上一动点(不与点C重合),点E在线段BC上,且∠DAE+∠ACD=90°.(1)如图1,当点E与点C重合时,AD 与CB′的位置关系是______,若BC=a,则CD的长为______;(用含a的式子表示)(2)如图2,当点E与点C不重合时,连接DE.①用等式表示∠BAC与∠DAE之间的数量关系,并证明;②用等式表示线段BE,CD,DE之间的数量关系,并证明.7.(2022·北京门头沟·二模)如图,在△ABC中,∠ACB = 90°,D是BC的中点,过点C作CE⊥AD,交AD于点E,交AB于点F,作点E关于直线AC的对称点G,连接AG和GC,过点B作BM⊥GC交GC的延长线于点M.(1)①根据题意,补全图形;②比较∠BCF与∠BCM的大小,并证明.(2)过点B作BN⊥CF交CF的延长线于点N,用等式表示线段AG,EN与BM的数量关系,并证明.8.(2022·北京顺义·二模)如图,在△ABC中,∠ACB=90°,AC=BC,P,D为射线AB上两点(点D在点P的左侧),且PD=BC,连接CP.以P为中心,将线段PD逆时针旋转n°(0<n<180)得线段PE.(1)如图1,当四边形ACPE是平行四边形时,画出图形,并直接写出n的值;(2)当n=135°时,M为线段AE的中点,连接PM.①在图2中依题意补全图形;②用等式表示线段CP与PM之间的数量关系,并证明.9.(2022·北京北京·二模)在△ABC中,∠ACB=90°,CA=CB,D是AB的中点,E为边AC上一动点(不与点A,C重合),连接DE,将线段BA绕点B逆时针旋转90°得到线段BF,过点F作FH⊥DE于点H,交射线BC于点G.(1)如图1,当AE<EC时,比较∠ADE与∠BFG的大小;用等式表示线段BG与AE的数量关系,并证明;(2)如图2,当AE>EC时,依题意补全图2,用等式表示线段DE,CG,AC之间的数量关系.10.(2022·北京四中模拟预测)已知,点B是射线AP上一动点,以AB为边作△ABC,∠BCA= 90°,∠A=60°,将射线BC绕点B顺时针旋转120°,得到射线BD,点E在射线BD上,BE+BC= m.(1)如图1,若BE=BC,求CE的长(用含m的式子表示);(2)如图2,点F在线段AB上,连接CF、EF.添加一个条件:AF、BC、BE满足的等量关系为______,使得EF=CF成立,补全图形并证明.11.(2022·北京昌平·二模)如图,已知∠MON=α(0°<α<90°),OP是∠MON的平分线,点A是射线OM上一点,点A关于OP对称点B在射线ON上,连接AB交OP于点C,过点A作ON 的垂线,分别交OP,ON于点D,E,作∠OAE的平分线AQ,射线AQ与OP,ON分别交于点F,G.(1)①依题意补全图形;②求∠BAE度数;(用含α的式子表示)(2)写出一个α的值,使得对于射线OM上任意的点A总有OD=√2AF(点A不与点O重合),并证明.12.(2022·北京海淀·二模)已知AB = BC,∠ABC = 90°,直线l是过点B的一条动直线(不与直线AB,BC重合),分别过点A,C作直线l的垂线,垂足为D,E.(1)如图1,当45°<∠ABD<90°时,①求证:CE +DE =AD;②连接AE,过点D作DH⊥AE于H,过点A作AF∥BC交DH的延长线于点F.依题意补全图形,用等式表示线段DF,BE,DE的数量关系,并证明;(2)在直线l运动的过程中,若DE的最大值为3,直接写出AB的长.13.(2022·北京市十一学校二模)如图,已知∠AOB=60°,点P为射线OA上的一个动点,过点P作PE⊥OB,交OB于点E,点D在∠AOB内,且满足∠DP A=∠OPE,DP+PE=5.(1)当DP=PE时,求DE的长;(2)在点P的运动过程中,请判断射线OA上是否存在一个定点M,使得DM的值不变?并证ME明你的判断.14.(2022·北京平谷·一模)如图,在△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点(不与点A,B重合),作射线CD,过点A作AE⊥CD于E,在线段AE上截取EF=EC,连接BF交CD于G.(1)依题意补全图形;(2)求证:∠CAE=∠BCD;(3)判断线段BG与GF之间的数量关系,并证明.15.(2022·北京房山·一模)已知:等边△ABC,过点B作AC的平行线l.点P为射线AB上一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转60°交直线l于点D.(1)如图1,点P在线段AB上时,依题意补全图形;①求证:∠BDP=∠PCB;②用等式表示线段BC,BD,BP之间的数里关系,并证明;(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.16.(2022·北京市第一六一中学分校一模)已知点P为线段AB上一点,将线段AP绕点A 逆时针旋转60°,得到线段AC;再将线段BP绕点B逆时针旋转120°,得到线段BD;连接AD,取AD中点M,连接BM,CM.(1)如图1,当点P在线段CM上时,求证:PM//BD;(2)如图2,当点P不在线段CM上,写出线段BM与CM的数量关系与位置关系,并证明.17.(2022·北京·二模)如图,在等边ΔABC中,点D是边BC的中点,点E是直线BC上一动点,将线段AE绕点E逆时针旋转60°,得到线段EG,连接AG,BG.(1)如图1,当点E与点D重合时.①依题意补全图形;②判断AB与EG的位置关系;(2)如图2,取EG的中点F,写出直线DF与AB夹角的度数以及FD与EC的数量关系,并证明.18.(2022·北京朝阳·一模)在△ABC中,D是BC的中点,且∠BAD≠90°,将线段AB沿AD所在直线翻折,得到线段AB′,作CE∥AB交直线AB′于点E.(1)如图,若AB>AC,①依题意补全图形;②用等式表示线段AB,AE,CE之间的数量关系,并证明;(2)若AB<AC,上述结论是否仍然成立?若成立,简述理由:若不成立,直接用等式表示线段AB,AE,CE之间新的数量关系(不需证明).19.(2022·北京·中国人民大学附属中学分校一模)如图,正方形ABCD中,P为BD上一动点,过点P作PQ⊥AP交CD边于点Q.(1)求证:PA=PQ;(2)用等式表示PB、PD、AQ之间的数量关系,并证明;(3)点P从点B出发,沿BD方向移动,若移动的路径长为4,则AQ的中点M移动的路径长为(直接写出答案).20.(2022·北京·东直门中学模拟预测)在Rt△ABC中,∠ABC=90°,∠BAC=30°.D为边BC上一动点,点E在边AC上,CE=CD.点D关于点B的对称点为点F,连接AD,P 为AD的中点,连接PE,PF,EF.(1)如图1,当点D与点B重合时,写出线段PE与PF之间的位置关系与数量关系;(2)如图2,当点D与点B,C不重合时,判断(1)中所得的关系是否仍然成立?若成立,请给出证明,若不成立,请举出反例.21.(2022·北京西城·一模)已知正方形ABCD,将线段BA绕点B旋转α(0°<α<90°),得到线段BE,连接EA,EC.(1)如图1,当点E在正方形ABCD的内部时,若BE平分∠ABC,AB=4,则∠AEC=______°,四边形ABCE的面积为______;(2)当点E在正方形ABCD的外部时,①在图2中依题意补全图形,并求∠AEC的度数;②作∠EBC的平分线BF交EC于点G,交EA的延长线于点F,连接CF.用等式表示线段AE,FB,FC之间的数量关系,并证明.22.(2022·北京市三帆中学模拟预测)已知:如图所示△ABC绕点A逆时针旋转α得到△ADE (其中点B与点D对应).(1)如图1,点B关于直线AC的对称点为B′,求线段B′E与CD的数量关系;(2)当α=32°时,射线CB与射线ED交于点F,补全图2并求∠AFD.23.(2022·北京市第五中学分校模拟预测)如图,在△ABC中,AB=AC,∠BAC=40°,作射线CM,∠ACM=80°.D上,连接AD,E是AD的中点,C关于点E的对称点为F,连接DF.(1)依题意补全图形;(2)判断AB与DF的数量关系并证明;(3)平面内一点G,使得DG=DC,FG=FB,求∠CDG的值.24.(2022·北京朝阳·模拟预测)如图①,Rt△ABC和Rt△BDE重叠放置在一起,∠ABC=∠DBE=90°,且AB=2BC,BD=2BE.(1)观察猜想:图①中线段AD与CE的数量关系是,位置关系是;(2)探究证明:把△BDE绕点B顺时针旋转到图②的位置,连接AD,CE,判断线段AD与CE的数量关系和位置关系如何,并说明理由;(3)拓展延伸:若BC=√5,BE=1,当旋转角α=∠ACB时,请直接写出线段AD的长度.25.(2022·北京市师达中学模拟预测)四边形ABCD是正方形,将线段CD绕点C逆时针旋转2α(0°<α<45°),得到线段CE,连接DE,过点B作BF⊥DE交DE的延长线于F,连接BE.(1)依题意补全图1;(2)直接写出∠FBE的度数;(3)连接AF,用等式表示线段AF与DE的数量关系,并证明.26.(2012·北京顺义·中考模拟)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立?并说明理由;(2)如图4,如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.27.(2015·北京·模拟预测)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=√2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.28.(2021·北京·二模)在等腰三角形ABC中,AB=AC,∠BAC=α (0°<α<60°).点P是△ABC内一动点,连接AP,BP,将△APB绕点A逆时针旋转α,使AB边与AC重合,得到△ADC,射线BP与CD或CD延长线交于点M(点M与点D不重合).(1)依题意补全图1和图2;由作图知,∠BAP与∠CAD的数量关系为;(2)探究∠ADM与∠APM的数量关系为;(3)如图1,若DP平分∠ADC,用等式表示线段BM,AP,CD之间的数量关系,并证明.。

专题10 四边形-2017年中考数学试题分项版解析汇编(解析版)

专题10 四边形-2017年中考数学试题分项版解析汇编(解析版)

专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12C . 16D .18【答案】B .【解析】试题分析:设多边形的边数为n ,则有(n -2)×180°=n ×150°,解得:n =12.故选B .考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C .AC BD = D .12∠=∠【答案】C .考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20【答案】D【解析】试题分析:根据菱形的对角线互相垂直,可知OA =3,OB =4,根据勾股定理可知AB =5,所以菱形的周长为4×5=20.故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m =8a ,设CM =x ,DE =y ,则DM =2a -x ,EM =2a -y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG =(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM +CG +MG =24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a -x )2+y 2=(2a -y )2整理得4ax -x 2=4ay∴CM +MG +CG =2444ax x ay a y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形【答案】C【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n -2)·180°=720°,解得n =6,故是六边形.故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形【答案】D【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形.若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误;若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误;若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则tan BDE ∠的值是 ( )A .24B .14C .13D .23【答案】A .【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DF EB EF BF== ,因点E 是边BC 的中点且AD =BC ,所以AD AF DF EB EF BF ===2,设EF =x ,可得AF =2x ,在Rt △ABE 中,由射影定理可得BF =2x ,再由AD AF DF EB EF BF ===2可得DF =22x ,在Rt △DEF 中,tan BDE ∠=2422EF x DF x == ,故选A . 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283B .243C .323D .3238-【答案】A .【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点 423,3AF EF EL ∴==∴=,P 是F E 的中点,32PK ∴= 43DH = 1373322PP CD ∴-= 高为4 7382832S ∴=⨯=L K H故答案选A .考点:平行四边形的面积,三角函数. 10.(2017江苏苏州第7题)如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36C .54D .72【答案】B .【解析】试题分析:∠ABE =3601=3652︒⨯︒ 故答案选B . 考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题) 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE BF =,将,AEH CFG ∆∆分别沿,EH FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB 为 ( )A . 53B .2C . 52D .4 【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题)二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【答案】5.【解析】试题分析:连结AC ,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC =FG =2,AC =32,即可得AE =22,因P 为AE 的中点,可得PE =AP =2,再由正方形的性质可得GM =EM =22,FG 垂直于AC ,在Rt △PGM 中,PM =322,由勾股定理即可求得PG =5.2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD =∠ODC =180°-108°=72°,∴∠COD =36°,∴∠AOB =360°-108°-108°-36°=108°.D C3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④453OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)137A C B OB ∴= ,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODF BDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠ ,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40)17,F CF OC CFO COF ∴=<∴∠>∠ ,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似.则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1137,22FG OB FG OB ∴== D E 、 是OB 的三等分点,1373DE ∴= 1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯= 解得:1162AN OB= ,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确 113733OD OB == ,故④错误. 综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70°【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70°考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA =OC ,OB =OD =12BD =5,CD =AB =4,由sin ∠BDC =35,证出AC ⊥CD ,OC =3,AC =2OC =6,得出▱ABCD 的面积=CD •AC =24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD =32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH =EH ,设AH =x ,则DH =EH =8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x =3,即可得AH =3,EH =5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EH BE BF EF == ,即3452BF EF ==,解得BF =83 ,EF =103,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA +PE 的最小值是 .【答案】10.9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】3105. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB =BG =EF =CD =5,AD =GF =3,在Rt △BCG 中,根据勾股定理求得CG =4,再由1122BCG S BC CG BG CM =⋅=⋅ ,即可求得CM =125 ,在Rt △BCM 中,根据勾股定理求得BM =22221293()55BC CM -=-=,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE =MN =3,BM =EN =95,所以CN =MN -CM =3-125=35,在Rt △ECN 中,根据勾股定理求得EC =22223990310()()55255CN EN +=+==.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745. 【解析】试题分析:连接AG ,设DG =x ,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC =='254974'55CC BB +∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB ,已知菱形的周长为cm 24,根据菱形的性质可得AB =6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE =33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 ,∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 . 考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(2)3. 【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.本题解析:(1)证明:∵E 为AD 中点,A D =2BC ,∴BC =ED , ∵AD ∥BC , ∴四边形ABCD 是平行四边形,∵AD =2BE , ∠ABD =90°,AE =DE ∴BE =ED , ∴四边形ABCD 是菱形.(2)∵AD ∥BC ,AC 平分∠BAD ∴∠BAC =∠DAC =∠BCA ,∴BA =BC =1, ∵AD =2BC =2,∴sin ∠ADB =12,∠ADB =30°, ∴∠DAC =30°, ∠ADC =60°.在RT △ACD 中,AD =2,CD =1,AC = 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ’的坐标为(2,1);(2)1;(3)3333(,)22--或2333(,)22- . 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得OA =3 ,OB =1,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’=OA =3,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB =2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B , ∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A ’OP ≌△AOP .∴OA ’=OA =3,由OB B A ⊥',得∠A ’BO =90°.在Rt △A ’OB 中,22''2A B OA OB =-=, ∴点A ’的坐标为(2,1). (2) 在Rt △AOB 中,OA =3 ,OB =1, ∴222AB OA OB =+= ∵当P 为AB 中点, ∴AP =BP =1,OP =12AB =1. ∴OP =OB =BP , ∴△BOP 是等边三角形 ∴∠BOP =∠BPO =60°, ∴∠OPA =180°-∠BPO =120°. 由(1)知,△A ’OP ≌△AOP ,∴∠OPA ’=∠OPA =120°,P ’A =PA =1,又OB =PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B =OP =1. (3)3333(,)22--或2333(,)22- .4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长; (Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF =324【解析】试题分析:(Ⅰ)分情况CP =CD 、PD =PC 、DP =DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由AP =2 ,从而可得CF =324. 试题解析:(Ⅰ)在矩形ABCD 中,AB =6,AD =8,∠ADC =90°,∴DC =AB =6, AC =22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP =CD 时,CP =6,∴AP =AC -CP =4 ;(2)当PD =PC 时,∠PDC =∠PCD ,∵∠PCD +∠PAD =∠PDC +∠PDA =90°,∴∠PAD =∠PDA ,∴PD =PA ,∴PA =PC ,∴AP =2AC,即AP =5;(3)当DP =DC 时,过D 作DQ ⊥AC 于Q ,则PQ =CQ ,∵S △ADC =12 AD ·DC =12AC ·DQ ,∴DQ =245AD DC AC = ,∴CQ =22185DC DQ -= ,∴PC =2CQ =365 ,∴AP =AC -PC =145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC =∠PDF =90°,即∠ADP +∠PDC =∠PDC +∠CDF ,∴∠ADP =∠CDF ,∵∠BCD =90°,OE =OD ,∴OC =12 ED ,在矩形PEFD 中,PF =DE ,∴OC =12PF ,∵OP =OF =12PF ,∴OC =OP =OF ,∴∠OCF =∠OFC ,∠OCP =∠OPC ,又∵∠OPC +∠OFC +∠PCF =180°,∴2∠OCP +2∠OCF =180°,∴∠PCF =90°,即∠PCD +∠FCD =90°,在Rt △ADC 中,∠PCD +∠PAD =90°,∴∠PAD =∠FCD ,∴△ADP ∽△CDF ,∴34CF CD AP AD == ,∵AP =2 ,∴CF =324.5. (2017广东广州第24题)如图13,矩形ABCD 的对角线AC ,BD 相交于点O ,COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,5BC cm =. ①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.【答案】(1)详见解析;(2)①2sin 3EAD ∠= ②32AP =和Q 走完全程所需时间为32s 【解析】(2)①连接OE ,直线OE 分别交AB 于点F ,交DC 于点GCOD ∆ 关于CD 的对称图形为CED ∆,OE DC DC AB ∴⊥ ,OF AB EF AD ∴⊥在矩形ABCD 中,G 为DC 的中点,且O 为AC 的中点OG ∴ 为CAD ∆ 的中位线 52OG GE ∴==同理可得:F 为AB 的中点,532OF AF ==, 22223593()22AE EF AF ∴=+=+= 32sin sin 932EAD AEFEAD AEF ∠=∠∴∠=∠==②过点P 作PM AB ⊥ 交AB 于点MQ ∴ 由O 运动到P 所需的时间为3s由①可得,23AM AP = ∴ 点O 以1.5/cm s 的速度从P 到A 所需的时间等于以 1/cm s 从M 运动到A 即:11OP PA OP MA t t t OP MA =+=+=+ Q ∴ 由O 运动到P 所需的时间就是OP +MA 和最小.如下图,当P 运动到1P ,即1PO AB 时,所用时间最短. 3t OP MA ∴=+=在11Rt APM ∆ 中,设112,3AM x APx == 2222211115(3)=(2)+()22AP AM PM x x =+∴ 解得:12x = 32AP ∴= 32AP ∴=和Q 走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。

北京市2017年中考数学真题试题(含扫描答案)

北京市2017年中考数学真题试题(含扫描答案)

2017年北京市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分) 1.如图所示,点P 到直线l 的距离是( )A.线段PA 的长度 B. 线段PB 的长度 C.线段PC 的长度 D.线段PD 的长度 2.若代数式4xx -有意义,则实数x 的取值范围是( ) A.0x = B.4x = C.0x ≠ D.4x ≠ 3. 右图是某个几何题的展开图,该几何体是( )A. 三棱柱 B. 圆锥 C.四棱柱 D. 圆柱4. 实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A.4a >- B.0bd > C. a b > D.0b c +> 5.下列图形中,是轴对称图形但不是中心对称图形的是( )A. B.C. D.6.若正多边形的一个内角是150°,则该正多边形的边数是( ) A. 6 B. 12 C. 16 D.187. 如果2210a a +-=,那么代数式242a a a a ⎫⎛-⎪ -⎝⎭的值是( )A. -3 B. -1 C. 1 D.38.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是( )A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是( )A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.①B.② C.①②D.①③二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:______________.12. 某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.13.如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S ∆=,则ABNM S =四边形 .14.如图,AB 为O 的直径,C D 、为O 上的点,AD CD =.若040CAB ∠=,则CAD ∠= .15.如图,在平面直角坐标系xOy 中,AOB ∆可以看作是OCD ∆经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD ∆得到AOB ∆的过程: .16.下图是“作已知直角三角形的外接圆”的尺规作图过程 已知:0,90Rt ABC C ∆∠=,求作Rt ABC ∆的外接圆.作法:如图.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,P Q 两点; (2)作直线PQ ,交AB 于点O ; (3)以O 为圆心,OA 为半径作O .O 即为所求作的圆.请回答:该尺规作图的依据是 .三、解答题 (本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17. 计算:(124cos30+-.18. 解不等式组:()75121023x x x x ->+⎧⎪⎨+>⎪⎩19.如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D . 求证:AD BC =.20.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.21.关于x 的一元二次方程()23220x k x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.22. 如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE.(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分∠BAD ,BC =1,求AC 的长.k23.如图,在平面直角坐标系xOy 中,函数y =(x >0)的图象与直线y =x -2交于点A (3,m ).x(1)求k m 、的值;(2)已知点()(),0P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数()0ky x x=>的图象于点N . ①当1n =时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN PM ≥,结合函数的图象,直接写出n的取值范围.24.如图,AB 是O 的一条弦,E 是AB 的中点,过点E 作EC OA ⊥于点C ,过点B 作O 的切线交CE 的延长线于点D.(1)求证:DB =DE ;(2)若AB =12,BD =5,求 O 的半径.25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下: 甲 78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x人数 部门 4049x≤≤5059x≤≤6069x≤≤7079x≤≤8089x≤≤90100x≤≤甲 0 0 1 11 7 1乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门 平均数 中位数 众数甲 78.3 77.5 75乙 78 80.5 81得出结论:a.估计乙部门生产技能优秀的员工人数为;____________b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)26.如图,P是AB所对弦AB上一动点,过点P作PM⊥AB交AB于点M,连接MB,过点P作PN MB ⊥于点N .已知6AB cm =,设A P 、两点间的距离为xcm ,P N 、两点间的距离为ycm .(当点P 与点A 或点B 重合时,y 的值为0)小东根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:/xcm 0 1 2 3 4 5 6/y cm 0 2.0 2.3 2.1 0.9 0(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当∆PAN 为等腰三角形时,AP 的长度约为cm .____________27.在平面直角坐标系xOy 中,抛物线y =x 2-4x +3与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点C .(1)求直线BC 的表达式;(2)垂直于y 轴的直线l 与抛物线交于点()()1122,,,P x y Q x y ,与直线BC 交于点()33,N x y ,若123x x x <<,结合函数的图象,求123x x x ++的取值范围.28.在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M . (1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.29.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当O 的半径为2时,①在点123115,0,,,0222P P P ⎛⎛⎫⎛⎫ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭中,O 的关联点是_______________. ②点P 在直线y x =-上,若P 为O 的关联点,求点P 的横坐标的取值范围.(2)C 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y 轴交于点A B 、.若线段AB 上的所有点都是C 的关联点,直接写出圆心C 的横坐标的取值范围.试卷答案一、选择题1-5: BDACA 6-10: BCBDB 二、填空题113. (答案不唯一)12.13. 3 14.25°三、解答题。

2017年北京中考数学试卷及答案

2017年北京中考数学试卷及答案

2017年北京市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个...l的距离是1.如图所示,点P到直线PB的长度B. A线段A.线段PA的长度PD的长度 D.线段的长度C.线段PCxx若代数式的取值范围是有意义,则实数2.4x?40x?x?xx D. C. A. =0 B. =43.右图是某几何体的展开图,该几何体是圆柱 D.C.四棱柱 B.圆锥三棱柱A.a,b,c,d在数轴上的点的位置如图所示,则正确的结论是4. 实数a??4ab?0a?c?0d?a D. A. B. C.5.下列图形中,是轴对称图形不是中心对称图形的是..6.若正多边形的一个内角是150°,则该正方形的边数是A.6B. 12C. 16D.181 / 142a4??2??a0??2a?1a如果的值是,那么代数式7.??2?aa??A.-3 B. -1C. 1D.38.下面统计图反映了我国与“一带一路”沿线部分地区的贸易情况.根据统计图提供的信息,下列推断不合理的是...A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2016—2016年,我国与东南亚地区的贸易额逐年增长C. 2016—2016年,我国与东南亚地区的贸易额的平均值超过4 200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多.在整个过程中,4×9.小苏和小林在右图的跑道上进行50米折返跑)的t(单位:s与跑步时间跑步者距起跑线的距离y(单位:m) 对应关系如下图所示。

下列叙述正确的是两个人起跑线同时出发,同时到达终点A.小苏跑全程的平均速度大于小林跑全程的平均速度B.1515s跑过的路程大于小林s跑过的路程小苏前C. 2次的过程中,与小苏相遇100D.小林在跑最后m.10.下图显示了用计算器模拟随机投掷一枚图钉的某次实验的结果2 / 14下面有三个推断:0616;“钉尖向上”的概率是①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以钉可以估计“的频率总在0.618附近摆动,显示出一定的稳定性,②随着试验次数的增加,“钉尖向上”;尖向上”的概率是06180.620. 的频率一定是时,“钉尖向上”③若再次用计算机模拟此实验,则当投掷次数为1 000 其中合理的是 D.①③ C. ①② A. ① B. ②分,每小题3分)二、填空题(本题共18.311.写出一个比大且比4小的无理数求3元,个足球,一共花费435元,其中篮球的单价比足球的单价多12.某活动小组购买了4个篮球和5元,依题意,可列方程组元,足球的单价为y篮球的单价和足球的单价.设篮球的单价为x.为1?S?S分△. M,N别是AC,BC的中点,若,则13.如图,在ABC中,CMNABMN四边形OO∠.°,则CAD= 为如图14.,AB为的直径,C,D 上的点,。

2017年北京市中考数学试卷含答案

2017年北京市中考数学试卷含答案
6.若正多边形的一个内角是 150°,则该正多边形的边数是( ) (A)6 (B)12 (C)16 (D)18 7.如果 a2 +2a-1=0,那么代数式(a - 4 )· a 2 的值是( )
a a-2 (A)-3 (B)-1 (C)1 (D)3 8.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况( )
75 79 81 70 74 80 86 69 83 77 乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40 整理、描述数据 按如下分数段整理、描述这两组样本数据:
(说明:成绩 80 分及以上为生产技能优秀,70—79 分为生产技能良好,60—69 分为生产技能合格, 60 分以下为生产技能不合格) 分析数据 两组样本数据的平均数、中位数、众数如下表所示:
部门
平均数
中位数
众数

78.3
77.5
75

78
80.5
81
得出结论 a.估计乙部门生产技能优秀的员工人数为

b.可以推断出
部门员工的生产技能水平较高,理由

。(至少从两个不同的角度说明推断的合理性)


26.如图,P 是 AB 所对弦 AB 上的一动点,过点 P 作 PM⊥AB 交AB 于点 M,连接 MB,过点 P 作 PN
5.〖答案〗A 〖解析〗轴对称但不是中心对称的图形选哪个,一般难度。本题选 A。
6.〖答案〗B 〖解析〗正多边形一个内角是 150°,求边数。本题选 B。
7.〖答案〗C 〖解析〗分式化简求值,整体代入。这样的题目原来是解答题,前移至选择题。本题选 C。

北京市2017年中考数学试题及答案

北京市2017年中考数学试题及答案

北京市2017年中考数学试题及答案2017年北京市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)1.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B . 线段PB 的长度C .线段PC 的长度D .线段PD 的长度2.若代数式4x x -有意义,则实数x 的取值范围是( ) A .0x = B .4x = C .0x ≠D .4x ≠3. 右图是某个几何题的展开图,该几何体是( )A . 三棱柱B . 圆锥C .四棱柱D . 圆柱4. 实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd > C. a b >D .0b c +>5.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B . C. D .6.若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12 C. 16 D .187. 如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭g 的值是( )A . -3B . -1 C. 1 D .38.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;② 随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③ 若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是( )A .①B .② C. ①② D .①③二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:______________.12. 某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.13.如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S∆=,则ABNM S =四边形 .14.如图,AB 为O e 的直径,C D 、为O e 上的点,AD CD =.若040CAB ∠=,则CAD ∠= .15.如图,在平面直角坐标系xOy中,AOB∆∆可以看作是OCD 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD∆的过程:.∆得到AOB16.下图是“作已知直角三角形的外接圆”的尺规作图过程已知:0∆∠=,求作Rt ABC,90Rt ABC C∆的外接圆.作法:如图.(1)分别以点A和点B为圆心,大于1AB的长为半径作弧,2两弧相交于,P Q 两点;(2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作O e .O e 即为所求作的圆.请回答:该尺规作图的依据是 .三、解答题 (本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17. 计算:(004cos3012122+--.18. 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩19.如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D .求证:AD BC =.20. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD SS S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC SS ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.21.关于x 的一元二次方程()23220x k x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.22. 如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长.23. 如图,在平面直角坐标系xOy 中,函数()0k y x x =>的图象与直线2y x =-交于点()3,A m .(1)求k m 、的值;(2)已知点()(),0P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数()0k y x x =>的图象于点N .①当1n =时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN PM ≥,结合函数的图象,直接写出n 的取值范围.24.如图,AB 是O e 的一条弦,E 是AB 的中点,过点E 作EC OA ⊥于点C ,过点B 作O e 的切线交CE 的延长线于点D .(1)求证:DB DE=;(2)若12,5AB BD==,求O e的半径.25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x人数部门4049x≤≤5059x≤≤6069x≤≤7079x≤≤8089x≤≤90100x≤≤甲0 0 1 11 7 1乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.3 77.5 75乙78 80.5 81得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)26.如图,P是AB所对弦AB上一动点,过点P作PM AB⊥交AB于点M,连接MB,过点P作PN MB=,设⊥于点N.已知6AB cm、两点间的距离为xcm,P N、两点间的距离为ycm.(当点A PP与点A或点B重合时,y的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表: /x cm 0 12 3 4 5 6/y cm0 2.0 2.3 2.1 0.9 0(说明:补全表格时相关数值保留一位小数) (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当PAN ∆为等腰三角形时,AP 的长度约为____________cm . 27.在平面直角坐标系xOy 中,抛物线243y x x =-+与x 轴交于点A B 、(点A 在点B 的左侧),与y 轴交于点C .(1)求直线BC 的表达式;(2)垂直于y 轴的直线l 与抛物线交于点()()1122,,,P x y Q x y ,与直线BC 交于点()33,N x y ,若123x xx <<,结合函数的图象,求123x xx ++的取值范围.28.在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M .(1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.29.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当O e 的半径为2时,①在点1231135,0,,,,02222P P P ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中,O e 的关联点是_______________.②点P 在直线y x =-上,若P 为O e 的关联点,求点P 的横坐标的取值范围.(2)C e 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y轴交于点A B 、.若线段AB 上的所有点都是C e 的关联点,直接写出圆心C 的横坐标的取值范围.2017年北京市高级中等学校招生考试数学试卷答案一、选择题1-5: BDACA 6-10: BCBDB二、填空题113. (答案不唯一)12.13. 3 14.25°三、解答题。

北京市2017年中考数学试题及答案(图片版)

北京市2017年中考数学试题及答案(图片版)
【点评】本题考查多边形的基本概念。该题目在初三强化提高班课程讲座1第三章多边形和平行四边形部分做了专题讲解。
【答案】C
【点评】本题考查了提公因式法,公式法分解因式。该题目在初三强化提高班讲座1专题讲座第一章数与式第04讲多项式及因式分解部分做了专题讲解。
【答案】B
【点评】本题是一道数形结合的题目。该题目在初三强化提高班讲座1专题讲座第四章函数
【答案】B
【点评】本题考查点到直线的距离。该题目在强化提高班初一数学(上学期)课程讲座第五章图形认识初步部分做了专题讲解。
【答案】D
【点评】本题考查函数的定义域。该题目在初三强化提高班讲座1专题讲座第四章函数部分做了专题讲解。
【答案】A
【点评】本题考查几何体的三视图认识。该题目在初一(上)强化提高班课程讲座第五章图形认识初步第02讲几何体的三视图及平面展开图形部分做了专题讲解。
【答案】
【点评】本题考查函数的图像相关知识。该题目在初三强化提高班讲座1专题讲座第四章函数部分做了专题讲解。
【答案】
【点评】本题考查圆的相关知识.该题目在初三强化提高班讲座1专题讲座第七章圆专题复习部分做了专题讲解。
【答案】
【点评】本题考查数据处理。该题目在初三强化提高班讲座1专题讲座第八章总复习有相关介绍。
【答案】C
【点评】本题考查数轴概念。该题目在初一强化提高班课程讲座第一章有理数第01讲有理数的定义,相关概念及有理数大小比较部分做了专题讲解。
【答案】A
【点评】本题考查轴对称图形。该题目在初二(上)强化提高班课程讲座第二章轴对称第01讲轴对称图形部分做了专题讲解,考查的知识点及解题方法完全相同。
【答案】B
【答案】
【点评】本题考查方程组。该题目在初三强化提高班讲座1专题讲座第八章总复习中有相关介绍。

中考数学:以四边形为载体的几何压轴问题真题+模拟(原卷版北京专用)

中考数学:以四边形为载体的几何压轴问题真题+模拟(原卷版北京专用)

中考数学以四边形为载体的几何压轴问题【方法归纳】北京市中考数学倒数第二道压轴题会以四边形为载体的几何压轴题出现,要求学生理解和掌握平行四边形、矩形、菱形、正方形的性质定理和判定定理,会画出四边形全等变换后的图形,并会结合其他知识解答一些有探索性、开放性的问题,提高解决问题的能力.解决此类问题的关键是要牢牢把握四边形的性质与特征,挖掘相关图形之间的联系,利用所给图形及图形之间形状、大小、位置关系,进行观察、实验、比较、联想、类比、分析、综合等.常用到的矩形、菱形、正方形的解题策略有:(1)对于矩形:①判定四边形是矩形,一般先判定是平行四边形,然后再判定是矩形;②矩形的内角是直角和对角线相等,相对于平行四边形来说是矩形特殊的性质;③利用矩形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解.(2)对于菱形:①判定四边形是菱形,一般先判定是平行四边形,然后再判定是菱形;②菱形的邻边相等和对角线垂直,相对于平行四边形来说是菱形特殊的性质;③利用菱形的性质计算或证明时,常常运用勾股定理,锐角三角函数或相似三角形求解;④求线段和的最小值时,往往运用菱形的轴对称的性质转化为求线段的长度.(3)对于正方形:①判定四边形是正方形,一般先判定是平行四边形,然后再判定是矩形或菱形,最后判定这个四边形是正方形;②正方形是最特殊的四边形,在正方形的计算或证明时,要特别注意线段或角的等量转化.【典例剖析】【例1】(2018·北京·中考真题)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.【真题再现】1.(2014·北京·中考真题)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1.(2)若∠PAB=20°,求∠ADF的度数.(3)如图2,若45°<∠PAB<∠90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.2.(2015·北京·中考真题)在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.(1)若点P在线CD上,如图1,①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)3.(2013·北京·中考真题)请阅读下列材料:小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.小明发现,分别延长QE,MF,NG,PH交F A,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2) .请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为_________;(2)求正方形MNPQ的面积;(3)参考小明思考问题的方法,解决问题:如图3,在等边△ABC各边上分别截取AD=BE=CF,,求AD的再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=√33长.4.(2016·北京·中考真题)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【模拟精练】1.(2022·北京昌平·模拟预测)两张宽度均为4的矩形纸片按如图所示方式放置(1)如图①,求证:四边形ABCD是菱形.(2)如图②,点P在BC上,PF⊥AD于F,若S四边形ABCD=16√2,PB=2,①求∠BAD的度数;②求DF的长.2.(2021·北京四中模拟预测)如图所示,四边形ABCD为菱形,AB=2,∠ABC=60°,点E为边BC上动点(不含端点),点B关于直线AE的对称点为点F,点G为DF中点,连接AG.(1)依题意,补全图形;(2)点E运动过程中,是否可能EF∥AG?若可能,求BE长;若不可能,请说明理由;(3)连接CG,点E运动过程中,直接写出CG的最小值.3.(2021·北京门头沟·一模)在正方形ABCD中,将边AD绕点A逆时针旋转a(0°<a<90°)得到线段AE,AE与CD延长线相交于点F,过B作BG//AF交CF于点G,连接BE.(1)如图1,求证:∠BGC=2∠AEB;(2)当(45°<a<90°)时,依题意补全图2,用等式表示线段AH,EF,DG之间的数量关系,并证明.4.(2020·北京亦庄实验中学二模)如图,在正方形ABCD中,E是边BC上一动点(不与点B,C重合),连接DE,点C关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,过点D作DF AP于F.(1)求∠FDP的度数;(2)连接BP,请用等式表示线段BP与线段AF之间的数量关系,并证明.(3)连接PC,若正方形的边长为√2,直接写出△BCP面积的最大值.5.(2020·北京四中模拟预测)在△ABC中,点D在AB边上(不与点B重合),DE⊥BC,垂足为点E,如果以DE为对角线的正方形上的所有点都在△ABC的内部或边上,则称该正方形为△ABC的内正方形.(1)如图,在△ABC中,AB=4,∠B=30°,点D是AB的中点,画出△ABC的内正方形,直接写出此时内正方形的面积;t,0).(2)在平面直角坐标系xOy中,点A(t,2),B(0,0),C(32①若t=2,求△ABC的内正方形的顶点E的横坐标的取值范围;②若对于任意的点D,△ABC的内正方形总是存在,直接写出t的取值范围.6.(2020·北京延庆·一模)四边形ABCD 中,∠A=∠B= 90°,点E在边AB上,点F在AD的延长线上,且点E与点F关于直线CD对称,过点E作EG∥AF交CD于点G,连接FG,DE.(1)求证:四边形DEGF 是菱形;(2)若AB=10,AF=BC=8,求四边形DEGF 的面积.7.(2019·北京·一模)如图1,正方形ABCD中,AB=5,点E为BC边上一动点,连接AE,以AE为边,在线段AE右侧作正方形AEFG,连接CF、DF.设BE=x.(当点E与点B重合时,x的值为0),DF=y,CF=y2.小明根据学习函数的经验,对函数y1、y2随自变量1x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、测量、观察、计算,得到了x与y1、y2的几组对应值;(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x , y1) , (x , y2),并画出函数y1,y2的图象;(3)结合函数图象2,解决问题:当△CDF为等腰三角形时,BE的长度约为cm.8.(2017·北京顺义·一模)在正方形ABCD和正方形DEFG中,顶点B、D、F在同一直线上,H是BF的中点.(1)如图1,若AB=1,DG=2,求BH的长;(2)如图2,连接AH,GH.小宇观察图2,提出猜想:AH=GH,AH⊥GH.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:延长AH交EF于点M,连接AG,GM,要证明结论成立只需证△GAM是等腰直角三角形;想法2:连接AC,GE分别交BF于点M,N,要证明结论成立只需证△AMH≌△HNG.…请你参考上面的想法,帮助小宇证明AH=GH,AH⊥GH.(一种方法即可)9.(2018·北京顺义·一模)如图1,在长方形ABCD中,AB=12cm,BC=10cm,点P从A出发,沿A→B→C→D的路线运动,到D停止;点Q从D点出发,沿D→C→B→A路线运动,到A点停止.若P、Q两点同时出发,速度分别为每秒1cm、2cm,a秒时P、Qcm(P、Q两点速度改变后一直保持此速度,直到两点同时改变速度,分别变为每秒2cm、54停止),如图2是ΔAPD的面积s(cm2)和运动时间x(秒)的图象.(1)求出a值;(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1,y2和运动时间x(秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?10.(2021·北京四中模拟预测)在平面直角坐标系xOy中,如果点A,点C为某个菱形的一组对角的顶点,且点A,C在直线y=x上,那么称该菱形为点A,C的“极好菱形”.如图为点A,C的“极好菱形”的一个示意图.已知点M的坐标为(1,1),点P的坐标为(3,3).(1)点E(2,1),F(1,3),G(4,0)中,能够成为点M,P的“极好菱形”的顶点的是;(2)如果四边形MNPQ是点M,P的“极好菱形”.①当点N的坐标为(3,1)时,求四边形MNPQ的面积;②当四边形MNPQ的面积为8,且与直线y=x+b有公共点时,写出b的取值范围.11.(2021·北京四中九年级开学考试)定义:如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为平面图形的一条面积等分线.(1)如图1,已知△ABC,请用尺规作出△ABC的一条面积等分线.(2)已知:如图2,在平面直角坐标系xOy中,矩形OABC的边OA在x轴的正半轴上、OC在y轴的正半轴上,OA=6,OC=4.①请判断直线y=43x−83是否为矩形OABC的面积等分线,并说明理由;②若矩形OABC的面积等分线与坐标轴所围成的三角形面积为4,请直接写出此面积等分线的函数表达式.(3)如图3,在△ABC中,点A的坐标为(−2,0),点B的坐标为(4,3),点C的坐标为(2,0),点D的坐标(0,−2),求过点D的一条△ABC的面积等分线的解析式.(4)在△ABC中点A的坐标为(−1,0),点B的坐标为(1,0),点C的坐标为(0,1),直线y= ax+b(a>0)是△ABC的一条面积等分线,请直接写出b的取值范围.12.(2021·北京·九年级专题练习)如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE//DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cosB=45,求BF和AD的长.13.(2021·北京·九年级专题练习)如图,在正方形ABCD中,AB=3,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB到点F,使得BF=DM,连接EF,AF.(1)依题意补全图1;(2)若DM=1,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,直接写出此时tan∠DAM的值.14.(2021·北京石景山·九年级期末)已知矩形MBCD的顶点M是线段AB上一动点,AB=BC,矩形MBCD的对角线交于点O,连接MO,BO.点P为射线OB上一动点(与点B不重合),连接PM,作PN⊥PM交射线CB于点N.(1)如图1,当点M与点A重合时,且点P在线段OB上.①依题意补全图1;②写出线段PM与PN的数量关系并证明.(2)如图2,若∠OMB=α,当点P在OB的延长线上时,请补全图形并直接写出PM与PN的数量关系.15.(2020·北京·北师大实验中学九年级开学考试)如图,在正方形ABCD中,AB=6,M是CD边上一动点(不与D点重合),点D与点E关于AM所在的直线对称,连接AE,ME,延长CB 到点F,使得BF=DM,连接EF,AF.(1)当DM=2时,依题意补全图1;(2)在(1)的条件下,求线段EF的长;(3)当点M在CD边上运动时,能使△AEF为等腰三角形,请直接写出此时DM与AD的数量关系________.16.(2017·全国·九年级专题练习)猜想与证明:如图①摆放矩形纸片ABCD与矩形纸片ECGF,使B,C,G三点在一条直线上,CE在边CD上.连结AF,若M为AF的中点,连结DM,ME,试猜想DM与ME的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为__________________;(2)如图②摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]①②17.(2020·北京通州·一模)已知线段AB,过点A的射线l⊥AB.在射线l上截取线段AC=AB,连接BC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点.以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,B的对应点为D,N的对应点为E.(1)当点N与点M重合,且点P不是AB中点时,①据题意在图中补全图形;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,从下列3个条件中选择1个:①BP=1,②PN=1,③BN=√2,当条件______(填入序号)满足时,一定有EM=EA,并证明这个结论.18.(2020·北京一七一中九年级阶段练习)在四边形ABCD中,∠B+∠D=180°,对角线AC 平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,直接写出线段AD、AB、AC的数量关系.(2)如图2,若将(1)中的条件“∠B=90°”去掉,求边AD、AB与对角线AC的数量关系.请证明.(3)如图3,若∠DAB=2αAD、AB与对角线AC的数量关系(用α来表示)19.(2020·北京四中九年级阶段练习)在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE,CE.若AB=4,求线段EC的长.(2)如图2,M为线段AC上一点(不与A,C重合),以AM为边向上构造等边三角形△AMN,线段AN与AD交于点G,连接NC,DM,Q为线段NC的中点.连接DQ,MQ,判断DM与DQ的数量关系,并证明你的结论.(3)在(2)的条件下,若AC=√3,请你直接写出DM+CN的最小值.20.(2020·北京顺义·九年级期末)已知:如图,在正方形ABCD中,点E在AD边上运动,从点A出发向点D运动,到达D点停止运动.作射线CE,并将射线CE绕着点C逆时针旋转45°,旋转后的射线与AB边交于点F,连接EF(1)依题意补全图形;(2)猜想线段DE,EF,BF的数量关系并证明;(3)过点C作CG⊥EF,垂足为点G,若正方形ABCD的边长是4,请直接写出点G运动的路线长.21.(2022·北京·九年级单元测试)图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.22.(2022·北京·九年级单元测试)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是,AE的值是;BE(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.23.(2019·北京·101中学九年级阶段练习)在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作射线EF,(1)若∠DAB=60°,EF∥AB交BC于点H,请在图1中补全图形,并直接写出四边形ABHE 的形状;(2)如图2,若∠DAB=90°,EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG.请在图2中补全图形,并证明点A,E,B,G在同一个圆上;(3)如图3,若∠DAB=α(0°<α<90°),EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG.请在图3中补全图形(要求:尺规作图,保留作图痕迹),并求出线段EG、AG、BG 之间的数量关系(用含α的式子表示);24.(2022·北京朝阳·二模)在正方形ABCD中,E为BC上一点,点M在AB上,点N在DC上,且MN⊥DE,垂足为点F.(1)如图1,当点N与点C重合时,求证:MN=DE;(2)将图1中的MN向上平移,使得F为DE的中点,此时MN与AC相交于点H,①依题意补全图2;②用等式表示线段MH、HF,FN之间的数量关系,并证明.25.(2022·北京四中模拟预测)已知,点B是射线AP上一动点,以AB为边作△ABC,∠BCA= 90°,∠A=60°,将射线BC绕点B顺时针旋转120°,得到射线BD,点E在射线BD上,BE+BC= m.(1)如图1,若BE=BC,求CE的长(用含m的式子表示);(2)如图2,点F在线段AB上,连接CF、EF.添加一个条件:AF、BC、BE满足的等量关系为______,使得EF=CF成立,补全图形并证明.。

北京市2017中考数学试题(解析版)

北京市2017中考数学试题(解析版)

2016年市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个。

1. 如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为 (A ) 45° (B ) 55° (C ) 125° (D ) 135° 答案:B考点:用量角器度量角。

解析:由生活知识可知这个角小于90度,排除C 、D ,又OB 边在50与60之间,所以,度数应为55°。

2. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。

将28 000用科学计数法表示应为 (A ) (B ) 28(C )(D )答案:C考点:本题考查科学记数法。

解析:科学记数的表示形式为10n a ⨯形式,其中1||10a ≤<,n 为整数,28000=。

故选C 。

3. 实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是(A ) a (B )(C )(D )答案:D考点:数轴,由数轴比较数的大小。

解析:由数轴可知,-3<a <-2,故A 、B 错误;1<b <2, -2<-b <-1,即-b 在-2与-1之间,所以,。

4. 角和为540的多边形是答案:c考点:多边形的角和。

解析:多边形的角和为(2)180n-⨯︒,当n=5时,角和为540°,所以,选C。

5. 右图是某个几何体的三视图,该几何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱答案:D考点:三视图,由三视图还原几何体。

解析:该三视图的俯视为三角形,正视图和侧视图都是矩形,所以,这个几何体是三棱柱。

6. 如果,那么代数2()b aaa a b--的值是(A)2 (B)-2 (C)(D)答案:A考点:分式的运算,平方差公式。

解析:2()b aaa a b--=22a b aa a b--=()()a b a b aa a b-+-=a b+=2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年北京市中考数学试卷一、选择题(本题共30分,每小题3分)1.(3分)如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度2.(3分)若代数式xx−4有意义,则实数x的取值范围是()A.x=0 B.x=4 C.x≠0 D.x≠43.(3分)如图是某个几何题的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱4.(3分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b|D.b+c>05.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.B. C.D.6.(3分)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.187.(3分)如果a2+2a﹣1=0,那么代数式(a﹣4a)•a2a−2的值是()A.﹣3 B.﹣1 C.1 D.38.(3分)下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.(3分)小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10.(3分)如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.①B.②C.①②D.①③二、填空题(本题共18分,每题3分)11.(3分)写出一个比3大且比4小的无理数:.12.(3分)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.13.(3分)如图,在△ABC中,M、N分别为AC,BC的中点.若S△CMN=1,则S =.四边形ABNM14.(3分)如图,AB为⊙O的直径,C、D为⊙O上的点,AD=CD.若∠CAB=40°,则∠CAD=.15.(3分)如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由△OCD得到△AOB 的过程:.16.(3分)图1是“作已知直角三角形的外接圆”的尺规作图过程 已知:Rt △ABC ,∠C=90°,求作Rt △ABC 的外接圆. 作法:如图2.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于P ,Q两点;(2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作⊙O .⊙O 即为所求作的圆. 请回答:该尺规作图的依据是 .三、解答题(本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤. 17.(5分)计算:4cos30°+(1﹣√2)0﹣√12+|﹣2|. 18.(5分)解不等式组:{2(x +1)>5x −7x+103>2x .19.(5分)如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D . 求证:AD=BC .20.(5分)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据该图完成这个推论的证明过程.证明:S 矩形NFGD =S △ADC ﹣(S △ANF +S △FGC ),S 矩形EBMF =S △ABC ﹣( + ). 易知,S △ADC =S △ABC , = , = . 可得S 矩形NFGD =S 矩形EBMF .21.(5分)关于x 的一元二次方程x 2﹣(k +3)x +2k +2=0. (1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.22.(5分)如图,在四边形ABCD 中,BD 为一条对角线,AD ∥BC ,AD=2BC ,∠ABD=90°,E 为AD 的中点,连接BE . (1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分∠BAD ,BC=1,求AC 的长.23.(5分)如图,在平面直角坐标系xOy中,函数y=kx(x>0)的图象与直线y=x﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y=kx(x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.24.(5分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.25.(5分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x 人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙(说明:成绩80分及以上为生产技能优秀,70﹣﹣79分为生产技能良好,60﹣﹣69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:a.估计乙部门生产技能优秀的员工人数为;b.可以推断出部门员工的生产技能水平较高,理由为.(至少从两个不同的角度说明推断的合理性)26.(5分)如图,P是AB所对弦AB上一动点,过点P作PM⊥AB交AB于点M,连接MB,过点P作PN⊥MB于点N.已知AB=6cm,设A、P两点间的距离为xcm,P、N两点间的距离为ycm.(当点P与点A或点B重合时,y的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm0 2.0 2.3 2.10.90(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当△PAN为等腰三角形时,AP的长度约为cm.27.(7分)在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC 交于点N(x3,y3),若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.28.(7分)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.29.(8分)在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当⊙O 的半径为2时,①在点P 1(12,0),P 2(12,√32),P 3(52,0)中,⊙O 的关联点是 .②点P 在直线y=﹣x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围.(2)⊙C 的圆心在x 轴上,半径为2,直线y=﹣x +1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.2017年北京市中考数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.(3分)(2017•北京)如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度【分析】根据点到直线的距离是垂线段的长度,可得答案.【解答】解:由题意,得点P到直线l的距离是线段PB的长度,故选:B.【点评】本题考查了点到直线的距离,利用点到直线的距离是解题关键.2.(3分)(2017•北京)若代数式xx−4有意义,则实数x的取值范围是()A.x=0 B.x=4 C.x≠0 D.x≠4【分析】根据分式有意义的条件即可求出x的范围;【解答】解:由意义可知:x﹣4≠0,∴x≠4,故选(D)【点评】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件,本题属于基础题型.3.(3分)(2017•北京)如图是某个几何题的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.【点评】本题考查的是三棱柱的展开图,考法较新颖,需要对三棱柱有充分的理解.4.(3分)(2017•北京)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b|D.b+c>0【分析】根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、|a|>4=|d|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.【点评】本题考查了实数与数轴,利用数轴上点的位置关系得处a,b,c,d的大小是解题关键.5.(3分)(2017•北京)下列图形中,是轴对称图形但不是中心对称图形的是()A.B. C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形但不是中心对称图形,故本选项正确;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•北京)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.18【分析】根据多边形的内角和,可得答案.【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=150n,解得n=12,故选:B.【点评】本题考查了多边形的内角与外角,利用内角和公式是解题关键.7.(3分)(2017•北京)如果a2+2a﹣1=0,那么代数式(a﹣4a)•a2a−2的值是()A.﹣3 B.﹣1 C.1 D.3【分析】根据分式的减法和乘法可以化简题目中的式子,然后对a2+2a﹣1=0变形即可解答本题.【解答】解:(a﹣4a)•a2a−2=a2−4a⋅a2a−2=(a+2)(a−2)a⋅a2a−2=a(a+2)=a2+2a,∵a2+2a﹣1=0,∴a2+2a=1,∴原式=1,故选C.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.8.(3分)(2017•北京)下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多【分析】利用折线统计图结合相应数据,分别分析得出符合题意的答案.【解答】解:A、由折线统计图可得:与2015年相比,2016年我国与东欧地区的贸易额有所增长,正确,不合题意;B、由折线统计图可得:2011﹣2014年,我国与东南亚地区的贸易额逐年增长,故此选项错误,符合题意;C、2011﹣2016年,我国与东南亚地区的贸易额的平均值为:(3632.5+4003.0+4436.5+4803.6+4718.7+4554.4)÷6≈4358,故超过4200亿美元,正确,不合题意,D、∵4554.4÷1368.2≈3.33,∴2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多,故选:B.【点评】此题主要考查了折线统计图,利用折线统计图获取正确信息是解题关键.9.(3分)(2017•北京)小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次【分析】通过函数图象可得,两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=路程时间,根据行程问题的数量关系可以求出甲、乙的速度,所以小苏跑全程的平均速度小于小林跑全程的平均速度,根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,两人相遇时,即实线与虚线相交的地方有两次,即可解答.【解答】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=路程时间,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B错误;根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;故选:D.【点评】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10.(3分)(2017•北京)如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.①B.②C.①②D.①③【分析】根据图形和各个小题的说法可以判断是否正确,从而可以解答本题.【解答】解:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以此时“钉尖向上”的可能性是:308÷500=0.616,但“钉尖向上”的概率不一定是0.616,故①错误,随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.故②正确,若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率可能是0.620,但不一定是0.620,故③错误,故选B.【点评】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.二、填空题(本题共18分,每题3分)11.(3分)(2017•北京)写出一个比3大且比4小的无理数:π.【分析】根据无理数的定义即可.【解答】解:写出一个比3大且比4小的无理数:π,故答案为:π.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.12.(3分)(2017•北京)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为 {x −y =34x +5y =435 .【分析】根据题意可得等量关系:①4个篮球的花费+5个足球的花费=435元,②篮球的单价﹣足球的单价=3元,根据等量关系列出方程组即可. 【解答】解:设篮球的单价为x 元,足球的单价为y 元,由题意得: {x −y =34x +5y =435,故答案为:{x −y =34x +5y =435.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.13.(3分)(2017•北京)如图,在△ABC 中,M 、N 分别为AC ,BC 的中点.若S △CMN =1,则S 四边形ABNM = 3 .【分析】证明MN 是△ABC 的中位线,得出MN ∥AB ,且MN=12AB ,证出△CMN∽△CAB ,根据面积比等于相似比平方求出△CMN 与△CAB 的比,继而可得出△CMN 的面积与四边形ABNM 的面积比.最后求出结论. 【解答】解:∵M ,N 分别是边AC ,BC 的中点, ∴MN 是△ABC 的中位线,∴MN ∥AB ,且MN=12AB ,∴△CMN ∽△CAB , ∴S △CMN S △CAB =(MN AB )2=14, ∴S △CMNS 四边形ABNM =13,∴S 四边形ABNM =3S △AMN =3×1=3. 故答案为:3.【点评】本题考查了相似三角形的判定与性质、三角形中位线定理;熟练掌握三角形中位线定理,证明三角形相似是解决问题的关键.14.(3分)(2017•北京)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的点,AD=CD .若∠CAB=40°,则∠CAD= 25° .【分析】先根据AD=CD 得出AD̂=CD ̂,再由AB 为⊙O 的直径,∠CAB=40°得出BC ̂的度数,进而可得出AĈ的度数,据此可得出结论. 【解答】解:∵AD=CD ,∴AD̂=CD ̂. ∵AB 为⊙O 的直径,∠CAB=40°,∴BĈ=80°, ∴AĈ=180°﹣80°=100°, ∴AD̂=CD ̂=50°, ∴∠CAD=25°. 故答案为:25°.【点评】本题考查的是圆周角定理,弧、弦的关系,根据题意得出CD̂的度数是解答此题的关键.15.(3分)(2017•北京)如图,在平面直角坐标系xOy 中,△AOB 可以看作是△OCD 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由△OCD 得到△AOB 的过程: △OCD 绕C 点旋转90°,并向左平移2个单位得到△AOB .【分析】根据旋转的性质,平移的性质即可得到由△OCD得到△AOB的过程.【解答】解:△OCD绕C点旋转90°,并向左平移2个单位得到△AOB(答案不唯一).故答案为:△OCD绕C点旋转90°,并向左平移2个单位得到△AOB.【点评】考查了坐标与图形变化﹣旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.16.(3分)(2017•北京)图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所的弦是直径.【分析】由于90°的圆周角所的弦是直径,所以Rt △ABC 的外接圆的圆心为AB 的中点,然后作AB 的中垂线得到圆心后即可得到Rt △ABC 的外接圆.【解答】解:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所的弦是直径.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所的弦是直径.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.三、解答题(本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤. 17.(5分)(2017•北京)计算:4cos30°+(1﹣√2)0﹣√12+|﹣2|.【分析】首先利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案. 【解答】解:原式=4×√32+1﹣2√3+2 =2√3﹣2√3+3 =3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(5分)(2017•北京)解不等式组:{2(x +1)>5x −7x+103>2x .【分析】利用不等式的性质,先求出两个不等式的解集,再求其公共解. 【解答】解:{2(x +1)>5x −7①x+103>2x②,由①式得x <3; 由②式得x <2,所以不等式组的解为x <2.【点评】此题考查解不等式组;求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.(5分)(2017•北京)如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D . 求证:AD=BC .【分析】根据等腰三角形的性质得到∠ABC=C=72°,根据角平分线的定义得到∠ABD=∠DBC=36°,∠BDC=72°,根据等腰三角形的判定即可得到结论. 【解答】证明:∵AB=AC ,∠A=36°, ∴∠ABC=C=72°,∵BD 平分∠ABC 交AC 于点D , ∴∠ABD=∠DBC=36°,∠BDC=72°, ∴∠A=∠ABD ,∠BDC=∠C , ∴AD=BD=BC .【点评】本题主要考查等腰三角形的性质和判定,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.20.(5分)(2017•北京)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据该图完成这个推论的证明过程.证明:S 矩形NFGD =S △ADC ﹣(S △ANF +S △FGC ),S 矩形EBMF =S △ABC ﹣( S △AEF + S △FCM ). 易知,S △ADC =S △ABC , S △ANF = S △AEF , S △FGC = S △FMC . 可得S 矩形NFGD =S 矩形EBMF .【分析】根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.【解答】证明:S 矩形NFGD =S △ADC ﹣(S △ANF +S △FGC ),S 矩形EBMF =S △ABC ﹣( S △ANF +S △FCM ). 易知,S △ADC =S △ABC ,S △ANF =S △AEF ,S △FGC =S △FMC , 可得S 矩形NFGD =S 矩形EBMF .故答案分别为 S △AEF ,S △FCM ,S △ANF ,S △AEF ,S △FGC ,S △FMC .【点评】本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.21.(5分)(2017•北京)关于x 的一元二次方程x 2﹣(k +3)x +2k +2=0. (1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.【分析】(1)根据方程的系数结合根的判别式,可得△=(k﹣1)2≥0,由此可证出方程总有两个实数根;(2)利用分解因式法解一元二次方程,可得出x1=2、x2=k+1,根据方程有一根小于1,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【解答】(1)证明:∵在方程x2﹣(k+3)x+2k+2=0中,△=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根.(2)解:∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1.∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.【点评】本题考查了根的判别式、因式分解法解一元二次方程以及解一元一次不等式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)利用因式分解法解一元二次方程结合方程一根小于1,找出关于k的一元一次方程.22.(5分)(2017•北京)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.【分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE 即可解决问题;(2)在Rt△只要证明∠ADC=60°,AD=2即可解决问题;【解答】(1)证明:∵AD=2BC ,E 为AD 的中点, ∴DE=BC , ∵AD ∥BC ,∴四边形BCDE 是平行四边形, ∵∠ABD=90°,AE=DE , ∴BE=DE ,∴四边形BCDE 是菱形.(2)解:连接AC . ∵AD ∥BC ,AC 平分∠BAD , ∴∠BAC=∠DAC=∠BCA , ∴AB=BC=1, ∵AD=2BC=2,∴sin ∠ADB=12,∴∠ADB=30°,∴∠DAC=30°,∠ADC=60°, 在Rt △ACD 中,∵AD=2, ∴CD=1,AC=√3.【点评】本题考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.23.(5分)(2017•北京)如图,在平面直角坐标系xOy 中,函数y=kx(x >0)的图象与直线y=x ﹣2交于点A (3,m ).(1)求k 、m 的值;(2)已知点P (n ,n )(n >0),过点P 作平行于x 轴的直线,交直线y=x ﹣2于点M ,过点P 作平行于y 轴的直线,交函数y=kx (x >0)的图象于点N .①当n=1时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN ≥PM ,结合函数的图象,直接写出n 的取值范围.【分析】(1)将A 点代入y=x ﹣2中即可求出m 的值,然后将A 的坐标代入反比例函数中即可求出k 的值.(2)①当n=1时,分别求出M 、N 两点的坐标即可求出PM 与PN 的关系; ②由题意可知:P 的坐标为(n ,n ),由于PN >PM ,从而可知PN ≥2,根据图象可求出n 的范围.【解答】解:(1)将A (3,m )代入y=x ﹣2, ∴m=3﹣2=1, ∴A (3,1),将A (3,1)代入y=k x,∴k=3×1=3,(2)①当n=1时,P (1,1), 令y=1,代入y=x ﹣2, x ﹣2=1, ∴x=3, ∴M (3,1), ∴PM=2, 令x=1代入y=3x,∴y=3,∴N(1,3),∴PM=2∴PM=PN,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x﹣2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.24.(5分)(2017•北京)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.【分析】(1)欲证明DB=DE,只要证明∠DEB=∠DBE;(2)作DF⊥AB于F,连接OE.只要证明∠AOE=∠DEF,可得sin∠DEF=sin∠AOE=AEAO=45,由此求出AE即可解决问题.【解答】(1)证明:∵AO=OB,∴∠OAB=∠OBA,∵BD是切线,∴OB⊥BD,∴∠OBD=90°,∴∠OBE+∠EBD=90°,∵EC⊥OA,∴∠CAE+∠CEA=90°,∵∠CEA=∠DEB,∴∠EBD=∠BED,∴DB=DE.(2)作DF⊥AB于F,连接OE.∵DB=DE,AE=EB=6,∴EF=12BE=3,OE⊥AB,在Rt△EDF中,DE=BD=5,EF=3,∴DF=√52−32=4,∵∠AOE+∠A=90°,∠DEF+∠A=90°,∴∠AOE=∠DEF,∴sin∠DEF=sin∠AOE=AEAO =4 5,∵AE=6,∴AO=15 2.∴⊙O的半径为15 2.【点评】本题考查切线的性质、勾股定理、垂径定理、锐角三角函数、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.25.(5分)(2017•北京)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x 人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙1007102。

相关文档
最新文档