定义与命题【公开课教案】【公开课教案】

合集下载

定义与命题 公开课教案

定义与命题   公开课教案

7.2 定义与命题第1课时定义与命题第一环节:情景引入(由学生表演)活动内容:小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……(表演结束)教师提出问题:在这个小品中,你得到什么启示?(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)①关于“黑客”对话的片断来引入生活中交流时必须对某些名称和术语有共同的认识才能进行;②对定义含义的解释;③举例说明生活中和数学学习中所熟知的定义(学生举例,看哪个小组的举例又多又好);活动目的:让学生通过对一个学生比较感兴趣的名词:“黑客”、“因特网”的不同理解,从而使学生了解定义的含义.教学效果:很多学生对黑客的概念是很熟悉的,而小品中出现的黑客的定义与自己所熟知的黑客的概念完全不同,由此产生了对定义的兴趣.第二环节:命题含义(情景引入)活动内容:①师:如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;如果D处水流受到污染,那么____处水流便受到污染;②学生自编自练:如果____处水流受到污染,那么____处水流便受到污染.([生甲]如果B处工厂排放污水,那么A、B、C、D处便会受到污染.[生乙]如果B处工厂排放污水,那么E、F、G处也会受到污染的.[生丙]如果C处受到污染,那么A、B、C处便受到污染.[生丁]如果C处受到污染,那么D处也会受到污染的.[生戊]如果E处受到污染,那么A、B处便会受到污染.[生己]如果H处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.……老师归纳:同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:熊猫没有翅膀.对顶角相等.大家能举出这样的例子吗?[生甲]两直线平行,内错角相等.[生乙]无论n为任意的自然数,式子n2-n+11的值都是质数.[生丙]内错角相等.[生丁]任意一个三角形都有一个直角.[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.[生己]全等三角形的对应角相等.……[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB=a.平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.)活动目的:通过对水流的污染问题引入命题的概念,使学生了解命题的含义,会判断某些语句是不是命题.教学效果:命题的判断只有两种形式,要么肯定,要么否定。

八年级数学上册定义与及命题优质教案

八年级数学上册定义与及命题优质教案

八年级数学上册定义与及命题优质教案一、教学内容本节课我们将学习八年级数学上册第二章“定义与命题”的1.1节,内容包括:1. 理解定义的概念,掌握通过实例归纳、提炼定义的方法;2. 掌握命题的书写,判断命题的真假;3. 研究教材中第二章1.1节所提供的例题,深入理解定义与命题之间的关系。

二、教学目标1. 知识与技能:学生能够理解定义的含义,掌握命题的书写和判断方法,解决与定义和命题相关的问题。

3. 情感态度与价值观:培养学生严谨的逻辑思维,激发学生对数学知识的探究兴趣。

三、教学难点与重点1. 教学难点:命题的真假判断,定义的提炼和应用。

2. 教学重点:理解定义的概念,掌握命题的书写和判断方法。

四、教具与学具准备1. 教具:黑板、粉笔、教学课件、示例题目。

2. 学具:练习本、笔。

五、教学过程1. 导入新课:通过生活中的实例,引导学生思考如何用数学语言描述现象,引出定义和命题的概念。

2. 新课讲解:a. 介绍定义的含义,通过实例让学生理解定义的重要性;b. 讲解命题的书写方法,学会判断命题的真假;c. 结合教材例题,分析定义与命题之间的关系。

3. 随堂练习:让学生尝试书写定义和命题,并进行真假判断,教师给予指导和反馈。

4. 知识巩固:针对课堂所学,设计一些练习题,让学生巩固知识,提高解题能力。

六、板书设计1. 定义的概念及提炼方法;2. 命题的书写和真假判断方法;3. 例题解析及关键步骤;4. 练习题及答案。

七、作业设计1. 作业题目:a. 请列举出你所熟悉的数学定义,并简要说明其含义;2. 答案:a. 例如:勾股定理、因式分解、平方根等;b. ①真命题;②真命题。

八、课后反思及拓展延伸1. 反思:本节课学生对于定义和命题的掌握程度,以及解题过程中遇到的问题。

2. 拓展延伸:引导学生思考如何运用定义和命题解决实际问题,培养学生的逻辑思维和数学应用能力。

重点和难点解析1. 教学难点:命题的真假判断,定义的提炼和应用;2. 教学过程中的新课讲解,特别是定义与命题之间的关系;3. 板书设计,尤其是关键步骤和练习题的答案;4. 作业设计,特别是作业题目的设置和答案的详细解释。

《定义与命题》word教案 (公开课获奖)2022苏教版 (1)

《定义与命题》word教案 (公开课获奖)2022苏教版 (1)

12. 1 定义与命题一、设计思路说理无疑是重要的 ,也是十分必要的.合情推理和演绎推理都是获得数学结论的重要途径 ,演绎推理关注的是开展符合逻辑的思考. 推理与证明的意识 ,步步有据有理的表达 ,这都离不开定义、命题 ,真、假命题等概念清晰的认可 ,为证明做必要的准备. 通过球赛、天气预报两个情境的展示 ,体会一些常用术语的描述 ,让学生感受理解有关名称和术语的重要性 ,引起学生对概念的关注. 回忆学过的多个结论性的句子 ,其中包括正确的和不正确的 ,通过讨论、交流、分析 ,引导学生感受命题及命题的组成 ,进而能独立判断一个句子是不是命题 ,并能说出命题中的条件和结论 ,由观察、操作、实验、猜想得到的结论并不是全都正确 ,判断一个命题是假命题 ,只要举出一个反例就可以说明了 ,而要确认一个命题是真命题就必须要用演绎推理的方法去说明理由 ,从而为后续学习 "证明〞打好根底.二、目标设计1.了解定义、命题、真命题的含义 ,会区分命题的条件和结论.2.在交流中开展有条理思考和有条理表达的能力.3.感受交流的重要性 ,积极参与团队协作三、活动设计活动内容师生互动思考与安排情境 1 录像片断:一场中超足球赛正在紧张进行.解说员话外音: "好 ,漂亮很快要进球了 ,可惜越位了〞.情境 2 气象台预报:今天白天到夜里晴转多云 ,最|高温度25℃~27℃ ,明天最|低温度13℃~15℃ ,明天多云 ,局部地区有雷阵雨 ,……说明:这是两个常见的活动情境 ,意在引起学生注意 ,通过对越位、温度、雷阵雨等术语的描术 ,让学生明白 ,只有对常用的名称和术语有了共识 ,人们才可以正常交流.类似地 ,数学中要引进说理 ,必须对涉及的概念有共识 ,也就需要对概念下定义.活动一〔快速抢答〕〔1〕怎样的两个数是 "互为相反数〞 ?〔2〕怎样的三角形是 "等腰三角形〞 ?……说明:〔请补上内容〕活动二〔1〕 "等角的余角相等.〞与 "等角的余角相等吗 ?〞这两句话一样吗 ?如不一样 ,它们有什么不同 ?〔2〕 "经过一点有且只有一条直线与直线垂直〞与 "经过一点画直线的垂线〞有什么不同 ?〔3〕 "相等的角是对顶角〞与 "相等的角不一定是对顶角〞又有什么不同 ?说明:这些句子 ,一类是对某一件事情做出了判断;另一类是没有对某一件事情做出判断.引导学生通过对命题与非命题具体例子的辨析 ,了解什么是命题 ,什么不是命题.值得注意的是判断是不是正确 ,并不是构成判断的必要条件.活动三:展示你的才华观察以下命题 ,你能发现它们有什么共同的结构特征吗 ?命题〔1〕:如果a>0, b<0 ,那么|a| =|b|.命题〔2〕:如果两个角相等 ,那么这两个角是对顶角.命题〔3〕:如果一个三角形有一个角相等 ,那么这个三角形是直角三角形.说明:命题的结构特征学生不难找出 ,命题都由条件和结论两局部组成 ,缺少其中一局部就不能构成命题 ,可以明确告知学生,做为一个命题的两局部条件和结论缺一不可 ,不过有时对其表述不明显罢了 ,为下面的活动做一些铺垫.活动四:〔发挥你的聪明才智〕以下各命题的条件是什么 ?结论是什么 ?命题〔4〕:对顶角相等.命题〔5〕:同位角相等 ,两直线平行.说明:这些命题的条件和结论不够明显 ,通过讨论进而引导学生对于条件和结论不明显的命题可以先画与命题相关的图形或将命题改写成 "如果……, 那么……〞的形成 ,然后再写出条件和结论 ,在实际教学可设计以下表格共同完成.命题条件结论真、假(1)(2)(3)(4)(5)活动五:〔明辨秋毫〕在前述6个命题中 ,哪些命题做出的判断是正确的 ?哪些命题做出的判断是错误的 ?你是如何知道它们做出的判断是错误的 ?说明:命题的正确与错误有些同学前面可能就已发现 ,这里应在学生充分交流各自的判断方法的根底上 ,引导学生体会真、假命题的区分.说明一个命题是真命题 ,验证个例无法保证其正确性 ,而要说明一个命题是假命题 ,只要举出一个反例就可以了 ,注意引导学生体会反例的作用.活动内容师生互动思考与安排例说出以下各个命题的条件和结论;指出这些命题中 ,哪些是假命题 ,并说明理由.〔1两条直线相交 ,只有一个交点;〔2〕相等的角是对顶角;〔3〕直角三角形的两个锐角互余;〔4〕垂直于同一直线的两条直线平行.说明:这节课师生共同探索研究了命题及命题的组成和命题的真假 ,出现这组命题旨在让学生准确找出命题中的条件和结论 ,并训练和稳固怎样去说明不明显的命题中的条件和结论 ,让学生进一步体会命题的真假 ,尤其是假命题的识别方法.五、拓展练习活动内容师生互动思考与安排在一次测试中 ,老师出了题目:比较n n +1与(n+1)n的大小.有些同学经过计算发现:当n =1 ,2时 ,有n n +1<(n+1)n ,于是认为命题 "如果n为任意自然数 ,那么n n +1<(n+1)n为真命题 ,你认为他们的判断正确吗 ?说说你的理由.说明:细心验算 ,当n =1 ,2时 ,n n +1<(n+1)n虽然成立 ,而当n =3时 ,n n +1<(n+1)n就不再成立 ,让学生感受错误的命题有一个反例足以说明 ,而正确的命题仅靠举例证实是不够 ,它要通过演绎推理去证明.9.1 单项式乘单项式力.教学重点:理解单项式相乘的法那么 ,会进行单项式的乘法运算.教学难点:能运用单项式乘以单项式的法那么解决实际问题.【情景创设】用6个边长为a的小正方体拼成一个长方体 ,并用不同的方法表示你所拼出来的长方体的体积 ,从不同的表示方法中 ,你能发现些什么 ?〔1〕体积的表示方法;〔2〕面对你的侧面积的表示方法.探索新知让学生在交流的根底上思考以下问题:〔1〕体积的表示方法:①3a ·2a ·a =________________=6a 3,②3a ·2a ·b =________________=6a 2b .侧面积的表示方法:3a ·2a =________________=6a 2. 〔2〕从不同的表示中你发现了什么 ? 〔3〕通过下面两个计算我们来进一步的探讨:〔2a 2b 〕〔3ab 2〕=[2 ×3]•〔a 2•a 〕〔b •b 2〕=6a 3b3系数相乘 相同字母 相同字母〔4ab 2〕〔5b 〕=[4×5]•〔b 2• b 〕•a =20ab 3系数相乘 相同字母 只在一个单项式中出现的字母你能告诉大家你算出的结果吗 ?你是怎样来思考的呢 ? 通过探索得到单项式乘单项式的计算法那么: 〔1〕将它们的系数相乘; 〔2〕相同字母的幂相乘;〔3〕只在一个单项式中出现的字母 ,那么连同它的指数一起作为积的一个因式.【展示交流】例 1 计算:① -13a 2·(-6ab ); ② 6x 2·(-2x 2y ).注:教师强调格式标准 ,板书过程.〔通过计算引导学生发现单项式与单项式相乘时 ,一找系数 ,二找相同字母的幂 ,三找只在一个单项式里出现的字母.〕 练习1: 判断正误:〔1〕3x 3·(-2x 2)=5x 3; 〔2〕3a 2·4a 2=12a 2; 〔3〕3b 3·8b 3=24b 9; 〔4〕-3x ·2xy =6x 2y ; 〔5〕3ab +3ab =9a 2b 2. 练习2:课本练一练 第1、2题.例 2 计算:〔1〕(2x )3·(-3xy 2); 〔2〕(-2a 2b )·(-a 2)·14bc .注:遇到乘方形式先用积的乘方公式展开 ,然后转化为单项式乘以单项式的形式 ,再根据今天所学内容计算. 练习3:计算:〔1〕(a 2)2·(-2ab ); 〔2〕-8a 2b ·(-a 3b 2) ·14b 2 ;〔3〕(-5an +1b ) ·(-2a )2;〔4〕[-2(x -y )2]2·(y -x )3.【盘点收获】【课后作业】 补充习题和同步练习。

最新初中北师版八年级数学上册7.2定义与命题(2)公开课教案

最新初中北师版八年级数学上册7.2定义与命题(2)公开课教案

(2) 定义与命题7.2 : 教学目标知识技能.了解真命题和假命题的概念。

1 .会在简单的情况下判别一个命题的真假。

2 .了解公理和定理的含义。

3 过程与方法,让学生在自己提出问题、.从生活命题引入数学命题,并通过小组活动1自己解决问题的过程中经历知识的产生过程归纳、并在这个过程中了解类比、, 分类等思维方法。

.在学生总结命题、真命题、定理和公理之间的关系中,感受数学知识间的2 内在联系。

.通过对真假命题的判断,初步体验举反例、推理说明等数学方法。

3 情感态度与价值观让学生在推理中感觉到数学的有用性。

教学重点:命题的真假的概念和判别。

教学难点判别命题的真假其实已涉及证明。

教学过程一、复习也就是给出它们的定,作出明确的规定,对名称和术语的含义加以描述:、定义1 . 义叫做命题,判断一件事情的句子:、命题的定义2命题的结构、3结论是由,条件是已知事项.每个命题都由条件和结论两部分组成: . 已知事项推断出的事项其中“如,那么……”的形式,命题可以写成“如果……,一般地:、命题的特征4 . “那么”引出的部分是结论,果”引出的部分是条件把下列命题改写成“如果┄┄那么┄┄”的形式,并指出命题的条件和结论、相等的角是对顶角;1 、钝角大于它的补角;2 、两直线平行,同位角相等;3 二、新授课想一想如何证实一个命题是真命题呢?:用学过的观察、实验法1生:这些方法往往不可靠2生:能不能根据已知的真命题来证明呢?3生那已知的真命题又是怎么证明的?4:生 . :……5生 . 公认的真命题称为公理推理的过程叫证明。

. 经过证明的真命题称为定理 : 本套教材选用如下命题作为公理两点确定一条直线。

1. 两点之间线段最短。

2.,如果同位角相等,两条直线被第三条直线所截3.; 那么这两条直线平行 ; 同位角相等,两条平行线被第三条直线所截4. ; 两边及其夹角对应相等的两个三角形全等5. ; 两角及其夹边对应相等的两个三角形全等6. ; 三边对应相等的两个三角形全等7. . 对应角相等,全等三角形的对应边相等8. 同角(等角)的补角相等。

《定义与命题第2课时》示范公开课教学设计【北师大版八年级数学上册】

《定义与命题第2课时》示范公开课教学设计【北师大版八年级数学上册】

第七章平行线的证明学生在以前的学习中接触了不少的几何知识,对很多定理、证明过程有了很深刻的认识,本节课将对定理及定理的证明严格规范.◆教学目标4.【教学重点】命题的概念.【教学难点】命题的概念的理解.几名学生表演引入部分.老师准备多媒体课件.一、创设情境,引入新知活动内容:①什么叫做定义?举例说明;②什么叫命题?举例说明.学生举手发言,提问个别学生.我们知道,举一个反例就可以证明一个命题是假命题,那么如何证实一个命题是真命题呢?用以前学过的观察、实验、验证特例等方法来证明可靠吗?能不能根据已经知道的真命题证实呢?那已经知道的真命题又是如何证实的?二、合作交流,探究新知①介绍《几何原本》、公理、定理等知识.在数学发展史上,数学家们也遇到过类似的问题.公元前 3 世纪,人们已经积累了大量知识,在此基础上,古希腊数学家欧几里得(公元前300 前后)编写了一本书,书名叫《原本》,为了说明每一结论的正确性,他在编写这本书时进行了大胆创新,挑选了一部分数学名词和一部分公认的真命题作为证实其它命题的起始依据,其中的数学名词称为原名,公认的真命题称为公理,除了公理外,其他真命题的正确性都通过推理的方法证实,推理的过程称为证明,经过证明的真命题称为定理,而证明所需要的定义、公理和其他定理都编写在要证明的这个定理的前面.《原本》问世之前,世界上还没有一本数学书籍象《原本》这样编排,因此,《原本》是一部具有划时代意义的著作.②公理、定理、概念和证明的关系.③介绍本教材的公理.1.两点确定一条直线.2.两点之间线段最短.3.同一平面内,过一点有且只有一条直线与已知直线垂直.4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角对应相等的两个三角形全等.7.两角及其夹边对应相等的两个三角形全等.8.三边对应相等的两个三角形全等.此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命 题的正确性,另外一条我们将在以后认识它.此外等式和不等式的有关性质也可看作公理.比 如:如果 a=b ,b=c ,那么 a=c. ④ 读一读《原本与几何原本》 三、运用新知例 已知:如图,直线 AB 与直线 CD 相交于点 O ,∠AOC 与∠BOD 是对顶角. 求证:∠AOC=∠BOD.证明:∵直线 AB 与直线 CD 相交于点 O , ∴ ∠AOB 和∠COD 都是平角(平角的定义).∴ ∠AOC 和∠BOD 都是∠AOD 的补角(外角的定义). ∴ ∠AOC=∠BOD (同角的补角相等). 四、巩固新知1. “两点之间,线段最短”这个语句是( A.定理B.公理C.定义2. “同一平面内,不相交的两条直线叫做平行线”这个语句是( )D.只是命题)A.定理B.公理C.定义D.只是命题3. 下列命题中,属于定义的是( A.两点确定一条直线; )B.同角的余角相等;C.互补的两个角是邻补角;D.点到直线的距离是该点到这条直线的垂线段的长度 4. 下列句子中,是定理的是( A.若 a=b ,b=c ,则 a=c ; ),是公理的是().B.对顶角相等C.全等三角形的对应边相等,对应角相等略.此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命 题的正确性,另外一条我们将在以后认识它.此外等式和不等式的有关性质也可看作公理.比 如:如果 a=b ,b=c ,那么 a=c. ④ 读一读《原本与几何原本》 三、运用新知例 已知:如图,直线 AB 与直线 CD 相交于点 O ,∠AOC 与∠BOD 是对顶角. 求证:∠AOC=∠BOD.证明:∵直线 AB 与直线 CD 相交于点 O , ∴ ∠AOB 和∠COD 都是平角(平角的定义).∴ ∠AOC 和∠BOD 都是∠AOD 的补角(外角的定义). ∴ ∠AOC=∠BOD (同角的补角相等). 四、巩固新知1. “两点之间,线段最短”这个语句是( A.定理B.公理C.定义2. “同一平面内,不相交的两条直线叫做平行线”这个语句是( )D.只是命题)A.定理B.公理C.定义D.只是命题3. 下列命题中,属于定义的是( A.两点确定一条直线; )B.同角的余角相等;C.互补的两个角是邻补角;D.点到直线的距离是该点到这条直线的垂线段的长度 4. 下列句子中,是定理的是( A.若 a=b ,b=c ,则 a=c ; ),是公理的是().B.对顶角相等C.全等三角形的对应边相等,对应角相等略.此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命 题的正确性,另外一条我们将在以后认识它.此外等式和不等式的有关性质也可看作公理.比 如:如果 a=b ,b=c ,那么 a=c. ④ 读一读《原本与几何原本》 三、运用新知例 已知:如图,直线 AB 与直线 CD 相交于点 O ,∠AOC 与∠BOD 是对顶角. 求证:∠AOC=∠BOD.证明:∵直线 AB 与直线 CD 相交于点 O , ∴ ∠AOB 和∠COD 都是平角(平角的定义).∴ ∠AOC 和∠BOD 都是∠AOD 的补角(外角的定义). ∴ ∠AOC=∠BOD (同角的补角相等). 四、巩固新知1. “两点之间,线段最短”这个语句是( A.定理B.公理C.定义2. “同一平面内,不相交的两条直线叫做平行线”这个语句是( )D.只是命题)A.定理B.公理C.定义D.只是命题3. 下列命题中,属于定义的是( A.两点确定一条直线; )B.同角的余角相等;C.互补的两个角是邻补角;D.点到直线的距离是该点到这条直线的垂线段的长度 4. 下列句子中,是定理的是( A.若 a=b ,b=c ,则 a=c ; ),是公理的是().B.对顶角相等C.全等三角形的对应边相等,对应角相等略.。

1.2定义与命题 第二课时教案公开课教案教学设计课件案例

1.2定义与命题 第二课时教案公开课教案教学设计课件案例

1.2 定义与命题教案教学目标:知识目标:理解真命题、假命题、公里和定义的概念.能力目标:会判断一个命题的真假,会区分定理、公理和命题.情感目标:通过对真假命题的判断,培养学生树立科学严谨的学习方法.教学重点、难点重点:判断命题的真假.难点:公理、定理真假命题区别.教学过程:一、旧知回顾(1)什么是定义?一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义. (2)什么是命题?命题由哪两部分组成?一般地,对某一件事情作出正确或不正确的判断的句子叫做命题.命题由可看做由题设(或条件)和结论两部分组成.判断下列句子中,哪些是命题?哪些不是命题?(1)同角的余角相等.(2)在直线AB上任取一点C.(3)相等的角是对顶角.(4)全等的两个三角形的面积相等.(5)不相交的两条直线叫做平行线.(6)所有的质数都是奇数.二、探求新知1.思考下列命题的题设(条件)是什么?结论是什么?(1)三角形两边之和大于第三边(2)三角形三个内角的和等于1800(3)两点确定一条直线(4)对于任何实数 x, x2 <0.上述命题中,哪些正确?哪些不正确?你的理由是什么?正确:(1)(2)(3)错误:(4)得出真命题、假命题的概念:正确的命题称为真命题,不正确的命题称为假命题。

举例:判断下列命题是真命题还是假命题(1)x=1是方程x2-2x-3=0 的解。

(2)x=2是方程(x2–4)/(x2-3x+2)=0的解。

学生自由发言,这节课学了什么?四、布置作业巩固新知.作业练习1指出下列命题的条件和结论.(1)若a>0,b>0,则ab>0.(2)如果a∥b,b∥c,那么a∥c.(3)同角的补角相等.(4)内错角相等,两直线平行.2举出反例说明下列命题是假命题.(1)大于90°的角是钝角;(2)如果一个角的两条边分别平行于另一个角的两条边,那么这两个角相等.。

《定义与命题》教案 (公开课)2022年1

《定义与命题》教案 (公开课)2022年1

7.2 定义与证明教学目标知识与技能1.理解定义与命题的概念.2.分清命题的条件和结论,会把命题改写成“如果……,那么……〞的形式,并能判断命题的真假.3.了解公理和证明的概念.过程与方法在实例中体会定义、命题的含义,通过举反例判定一个命题是假命题,使学生学会从反面思考问题的方法.情感、态度与价值观通过从具体例子中提炼数学概念,使学生体会数学与实践的联系;通过举反例的方法来判断一个命题是假命题,说明任何事物都是正反两方面的对立统一体;通过了解数学知识,拓展学生视野,从而激发学生学习的兴趣.重点难点重点:理解命题的概念,找出命题的条件和结论.难点:正确找出命题的条件和结论.教学设计2.命题中哪些是正确的,哪些是不正确的,你怎么知道它们是不正确的.在学生答复根底上进行总结,给出真命题、假命题的概念,以及如何判断一个命题是假命题的方法---举出反例.利用多媒体给出教科书第167页的想一想,并提问:如何证实一个命题是真命题呢?结合以以下列图向学生介绍公理法和欧几里得的原本及引出公理、证明定理等概念.介绍本套教材所采用的公理:1.两点确定一条直线;2.两点之间线段最短;3.同一平面内,过一点有且只有一条直线与直线垂直;4.两条直线被第三条直线所截.如果同位角相等,那么这两天直线平行;5.过直线外一点有且只有一条直线与这条直线平行;6.两边及其夹角分别相等的两分四人小组讨论、交流,答复以下问题.认真听讲,积极思考.步追问,对于一个不正确的命题,怎样判断其错误呢?教师应让学生充分表达自己的判断方法,进而引导学生体会:要说明一个命题是假命题,通常举出一个反例就可以了.目的是给学生留出一定的思维空间,让他们思考“如何证实真命题〞的问题.在此根底上,引出欧几里得?原本?的编写思路.教师应适时激发学生的学习兴趣,引导学生主动地去探寻数学乐园.实际上,这八条公理在前面学习中都详细探索过了,学生对它们的正确性是确信的,现在要求直接成认这八条公理,由个三角形全等;7.两角及其夹角分别相等的两个三角形全等;8.三边分别相等的两个三角形全等.介绍等式的有关性质和不等式的有关性质都可以看做公理及等量代换,交代由这些结论证明出的三个定理.让学生完成例题. 认真听讲,积极思考.指名扮演,写清步骤,其他学生独立完成.此出发证明其他定理,而不必验证这八条公理的正确性.教学时,重点应放在八条公理上,而对于等式性质与不等式性质,只需稍微提一下,不必过多强调.培养学生的推理能力和独立解决问题的能力.三、稳固练习利用多媒体给出练习题.1.教材166页“随堂练习〞第2题.2.教材170页“随堂练习〞. 自主练习,独立思考. 应选取一些适合本班学生程度的习题.四、课堂小结引导学生对本节课的内容进行归纳总结. 先独立思考,再分四人小组讨论、交流.锻炼学生的语言表达能力及概括能力.五、布置作业习题7.2及习题7.3.2.4有理数的加法〔1〕二、教学目标1.使学生掌握有理数加法法那么,并能运用法那么进行计算;2.在有理数加法法那么的教学过程中,注意培养学生的观察、比较、归纳及运算能力.三、教学重点和难点重点:有理数加法法那么.难点:异号两数相加的法那么.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程〔一〕、师生共同研究有理数加法法那么前面我们学习了有关有理数的一些根底知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法.两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量.假设我们规定赢球为“正〞,输球为“负〞.比方,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是(+3)+(+2)=+5.①(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3.②现在,请同学们说出其他可能的情形.答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1;③上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1;④上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;⑤上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2;上半场打平,下半场也打平,全场仍是平局,也就是0+0=0.⑥上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想方法归纳出进行有理数加法的法那么?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法那么:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.〔二〕、应用举例变式练习例1 计算以下算式的结果,并说明理由:(1)(+4)+(+7); (2)(-4)+(-7); (3)(+4)+(-7);(4)(+9)+(-4);(5)(+4)+(-4); (6)(+9)+(-2); (7)(-9)+(+2);(8)(-9)+0;(9)0+(+2); (10)0+0.学生逐题口答后,教师小结:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法那么.进行计算时,通常应该先确定“和〞的符号,再计算“和〞的绝对值.解:(1) (-3)+(-9) (两个加数同号,用加法法那么的第2条计算)=-(3+9) (和取负号,把绝对值相加)=-12.下面请同学们计算以下各题:(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);全班学生书面练习,四位学生板演,教师对学生板演进行讲评.〔三〕、小结这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法那么.今后我们经常要用类似的思想方法研究其他问题.应用有理数加法法那么进行计算时,要同时注意确定“和〞的符号,计算“和〞的绝对值两件事.七、练习设计1.计算:(1)(-10)+(+6); (2)(+12)+(-4); (3)(-5)+(-7); (4 )(+6)+(+9);(5)67+(-73); (6)(-84)+(-59); (7)33+48;(8)(-56)+37.2.计算:(1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78; (5)7+(-3.04);(6)(-2.9)+(-0.31);(7)(-9.18)+6.18; (8)4.23+(-6.77);(9)(-0.78)+0.4*.用“>〞或“<〞号填空:(1)如果a>0,b>0,那么a+b ______0;(2)如果a<0,b<0,那么a+b ______0;(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.5*.分别根据以下条件,利用|a|与|b|表示a与b的和:(1)a>0,b>0; (2) a<0,b<0;(3)a>0,b<0,|a|>|b|; (4)a>0,b<0,|a|<|b|.八、板书设计九、教学后记“有理数加法法那么〞的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法那么,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法那么;另一类是适当加强法那么的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法那么的练习,如本教学设计.现在,试比较这两类教学设计的得失利弊.第一种方案,教学的重点偏重于让学生通过练习,熟悉法那么的应用,这种教法近期效果较好.第二种方案,注重引导学生参与探索、归纳有理数加法法那么的过程,主动获取知识.这样,学生在这节课上不仅学懂了法那么,而且能感知到研究数学问题的一些根本方法.这种方案减少了应用法那么进行计算的练习,所以学生掌握法那么的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法那么〞进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程〞,失去了培养学生观察、比较、归纳能力的一次时机.权衡利弊,我们主张采用第二种教学方。

北师大版数学八年级上册2《定义与命题》教案1

北师大版数学八年级上册2《定义与命题》教案1

北师大版数学八年级上册2《定义与命题》教案1一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的内容。

本节课主要让学生了解数学中的定义与命题的概念,学会如何正确理解和运用定义与命题。

教材通过生活中的实例,引导学生理解定义与命题的含义,培养学生的逻辑思维能力。

二. 学情分析学生在七年级时已经接触过一些简单的定义与命题,对这部分内容有初步的了解。

但大部分学生对这些概念的理解不够深入,容易混淆。

此外,学生对于如何运用定义与命题来解决问题还比较陌生。

因此,在教学过程中,需要注重引导学生深入理解概念,并学会运用。

三. 教学目标1.理解定义与命题的概念,掌握它们的书写格式。

2.学会如何正确理解和运用定义与命题。

3.培养学生的逻辑思维能力。

四. 教学重难点1.重点:理解定义与命题的概念,学会正确书写格式。

2.难点:如何运用定义与命题解决问题,培养学生逻辑思维能力。

五. 教学方法1.情境教学法:通过生活实例引入定义与命题,让学生在实际情境中理解概念。

2.互动教学法:引导学生通过小组讨论、交流,共同探讨定义与命题的含义和运用。

3.案例教学法:分析典型例题,让学生学会如何运用定义与命题解决问题。

六. 教学准备1.准备相关的生活实例和典型例题。

2.准备课件,用于辅助教学。

七. 教学过程1.导入(5分钟)通过一个生活实例,如“等腰三角形”的定义,引导学生思考:如何用数学语言来描述这个概念?从而引出定义与命题的概念。

2.呈现(10分钟)呈现教材中的相关定义与命题,如“平行线”、“全等三角形”等,让学生初步了解这些概念。

同时,引导学生注意定义与命题的书写格式。

3.操练(10分钟)让学生分组讨论,每组选择一个定义与命题,试着用自己的语言来表达,并互相交流。

教师在这个过程中给予适当的引导和反馈。

4.巩固(10分钟)通过一些练习题,让学生运用所学的定义与命题来解决问题。

教师在这个过程中注意引导学生运用定义与命题的正确方法。

浙教版初中数学定义与命题公开课教案

浙教版初中数学定义与命题公开课教案

定义与命题(浙教版)
一、教材分析
1、教材的地位和作用:
定义与命题的知识在贯穿于整个初中数学知识体系,但作为单独的章节进行学习,还是首次,在设计上体现了对数学本原的思考,关注的是数学知识的产生和发展过程,目的就是为了通过本节课以及后续知识的学习,使学生感受整个数学体系的建立和完善的过程,是由实验几何向推理几何过渡的重要章节.而作为本章节的第一课时,为学生在本章节中更好的开展学习起着至关重要的作用.
2、学情分析:本节课针对的是八年级下学期的学生,他们在数学学习上已经有了一定的积累,但从数学知识的产生和发展的角度来学习和理解数学中最基本的概念,对学生来说也是第一次,在教学设计上要考虑学生对知识的可接受程度.另外,上课学校是一所知名学校,学生在学习上,应该具备一定的能力和水平,通过努力应该可以达到相应的教学要求.
3、课时划分:共2课时
二、教学目标
1、知识技能目标:
了解定义的含义,了解命题的含义,掌握区分命题的条件和结论,会将一些命题改写为“如果…,那么…”的形式.
2、过程与方法目标:
学生通过本节课内容的学习,使学生经历定义的产生过程,感受定义的必要性.同时对命题的含义有初步的体验.体验区分命题的条件和结论的重要性和必要性.
3、情感态度,价值观目标:
通过与学生的交流互动,营造愉快、和谐的课堂氛围,积极鼓励学生参与和活动,使学生感受到学习数学的快乐,培养学生主动探索数学知识的积极态度.
三、教学重点、难点
1、教学重点:命题的概念.
2、教学难点:命题的结构认识和改写.
四、教法与教具选择
1、教学方法:启发式教学.
2、教具选择:多媒体、其他教具.
五、教学过程
板书设计:略。

定义与命题的教案

定义与命题的教案

定义与命题的教学教案教学目标:1. 理解定义和命题的概念。

2. 学会如何正确运用定义和命题。

3. 培养学生的逻辑思维能力。

教学重点:1. 定义和命题的概念。

2. 运用定义和命题的方法。

教学难点:1. 理解并运用定义和命题。

教学准备:1. PPT课件。

2. 黑板。

3. 教学卡片。

教学过程:一、导入(5分钟)1. 向学生引入本节课的主题——定义与命题。

2. 通过举例,让学生初步理解定义和命题的概念。

二、新课讲解(15分钟)1. 讲解定义的概念,解释定义的构成要素:被定义概念、种差和属概念。

2. 讲解命题的概念,解释命题的构成要素:题设和结论。

3. 通过PPT课件和黑板,展示各种定义和命题的例子。

三、课堂练习(10分钟)1. 让学生独立完成一些定义和命题的练习题目。

2. 引导学生运用定义和命题的方法,解答练习题目。

四、案例分析(10分钟)1. 提供一些案例,让学生分析其中的定义和命题。

2. 引导学生运用定义和命题的方法,分析案例。

五、总结与反思(5分钟)1. 让学生总结本节课所学的内容,分享自己的学习心得。

2. 教师对学生的总结和反思进行点评,给出建议和指导。

教学延伸:1. 让学生进一步学习定义和命题的应用,如定理、公理等。

2. 引导学生运用定义和命题的方法,解决实际问题。

教学反思:本节课通过讲解、练习、案例分析和总结反思等环节,让学生掌握了定义和命题的概念及运用方法。

在教学过程中,要注意引导学生积极参与,培养学生的逻辑思维能力。

布置一些课后作业,巩固所学知识。

六、定义与命题的辨别练习(10分钟)教学目标:1. 学会辨别各种定义与命题。

2. 提高分析问题和解决问题的能力。

教学重点:1. 辨别定义与命题的方法。

2. 应用定义与命题解决实际问题。

教学准备:1. 练习题。

2. 教学卡片。

教学过程:1. 让学生分组,每组轮流抽取一张教学卡片,卡片上写着不同的定义与命题。

2. 学生需要在规定时间内辨别出卡片上的定义与命题。

定义与命题 公开课获奖教案 公开课获奖教案

定义与命题  公开课获奖教案  公开课获奖教案

7.2定义与命题第1课时 定义与命题1.理解定义、命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式;(重点)2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对假命题举反例.(难点)一、情境导入神舟十号是中国神舟号系列飞船之一,主要由推进舱(服务舱)、返回舱、轨道舱组成.神舟十号在酒泉卫星发射中心“921工位”,于2013年6月11日17时38分02.666秒发射,由长征二号F改进型运载火箭(遥十)“神箭”成功发射.在轨飞行十五天左右,加上发射与返回,其中停留天宫一号十二天,共搭载三位航天员——聂海胜、张晓光、王亚平.6月13日与天宫一号进行对接.6月26日回归地球.要读懂这段报导,你认为要知道哪些名称和术语的含义?二、合作探究探究点一:定义下列语句属于定义的是( )A.明天是晴天B.长方形的四个角都是直角C.等角的补角相等D.平行四边形是两组对边分别平行的四边形解析:作出正确选择的关键是理解定义的含义.A是对天气的预测,B是描述长方形的性质,C是描述补角的性质.只有D符合定义的概念.故选D.方法总结:定义指的是对术语和名称的含义的描述,是对一个事物区分于其他事物的本质特征的描述,而不是对其性质的判断.探究点二:命题【类型一】命题的概念下列各语句中,哪些是命题,哪些不是命题?(1)相等的角都是直角.(2)空气是无色无味的.(3)同旁内角相等吗?(4)两条直线被第三条直线所截.(5)画线段AB=5cm.(6)对顶角不相等.解析:(1)(2)(6)是命题,因为它们指出了是什么或不是什么;(3)是疑问句,(4)描述的是一个状态,(5)叙述的是一个过程,因此(3)(4)(5)都不是命题,因为它们都不含有判断的意思.解:(1)(2)(6)是命题,(3)(4)(5)不是命题.方法总结:认为“错误的命题不是命题”是错误的,实际上错误的命题也是命题,如本题中的(6)题.【类型二】命题的结构把下列命题改写成“如果……那么……”的形式.(1)对顶角相等;(2)垂直于同一条直线的两条直线平行;(3)同角或等角的余角相等.解析:设法把命题的题设和结论部分省略的文字找出来,要从文字的内在顺序、内在意义进行全面考虑,分清命题的题设部分和结论部分;再将它写成“如果……那么……”的形式.解:(1)如果两个角是对顶角,那么这两个角相等.(2)如果两条直线都和第三条直线垂直,那么这两条直线平行.(3)如果两个角是同一个角的余角或两个相等的角的余角,那么这两个角相等.方法总结:(1)命题改写的原则:不改变命题的原意;为了改写后的语句通畅且保持原意,应适当地增加或删减词语或调换词序;(2)命题改写的方法:先搞清命题的题设(已知事项)部分和结论部分;再将其改写为“如果……那么……”的形式:“如果”后面跟的是已知事项,“那么”后面跟的是由已知事项推出的事项(即结论).【类型三】真命题、假命题、反例判断下列命题是真命题还是假命题,若是假命题请举一个反例加以说明.(1)两个角的和是180°,则这两个角是邻补角;(2)一组对边平行,另一组对边相等的四边形是平行四边形;(3)如果x>y,那么x2>y2.解析:(1)互补的两个角的和为180°,但是互补的两个角不一定是邻补角;(2)一组对边平行,但这组对边不相等,即使另一组对边相等,也不一定是平行四边形;(3)若|x|<|y|,则x2<y2.解:(1)假命题.例如:两条直线平行,同旁内角的和为180°,但它们不是邻补角.(2)假命题.例如:等腰梯形中,两底互相平行,两腰相等,但它不是平行四边形.(3)假命题.例如:x=2,y=-3,x>y,但x2<y2.方法总结:识别命题真假的关键是在条件成立的前提下,看结论是否正确,可以举“特例”验证,特例成立还不能证明其为真命题,要由特殊形式转化为一般形式,再用推理的方法证明结论正确;若特例不成立,则原命题一定是假命题.三、板书设计定义与命题⎩⎪⎨⎪⎧定义命题⎩⎪⎨⎪⎧概念:判断一个事件的句子结构:如果……那么……分类:真命题、假命题通过对学生的启发、调整、激励让学生对定义、命题等概念有一个清楚的认识和了解,用比较数学化的观点来审视生活中或数学学习中遇到的语句特征,充分展示学生的语言表达能力,力图通过学生的自主学习来体现学生的主体地位.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y=(m-4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m-4≠0,∴m=-4,∴y=-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0.探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y=kx+b,根据题意得,∴⎩⎪⎨⎪⎧5=b,-5=2k+b.解得⎩⎪⎨⎪⎧k=-5,b=5.∴一次函数的表达式为y=-5x+5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA=2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x,一次函数的表达式为y 2=k 2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x+b 的图象上,∴-52=b,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x-52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 18+0.42 16+0.83 24+1.24 32+1.65 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y=(8+0.4)x=8.4x,即售价y 与数量x 的函数关系式为y=8.4x.当x=2.5时,y=8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y=kx(k≠0)一次函数y=kx+b(k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根 第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点) 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a=________,2是有理数,而a 是无理数.在前面我们学过若x 2=a,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a=25,所以a=22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】已知2=0,求x-y 的值.解析:算术平方根和完全平方式都具有非负性,即a≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x-1=0,y-2=0,所以x=1,y=2.所以x-y=1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4一次函数的应用第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y=(m-4)m2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0.探究点二:确定一次函数的表达式【类型一】根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y=kx+b,因为它的图象经过(0,5)、(2,-5)两点,所以当x=0时,y=5;当x=2时,y=-5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可.解:设一次函数的表达式为y=kx+b,根据题意得,∴⎩⎪⎨⎪⎧5=b,-5=2k+b.解得⎩⎪⎨⎪⎧k=-5,b=5.∴一次函数的表达式为y=-5x+5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA=2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x,一次函数的表达式为y 2=k 2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x+b 的图象上,∴-52=b,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x-52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y=(8+0.4)x=8.4x,即售价y 与数量x 的函数关系式为y=8.4x.当x=2.5时,y=8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y=kx(k≠0)一次函数y=kx+b(k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。

初二数学定义与命题课时教案

初二数学定义与命题课时教案

初二数学定义与命题课时教案【课题】定义与命题【课型】新授【教学目标】知识:命题的组成:条件和结论;命题真假的判断;了解数学史。

能力:使学生能够分清命题的条件和结论,能判断命题的真假;通过举例判定一个命题是假命题,使学生学会反面思考问题的方法情感:通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一;帮助学生了解数学发展史,拓展视野,激发学习兴趣;通过对《原本》介绍,使学生感受数学发展史和人类文明价值。

【教学重难点】教学重点准确的找出命题的条件和结论教学难点理解判断一个真命题需要证明【教学方法】探讨、合作交流【教具与教学准备】导学案、PPT【学情分析】通过观察、操作、想象、推理、交流等活动能够解决本节课的内容。

【教学过程】一、激趣导入,交代目标:(一)激趣导入1、用来说明一个名词或一个术语的意义的语句叫做_______。

2、下列哪些是命题________①三角形内角和等于1800。

②对顶角相等。

③今天天气好吗?④连接A,B两点。

⑤正数大于负数。

⑥作线段AB∥CD。

设计意图:回忆定义和命题的概念,为本节课命题的相关知识做铺垫,过度到本节课的目标,从而出示目标。

(二)交代目标多媒体出示,让一名学生读出来,共同学习,从而明确本节课的学习目标设计意图:明确本节课的学习目标,使学生的学习有针对性。

二、自主探究,合作学习:(一)依据导纲,自主学习观察下列命题,你能发现这些命题有什么共同结构特征?与同伴交流。

(1).如果两个三角形的三条边对应相等,那么这两个三角形全等。

(2).如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。

(3).如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。

(4).如果一个四边形的对角线相等,那么这个四边形是矩形。

(5).如果一个四边形的两条对角线相互垂直,那么这个四边形是菱形。

师:由此可见,每个命题都是由条件和结论两部分组成的,条件是已知的事项,结论是由已知事项推出的事项。

2024版八年级数学上册定义与及命题教案

2024版八年级数学上册定义与及命题教案

八年级数学上册定义与及命题教案教案内容:一、教学内容:本节课为人教版八年级数学上册第六章第二节“定义与命题”,主要内容包括:1. 定义:概念的规定,内涵与外延;2. 命题:题设与结论,真命题与假命题;3. 定理与公理:经过证明的真命题。

二、教学目标:1. 了解定义、命题的概念,理解定义与命题的关系;2. 学会阅读和理解数学语言,提高数学思维能力;3. 培养学生的逻辑推理和证明能力。

三、教学难点与重点:1. 重点:定义、命题的概念及关系;2. 难点:对命题真假的判断,定理与公理的理解。

四、教具与学具准备:1. 教具:黑板、粉笔、多媒体教学设备;2. 学具:笔记本、彩笔、数学课本。

五、教学过程:1. 实践情景引入:让学生举例说明生活中遇到的定义与命题,引导学生理解定义与命题的概念。

2. 概念讲解:讲解定义与命题的概念,通过例题让学生理解定义与命题的关系。

3. 命题判断:给出若干命题,让学生判断其真假,培养学生判断命题真假的能力。

4. 定理与公理:介绍定理与公理的概念,让学生理解定理与公理的重要性。

5. 课堂练习:让学生完成课本练习题,巩固所学知识。

六、板书设计:1. 定义:概念的规定,内涵与外延;2. 命题:题设与结论,真命题与假命题;3. 定理与公理:经过证明的真命题。

七、作业设计:1. 作业题目:判断下列命题的真假,并说明理由。

(1)平行线的性质:平行线被第三条直线所截,内错角相等。

(2)勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。

(3)等腰三角形的性质:等腰三角形的底角相等。

2. 答案:(1)假命题;理由:平行线被第三条直线所截,内错角相等是平行线的性质,不是命题。

(2)真命题;理由:根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。

(3)真命题;理由:根据等腰三角形的性质,等腰三角形的底角相等。

八、课后反思及拓展延伸:1. 课后反思:本节课学生对定义、命题的概念理解较为扎实,能正确判断命题的真假,但对定理与公理的理解还需加强;2. 拓展延伸:让学生举例说明生活中的定理与公理,加深对定理与公理的理解。

7.2_定义与命题(教案)

7.2_定义与命题(教案)
7.2_定义与命题(教案)
一、教学内容
7.2_定义与命题(教案):
1.教材章节:本节课内容对应人教版《数学》七年级下册第七章第二节的定义与命题。
2.教学内容:
(1)理解定义的概念,掌握命题的结构;
(2)学会判断命题的真假,理解真命题、假命题及公理的概念;
(3)通过实例,让学生掌握如何从定义出发,运用逻辑推理证明简单命题;
此外,在实践活动和小组讨论环节,学生们表现出了很高的积极性。他们通过合作探讨,共同解决问题,不仅加深了对定义与命题的理解,还培养了团队合作意识和沟通能力。但同时,我也注意到,在讨论过程中,部分学生过于依赖他人,缺乏独立思考。因此,我需要在接下来的教学中,加强对学生独立思考能力的培养。
在难点解析部分,我尝试通过举例和比较的方法来帮助学生突破难点。从学生的反馈来看,这种方法在一定程度上是有效的。但我也发现,对于一些基础较弱的学生,这种方法可能仍然难以理解。因此,我计划在课后针对这部分学生进行个别辅导,确保他们能够真正掌握核心知识。
4.培养学生的创新意识:引导学生从定义和公理出发,探索和发现新的数学结论,激发学生的创新意识。
5.培养学生的合作意识:通过小组合作学习,让学生学会倾听、协作,培养团队精神和合作意识,提高集体解决问题的能力。
三、教学难点与重点
1.教学重点
(1)理解定义的概念:定义是数学基础知识的核心,本节课需要学生掌握通过已知概念导出新概念的方法,并能够运用定义进行问题的分析和解决。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《定义与命题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要证明某个结论是否正确的情况?”(如证明三角形内角和为180度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索定义与命题的奥秘。

初中数学《定义与命题》教案设计

初中数学《定义与命题》教案设计

初中数学《定义与命题》教案设计一、教学目标1.了解数学问题中的定义和命题的概念;2.理解定义和命题之间的关系;3.能够运用定义和命题解决简单的数学问题。

二、教学内容1.定义的概念及其特点;2.命题的概念及其特点;3.定义与命题之间的关系。

三、教学重难点1.教学重点:理解定义和命题的概念;2.教学难点:掌握定义与命题之间的关系。

四、教学过程1. 导入(5分钟)教师通过提问引入本节课的教学内容,例如:“同学们,你们知道什么是定义吗?我们在生活中经常会遇到哪些定义呢?同样的,什么是命题呢?你们有没有听说过命题猜想?”2. 概念讲解(15分钟)教师用简单明了的语言解释定义和命题的概念,并介绍它们的特点。

•定义的概念:定义是对事物的本质或特征进行准确而明确的说明,它能够给出事物的内涵和外延。

定义是精确、明确、没有歧义的。

•命题的概念:命题是陈述句,可以判断其真假。

命题是具有确定性的,其真值只有两种可能:真或假。

•定义与命题的关系:命题可以引出定义,而定义本身也可以是一个命题。

3. 示范演示(20分钟)教师通过示例来帮助学生更好地理解定义和命题之间的关系,并解决一些与定义和命题相关的问题。

教师示范的问题和解答过程如下:问题1:现在给出一个定义,判断它是否是一个命题:三角形是一个有三个顶点的图形。

解答:这个定义判断的是三角形的特征,而不是陈述一个事实,所以它不是一个命题。

问题2:下面给出一个陈述:“如果一个多边形的边数是4,则它是一个正方形。

”请判断这是否是一个命题。

解答:这个陈述可以判断其真假,所以它是一个命题。

问题3:定义命题与反命题之间的关系是什么?解答:定义命题与其反命题之间是互逆的关系。

例如,定义命题“整数是不能被除尽的数”,其反命题就是“整数是可以被除尽的数”。

4. 合作探究(30分钟)学生分组进行合作探究活动,通过给定的问题进行讨论,并归纳总结定义和命题的特点及其关系。

问题示例: 1. 你能举出一个例子,说明定义与命题之间的关系吗? 2. 定义与命题有什么共同点和区别? 3. 怎样才能判断一个陈述是命题还是非命题?学生在小组内讨论并记录自己的回答和解释。

北师大版八年级上册数学7.2定义与命题教案

北师大版八年级上册数学7.2定义与命题教案
3.重点难点解析:在讲授过程中,我会特别强调角的平分线定义和性质这两个重点。对于难点部分,比如角的平分线性质的应用,我会通过具体例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与角的平分线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何利用尺规作图画出一个角的平分线。
3.证明方法:指导学生运用角的平分线定义及基本图形性质进行简单命题的证明。
4.实践应用:结合实际情境,设计相关问题,让学生运用角的平分线知识解决实际问题。
本节课旨在帮助学生掌握角的平分线的定义和性质,培养他们的逻辑思维能力和解题技巧。
二、核心素养目标
1.理解与运用:通过学习角的平分线定义,使学生能够理解并运用角的平分线性质解决相关问题,培养他们的几何直观和空间观念。
5.情感态度:激发学生对几何学的兴趣,培养他们勇于探索、克服困难的意志,形成积极向上的学习态度。
三、教学难点与重点
1.教学重点
-角的平分线的定义:重点讲解角的平分线的概念,使学生理解并掌握角的平分线的表示方法。
-举例:如讲解角的平分线时,可以通过具体图形说明什么是角的平分线,如何用符号表示等。
-角的平分线性质:强调角的平分线上的点到角的两边的距离相等这一核心性质。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角的平分线的基本概念。角的平分线是从一个角的顶点出发,将这个角平分成两个相等角的射线。它是解决几何问题中非常重要的一部分,可以帮助我们更好地理解和处理角的关系。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用角的平分线性质解决实际问题,以及它如何帮助我们找到等边三角形。

《定义与命题》word教案 (公开课获奖)2022浙教版 (3)

《定义与命题》word教案 (公开课获奖)2022浙教版 (3)

定义与命题【教学目标】知识目标:理解真命题、假命题、公理和定义的概念能力目标:会判断一个命题的真假,会区分定理、公理和命题。

情感目标:通过对真假命题的判断,培养学生树立科学严谨的学习方法。

【教学重点、难点】重点:判断一个命题的真假是本节的重点。

难点:公理、命题和定义的区别。

【教学过程】〔一〕合作学习:1:复习命题的概念,思考以下命题的条件是什么?结论是什么?(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(2)对于任何实数x,x2<0.提问:上述命题中,哪些正确?哪些不正确?2:得出真命题、假命题的概念:正确的命题称为真命题,不正确的命题称为假命题。

3:把学生分成两组,一组负责说命题,然后指定第二组中某一个人来答复是真命题还是假命题〔二〕例题教学:〔三〕讲述公理和定义1:公理:人类经过长期实践后公认为正确的命题,作为判断其他命题的依据。

这样公认为正确的命题叫做公理。

例如:“两点之间线段最短〞,“一条直线截两条平行所得的同位角相等〞,然后提问学生:你所学过的还有那些公理2:定理:用推理的方法判断为正确的命题叫做定理。

定理也可以作为判断其他命题真假的依据。

3:举例请用学过的公理或定理说明下面这个命题的正确性:“等腰三角形底边上的高线、顶角的角平分线互相重合“1.2定义与命题〔1〕教学目标:知识目标:了解定义的含义.了解命题的含义.能力目标:了解命题的结构,会把命题写成“如果……那么……〞的形式. 情感目标:通过本节学习,培养学生树立科学严谨的学习方法。

教学重点、难点重点:命题的概念.难点:范例中第〔3〕题,这类命题的条件和结论不十清楚显,改写成“如果…那么…〞 形式学生会感到困难,是本节课的难点.教学过程:一、 创设情景,导入新课由学生观看下面两段对话:〔幻灯显示〕思考:为什么出现这种情况?学生讨论。

总结:可见,在交流时对名称和术语要有共同的认识才行。

得出课题〔板书〕二、合作交流,探求新知1.定义概念的教学从以上两个问题中引入定义这个概念:一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义. 象这些问题中的黑客、法律、法盲等含义必须有明确的规定,即需要给出定义.请说出以下名词的定义:(1)无理数;(2)直角三角形;(3)角平分线;(4)频率;(5)压强.3.命题概念的教学1、练习:判断以下语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断?〔1〕对顶角相等;(2)画一个角等于角;(3)两直线平行,同位角相等;(4)a ,b 两条直线平行吗?(5)鸟是动物;(6)假设42=a ,求a 的值;(7)假设22b a =,那么b a =. 〔8〕2021年奥运会在北京举行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.2定义与命题第1课时定义与命题1.理解定义、命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式;(重点)2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对假命题举反例.(难点)一、情境导入神舟十号是中国神舟号系列飞船之一,主要由推进舱(服务舱)、返回舱、轨道舱组成.神舟十号在酒泉卫星发射中心“921工位”,于2013年6月11日17时38分02.666秒发射,由长征二号F改进型运载火箭(遥十)“神箭”成功发射.在轨飞行十五天左右,加上发射与返回,其中停留天宫一号十二天,共搭载三位航天员——聂海胜、张晓光、王亚平.6月13日与天宫一号进行对接.6月26日回归地球.要读懂这段报导,你认为要知道哪些名称和术语的含义?二、合作探究探究点一:定义下列语句属于定义的是( )A.明天是晴天B.长方形的四个角都是直角C.等角的补角相等D.平行四边形是两组对边分别平行的四边形解析:作出正确选择的关键是理解定义的含义.A是对天气的预测,B是描述长方形的性质,C是描述补角的性质.只有D符合定义的概念.故选D.方法总结:定义指的是对术语和名称的含义的描述,是对一个事物区分于其他事物的本质特征的描述,而不是对其性质的判断.探究点二:命题【类型一】命题的概念下列各语句中,哪些是命题,哪些不是命题?(1)相等的角都是直角.(2)空气是无色无味的.(3)同旁内角相等吗?(4)两条直线被第三条直线所截.(5)画线段AB=5cm.(6)对顶角不相等.解析:(1)(2)(6)是命题,因为它们指出了是什么或不是什么;(3)是疑问句,(4)描述的是一个状态,(5)叙述的是一个过程,因此(3)(4)(5)都不是命题,因为它们都不含有判断的意思.解:(1)(2)(6)是命题,(3)(4)(5)不是命题.方法总结:认为“错误的命题不是命题”是错误的,实际上错误的命题也是命题,如本题中的(6)题.【类型二】命题的结构把下列命题改写成“如果……那么……”的形式.(1)对顶角相等;(2)垂直于同一条直线的两条直线平行;(3)同角或等角的余角相等.解析:设法把命题的题设和结论部分省略的文字找出来,要从文字的内在顺序、内在意义进行全面考虑,分清命题的题设部分和结论部分;再将它写成“如果……那么……”的形式.解:(1)如果两个角是对顶角,那么这两个角相等.(2)如果两条直线都和第三条直线垂直,那么这两条直线平行.(3)如果两个角是同一个角的余角或两个相等的角的余角,那么这两个角相等.方法总结:(1)命题改写的原则:不改变命题的原意;为了改写后的语句通畅且保持原意,应适当地增加或删减词语或调换词序;(2)命题改写的方法:先搞清命题的题设(已知事项)部分和结论部分;再将其改写为“如果……那么……”的形式:“如果”后面跟的是已知事项,“那么”后面跟的是由已知事项推出的事项(即结论).【类型三】真命题、假命题、反例判断下列命题是真命题还是假命题,若是假命题请举一个反例加以说明.(1)两个角的和是180°,则这两个角是邻补角;(2)一组对边平行,另一组对边相等的四边形是平行四边形;(3)如果x>y,那么x2>y2.解析:(1)互补的两个角的和为180°,但是互补的两个角不一定是邻补角;(2)一组对边平行,但这组对边不相等,即使另一组对边相等,也不一定是平行四边形;(3)若|x|<|y|,则x2<y2.解:(1)假命题.例如:两条直线平行,同旁内角的和为180°,但它们不是邻补角.(2)假命题.例如:等腰梯形中,两底互相平行,两腰相等,但它不是平行四边形.(3)假命题.例如:x=2,y=-3,x>y,但x2<y2.方法总结:识别命题真假的关键是在条件成立的前提下,看结论是否正确,可以举“特例”验证,特例成立还不能证明其为真命题,要由特殊形式转化为一般形式,再用推理的方法证明结论正确;若特例不成立,则原命题一定是假命题.三、板书设计定义与命题⎩⎪⎨⎪⎧定义命题⎩⎪⎨⎪⎧概念:判断一个事件的句子结构:如果……那么……分类:真命题、假命题通过对学生的启发、调整、激励让学生对定义、命题等概念有一个清楚的认识和了解,用比较数学化的观点来审视生活中或数学学习中遇到的语句特征,充分展示学生的语言表达能力,力图通过学生的自主学习来体现学生的主体地位.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0.探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5数量x/千克售价y/元 18+0.42 16+0.83 24+1.24 32+1.65 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根 第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点) 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根: (1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】 含算术平方根式子的运算计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4一次函数的应用第1课时确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y=(m-4)m2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0.探究点二:确定一次函数的表达式【类型一】根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y=kx+b,因为它的图象经过(0,5)、(2,-5)两点,所以当x=0时,y=5;当x=2时,y=-5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可.解:设一次函数的表达式为y=kx+b,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。

相关文档
最新文档