并不可怕的放缩法
十种放缩法技巧全总结1000字(7篇)
十种放缩法技巧全总结1000字(7篇)关于十种放缩法技巧全总结,精选4篇范文,字数为1000字。
放松是指放慢速度和提高速度,适用于放松速度超过30m 的放松方式。
它是指放缓速度和提高速度,适用于放松的速度较高,适用于放宽的速度较低的放松方式。
放松方法适用于放宽的速度较低的放松方式。
十种放缩法技巧全总结(范文):1一、放缩法是指放慢速度和提高速度,适当加快放松的方式。
放松是指放慢速度和提高速度,适用于放松速度超过30m的放松方式。
它是指放缓速度和提高速度,适用于放松的速度较高,适用于放宽的速度较低的放松方式。
放松方法适用于放宽的速度较低的放松方式。
二、放松法是指放慢速度,适用于放松速度较高的放松方式。
一般放松速度为30m,而较高速度较低的放置方式。
放松速度与放松效果的好坏有一个正常的关系,这个正常的关系,就是放松效果。
三、放松法是指放松效果,适用于放松的方法。
放松法是指放高速度和提高速度以后。
放松速度的方法主要是在放松速度较高或较高速度较低的放松方法。
四、放松法是在放慢速度的同时,减少速度,提高速度的方法。
在放松方法中,放慢速度与放松速率相等;放松速度与放松速率相等。
五、放松法是指放松速度超过10m的放松方法,适用于放松的速度较低的放置方法。
六、放松法主要适用于放宽的速度较高的放置方法。
七、放松法是指放松速度较低的放置方法,适用于放松方法较高的放置方式。
八、放松法是在放置方式中放松的方法。
十种放缩法技巧全总结(范文):2放权放权是指在社会管理中,依靠社会各方面的力量,在社会管理中,依靠自身各方面的力量共同完成社会管理体制的一个组成部分。
1、放权:是指在社会管理中,依靠自身各方面的力量共同完成社会管理体制的一个组成部分。
2、放权是指依靠社会各方面的力量共同完成社会管理体制的一个组成部分。
二、放权放权是指依靠自身各方面的力量共同完成社会管理体制的一个组成部分。
三、放权放权是指依靠社会各方面的力量共同完成社会管理体制的一个组成部分。
十种放缩法技巧全总结
十种放缩法技巧全总结放缩法(Scaling)是一种常用的图像处理技术,通过对图像进行放缩,可以改变图像的尺寸和像素分布,以满足不同的需求。
本文将总结十种常用的放缩法技巧,包括等比例缩放、非等比例缩放、双线性插值、最近邻插值等。
1. 等比例缩放等比例缩放是最常用的一种放缩法技巧,通过保持图像的宽高比不变,按比例减小或增大图像的尺寸。
在图像处理软件中,可以直接设置缩放比例或输入目标尺寸来实现等比例缩放。
代码示例:1. 设置缩放比例为0.5:scale_factor = 0.52. 设置目标尺寸为宽度为500px:target_width = 500, target_height = original_height * (target_width / original_width)2. 非等比例缩放非等比例缩放是一种在宽高比不变的情况下,分别按比例减小或增大图像的宽度和高度的放缩法技巧。
与等比例缩放相比,非等比例缩放会改变图像的形状,导致图像的扭曲或拉伸。
代码示例:1. 分别设置缩放比例:scale_factor_x = 0.8, scale_factor_y = 1.22. 分别设置目标尺寸:target_width = original_width * scale_factor_x, targ et_height = original_height * scale_factor_y3. 双线性插值双线性插值是一种用于图像放缩的插值算法,通过对图像的像素进行线性插值计算,以获得更平滑、更真实的放缩效果。
双线性插值通过对目标图像的每个像素,根据原图像的相邻像素的灰度值进行加权平均计算,从而得到最终的像素值。
代码示例:1. 计算目标像素的位置:target_x = (x / scale_factor_x), target_y = (y / s cale_factor_y)2. 计算四个相邻像素的坐标:top_left_x, top_left_y, top_right_x, top_right_y, bottom_left_x, bottom_left_y, bottom_right_x, bottom_right_y3. 分别计算四个相邻像素的灰度值:top_left_gray, top_right_gray, bottom_left_gray, bottom_right_gray4. 根据四个相邻像素的灰度值和目标像素的位置,进行插值计算得到最终的像素值4. 最近邻插值最近邻插值是一种快速的插值算法,通过选择离目标像素最近的原图像像素的灰度值作为目标像素的灰度值。
放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后一题之瓶颈之精华!!)
2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk Λ 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n Λ (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n nn n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i ji j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:nn 412141361161412-<++++Λ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ(4) 求证:)112(2131211)11(2-+<++++<-+n nn Λ解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++ΛΛ(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+Λ再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n nΛ例3.求证:35191411)12)(1(62<++++≤++n n n n Λ解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk Λ 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n ΛΛ 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++Λ,当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1(Λ所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([Λ 故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=Λ212,求证:23321<++++nT T T T Λ.解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=ΛΛ所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T ΛΛ 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++Λ.解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++ΛΛ因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121ΛΛΛ6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---Λ所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n αααααααΛ解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++ΛΛ 解析:提示:2ln 1ln 1ln 1211ln )1ln(++-++=⋅⋅-⋅+=+ΛΛn n nn n n n n n当然本题的证明还可以运用积分放缩 如图,取函数xx f 1)(=,首先:⎰-<n in ABCFx S 1,从而,)ln(ln |ln 11i n n x x i n n i n ni n --==<⋅--⎰ 取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n ,n n n ln )1ln(11-+<+,相加后可以得到: )1ln(113121+<++++n n Λ另一方面⎰->n i n ABDExS 1,从而有)ln(ln |ln 11i n n x x i i n n i n ni n --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+Λ,所以综上有nn n 1211)1ln(113121+++<+<++++ΛΛ例11.求证:e n <+⋅⋅++)!11()!311)(!211(Λ和e n <+⋅⋅++)311()8111)(911(2Λ. 解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。
不等式放缩法
不等式放缩法不等式放缩法,这可是数学里一个相当有趣的“小魔法”!咱们先来说说啥是不等式放缩法。
简单来讲,就是把一个复杂的不等式通过巧妙的手段进行变形,让它变得更容易处理和证明。
比如说,原本一个长得很吓人的不等式,咱们通过合理的放缩,把它变成一个咱们熟悉的、能轻松搞定的形式。
我给大家举个例子哈。
比如说有这么个不等式:1/2 + 1/3 + 1/4 +… + 1/n > 1/2 ×(n 1) (n ≥ 2)。
要是直接去证明,可能会让人有点头疼。
那咱们就来放缩一下。
先把每一项 1/k (k =2, 3, 4, …, n)都放大成 1/2 ,这样原来的式子就变成了(n 1) × 1/2 ,这不就和要证明的右边一样了嘛!而且因为我们是把每一项都放大了才得到的这个式子,所以原不等式就成立啦!是不是感觉有点神奇?我还记得之前给学生们讲这部分内容的时候,有个小家伙一脸迷糊地问我:“老师,这放缩法咋感觉像是在‘作弊’呢?”我笑着回答他:“这可不是作弊哦,这是数学的智慧!就像你走在路上,遇到一个大石头挡道了,咱们总不能硬撞上去吧,得绕个弯或者找个更简单的路过去,这放缩法就是咱们在数学道路上找的‘捷径’!”那不等式放缩法有啥用呢?用处可大啦!比如说在一些数列求和的问题里,如果直接求和很难算,咱们就可以用放缩法来估计和的范围。
还有在证明一些不等式的结论时,放缩法往往能起到关键作用,让看似复杂的问题一下子变得清晰起来。
不过呢,放缩法也不是随便放缩的,要是放缩得不合理,那可就得出错误的结论啦。
这就好比你修房子,尺寸要是搞错了,房子可就歪歪斜斜没法住人了。
所以在使用放缩法的时候,一定要小心谨慎,多思考多尝试。
再给大家说个我自己的经历。
有一次我在做一道数学题,用了放缩法,结果怎么都证明不出来。
我检查了好几遍,才发现是放缩的时候放得太大了,把原本成立的不等式给弄“变形”了。
从那以后,我每次用放缩法都会特别小心,反复确认放缩的合理性。
高考专题--放缩法(竞赛辅导)
专题—放缩法证明数列不等式放缩法是不等式证明中一种常用的方法,也是一种非常重要的方法。
在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。
但放缩的范围较难把握,常常出现放缩之后得不出结论或得出相反结论的现象。
因此,使用放缩法时,如何确定放缩目标尤为重要。
要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。
掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。
数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 注:常用放缩的结论:(1))2(111)1(11)1(11112≥--=-<<+=+-k kk k k kk k k k(2).)2)(111(212112)111(2≥--=-+<<++=+-k kk k k k k k k k例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B例2.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2)1S S -<⋅⋅⋅+<例3.(1)设a ,n ∈N *,a ≥2,证明:n n n a a a a ⋅+≥--)1()(2;(2)等比数列{a n }中,112a =-,前n 项的和为A n ,且A 7,A 9,A 8成等差数列.设nnn a a b -=12,数列{b n }前n 项的和为B n ,证明:B n <13.例4.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n nn .求证:11213-++-≥>n n n n a a例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列4321的逆序数63=a .(1)求a 4、a 5,并写出a n 的表达式;(2)令nn n n n a a a a b 11+++=,证明32221+<++<n b b b n n ,n =1,2,….已知数列{an}满足:a 1=1且)2(213221≥=---n a a n n n .(1) 求数列{a n }的通项公式;(2) 设m ∈N +,m ≥n ≥2,证明(a n +n21)m1(m-n+1)≤mm 12-2设数列{n a }满足12,311+-==+n a a a n n(1) 求{n a }的通项公式; (2) 若11111,1,1++-=-=-==n nn n n n n c c d na c cb c求证:数列{n n d b ⋅}的前n 项和31<n s3已知正项数列{n a }满足)(,)1(1,1211*+∈⋅++==N n a n a a a n n n(1) 判断数列{n a }的单调性; (2) 求证:21)1(1112111+<-<+-++n a a n n n n4, (1)求证:2222111171234n++++<(3) 求证:nn 12!1!31!21!11-<++++(4) 求证:2!1!31!21!11<++++n(5) 求证:1071312111<++++++++nn n n n5在数列{n a }中,已知前n 项和为S n =2a n -n, n 为正整数, (1) 求数列的通项公式; (2) 求证:*122311...().23n n a a a n n N a a a +-<+++∈6 已知数列{a n }的前n 项和S n 满足:S n =2a n +(-1)n,n ≥1.(Ⅰ)写出求数列{a n }的前3项a 1,a 2,a 3; (Ⅱ)求数列{a n }的通项公式; (Ⅲ)证明:对任意的整数m >4,有4511178ma a a +++<.7,设等比数列}{n a 的前n 项和为n s ,已知对*∈∀N n ,点),(n s n 均在函数r b y x += (均为常数且r b b b ,,10≠>)的图像上, (1) 求 r 的值;(2) 当 b=2 时,记)1(log22+=n n a b ,求证对*∈∀N n ,不等式111112211+>+++++n b b b b b b n n成立。
高考数学数列放缩法技巧全总结
高考数学备考之 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k.解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n,所以122121114212+=+-=-∑=n n n k n k(2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n n C T r rrn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8)n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n(13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n(2)求证:n n 412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n n n -+<+++=++++ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n 解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6n n n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n 例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}na 满足101a <<.1()n n af a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k ab+>.解析: 由数学归纳法可以证明{}na 是递增数列, 故 若存在正整数k m ≤, 使ba m≥, 则ba ak k ≥>+1,若)(k m b am≤<,则由101<<≤<b a am 知0ln ln ln 11<<≤b a a a a am m m,∑=+-=-=km mm k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是ba b a b a k a ak =-+≥+>+)(|ln |11111例5.已知mm m m m n S x N m n ++++=->∈+ 321,1,,,求证:1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nxx n+≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--n k m m m m m m m m m nk m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于mm m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m 而正是成立的,所以原命题成立.例6.已知nnna 24-=,nnn a a a T +++=212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n nnn T从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明: nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩 例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ .解析:先构造函数有xx x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n +++--<++++cause⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n n n 例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xxx f ln )(=,得到22ln ln nnn n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n nn n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:n n n 1211)1ln(113121+++<+<++++ 解析:提示:2ln 1ln 1ln 1211ln)1ln(++-++=⋅⋅-⋅+=+ n nn n n n n n n函数构造形式:xx x x 11ln ,ln -><当然本题的证明还可以运用积分放缩如图,取函数xx f 1)(=,首先:⎰-<nin ABCF x S 1,从而,)ln(ln |ln 11i n n x x i n n i n nin --==<⋅--⎰取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n ,n n n ln )1ln(11-+<+,相加后可以得到:)1ln(113121+<++++n n 另一方面⎰->ni n ABDEx S 1,从而有)ln(ln |ln 11i n n x x i i n n i n nin --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和en <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x xx x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n n a a a n n +==+++证明2nae <.FE D C BAn-inyxO解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n nn a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。
用放缩法证明方法与技巧
二、常见的放缩法技巧 1、基本不等式、柯西不等式、排序不等式放缩
b bm (m 0, a b) . 2、糖水不等式放缩: a am
3、添(减)项放缩 4、先放缩,后裂项(或先裂项再放缩) 5、逐项放大或缩小:
三、常用公式
1 1 1 1. 2 k (k 1) k k (k 1)
0, a t a, a t a
n 1 n , 2 n n n 1 , n 1 1 n 1 , n(n 1) n 2 n 1 1 1 1 1 1 1 (3) 2 (n 1) n n 1 n(n 1) n n(n 1) n 1 n 2 2 1 2 (4) 2( n 1 n ) 2( n n 1) n 1 n n n n n n 1 a a a am , (5)若 a, b, m R ,则 b bm b b 1 1 1 1 1 1 1 2 n 1 (6) 1 2! 3! n! 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 (1 ) ( ) ( ) (7) (因为 ) 22 32 n2 2 2 3 n 1 n n 2 (n 1)n 1 1 1 1 1 1 1 n 1 (7) n 1 n 2 n 3 2n n 1 n 1 n 1 n 1 1 1 1 1 1 1 1 n 1 或 n 1 n 2 n 3 2n 2n 2n 2n 2n 2 1 1 1 1 1 1 n n 等等。 (8) 1 2 3 n n n n n
一、放缩法原理 为了证明不等式 A B , 我们可以找一个或多个中间变量 C 作比较, 即若能判定 A C, C B 同时成立, 那么 A B 显然正确。 所谓 “放” 即把 A 放大到 C,再把 C 放大到 B;反之,由 B 缩小经过 C 而变到 A, 则称为“缩” ,统称为放缩法。放缩是一种技巧性较强的不等变形,必 须时刻注意放缩的跨度,做到“放不能过头,缩不能不及” 。
放缩法技巧全总结
放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析n35 (12) 11)1()1()1)(1(23--+⋅⎪⎪⎭ ⎝+--=+-<⋅=n n n n n n n n n n n n (13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ (2)求证:n n412141361161412-<++++Λ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ (4) 求证:)112(2131211)11(2-+<++++<-+n n n Λ解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(21112131(211)12(112--+>+-+>-∑=n n i nin1+例解所以当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n.n++-m k 11]例例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明: nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++Λ.解析:先构造函数有x x x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n+++--<++++ΛΛ所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ解析例-in i n -取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+Λ,所以综上有n n n 1211)1ln(113121+++<+<++++ΛΛ例11.求证:e n <+⋅⋅++!11()!311)(!211(Λ和e n <+⋅⋅++)311()8111)(911(2Λ.解析:构造函数后即可证明 例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案题) 例13.证明:)1*,()1(ln 4ln 3ln 2ln >∈-<++++n N n n n n Λ 例解析即.2ln ln 21e a a a n n <⇒<-注:题目所给条件ln(1)x x +<(0x >)为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论)2)(1(2≥->n n n n来放缩:.)1(1))1(11ln()1ln()1ln(1-<-+≤+-++n n n n a a n n111)1ln()1ln()1(1)]1ln()1ln([212112<-<+-+⇒-<+-+⇒∑∑-=+-=na a i i a a n n i i i n i , 即.133ln 1)1ln(2e e a a n n <-<⇒+<+例16.(2008年福州市质检)已知函数.ln )(x x x f =若).()(2ln )()(:,0,0b f b a f b a a f b a -+≥++>>证明解析:设函数()()(),(0)g x f x f k x k =+->∴函数k k x g ,2[)(在)上单调递增,在]2,0(k 上单调递减.∴)(x g 的最小值为)2(k g ,即总有).2()(kg x g ≥而,2ln )()2ln (ln 2ln )2()2()2(k k f k k kk k k f k f k g -=-==-+=即.2ln )()()(k k f x k f x f -≥-+令,,b x k a x=-=则.b a k +=例15.(2008年厦门市质检) 已知函数)(x f 是在),0(+∞上处处可导的函数,若)()('x f x f x >⋅在0>x)n x +令2)1(n x n +=,有 所以).()2)(1(2)1ln()1(14ln 413ln 312ln 21*22222222N n n n nn n ∈++>++++++Λ(方法二)⎪⎭⎫ ⎝⎛+-+=++≥+++>++21114ln )2)(1(4ln )2)(1()1ln()1()1ln(222n n n n n n n n n 所以)2(24ln 21214ln )1ln()1(14ln 413ln 312ln 2122222222+=⎪⎭⎫ ⎝⎛+->++++++n n n n n Λ 又1114ln +>>n ,所以).()2)(1(2)1ln()1(14ln 413ln 312ln 21*22222222N n n n n n n ∈++>++++++Λ 三、分式放缩姐妹不等式:)0,0(>>>++>m a b ma mb a b 和)0,0(>>>++<m b a m a mb a b记忆口诀”小者小,大者大”,解释:看b ,若b 小,则不等号是小于号,反之. 例19. 姐妹不等式:121211()511)(311)(11(+>-++++n n Λ和121211()611)(411)(211(+<+---n n Λ也可以表示成为12)12(5312642+>-⋅⋅⋅⋅⋅⋅⋅n n n ΛΛ和1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ解析: 利用假分数的一个性质)0,0(>>>++>m a b ma mb a b 可得 ⇒例2)21n n > 例{}n B 满足OA . 解析:(1) 依题设有:(()10,,,0n n n n A B b b n ⎛⎫> ⎪⎝⎭,由1n OB n =得: 2*212,1,n n n b b b n N n +=∴=∈,又直线nnA B 在x 轴上的截距为n a 满足 显然,对于1101nn >>+,有*14,nn a a n N +>>∈(2)证明:设*11,n n nb c n N b +=-∈,则设*12,n n S c c c n N =+++∈L ,则当()*221k n k N =->∈时,212311112222222k k k -->⋅+⋅++⋅=L 。
放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后一题之瓶颈之精华!!)
2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Trr rn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnnn n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤a n n a )2111(⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。
放缩法
高考专题—放缩法缩法是不等式证明中一种常用的方法,也是一种非常重要的方法。
在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。
但放缩的范围较难把握,常常出现放缩之后得不出结论或得出相反结论的现象。
因此,使用放缩法时,如何确定放缩目标尤为重要。
要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。
掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。
数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得:1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列,所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以12-=n a n (2))121121(21)12)(12(111+--=+-==+n n n n a a b n n n ,所以21)12(2121)1211215131311(21<+-=+---+-=n n n B n 注:一般先分析数列的通项公式.如果此数列的前n 项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列{}n a 满足条件()n f a a n n =-+1)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和1.放缩后成等差数列,再求和例2.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2)<⋅⋅⋅解:(1)在条件中,令1=n ,得1112122a S a a ==+,1011=∴>a a ,又由条件n n n S a a 22=+有11212+++=+n n n S a a ,上述两式相减,注意到n n n S S a -=++11得0)1)((11=--+++n n n n a a a a 001>+∴>+n n n a a a ∴11n n a a +-=所以, n n a n =-⨯+=)1(11,(1)2n n n S +=所以42)1(212)1(21222++=++∙<+=n n n a a n n n n S (2)因为1)1(+<+<n n n n ,所以212)1(2+<+<n n n n ,所以 2)1(23222121+++⨯+⨯=++n n S S S n 212322++++<n 2122312-=+=+n S n n ;222)1(2222121n n S n n n S S S =+=+++>++2.放缩后成等比数列,再求和例3.(1)设a ,n ∈N *,a ≥2,证明:n n na a a a⋅+≥--)1()(2;(2)等比数列{a n }中,112a =-,前n 项的和为A n ,且A 7,A 9,A 8成等差数列.设nn n a a b -=12,数列{b n }前n 项的和为B n ,证明:B n <13.解:(1)当n 为奇数时,a n ≥a ,于是,n n n n na a a a a a⋅+≥+=--)1()1()(2.当n 为偶数时,a -1≥1,且a n ≥a 2,于是n n n n n n n a a a a a a a a a a a ⋅+≥⋅-+=⋅-≥-=--)1()1)(1()1()1()(22.(2)∵9789A A a a -=+,899A A a -=-,899a a a +=-,∴公比9812a q a ==-.∴nn a )21(-=. nn n nn n b 231)2(41)21(141⋅≤--=--=. ∴n n b b b B ++=2131)211(31211)211(213123123123122<-=--⋅=⋅++⋅+⋅≤n n . 3.放缩后为差比数列,再求和例4.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a na n n n .求证: 11213-++-≥>n n n n a a 证明:因为n nn a na )21(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a , 即021>=-+n n n n a na a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n , 即n n n n n n a n a a 221≥=-+,累加得:121212221--+++≥-n n n a a .令12212221--+++=n n n S ,所以n n n S 2122212132-+++= ,两式相减得:n n n n S 212121212121132--++++=- ,所以1212-+-=n n n S ,所以1213-+-≥n n n a , 故得11213-++-≥>n n n n a a .4.放缩后为裂项相消,再求和例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数63=a .(1)求a 4、a 5,并写出a n 的表达式; (2)令nn n n n a aa ab 11+++=,证明32221+<++<n b b b n n ,n =1,2,…. 解(1)由已知得15,1054==a a ,2)1(12)1(+=+++-+=n n n n a n . (2)因为 ,2,1,22222211==+⋅+>+++=+=++n nn n n n n n n a a a a b n n n n n , 所以n b b b n 221>+++ .又因为 ,2,1,222222=+-+=+++=n n n n n n n b n , 所以)]211()4121()3111[(2221+-++-+-+=+++n n n b b b n =32221232+<+-+-+n n n n . 综上, ,2,1,32221=+<++<n n b b b n n . 注:常用放缩的结论:(1))2(111)1(11)1(11112≥--=-<<+=+-k kk k k k k k k k (2).)2)(111(212112)111(2≥--=-+<<++=+-k kk k k k k k k k已知数列{a n }满足:a 1=1且)2(213221≥=---n a a n n n .(1) 求数列{a n }的通项公式;(2) 设m ∈N +,m ≥n ≥2,证明(a n +n 21)1(m-n+1)≤mm 12-分析:这是06年河北省高中数学竞赛的一道解答题(1)大家都知道数列的递推公式往往比通项公式还重要.这就引导我们要重视数列的递推公式由已知有a n =112123--+n n a ,学生对形如1,0(1≠≠+=-A AB B Aa a n n 且, A ,B 是常数)形式的一次线性递推关系的数列通过构造新数列求通项公式的方法已不陌生,本题中的递推关系显然不是此类型.那么我们能否也可通过待定系数法构造新数列呢?不妨设)2)(2(23211≤+=+--n x a x a n n n n 即11223--+=n n n c a a 与112123--+=n n n a a 比较系数得c=1.即n n n a )23(21=+)21(232111--+=+n n n n a a又23211=+a ,故{n n a 21+}是首项为23公比为23的等比数列,故n n n a 21)23(-=(2) 这一问是数列、二项式定理及不等式证明的综合问题.综合性较强.即证(mm n m m n1)1()232-≤+-,当m=n 时显然成立。
放缩的技巧总结
放缩的技巧总结
放缩的技巧是指用一种精简的方式来表达或呈现一种更复杂的情况或概念。
下面是一些放缩的技巧总结:
1. 概括:用简短的语言概括一个更复杂的情况或概念。
通过选取关键信息和重要细节,以简明扼要的方式来传达原始信息。
2. 比喻:用一个类似的事物或情景来代替或形容另一个事物或情景。
这种技巧可以帮助读者更好地理解和感受到被放缩的概念。
3. 形象化:用生动具体的形象来替代抽象的概念。
通过具体的描述和形象词语来传达并呈现抽象概念或情感,使其更易于理解和接受。
4. 删减:通过删除冗余或不必要的信息来简化和放缩原始文本。
精简的版本可以更易于理解和消化。
5. 梗概:用一个简洁的故事或情节来概括一个更复杂的情况或故事。
这种放缩技巧可以帮助读者快速理解故事的主要内容和要点。
6. 叙事:使用生动的故事和场景来阐述和表达一种更深层的情感或主题。
通过描述人物、环境和事件的细节,读者可以更深入地理解和感受到被放缩的概念。
总的来说,放缩的技巧是一种将复杂的情况或概念简洁地表达出来的能力。
通过精简、归纳和形象化等手法,可以使读者更轻松地理解和接受信息。
【精品】高考数学不等式放缩大全
【精品】高考数学不等式放缩大全高考数学中,不等式是一个重要的考点,也是考生容易出错的地方。
在解不等式的过程中,我们经常需要进行放缩,以便更好地求解不等式。
下面是一些高考数学中常用的不等式放缩方法。
1. 加减法放缩:当需要对一个不等式进行放缩时,可以通过加减法来实现。
例如,对于不等式a < b,可以加上一个正数c,得到a + c < b + c;或者减去一个正数d,得到a - d < b - d。
通过加减法放缩,可以改变不等式的形式,使其更容易求解。
2. 乘除法放缩:当需要对一个不等式进行放缩时,可以通过乘除法来实现。
例如,对于不等式a < b,可以乘以一个正数c,得到ac < bc;或者除以一个正数d,得到a/d <b/d。
通过乘除法放缩,可以改变不等式的形式,使其更容易求解。
3. 平方放缩:当需要对一个不等式进行放缩时,可以通过平方来实现。
例如,对于不等式a < b,可以平方两边得到a^2 < b^2。
通过平方放缩,可以将不等式中的平方项转化为一次项,使其更容易求解。
4. 开平方放缩:当需要对一个不等式进行放缩时,可以通过开平方来实现。
例如,对于不等式a < b,可以开平方两边得到√a < √b。
通过开平方放缩,可以将不等式中的开方项转化为一次项,使其更容易求解。
5. 反向不等式放缩:当需要对一个不等式进行放缩时,可以通过反向不等式来实现。
例如,对于不等式a < b,可以将其改写为-b < -a。
通过反向不等式放缩,可以改变不等式的形式,使其更容易求解。
6. 绝对值不等式放缩:当需要对一个绝对值不等式进行放缩时,可以通过绝对值的性质来实现。
例如,对于绝对值不等式|a| < b,可以将其改写为-b < a < b。
通过绝对值不等式放缩,可以将不等式中的绝对值项转化为一次项,使其更容易求解。
放缩法技巧全总结
放缩法技巧全总结放缩法(Scaling)是一种常用的数学技巧,用于将数学问题转化为更简单、更易解决的形式。
这种技巧广泛应用于数学竞赛和问题求解中。
以下是放缩法的几个常见技巧和应用总结。
1.强化不等关系:放缩法的核心思想是通过比较大小来改变问题的形式。
如果已知a>b,那么可以通过加减乘除等操作将问题转化为a的形式,从而简化计算过程。
例如,要求证明a+2b>0,可以通过乘法得到2a+4b>0,进一步可得3a+6b>0。
这样可以将问题转化为证明3a+6b>0的形式,而这个不等式更容易证明。
2. 运用恒等变形:放缩法还可以通过变换等式或不等式的形式来简化问题。
常用的恒等变形包括平方恒等式(a+b)^2=a^2+2ab+b^2和倒数恒等式1/(ab)=(1/a)(1/b)等。
应用这些恒等变形,可以将问题转化为更简单的形式,进而解决问题。
3.递推放缩:递推放缩是一种通过递推关系来简化问题的方法。
通过找到问题的递推关系,可以将问题规模进行放缩,从而降低问题的复杂度。
例如,要求证明一些等式成立,可以通过将等式两边代入等式左边或右边的形式,利用递推关系将问题简化。
4.红蓝染色:红蓝染色是一种通过对元素染色来放缩问题的方法。
通过给问题中的元素染色,可以将问题转化为简化的形式,从而解决问题。
例如,在一个n×n的方格中,要求选择一些相互不在同一行、同一列的方格,并使这些方格能够覆盖所有的行和列。
可以将行和列分别染成红色和蓝色,问题转化为在红色和蓝色方格中选择不同行和列的方格并覆盖所有的红色和蓝色方格的问题。
5.数学归纳法:数学归纳法是一种通过递推关系来证明数学性质的方法。
通过对问题进行归纳假设,可以按照递推步骤逐步证明问题的性质。
例如,要证明对于任意正整数n,都有n(n+1)(n+2)能被6整除,可以通过数学归纳法来证明:当n=1时,1×2×3=6能被6整除;假设当n=k时成立,即k(k+1)(k+2)能被6整除;则当n=k+1时,(k+1)(k+2)(k+3)=(k(k+1)(k+2))+(k+1)(k+2)也能被6整除,即对于任意正整数n都有n(n+1)(n+2)能被6整除。
微分方程问题中的放缩法
微分方程问题中的放缩法
简介
放缩法(Scaling method)是微分方程求解中常用的一种策略。
它通过对方程的自变量和因变量进行放缩或变换,使得原方程在新的坐标系下更易于求解。
放缩法的基本步骤
1. 确定需要放缩的自变量和因变量,一般选择与问题相关的变量进行放缩。
2. 对自变量和因变量进行线性或非线性的变换,使得方程中的系数或表达式更简单。
3. 将原方程代入放缩后的自变量和因变量,并进行简化。
4. 解放缩后的方程,得到原方程的解。
放缩法的应用举例
放缩法可以应用于各种微分方程问题中,以下是一些示例:
1. 简单的一阶线性微分方程
对于形如 dy/dx = f(x)y 的一阶线性微分方程,可以通过放缩法将其转化为形如 dy/dX = g(X) 的更简单的方程,其中 X = x/a,g(X) = f(x)。
2. 高阶非线性微分方程
对于高阶非线性微分方程,放缩法可以用来简化方程的形式,例如通过放缩变量进行代换或引入新的自变量。
3. 包含多个变量的微分方程
对于包含多个变量的微分方程,可通过放缩法将其转化为只含一个变量的形式,从而降低求解难度。
注意事项
在使用放缩法求解微分方程时,需要注意以下问题:
- 放缩后的方程是否能得到与原方程相同的解?
- 放缩后的方程是否更易于求解?
放缩法是一种常用的微分方程求解策略,但并不适用于所有情况。
在具体问题中,需要根据具体的情况来决定是否使用放缩法以及如何进行放缩。
以上是关于微分方程问题中的放缩法的简要介绍。
希望对您有帮助!。
放缩法技巧全总结
放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k nk (2)因为⎪⎭⎫ ⎝⎛+--=-=-<1211212144411222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 技巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Trr rn r (4)1111(1)1132132(1)n n n n +<+++++<⨯⨯-(5)nn n n 21121)12(21--=- (6) n n n -+<+221 (7))1(21)1(2--<<-+n n n n n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n (11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i1.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n(2)求证:n n412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn (4) 求证:)112(2131211)11(2-+<++++<-+n n n2.35191411)12)(1(62<++++≤++n n n n3.已知nn na 24-=,nn n a a a T +++= 212,求证:23321<++++n T T T T .二、函数放缩)0(ln x 1><+x x )( xx11ln ->(x>1) xxx x x 11ln 1ln -≤⇒-≤. (x>1)例.求证:nn n 1211)1ln(113121+++<+<++++ 解析:提示:2ln 1ln 1ln 1211ln)1ln(++-++=⋅⋅-⋅+=+ n nn n n n n n n 2.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 . 三、分式放缩姐妹不等式:)0,0(>>>++>m a b ma mb a b 和)0,0(>>>++<m b a m a mb a b记忆口诀”小者小,大者大”,解释:看b ,若b 小,则不等号是小于号,反之.例 姐妹不等式:12)1211()511)(311)(11(+>-++++n n 和121)211()611)(411)(211(+<+---n n解析: 利用假分数的一个性质)0,0(>>>++>m a b ma mb a b 可得 >-⋅⋅122563412n n =+⋅⋅nn 212674523 )12(212654321+⋅-⋅⋅n n n⇒12)122563412(2+>-⋅⋅n n n 即.12)1211()511)(311)(11(+>-++++n n 1.证明:.13)2311()711)(411)(11(3+>-++++n n四、分类放缩例。
生物难题放缩法的技巧(精华)
生物难题放缩法的技巧(精华)简介生物学是一门研究生命现象的学科,其中难题的解决对于推动科学发展至关重要。
放缩法是一种常用的解决难题的策略,通过将复杂的问题转化为简化的模型来使问题更易于理解和解决。
本文将介绍生物难题放缩法的技巧,旨在帮助研究者更好地应用该方法。
技巧一:确定关键要素在使用放缩法解决生物难题时,首先需要确定问题中的关键要素。
通过筛选和提炼,将问题简化为其最基本的要素,然后以这些要素为基础进行分析和研究。
这样做可以将复杂的问题转化为更易理解和处理的形式。
技巧二:建立合理的假设在放缩法中,建立合理的假设是非常重要的。
假设可以帮助我们将问题转化为可操作的模型,并且为进一步的研究提供方向。
通过建立合理的假设,我们可以降低研究的复杂度,同时确保所得到的结果在一定程度上具有可靠性和可重复性。
技巧三:合理利用已有知识利用已有的知识是放缩法的重要策略之一。
生物学领域有很多已知的现象和规律,我们可以通过运用这些已知的知识来解释和解决新的难题。
合理利用已有知识,不仅可以节省时间和资源,还可以提高研究的效率和准确性。
技巧四:进行模型验证在使用放缩法解决生物难题时,进行模型验证是必不可少的。
通过将放缩后的模型与实际观察结果进行比较,可以验证模型的有效性和适用性。
如果模型无法准确预测实际结果,我们需要检查和修正模型中的假设和参数,以提高模型的准确性和可靠性。
技巧五:与其他领域相结合生物学与其他学科之间存在着紧密的联系,结合其他领域的知识和方法可以帮助我们更好地解决生物难题。
例如,结合数学、物理学、化学等学科的理论和方法,可以提供更全面和深入的分析。
因此,我们应该积极探索其他领域的知识,并将其运用到生物学研究中。
总结生物难题放缩法是一种有力的解决策略,通过简化复杂问题来推动生物学研究的发展。
本文介绍了生物难题放缩法的技巧,包括确定关键要素、建立合理的假设、合理利用已有知识、进行模型验证和与其他领域相结合。
希望这些技巧能够帮助研究者更好地应用放缩法,解决生物学中的难题,推动科学的进步和发展。
行测放缩法常用公式
行测放缩法常用公式行测考试,说实话,就是一场“脑力马拉松”,不是吗?什么逻辑推理、数字推理,什么判断推理,一大堆题目一丢过来,考察的就是你平时的积累和应变能力。
今天咱们聊聊一种解题技巧,叫做“放缩法”。
听着有点高大上对吧?其实呢,就是一种通过扩大或者缩小问题范围,来找到解决办法的小窍门。
别看它名字复杂,实则简单,咱们这就一块儿捋一捋。
放缩法,顾名思义,就是“放大”和“缩小”两个字的结合。
它其实就是帮助你在面对一个复杂问题时,先用一个简单的思路来简化问题,再逐渐调整回原来的问题。
简单来说,就像你把眼镜往远处一看,视野变广了,看到的细节反而清晰了。
再往近处看,看的更清楚了。
放缩法,实际上就是把复杂的题目分解,先通过一个“简化版”的方式看问题,再逐步回归。
举个例子,你可能会遇到这样一个题目:一个长方形的周长是100米,它的长是宽的两倍,求长和宽分别是多少?嘿,这听起来不难,可一开始看到的时候,心里可能会觉得有点“发慌”。
但如果你用放缩法,先把这个题目想象成一个简单的情况,比如说,长和宽的比例关系变成1:1,先求这个“简化版”的长方形周长是多少,再逐步过渡回原来的题目,这样你就能找到最终的答案了。
是不是感觉豁然开朗?再来说一个数字题。
比如说你看到这样一个题目:某公司1000万元的投资,年利率是5%,那么它一年能赚多少钱?大家一看,似乎没什么问题,1000万元乘以5%,得出的结果就是50万。
对吧?但放缩法的妙处就在于,你可以从一个更简单的角度来理解问题。
比如说,把1000万想成100元,利率5%就是5元,这样你可以更直观地理解运算过程,再带回去做真实的计算,避免在实际计算中出错。
其实啊,放缩法就像是给你提供了一个“备用方案”,让你在面对复杂问题时,不至于乱了阵脚。
有的时候,放缩法的妙用还不止于此,尤其是在一些数量关系或者速度、时间类的题目中。
比如说,你有一个火车,想知道它从A站到B站需要多少时间,给定的条件是火车的速度是100公里每小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解题要点:对通项放缩后,利用列项相消法求和, 再对和式放缩.
同类放缩常见的还有:
(1) (2) (3) (4) 1 1 1 1 1 ; 2 (2n 1) (2n 1)(2n 1) 2 2n 1 2n 1 1 2 2 n n1 ; n n1 n 1 1 n; n 2 1 2 1 2n 2n 1 1 n n 1 n n n 1 ; n 1 n 1 2 1 2 (2 1) (2 1)(2 1) 2 1 2 1
破题技巧:将求和数列中各项放缩后,用公式法求和, 再将和式放缩得结果.
针对训练
2. 设各项均为正数的数列an 的前n项和为S n,且S n 满足:Sn 2 ( n 2 n 3) S n 3(n 2 n ) 0, (n N ). (1) 求a1的值; (2) 求数列an 的通项公式; (3) 证明:对一切正整数n,有: 1 1 1 1 . a1 (a1 1) a 2 (a 2 1) an (an 1) 3
(解题要点)先求和,再对和式放缩
针对训练
1. 正项数列an 的前n项和Sn满足: (1) 求数列an 的通项公式an ; Sn 2 ( n2 n 1) Sn ( n2 n) 0.
n1 (2) 令bn ,数列bn 的前n项和为Tn, 2 2 ( n 2) an 5 证明:对于任意n N ,都有Tn . 64
证法2:(解题要点)根据式子结构特点,减少某些项用 放缩法证明不等式.
针对训练
设数列an 的前n项和为Sn . 已知 a1 1, 2 Sn 1 2 2 a n 1 n n ,n N . n 3 3 (1) 求a2的值; (2) 求数列an 的通项公式; 1 1 1 7 (3) 证明:对一切正整数n,有 . a1 a2 a项和为Sn , 已知对任意 n N ,点( n, Sn )均在函数y b x r (b 0且b 1, b,r 均为常数)的图像上. (1) 求r的值; (2) 当b 2时,记bn 2(log 2 an 1) ( n N ),证 明:对任意的n N ,不等式: bn 1 b1 1 b2 1 n 1成立. b1 b2 bn
题型透析
题型归纳:用放缩法证明数列中的不等式.
常用的放缩手段: 增加(或减少)某些项;增大分子(或减小分母); 增大(或减小)被开方数;利用基本不等式;利用 函数的单调性;利用二项式定理等.
题型突破
例:已知等差数列an 的各项互不相等,其前两 项和为10,且a3是a1与a7的等比中项. (1) 求数列an 的通项公式; an 7 (2) 设bn = ,其前n项和是Tn,证明: Tn . n 2 4 9
解题要点:对变形递推关系式,构造新数列求通项
解题要点:用基本不等式放缩; 巧用公式分解变形:a n bn (a b) (an1 an 2 b bn1 )
针对练习
等比数列an 的前n项和为S n , 已知对任意n N , 点( n, S n )均在函数y b x r (b 0且b 1,b,r 均 为常数 )的图像上. (1) 求r的值; 解题要点:由前n项和求通项; (2) 当b 2时,记bn 2(log 2 an 1) ( n N ),证 明:对任意的n N ,不等式: bn 1 b1 1 b2 1 n 1成立. b1 b2 bn
解题要点:用方程的思想求前n项和Sn,进而求通项.
解题要点:用列项相消法求和及求和后再放缩.
题型突破
例:已知数列an 的前n项和Sn (n2 n) 3n. an a1 a2 证明:2 2 2 3n. 1 2 n
证法1:(解题要点)对通项放缩后求和,再对和式放缩
1 1 1 (5) ln 1 ; 1 n n n 1 1 1 1 1 (6) 3 . n ( n 2)( n 1)n 2 ( n 2)( n 1) ( n 1)n
题型突破
nban1 例:设b 0,数列an 满足:a1 b,an an 1 2n 2 ( n 2). (1) 求数列an 的通项公式; b n 1 (2) 证明:对一切正整数n,an n1 1. 2
解题要点:用基本不等式放缩后消项. 解题要点:数学归纳法证明过程中用放缩
备考建议
1. 放缩法证明数列不等式不仅要熟悉常见的不等式类型、把 握常用的放缩方法和技巧,也要控制好放缩的目标和尺度; 2. 证题中经常用到的放缩方法有: (1)“添舍”放缩:对不等式一边添项或舍项以达到放大 和缩小的效果. (2)分式放缩:分别放缩分式的分子、分母或者同时放缩 分子分母以达到放缩的效果. (3)利用重要的不等式或结论放缩:把欲证不等式变形构 造,然后利用已知的公式或恒不等式进行放缩,例如,均值 不等式、二项式定理等. (4)利用函数的单调性放缩. 3.证明数列不等式途径一般有两条:一是先求和再放缩,二 是先放缩再求和.
江西省丰城中学2016届高三数学(文)一轮复 习
并不可怕的放缩法
讲课人:张业彬
真题展示
真题1: 设数列an 的前n项和为Sn . 已知a1 1, 2 Sn 1 2 a n 1 n 2 n ,n N . n 3 3 (1) 求a2的值; (2) 求数列an 的通项公式; 1 1 1 7 (3) 证明:对一切正整数n,有 . a1 a2 an 4