一次函数练习题附答案
八年级数学《一次函数》经典练习题含答案
八年级数学《一次函数》经典练习题一、选择题(1)当自变量x增大时,下列函数值反而减小的是()A.B.C.D.(2)对于正比例函数,下列结论正确的是()A.B.y随x的增大而增大C.D.y随x的增大而减小(3)如果函数的图像经过(-1,8)、(2,-1)两点,那么它也必经过点()A.(1,-2)B.(3,4)C.(1,2)D.(-3,4)(4)对于一次函数,若,则函数图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)直线与y轴交点在x轴下方,则b的取值为()A.B. C. D.(6)如图所示,函数的图像可能是()(7)已知一次函数的图像经过点,且与两坐标轴围成的三角形面积是8,则这个函数的解析式是()A.B.C.或D.或(8)已知直线如图所示,要使y的值为正,自变量x必须满足()A. B. C. D.(9)下列图像中(如图所示),不可能是关于x的一次函数的图像的是()(10)对于直线,若b减少一个单位,则它的位置将()A.向左平移一个单位B.向右平移一个单位C.向下平移一个单位D.向上平移一个单位二、填空题(1)一次函数中,k、b都是_______,且,自变量x的取值范围是_________,当,b__________时,它是正比例函数.(2)若,当时,,则.(3)直线与x轴的交点是_________,与y轴的交点是__________.(4)若函数的图像过第一、二、三象限,则,这时,y随x 的增大而________.(5)直线与x轴、y轴交于A、B两点,则的面积为_________.(6)直线若经过原点,则,若直线与x轴交于点(-1,0),则.(7)直线与直线的交点为__________.(8)已知一次函数的图像如图所示,则这个一次函数的解析式为_________.(9)已知函数,当时,有.(10)已知直线上两点和,且,当时,与的大小关系式为___________.三、解答题1.已知与成正比例(其中a、b都是常数).(1)试说明y是x的一次函数;(2)如果时,;时,,求这个一次函数的解析式.2.已知三点.试判断这三点是否在同一条直线上,并说明理由.四、应用题(1)1.将长为30cm,宽为10cm的长方形的白纸,按图所示方法粘合起来,粘合部分的宽为3cm.求5张白纸粘合后的长度;(2)设x张白纸粘合后的总长度为y cm,写出y与x之间的函数关系式,并求时,y的值.2.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系.从温度计的刻度上可以看出,摄氏(℃)温度x与华氏(℉)温度y 有如下的对应关系:x(℃)…-10 0 10 20 30 …y(℉)…14 32 50 68 86 …(1)通过①描点连线;②猜测y与x之间的函数关系;③求解;④验证等几个步骤,试确定y与x之间的函数关系式;(2)某天,A市的最高气温是8℃,澳大利亚悉尼的最高气温是91℉,问这一天悉尼的最高气温比A市的最高气温高多少摄氏度(结果保留整数)?3.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内原有60元,2个月后盒内有钱80元.(1)求盒内钱数y(元)与存钱月数x之间的函数关系式;(2)按上述方法,该同学几个月能存够300元?参考答案一、(1)C (2)D (3)C (4)C (5)C(6)D (7)C (8)C (9)C (10)C二、(1)常数,,全体实数,,;(2)-4;(3),(0,-2);(4),增大;(5);(6);(7);(8);(9);(10).三、1.(1)因为与成正比例,所以(k是不等于0的常数),即.因为k是不等于0的常数,a、b都是常数,所以也是常数,所以y是x的一次函数;(2)因为时,;时,,所以有解得所以这个一次函数的解析式为.2.在同一条直线上,理由如下:设经过A、B两点的直线为,由,得解得所以经过A、B两点的直线为.当时,.所以在这条直线上.所以三点在同一条直线上.1.(1)5张白纸粘合后的长度为(cm);(2)(x为大于1的整数).当时,(cm).2.(1)①描点连线(略)②通过观察可猜测y是x的一次函数,③设,现将两对数值分别代入,得解得所以.④验证:将其余三对数值分别代入,得;;.结果等式均成立.所以y与x的函数关系式为:.(2)当时,,所以.而(℃),所以这一天悉尼的最高气温比A市的最高气温约高25℃.3.(1)设.因为当时,;当时,,所以解得所以;(2)当时,,所以.所以该同学24个月能存够300元.。
一次函数综合练习附答案
一次函数综合练习学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.下列函数①5y x =-;②21y x =-+;③2y x =;④162y x =+;⑤21y x =-中,是一次函数的有( ) A .1个 B .2个C .3个D .4个【答案】C2.在下列各图象中,y 不是x 函数的是( )A .B .C .D .【答案】B3.一次函数y =kx +b 的图象如图所示,则关于x 的方程kx +b =0的解为( )A .x =0B .x =3C .x =﹣2D .x =﹣3【答案】B4.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =- B .24y x =+C .22y x =+D .22y x =-【答案】A5.已知方程()00kx b k +=≠的解是3x =,则函数()0y kx b k =+≠的图象可能是( )A.B.C.D.【答案】C6.如图是一次函数y=x-3的图象,若点P(2,m)在该直线的上方,则m的取值范围是()A.m>-3 B.m>0 C.m>-1 D.m<3【答案】C7.小斌家、学校、小川家依次在同一条笔直的街道上,小斌家离学校有2800米,某天,小斌、小川两人分别从自己家中同时出发,相向而行,出发4分钟后,两人在学校相遇,小川继续前行,小斌在学校取好书包后,掉头回家,两人在运动过程中均保持速度不变,两人之间的距离y(米)与小斌出发的时间x(分钟)的关系如图所示(小斌取书包的时间、掉头的时间忽略不计),则下列选项中错误的是()A.小斌的速度为700m/min B.小川的速度为200m/minC.a的值为280 D.小川家距离学校800m【答案】C8.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【答案】D二、填空题9.已知一次函数y=2x+m的图象是由一次函数y=2x﹣3的图象沿y轴向上平移8个单位得到的,则m=_____.【答案】5.10.小明从家跑步到学校,接着立即原路步行回家.如图是小明离家的路程y(米)与时间x(分)之间的函数关系的图像,则小明步行回家的平均速度是__________米/分.【答案】8011.在同一平面直角坐标系中,函数y1=kx+b与y2=mx+n的图象如图所示,则关于x 的不等式kx+b≥mx+n的解集为__.【答案】x≥212.已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第___象限.【答案】一.13.甲、乙两人分别从A 、B 两地出发,相向而行.图中的1l ,2l 分别表示甲、乙离B 地的距离()km y 与甲出发后所用时间()h x 的函数关系图象,则甲出发_______小时与乙相遇.【答案】1.414.平面直角坐标系中,点A 坐标为()23,3,将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数23y x =-的图象上,则a 的值为__________. 53三、解答题15.已知13y x =-+,234y x =-,当x 取哪些值时,12y y >?你是怎样做的?与同伴交流. 【答案】74x <,见解析. 16.(1)在同一直角坐标系内画出函数2y x =-+,2y x =+的图象,这两个图象有怎样的位置关系?(2)函数32y x =-+,32y x =+的图象又有怎样的位置关系?一般地,你有怎样的猜想?【答案】(1)图见解析,这两个图象关于y 轴对称;(2))这两个图象关于y 轴对称;一般地,函数y kx b =+和y kx b =-+的图象关于y 轴对称.17.某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y (千克)与销售单价x (元/千克)之间符合一次函数关系,如图所示.(1)求y 与x 的函数关系式;(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.【答案】(1)y =﹣10x +300;(2)能在保质期内销售完这批蜜柚,理由见解析 18.为做好复工复产,某工厂用A 、B 两种型号机器人搬运原料,已知A 型机器人比B 型机器人每小时多搬运20kg ,且A 型机器人搬运1200kg 所用时间与B 型机器人搬运1000kg 所用时间相等.(1)求这两种机器人每小时分别搬运多少原料?(2)该工厂计划让A 、B 两种型号机器人一共工作20个小时,并且B 型号机器人的工作时间不得低于A 型号机器人,求最多搬运多少千克原料?【答案】(1)A 型为:120千克小时,B 型为:100千克每小时;(2)最多搬运2200千克.19.如图,在平面直角坐标系中,点A B ,的坐标分别为3(,0)2-,3(,1)2,连接AB ,以AB 为边向上作等边三角形ABC . (1)求点C 的坐标;(2)求线段BC 所在直线的解析式.【答案】(1)3(;(2)332y =+ 20.如图,直线l 1:y=2x+1与直线l 2:y=mx+4相交于点P (1,b ) (1)求b ,m 的值(2)垂直于x 轴的直线x=a 与直线l 1,l 2分别相交于C ,D ,若线段CD 长为2,求a 的值【答案】(1)-1;(2)53或13.21.某工厂有甲种原料130kg,乙种原料144kg,现用两种原料生产处,A B两种产品共30件,已知生产每件产品需甲种原料5kg,乙种原料4kg,且每件A产品可获得利润700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利润900元,设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产,A B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.【答案】(1)共有三种方案,方案一:A产品18件,B产品12件,方案二:A产品19件,B产品11件,方案三:A产品20件,B产品10件;(2)利润最大的方案是方案一:A产品18件,B产品12件,最大利润为23400元.22.如图,自行车每节链条的长度为2.5cm,交叉重叠部分的圆的直径为0.8cm.(1)观察图形,填写下表:链条的节数/节234链条的长度/cm(2)如果x节链条的长度是y,那么y与x之间的关系式是什么?(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?【答案】(1)4.2;5.9;7.6;(2) 1.70.8y x =+;(3)102cm23.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:①根据上表的数据,请你写出Q 与t 的关系式; ②汽车行驶5h 后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L ,若以100km/h 的速度匀速行驶,该车最多能行驶多远. 【答案】①Q =100﹣6t ;② 70L ;③25003km . 24.在抗击新冠肺炎的非常时期,某医药器械厂接受了生产一批高质量医用口罩的任务,要求在8天之内(含8天)生产A 型和B 型两种型号的口罩共5万只,其中A 型口罩不得少于1.8万只,该厂的生产能力是:若生产A 型口罩每天能生产0.6万只,若生产B 型口罩每天能生产0.8万只,已知生产一只A 型口罩可获利0.5元,生产一只B 型口罩可获利0.3元.若设该厂在这次任务中生产了A 型口罩x 万只.(1)该厂生产A 型口罩可获利润 万元,生产B 型口罩可获利润 万元.(2)设该厂这次生产口罩的总利润是y 万元,试写出y 关于x 的函数关系式,并求出自变量x 的取值范围;(3)在完成任务的前提下,如何安排生产A 型和B 型口罩的只数,使获得的总利润最大,最大利润是多少?(4)若要在最短时间内完成任务,如何来安排生产A 型和B 型口罩的只数?最短时间是几天?【答案】(1)0.5x ;1.5-0.3x ;(2)y=0.2x+1.5,1.8≤x≤4.2;(3)安排A 型:4.2万只,B 型:0.8万只,最大利润是2.34万元;(4)生产A 型1.8万只,生产B 型3.2万只,最短时间是7天。
一次函数的定义专项练习30题(有答案)
一次函数的定义专项练习30题1.下列五个式子,①,②,③y=﹣x+1,④,⑤y=2x2+1,其中表示y是x的一次函数的有()A.5个B.4个C.3个D.2个2.下列函数中,y是x的一次函数的是()A.y=﹣3x2﹣1 B.y=x﹣1+2 C. y=2(x﹣1)2D.3.下列问题中,变量y与x成一次函数关系的是()A.路程一定时,时间y和速度x的关系B.长10米的铁丝折成长为y,宽为x的长方形C.圆的面积y与它的半径xD.斜边长为5的直角三角形的直角边y和x4.下列函数:①y=﹣x+2;②y=﹣x2+2;③y=﹣3x;④;⑤,其中不是一次函数的有()A.1个B.2个C.3个D.4个5.下列函数(1)y=2x﹣1;(2)y=πx;(3)y=;(4)y=;(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.一次函数不可能是正比例函数7.已知函数y=3x+1,当自变量增加3时,相应的函数值增加()A.10 B.9C.3D.88.对于函数y=2x﹣1,当自变量增加m时,相应的函数值增加()A.2m B.2m﹣1 C.m D.2m+1az9.若+5是一次函数,则a=()A.±3 B.3C.﹣3 D.10.若函数y=(m﹣1)x|m|+2是一次函数,则m的值为()A.m=±1 B.m=﹣1 C.m=1 D.m≠﹣111.函数y=(m﹣2)x n﹣1+n是一次函数,m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=2 C.m≠2且n=2 D.m=2且n=012.下列说法正确的是()A.y=kx+b(k、b为任意常数)一定是一次函数B.(常数k≠0)不是正比例函数C.正比例函数一定是一次函数D.一次函数一定是正比例函数13.已知y+2与x成正比例,则y是x的()A.一次函数B.正比例函数C.反比例函数D.无法判断14.设圆的面积为S,半径为R,那么下列说法确的是()A.S是R的一次函数B.S是R的正比例函数C.S是R2的正比例函数D.以上说法都不正确15.已知函数y=(k+2)x+k2﹣4,当k_________时,它是一次函数.16.如果函数y=(a﹣2)x+3是一次函数,那么a_________.17.当m=_________时,函数y=(m+5)x2m﹣1+7x﹣3(x≠0)是一个一次函数.18.已知一次函数y=(k﹣1)x|k|+3,则k=_________.19.已知:y=(m﹣1)x|m|+4,当m=_________时,图象是一条直线.20.把2x﹣y=3写成y是x的函数的形式为_________.21.在函数y=﹣2x﹣5中,k=_________,b=_________.22.一次函数y=﹣2x﹣1,当x=﹣5时,y=_________,当y=﹣7时,x=_________.23.一次函数y=kx+b中,k、b都是_________,且k_________,自变量x的取值范围是_________;当k_________,b_________时它是正比例函数.24.函数:①y=﹣2x+3;②x+y=1;③xy=1;④y=;⑤y=+1;⑥y=0.5x中,属于一次函数的有_________,属正比例函数的有_________(只填序号)25.若y=mx|m|+2是一次函数的解析式且y随x的增大而减小,则m的值等于_________.26.已知函数y=(m﹣3)x|m|﹣2+3是一次函数,求解析式.27.已知函数y=(m﹣10)x+1﹣2m.(1)m为何值时,这个函数是一次函数;(2)m为何值时,这个函数是正比例函数.28.已知函数y=(m+1)x+(m2﹣1)当m取什么值时,y是x的一次函数当m取什么值是,y是x的正比例函数.29.x为何值时,函数的值分别满足下列条件:(1)y=3;(2)y>2.30.说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,那么汽车离开A站的距离s(千米)和时间t(小时)之间的函数关系是什么的函数关系式为_________,它是_________函数;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,那么汽车离开A站的距离s(千米)与时间t(小时)之间的函数关系是什么的函数关系式为_________,它是_________函数.一次函数定义30题参考答案:1.①是反比例函数,故本选项错误;②符合一次函数的定义;故本选项正确;③y=﹣x+1符合一次函数的定义;故本选项正确;④=x ﹣,符合一次函数的定义;故本选项正确;⑤y=2x2+1,是二次函数;故本选项错误;综上所述,表示y是x的一次函数的有3个;故选C2.A、自变量次数不为1,故不是一次函数;B、自变量次数不为1,故不是一次函数;C、自变量次数不为1,故不是一次函数;D、是一次函数.故选D.3.A、设路程是s,则根据题意知,y=,是反比例函数关系.故本选项错误;B、根据题意,知10=2(x+y),即y=﹣x+5,符合一次函数的定义.故本选项正确;C、根据题意,知y=πx2,这是二次函数,故本选项错误;D、根据题意,知x2+y2=25,这是双曲线方程,故本选项错误.故选B.4.①y=﹣x+2是一次函数;②y=﹣x2+2是二次函数;③y=﹣3x是一次函数;④y=﹣x是一次函数;⑤y=﹣是反比例函数;所以,不是一次函数的有②⑤共2个.故选B5.(1)y=2x﹣1是一次函数;(2)y=πx是一次函数;(3)y=,自变量次数不为1,故不是一次函数;(4)y==,自变量次数不为1,故不是一次函数;(5)y=x2﹣1自变量次数不为1,故不是一次函数;综上所述,一次函数有2个.故选C.6.A、一次函数不一定是正比例函数,故本选项错误;B、正比例函数一定是一次函数,故本选项正确;C、正比例函数一定是一次函数,故本选项错误;D、一次函数可能是正比例函数,故本选项错误.故选B.7.因为y=3x+1,所以当自变量增加3时,y1=3(x+3)+1=3x+1+9,相应的函数值增加9.故选B.8.当自变量增加m时,y=2(x+m)﹣1,即y=2x+2m ﹣1,故函数值相应增加2m.故选A.9.根据一次函数的定义可知:a2﹣8=1,a+3≠0,解得:a=3.故选B.10.根据题意得:,解得:m=﹣1.故选B.11.∵函数y=(m﹣2)x n﹣1+n是一次函数,∴,解得,.故选C.12.A、y=kx+b(k、b为任意常数),当k=0时,不是一次函数,故本选项错误;B 、(常数k≠0)是正比例函数,故本选项错误;C、正比例函数一定是一次函数,故本选项正确;D、一次函数不一定是正比例函数,故本选项错误.故选C.13.y+2与x成正比例,则y+2=kx,即y=kx﹣2,符合一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1,则y是x的一次函数.故选A.14.由题意得,S=πR2,所以S是R2的正比例函数.故选C.15.根据一次函数定义得,k+2≠0,解得k≠﹣2.故答案为:≠﹣2.16.∵y=(a﹣2)x+3是一次函数,∴a﹣2≠0,∴a≠2.故答案为:a≠﹣2.17. ①,解得:m=1根据题意得:2m﹣1=1,解得:m=1,此时函数化简为y=13x﹣3.②2m﹣1=0,解得:m=,此时函数化简为y=7x﹣2.5;③m+5=0,解得:m=﹣5,此时函数化简为y=7x﹣3.故答案为:1或﹣5或18.根据题意得k﹣1≠0,|k|=1则k≠1,k=±1,即k=﹣1.19.∵y=(m﹣1)x|m|+4的图象是一条直线,∴①当该图象是一次函数图象时,|m|=1,且m﹣1≠0,解得m=﹣1.②当该直线是平行于x轴的直线时,m﹣1=0,即m=1;综上所述,当m=±1时,y=(m﹣1)x|m|+4的图象是一条直线.故答案是:±120.2x﹣y=3写成y是x的函数的形式为y=2x﹣3.故答案为:y=2x﹣3.21.根据一次函数的定义,在函数y=﹣2x﹣5中,k=﹣2,b=﹣5.22.把x、y的值分别代入一次函数y=﹣2x﹣1,当x=﹣5时,y=﹣2×(﹣5)﹣1=9;当y=﹣7时,﹣7=﹣2x﹣1,解得x=3.故填9、3.23.一次函数y=kx+b中,k、b都是常数,且k≠0,自变量x的取值范围是任意实数;当k≠0,b =0时它是正比例函数.24.函数:①y=﹣2x+3;②x+y=1;③xy=1;④y=;⑤y=+1;⑥y=0.5x中,属于一次函数的有①②⑥,属正比例函数的有⑥(只填序号)25.∵y=mx|m|+2是一次函数,∴|m|=1,∴m=±1,∵y随x的增大而减小,∴m=﹣1.故答案为:﹣126.∵m﹣3≠0且|m|﹣2=1,∴m=﹣3,∴函数解析式为:y=﹣6x+327.(1)根据一次函数的定义可得:m﹣10≠0,∴m≠10,这个函数是一次函数;(2)根据正比例函数的定义,可得:m﹣10≠0且1﹣2m=0,∴m=时,这个函数是正比例函数.28.由函数是一次函数可得,m+1≠0,解得m≠﹣1,所以,m≠﹣1时,y是x的一次函数;函数为正比例函数时,m+1≠0且m2﹣1=0,解得m=1,所以,当m=1时,y是x的正比例函数.29.(1)当y=3时,可得:1.5x+6=3,解得x=﹣2;(2)当y>2时,1.5x+6>2,解得30.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,则汽车离开A站的距离s=40t,它是正比例函数;故两空应分别填s=40t,正比例;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,则汽车离开A站的距离s=40t+4,它是一次函数;故两空应分别填s=40t+4,一次.。
一次函数练习题(带答案)
1. 若一次函数y=kx+b 的图象经过(0,1)和(-1,3)两点,则此函数的解析式为_____________.
2. 若正比例函数y=kx 的图象经过点(1,2),则此函数的解析式为_____________.
3、一次函数的图象与y 轴的交点为(0,-3),且与坐标轴围成的三角形的面积为6,求这个一次函数的解析式.
4.已知一次函数图象经过(-4,15),(6, -5)的两点,求其解析式。
5.已知点A (1,-1),B (3, 4)在x 轴上找一点P ,PA+PB 最短,求P 点的坐标。
6.直线1-=ax y
向上平移3个单位时过点(-1,-1),求该函数解析式。
7.已知直线62+-=x y 上点A 的横坐标为2,直线b kx y +=经过点A 且与x 轴交于点B (0,2
1),求k 、b 的值。
8. 已知正比例函数x k y 1=的图象与一次函数92-=x k y 的图象交于P(3,-6)。
求k 1 , k 2的值;(2)如果一次函数92-=x k y 与x 轴交于点A ,求点A 的坐标。
(1)y 与x 成正比例函数,当 时,y=5.求这个正比例函数的解析式.
(2)已知一次函数的图象经过A (-1,2)和B (3,-5)两点,求此一次函数的解析式.
9. 拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量Q (升)与工作时间t (时)之间的函数关系式,指出自变量x 的取值范围,并且画出图象.
分析:拖拉机一小时耗油5升,t 小时耗油5t 升,以20升减去5t 升就是余下的油量.
10. 已知一次函数的图象经过点P (-2,0),且与两坐标轴截得的三角形面积为3,求此一次函数的解析式.。
一次函数专题练习题含答案
一次函数专题练习题含答案一次函数知识点专题练题一、相信你一定能填对!(每小题3分,共30分)1.下列函数中,自变量x的取值范围是x≥2的是()A.y=2-x。
B.y=1/x。
C.y=4-x^2.D.y=x+2/(x-2)答案:D5.若函数y=(2m+1)x^2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>1/2.B.m=1/2.C.0<m<1/2.D.m<0答案:D11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,该函数的解析式为_______答案:m=1,y=x+1二、相信你也能找到正确答案!(每小题6分,共36分)2.下面哪个点在函数y=x+1的图象上()A.(2,1)B.(-2,1)C.(2,3)D.(-2,-1)答案:A15.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.答案:a+b=818.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.答案:a=0,b=717.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组x-y-3=02x-y+2=0的解是________.答案:(-1,-2)4.一次函数y=-5x+3的图象经过的象限是()A.一、二、三。
B.二、三、四。
C.一、二、四。
D.一、三、四答案:B6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3.B.0<k≤3.C.-1≤k<3.D.0<k<3答案:-1≤k<3三、最后,再来几道大题吧!(每小题12分,共54分)7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()答案:y=-x+1010.一次函数y=kx+b的图象经过点(2,-1)和(4,3),那么这个一次函数的解析式为()答案:y=2x-512.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为()答案:y=3x1.农民卖土豆一位农民带了一些土豆去卖。
《一次函数》专项练习和中考真题(含答案解析及点睛)
《1.等腰三角形底角与顶角之间的函数关系A .正比例函数 B .一次函数【答案】B【分析】根据一次函数的定义,可得答案【解析】设等腰三角形的底角为y ,顶角为所以,y=﹣12x+90°,即等腰三角形底角与【点睛】本题考查了实际问题与一次函数2.已知y 关于x 成正比例,且当x 时A .3 B .3-【答案】B【分析】先利用待定系数法求出y =【详解】设y kx =,Q 当2x =时,3y x ∴=-,∴当1x =时,3y =-【点睛】本题考查了待定系数法求正比例函点的坐标代入求出k 即可.3. 已知函数y =kx +b 的部分函数值如表所示A .x =2 B .x =3 C 【答案】A【解析】∵当x =0时,y =1,当x =1,y 当y =–3时,–2x +1=–3,解得:x =2,4.如图,直线y=kx+3经过点(2,0,A .x >2B .x <2 《一次函数》专项练习数关系是( ) C .反比例函数D .二次函数答案.顶角为x ,由题意,得x+2y=180, 底角与顶角之间的函数关系是一次函数关系,故选函数,根据题意正确列出函数关系式是解题的关键2=时,6y =-,则当1x =时,y 的值为 C .12D .12-3x -,然后计算1x =对应的函数值. 6y =-,26k ∴=-,解得3k =-,13⨯=-.故选B .比例函数的解析式:设正比例函数解析式为y kx k =表所示,则关于x 的方程kx +b +3=0的解是x … –2 –1 01… y…531 –1….x =–2 D .x =–3 =–1,∴,解得:,∴y =–,故关于x 的方程kx +b +3=0的解是x =2,故选A ),则关于x 的不等式kx+3>0的解集是( )C .x≥2 D .x≤211b k b =+=-⎧⎨⎩21k b =-=⎧⎨⎩故选B . 关键. ()0≠,然后把一个已知2x +1,.【答案】B【分析】直接利用函数图象判断不等式【解析】由一次函数图象可知:关于x的不【点睛】本题考查了一次函数的图象与性质等式之间的内在联系.5.如图,在平面直角坐标系中,直线l与直线l1在第一象限交于点C.若∠BOCAB【答案】B【分析】过C作CD⊥OA于D,利用直线3.依据CD∥BO,可得OD13=AOk的值.【解析】如图,过C作CD⊥OA于D.即A(,0),B(0,1),∴Rt△∵∠BOC=∠BCO,∴CB=BO=1,∵CD∥BO,∴OD13=AO=,得:23=,即k =B式kx+3>0的解集在x轴上方,进而得出结果.的不等式kx+3>0的解集是x<2;故选B.与性质和一元一次不等式及其解法,解题的关键是掌1:y=x+1与x轴,y轴分别交于点A和点BOC=∠BCO,则k的值为( )C D.直线l1:y=+1,即可得到A(,0),B(0=CD23=BO23=,进而得到C23,),.直线l1:y=+1中,令x=0,则y=1,令AOB中,AB==3.AC=2.CD23=BO23=,即C23,),把C23,.键是掌握一次函数与一元一次不B,直线l2:y=kx(k≠0),1),AB==,代入直线l2:y=kx,可得令y=0,则x=,)代入直线l2:y=kx,可【点睛】本题考查了两直线相交或平行问题组成的二元一次方程组的解.6.已知点A (-5,a ),B (4,b )在直线y =-3x 【答案】>【分析】先根据一次函数的解析式判断出函【解析】∵直线y=-3x+2中,k=-3<0,∵-5<4,∴a >b ,故答案为>.【点睛】本题考查了一次函数的性质,根据如果k>0,直线就从左往右上升,y 随7.如图,四边形ABCD 的顶点坐标分别ABCD 分成面积相等的两部分时,直线A .116105y x =+ B .23y =【答案】D【分析】由已知点可求四边形ABCD 分成y=-x+3,设过B 的直线l 为y=kx+b ,并求1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪⎪+⎝⎭⎝⎭,即可【解析】解:由()()4,0,2,1,A B ---∴四边形ABCD 分成面积(12AC =⨯设过B 的直线l 为y kx b =+,将点B 代入∴直线CD 与该直线的交点为45,k k -⎛+⎝∴1125173121k k k k --⎛⎫⎛=⨯-⨯+ ⎪ +⎝⎭⎝,∴直线解析式为5342y x =+;故选:【点睛】本题考查一次函数的解析式求法式的方法是解题的关键.行问题,两条直线的交点坐标,就是由这两条直线相+2上,则a ________b .(填“>”“<”或“=”号 断出函数的增减性,再比较出-5与4的大小即可解答,∴此函数是减函数, 根据题意判断出一次函数的增减性是解答此题的关x 的增大而增大,如果k<0,直线就从左往右下降分别()()()()4,0,2,1,3,0,0,3A B C D ---,当过点直线l 所表示的函数表达式为( ) 13x + C .1y x =+ D .54y x =+分成面积()113741422B AC y =⨯⨯+=⨯⨯=;并求出两条直线的交点,直线l 与x 轴的交点坐标即可求k 。
一次函数练习题(附答案)
一次函数练习题(附答案)选择题1.已知一次函数,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。
那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值(A) > (B) < (C) = (D)以上均有可能4.若函数( 为常数)的图象如图所示,那么当时,的取值范围是A、B、C、D、5.下列函数中,一次函数是().(A) (B) (C) (D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线上运动,当线段AB 最短时,点B的坐标为A.(0,0)B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y= xC.y= xD.y= x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为.下面表示与的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx(m≠0)和反比例函数y= (n≠0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它的图像与y 轴交于正半轴,则|a―1|+ =。
(word完整版)一次函数习题集锦(含答案),推荐文档
2 ⎪ 数学八年级上册一次函数练习题一、试试你的身手(每小题 3 分,共 24 分)11.正比例函数 y = - 2x 中,y 值随 x 的增大而. 2. 已知 y=(k-1)x+k 2-1 是正比例函数,则 k =.3. 若 y+3 与 x 成正比例,且 x=2 时,y=5,则 x=5 时,y=.4.直线 y=7x+5,过点( ,0),(0,).5.已知直线 y=ax-2 经过点(-3,-8)和⎛ 1 ,b ⎫两点,那么 a= ,b=.⎝ ⎭6. 写出经过点(1,2)的一次函数的解析式为(写出一个即可).1 x +1 , y = 1 x -1, y = 1 x 的图象有什么特点7. 在同一坐标系内函数 y =2 2 2.8. 下表中,y 是 x 的一次函数,则该函数解析式为,并补全下表.x -2 -10 12y26二、相信你的选择(每小题 3 分,共 24 分)1. 下列函数中是正比例函数的是()A. y = 8 xB. y = 82C . y = 2(x -1)D . y = -( 2 +1)x32. 下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长 C 与它的半径 r 3.下列说法中错误的是( ) A .一次函数是正比例函数 B .正比例函数是一次函数C .函数 y=|x |+3 不是一次函数D .在 y=kx+b(k 、b 都是不为零的常数)中, y-b 与 x 成正比例4. 一次函数 y=-x-1 的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.函数 y=kx-2 中,y 随 x 的增大而减小,则它的图象可以是()6. 如图 1,一次函数的图象经过 A 、B 两点,则这个一次函数的解析式为()A. y = 3x - 22B. y = 1x - 22C. y = 1x + 22 D. y = 3x + 227.若函数y=kx+b(k、b 都是不为零的常数)的图象如图2 所示,那么当y>0 时,x 的取值范围为()A.x>1 B.x>2 C.x<1 D.x<28.已知一次函数y=kx-k,若y 随x 的增大而减小,则该函数的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限三、挑战你的技能(共30 分)1.(10 分)某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y 的值随 x 的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10 分)已知一次函数 y=kx+b 的图象经过 A(2,4)、B(0,2)两点,且与 x 轴相交于C 点.(1)求直线的解析式.(2)求△AOC的面积.3.(10 分)已知一个正比例函数和一个一次函数的图象交于点 P(-2,2),且一次函数的图象与 y 轴相交于点 Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.四、拓广探索(共 22 分)1.(11 分)如图 3,在边长为 2 的正方形 ABCD 的一边 BC 上的点 P 从B 点运动到 C 点,设PB=x,梯形 APCD 的面积为 S.(1)写出 S 与x 的函数关系式;(2)求自变量 x 的取值范围;(3)画出函数图象.2.(11 分)小明在暑期社会实践活动中,以每千克 0.8 元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了 40 千克西瓜之后,余下的每千克降价 0.4 元,全部售完.销售金额与售出西瓜的千克数之间的关系如图 4 所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额 y(元)与售出西瓜 x(千克)之间的函数关系式. (2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?一、1.减小2.-1参考答案3.17 4.-5,5 5.2 ,-176.略(答案不惟一)7.三条直线互相平行8.y = 2x + 2 ,表格从左到右依次填-2 ,0 ,4二、1.D 2.D 3.A 4.A 5.D 6.A 7.D 8.B三、1.y =-x (答案不惟一)2.(1)y =x + 2(2)43.(1)正比例函数的解析式为y=-x.一次函数的解析式为y =x + 4(2)图略;(3)4四、1.(1)S = 4 -x ;(2)0 <x < 2 ;(3)图略2.(1)y =8x(0 ≤≤x540) ;(2)50 千克;(3)36 元. . . . .一次函数测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。
一次函数练习题及答案
一次函数练习题及答案本文将为大家提供一系列有关一次函数的练习题,同时附带相应的答案。
一次函数,也叫线性函数,是初中数学中的重要知识点之一。
希望通过这些练习题的训练,大家能够更好地掌握一次函数的概念、性质和解题方法。
一、选择题1.已知函数y=3x+2,则它的斜率是多少?– A. 2– B. 3– C. -2– D. -3答案:B2.若一次函数图像上两点的坐标分别为(1,4)和(3,y),则y的值是多少?– A. 10– B. 12– C. 14– D. 16答案:D3.已知函数经过点(−2,1)和(4,y),则y的值是多少?– A. -5– B. 0– C. 3– D. 6答案:C二、填空题1.若一次函数y=kx+3经过点(2,5),则k的值为 \\\_。
答案:12.一次函数y=−2x+b经过点(3,−1),则b的值为 \\\_。
答案:53.若一次函数图像上两点的坐标分别为(1,y1)和(2,y2),则$\\frac{{y_1}}{{y_2}}$ 的值为 \\\_。
答案:$\\frac{1}{2}$三、计算题1.求函数y=2x−1和y=x+3的交点坐标。
解:将两个方程联立起来,得到方程组:$$ \\begin{cases} y = 2x - 1\\\\ y = x + 3\\\\ \\end{cases} $$解方程组可得:$$ x + 3 = 2x - 1 \\\\ \\Rightarrow x = 4 $$将x=4代入其中一个方程,得到y=8−1=7。
因此,交点坐标为(4,7)。
2.已知函数y=3x+b经过点(2,−1),求b的值。
解:代入点(2,−1),得到方程 $-1 = 3 \\cdot 2 + b$,解方程可得b=−7。
3.一辆汽车以匀速行驶,开车起点距离目的地 600 公里。
如果行驶 4小时后,已行驶距离为 320 公里,求每小时行驶的公里数。
解:设每小时行驶的公里数为x,根据题意可得方程 $\\frac{320}{4} = x$,解方程可得x=80。
一次函数练习及答案
一次函数练习及答案一.选择题1.对于函数y=2x+1,下列结论正确的是()A.它的图象必经过点(0,1)B.它的图象经过第一、三、四象限C.当x>时,y<0D.y的值随x值的增大而减小2.已知一次函数的函数表达式为y=kx+b,若k+b=﹣6,kb=5,则一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.已知:实数x满足2a﹣3≤x≤2a+2,y1=x+a,y2=﹣2x+a+3,对于每一个x,p都取y1,y2中的较大值.若p的最小值是a2﹣1,则a的值是()A.0或﹣3 B.2或﹣1 C.1或2 D.2或﹣34.一次函数y=kx+b的图象如图,那么下列说法正确的是()A.x>0时,y>0 B.x<0时,y>0 C.x>2时,y>0 D.x<2时,y>0 5.如图中的直线l1:y=k1x+b1,l2:y=k2x+b2,l3:y=k3x+b3,则()A.k1<k3<k2B.k3<k1<k2C.k3<k2<k1D.k1<k2<k3 6.设min{a,b}表示a,b这两个数中的较小的一个,如min{﹣1,1}=﹣1,min{3,2}=2,则关于x的一次函数y=min{x,3x﹣4}可以表示为()A.y=x B.y=3x﹣4C.y=D.y=7.已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是()A.﹣4 B.﹣6 C.14 D.68.从﹣3、﹣2、﹣1、1、2、3六个数中任选一个数记为k,若数k使得关于x的分式方程=k﹣2有解,且使关于x的一次函数y=(k+)x+2不经过第四象限,那么这6个数中,所有满足条件的k的值之和是()A.﹣1 B.2 C.3 D.49.设一次函数y=kx+b(k≠0)的图象经过点(1,﹣3),且y的值随x的值增大而增大,则该一次函数的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m,则使得一次函数y=﹣mx+10﹣m经过一、二、四象限,且关于x的分式方程的解为整数,则所有符合条件的m值是()A.1,2,5,7 B.1,5,7,8 C.1,2,7 D.1,2,7,8 11.二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线,则一次函数y=(a+b)x+ac的图象必不经过()A.第一象限B.第二象限C.第三象限D.第四象限12.已知:a,b,c满足关系式a=bc,下列说法:①如果a表示路程,b表示速度,c 表示时间,当速度b一定时,a随着c的增大而增大;②a、b、c一定满足b=;③a (a≠0)一定时,b和c成反比例关系;④当a=0时,则b=0,c=0.其中不正确的是()A.①B.②④C.③D.①③二.填空题13.若a、b、c是△ABC的三条边,且=k,则一次函数y=kx﹣1的图象不经过第象限.14.已知关于x的一次函数y=(m﹣3)x+m+2的图象经过第一、二四象限,则关于x的一次函数y=(m+2)x﹣m+3必经过第象限.15.如图,直线y=﹣x+1与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,如果在第二象限内有一点,且△ABP 的面积与△ABC的面积相等,则a的值为.16.如图所示,长方形OABC的顶点A在x轴上,C在y轴上,点B坐标为(4,2),若直线y=mx﹣1恰好将长方形分成面积相等的两部分,则m的值为.17.如图,矩形OABC中,D为对角线AC,OB的交点,直线AC的解析式为y=2x+4,点P是y轴上一动点,当△PBD的周长最小时,线段OP的长为.三.解答题18.请你用学习“一次函数”时积累的经验和方法解决下列问题:(1)在平面直角坐标系中,画出函数y=|x|的图象:①列表填空:x…﹣3 ﹣2 ﹣1 0 1 2 3 …y……②描点、连线,画出y=|x|的图象;(2)结合所画函数图象,写出y=|x|两条不同类型的性质;(3)结合所画函数图象,求方程|x|﹣2x﹣1=0的解.19.若两个一次函数y=k1x+b1(k1≠0),y=k2x+b2(k2≠0),则称函数y=(k1+k2)x+b1b2为这两个函数的组合函数.(1)一次函数y=3x+2与y=﹣4x+3的组合函数为;若一次函数y=ax﹣2,y =﹣x+b的组合函数为y=3x+2,则a=,b=.(2)已知一次函数y=﹣x+b与y=kx﹣3的组合函数的图象经过第一、二、四象限,求常数k、b满足的条件;(3)已知一次函数y=﹣2x+m与y=3mx﹣6,则不论何值,它们的组合函数一定经过的定点坐标是.20.已知一次函数y=(2m+3)x+m﹣1,(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴上的截距为﹣3,求m的值;(3)若函数图象平行于直线y=x+1,求m的值;(4)若该函数的值y随自变量x的增大而减小,求m的取值范围;(5)该函数图象不经过第二象限,求m的取值范围.参考答案一.选择题1.解:∵函数y=2x+1,∴当x=0时,y=1,故选项A正确;它的图象经过第一、二、三象限,故选项B错误;当x=时,y=1,故当x>时,y>1,故选项C错误;该函数y随x的增大而增大,故选项D错误;故选:A.2.解:∵k+b=﹣6<0,kb=5>0,∴k<0,b<0,∴一次函数y=kx+b的图象经过第二、三、四象限,即一次函数的图象不经过第一象限,故选:A.3.解:解方程x+a=﹣2x+a+3,解得x=1,当x=1时,y1=a+1,所以直线y1=x+a,y2=﹣2x+a+3的交点坐标为(1,a+1),所以对任意一个x,若p都取y1,y2中的最大值,则p的最小值是a+1.所以a2﹣1=a+1所以(a﹣2)(a+1)=0.所以a=2或a=﹣1.故选:B.4.解:A、如图所示,当x>0时,y<4,故本选项错误;B、如图所示,当x<0时,y>4,故本选项错误;C、如图所示,当x>2时,y<0,故本选项错误;D、如图所示,当x<2时,y>0,故本选项正确;故选:D.5.解:由题意得:k1为负数,k2>k3,∴k1,k2,k3的大小关系是k1<k3<k2.故选:A.6.解:根据已知,在没有给出x的取值范围时,不能确定2x和x+3的大小.当x<3x﹣4时,即x>2时,可表示为y=x.当x≥3x﹣4时,即x≤2时,可表示为y=3x﹣4.故选:D.7.解:联立两函数的解析式,得:,解得;即两函数图象交点为(﹣3,﹣2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而增大;因此当x=5时,m值最大,即m=6.故选:D.8.解:∵关于x的一次函数y=(k+)x+2不经过第四象限,∴k+>0,解得,k>﹣1.5,∵关于x的分式方程=k﹣2有解,∴当k=﹣1时,分式方程=k﹣2的解是x=,当k=1时,分式方程=k﹣2无解,当k=2时,分式方程=k﹣2无解,当k=3时,分式方程=k﹣2的解是x=1,∴符合要求的k的值为﹣1和3,∵﹣1+3=2,∴所有满足条件的k的值之和是2,故选:B.9.解:因为一次函数y=kx+b的图象经过点(1,﹣3),且y的值随x值的增大而增大,所以k>0,b<0,即函数图象经过第一,三,四象限,故选:B.10.解:一次函数y=﹣mx+10﹣m经过一、二、四象限,则﹣m<0,10﹣m>0,解得:0<m<10,将分式方程两边同乘以x﹣8得:mx=8x﹣3(x﹣8),解得:x=,∵x≠8,故m≠8,当x=1,2,7时,0<m<10,故选:C.11.解:∵抛物线的开口向上,∴a>0;∵与y轴的交点为在y轴的负半轴上,∴c<0;∵对称轴为x=<0,∴b>0;所以函数y=(a+b)x+ac的图象必不经过第二象限.故选:B.12.解:∵a,b,c满足关系式a=bc,则①如果a表示路程,b表示速度,c表示时间,当速度b一定时,时间越长走的距离越远,因此正确;②当C≠0时,a、b、c一定满足b=,不正确;③因为a=bc,所以,a(a≠0)一定时,b和c成反比例关系,正确;④当a=0时,则a和c至少有一个为0,不正确.故选:B.二.填空题(共5小题)13.解:∵a、b、c是△ABC的三条边,∴b+c>a,c+a>b,a+b>c,∴=k>1,一次函数y=kx﹣1的图象经过一、三、四象限,∴一次函数y=kx﹣1的图象不经过第二象限;故答案为:二14.解:函数经过第一、二、四象限,则m﹣3<0,m+2>0,解得:﹣2<m<3,∴m+2>0,﹣m+3>0,∴关于x的一次函数y=(m+2)x﹣m+3经过第一,二、三象限;故答案为:一,二、三15.解:连接PO,由已知易得A(,0),B(0,1),OA=,OB=1,AB=2,∵等腰Rt△ABC中,∠BAC=90°,∴S△ABP=S△ABC=2,S△AOP=,S△BOP=﹣,S△ABP=S△BOP+S△AOB﹣S△AOP=2,即﹣=2,解得a=.故答案为:.16.解:∵直线y=mx﹣1恰好将长方形分成面积相等的两部分,∴直线y=mx﹣1经过长方形的对角线交点(2,1).把点(2,1)代入可得y=mx﹣1,得2m﹣1=1,解得m=1.故答案为:1.17.解:作点D关于y轴的对称点D′,连接BD′交y轴于点P,则点P即为所求,直线AC的解析式为y=2x+4,当x=0时,y=4,当y=0时,x=﹣2,∴点A的坐标为(﹣2,0),点C的坐标为(0,4),∴点D的坐标为(﹣1,2),点B的坐标为(﹣2,4),∴点D′的坐标为(1,2),设过点B和点D′的直线解析式为y=kx+b,,解得,,∴过点B和点D′的直线解析式为y=,当x=0时,y=,即点P的坐标为(0,),∴OP=,故答案为:.三.解答题(共3小题)18.解:(1)①填表;x…﹣3 ﹣2 ﹣1 0 1 2 3 …y… 3 2 1 0 1 2 3 …故答案为:3,2,1,0,1,2,3;②画函数图象如图:(2)①增减性:x<0时,y随x的增大而减小x>0时,y随x的增大而增大②对称性:图象关于y轴对称③函数的最小值为0;(3)由图象可得:方程|x|﹣2x﹣1=0的解为x=﹣;19.解:(1)一次函数y=3x+2与y=﹣4x+3的组合函数为y=(3﹣4)x+2×3,即y=﹣x+6;∵一次函数y=ax﹣2,y=﹣x+b的组合函数为y=(a﹣1)x﹣2b,∴a﹣1=3,﹣2b=2,∴a=4,b=﹣1;(2)∵一次函数y=﹣x+b与y=kx﹣3的组合函数为y=(﹣1+k)x﹣3b,又图象经过第一、二、四象限,∴﹣1+k<0,﹣3b>0,∴k<1,b<0;(3)∵一次函数y=﹣2x+m与y=3mx﹣6的组合函数为y=(﹣2+3m)x﹣6m,即y=m(3x﹣6)﹣2x,∴当x=2时,y=﹣4,∴此函数的图象一定过定点(2,﹣4).故答案为:(1)y=﹣x+6;4,﹣1;(3)(2,﹣4).20.解:(1)∵函数图象经过原点,∴m﹣1=0,解得m=1;(2)∵函数图象在y轴上的截距为﹣3,∴当x=0时,y=﹣3,即m﹣1=﹣3,解得m=﹣2;(3)∵函数图象平行于直线y=x+1,∴2m+3=1,解得m=﹣1;(4)∵该函数的值y随自变量x的增大而减小,∴2m+3<0,解得m<﹣;(5)∵该函数图象不经过第二象限,∴,解得﹣<m≤1.。
一次函数练习题(含答案)
一次函数练习题(含答案)1.已知x+3与y成正比例,并且当x=1时,y=8.则y与x之间的函数关系式为(C)y=8x+6.2.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过(C)三象限。
3.直线y=-2x+4与两坐标轴围成的三角形的面积是(B)6.4.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2.如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为(A)y1>y2.5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,则有一组a,b的取值,使得下列4个图中的一个为正确的是(D)。
6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第(A)一象限。
7.一次函数y=kx+2经过点(1,1),那么这个一次函数(B)y随x的增大而减小。
8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在(C)第三象限。
9.要得到y=-33x-4的图像,可把直线y=-x/2向下平移4个单位。
10.若函数y=(m-5)x+(4m+1)x^2(m为常数)中的y与x 成正比例,则m的值为(A)m>-11.11.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是(B)-1<k<1.12.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5.这样的直线可以作(B)3条。
13.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是(A)-4<a<0.1.根据函数图像回答问题:XXX到达离家最远的地方需要几小时?此时离家多远?求XXX出发两个半小时离家多远?求XXX出发多长时间距家12千米?2.已知一次函数的图像,交x轴于A(-6,0),交正比例函数的图像于点B,且点B在第三象限,它的横坐标为-2,△AOB 的面积为6平方单位,求正比例函数和一次函数的解析式。
一次函数练习题和参考答案
一次函数练习题和参考答案第1题. 某工厂加工一批产品,为了提前完成任务,规定每个工人完成150个以内,按每个产品3元付报酬,超过150个,超过部分每个产品付酬增加0.2元;超过250个,超过部分出按上述规定外,每个产品付酬增加0.3元,求一个工人:①完成150个以内产品得到的报酬y元与产品数x个之间的函数关系式;②完成150个以上,但不超过250个产品得到的报酬y元与产品数量x个的函数关系式;③完成250个以上产品得到的报酬y元与产品数量x个的函数关系式.答案:① 0② 150③ x250第2题. 商品的销售量也受销售价格的影响,比如,某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y件与衬衣价格x元销售之间的函数关系式为_________.答案:第3题. 写出下列函数关系式,并指出自变量的取值范围:油箱中有油60升,每小时耗油2升,求耗油量M与时间t小时的关系.答案: 030第4题. 写出下列函数关系式,并指出自变量的取值范围:轮子每分钟转60圈,求轮子旋转的转数N与时间t分的关系答案: t0第5题. 下列关于函数的说法中,正确的是A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.不是正比例函数的就不是一次函数答案:B第6题. 等腰三角形的周长为20cm,腰长为y cm,底边长为xcm,则y与x的函数关系式为______.答案:第7题. 若函数y=m-3xm-1+x+3是一次函数,且x0,则m的值为______.答案:2或1第8题. 一次函数y=kx+b中,k、b都是,且k ,自变量x的取值范围是,当k ,b 时,它是正比例函数.答案:常数,0,全体实数,0,=0第9题. 观察图形上图中每个小正方形都是由四根火柴秆组成的,那么火柴秆的数量y根与小正方形的个数n的’关系为 .答案:. y=3n+1n为1、2、3、4、.第10题. △ABC中,一边长为x cm,这边上的高为4cm,面积为y cm2,那么y与x 之间的函数关系式为 .答案:y=2x第11题. 出租车收费按路程计算,2km内包括2km收费3元,超过2km,每增加1km 加收1元,则路程x2km时,车费y元与x之间的函数关系为____.答案:第12题. 拖拉机开始工作时,油箱中有油36L,如果每小时耗油4L,那么油箱中剩余油量yL,与工作时间xh之间的函数关系式是____,自变量x的取值范围是____.答案:第13题. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必交税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累计进行计算:全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%某合资企业一工人工资在1400元-2000元之间变化,求他应交税金y元与其工资x元之间的函数关系.答案:第14题. 出租车收费按路程计算,2km内包括2km收费3元,超过2km,每增加1 km 加收1元,则路程x2 km时,车费y元与路程xkm之间的函数关系为______.答案:第15题. 将长为30cm,宽为10cm的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为3cm,则5张白纸粘合后的长度是多少?设x张白纸粘合后的总长度为ycm,y与x之间的函数关系式是什么?答案:138cm,y=30x-3x-1=27x+3.第16题. 已知y+a与x-b成正比例其中a、b都是常数,试说明:y是x的一次函数答案:设y+a=kx-bx0y=kx-a+bk第17题. 已知y+a与x-b成正比例其中a、b都是常数1试说明y是x的一次函数;2如果x=-1时,y=-15;x=7时,y=1,求这个一次函数的解析式.答案:1因为y+a与x-b成正比例,所以y+a=kx-bk0,即y=kx-bk+a因为k不等于0,a、b为常数,所以y是x的一次函数;2代入解得k=2,bk+a=13, 所以y=2x-13.第18题. 下列关于函数的说法中,正确的是A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.不是正比例函数的就不是一次函数答案:B第19题. 汽车由天津开往相距120km的北京,若它的平均速度为60km/h,则汽车距北京的路程Skm与行驶时间th之间的函数关系式是______.答案:S=120-60t第20题. 两港相距640千米,轮船以15千米/时的速度航行,t小时后剩下的距离y 与t的函数关系式为________.答案:第21题. 某种国库卷的年利率为9.18%,则存满三年的本息和y与本金x之间的函数关系式为 .答案:y=x+39.18%xx0第22题. 一个长为120m,宽为100m的矩形场地要扩建成一个正方形场地,设长增加x米,宽增加y米,则y与x的函数关系式是,自变量的取值范围是,且y是x的函数.答案:y=x+20,x0,一次感谢您的阅读,祝您生活愉快。
(完整版)一次函数练习题及答案
八年级一次函数练习题1、直线y=kx+2过点(—1,0),则k 的值是 ( ) A .2 B .—2 C .—1 D .12. 直线62-=x y 关于y 轴对称的直线的解析式为 ( )A .62+=x yB .62+-=x yC .62--=x yD .62-=x y 3、直线y=kx+2过点(1,—2),则k 的值是( ) A .4 B .-4 C .—8 D .84、打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为( )5.点P 关于x 轴对称的点是(3,-4),则点P 关于y 轴对称的点的坐标是_______.6.若1)7(0=-x ,则x 的取值范围为__________________.7.已知一次函数1-=kx y ,请你补充一个条件______________,使函数图象经过第二、三、四象限.8、0(1)π- = . 9、在函数2-=x y 中,自变量x 的取值范围是______.10、把直线y =错误!x +1向上平移3个单位所得到的解析式为______________. 11、已知y 与x 成正比例,且当x =1时,y =2,那么当x =3时,y =_______. 12、在平面直角坐标系中.点P (-2,3)关于x 轴的对称点13.(9分)已知一次函数的图象经过(3,5)和(-4,-9)两点. 求这个一次函数的解析式;(2)若点(a ,2)在这个函数图象上,求a 的值.14.如图,直线y=-2x +4分别与x 轴、y 轴相交于点A 和点B ,如果线段CD 两端点在坐标轴上滑动(C 点在 y 轴上,D 点在x 轴上),且CD=AB . 当△COD 和△AOB 全等时,求C 、D 两点的坐标;15、已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.16、如图,直线1l 与2l 相交于点P ,1l 的函数表达式y=2x+3,点P 的横坐标为-1,且2l 交y 轴于点A (0,-1).求直线2l 的函数表达式.xyOAB3y kx =- yxOM11 2-17、已知如图,一次函数y=ax+b 图象经过点(1,2)、点(-1,6)。
一次函数练习题及答案
一次函数练习题及答案一、选择题1. 一次函数y = 2x - 3的斜率是:A. 2B. -3C. -2D. 3答案:A2. 如果一次函数y = kx + b的图象经过点(1, 0)和(0, -1),那么k 的值是:A. 1B. -1C. 0D. 2答案:A3. 函数y = 3x + 5与x轴的交点坐标是:A. (-5/3, 0)B. (0, 5)C. (1, 0)D. (-1, 0)答案:A二、填空题4. 已知一次函数y = 4x + 1,当x = 2时,y的值为________。
答案:95. 一次函数y = -2x + 4的图象与y轴的交点坐标是________。
答案:(0, 4)三、解答题6. 已知直线y = 3x + 2与直线y = -x + 4相交于点P,求点P的坐标。
解:将两个方程联立求解:\[ \begin{cases} y = 3x + 2 \\ y = -x + 4 \end{cases} \]解得:\[ x = \frac{2}{4}, y = 3 \times \frac{2}{4} + 2 \] 所以点P的坐标为(\(\frac{1}{2}\), 3)。
7. 一次函数y = kx + b的图象经过点A(-1, -2)和点B(2, 6),求k 和b的值。
解:将点A和点B的坐标代入一次函数方程得:\[ \begin{cases} -k + b = -2 \\ 2k + b = 6 \end{cases} \] 解得:\[ k = 2, b = 0 \]8. 已知直线y = 5x - 7在x轴上的截距为a,在y轴上的截距为b,求a和b的值。
解:当y = 0时,x = \frac{7}{5},所以a = \frac{7}{5};当x = 0时,y = -7,所以b = -7。
四、应用题9. 某工厂生产一种产品,每件产品的成本为c元,售价为p元。
已知当生产x件时,利润为y元,且利润函数为y = 20x - 30。
一次函数性质练习题及答案
一次函数性质练习题及答案一、选择题1. 若一次函数y = mx + b的图象经过点(2, 5)和(-1, -4),则m和b的值分别为:A) m = 3, b = -2B) m = -3, b = -2C) m = 3, b = 2D) m = -3, b = 2答案:A) m = 3, b = -22. 若一次函数的图象经过坐标轴上的两个点,且不经过第三个点(4,3),则该函数的解析式为:A) y = x + 6B) y = -x - 3C) y = -x + 3D) y = -x + 6答案:D) y = -x + 63. 若一次函数y = kx + 5的图象过点(3, 14),则k的值为:A) 3B) 4C) 9D) 11答案:B) 4二、计算题1. 求一次函数y = 2x - 3在x = 4时的函数值。
解答:将x = 4代入函数y = 2x - 3中,y = 2(4) - 3y = 8 - 3y = 5所以,当x = 4时,函数y = 2x - 3的值为5。
2. 已知一次函数的解析式为y = 3x + 2,求该函数的斜率和截距。
解答:该一次函数的斜率为3,截距为2。
三、应用题1. 一家超市的饮料销售额与销售数量之间存在一次函数的关系,已知当销售数量为20时,销售额为600元;当销售数量为50时,销售额为1500元。
求该一次函数的解析式,并根据该函数计算销售数量为80时的销售额。
解答:设该一次函数的解析式为y = mx + b。
根据题意可以列出以下两个方程:20m + b = 600 (1)50m + b = 1500 (2)将方程(1)乘以5,并与方程(2)进行消元,得到:100m + 5b = 3000 (3)50m + b = 1500 (2)将方程(3)减去方程(2),消去b,得到:50m = 1500m = 30将m = 30代入方程(2),求得b的值:50(30) + b = 1500b = 1500 - 1500b = 0所以,该一次函数的解析式为y = 30x。
一次函数练习题与答案
一次函数练习题与答案一、选择题1. 一次函数y=kx+b的斜率k表示的是:A. 函数的截距B. 函数的斜率C. 函数的对称轴D. 函数的顶点2. 已知一次函数y=3x-5,当x=2时,y的值是:A. 1B. -1C. 7D. -73. 一次函数y=kx+b的图象过点(-1,6),且与y轴交于点(0,-2),则k 的值为:A. 4B. -4C. 8D. -84. 直线y=-2x+b与两坐标轴围成的三角形面积为1,且直线与y轴的交点在x轴上方,则b的值为:A. 1B. 2C. 3D. 45. 一次函数y=kx+b的图象不经过第三象限,那么:A. k>0,b>0B. k<0,b>0C. k>0,b<0D. k<0,b<0二、填空题6. 一次函数y=2x-3与x轴的交点坐标是_________。
7. 一次函数y=-4x+5的图象与x轴相交于点_________。
8. 若一次函数y=kx+b的图象过点(1,0)和(0,-1),则k=_______,b=_______。
9. 一次函数y=-x+3与直线y=2x-1的交点坐标是_________。
10. 一次函数y=-3x+4的图象与y轴的交点坐标是_________。
三、解答题11. 已知一次函数y=kx+b的图象经过点(-1,10)和(2,5),求k和b的值。
12. 直线y=kx+b经过原点,且与x轴相交于点(3,0),求k和b的值。
13. 一次函数y=kx+b的图象与x轴相交于点(a,0),与y轴相交于点(0,b),求k和b的值。
14. 已知一次函数y=kx+b的图象经过点(-2,15)和(1,-6),求k和b的值。
15. 一次函数y=kx+b的图象与两坐标轴围成的三角形面积为4,且直线与x轴的交点在y轴右侧,求k和b的值。
答案:1. B2. A3. B4. B5. D6. (3/2, 0)7. (5/4, 0)8. k=-1,b=19. (1, 2)10. (0, 4)11. k=-5,b=1512. k=-1/3,b=013. k=-a/b,b为y轴交点的y坐标14. k=-11,b=1715. k=4/3,b=-4【注】本练习题旨在帮助学生掌握一次函数的基本性质和求解方法,通过不同类型的题目,加强学生对一次函数图象和性质的理解与应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2(B)y1=y2(C)y1<y2(D)不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是()6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四7.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为()(A)m>-14(B)m>5 (C)m=-14(D)m=511.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<1312.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条13.已知abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4<a<0 (B)0<a<2(C)-4<a<2且a≠0 (D)-4<a<215.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(•0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为()(A)0 (B)1 (C)2 (D)无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个18.(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A的路程为S(米),•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)•之间的函数关系的是()20.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C )第2、3、4象限 (D )第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x ≤1时,y 的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y 的值随x 的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m 不经过第三象限,则m 的取值范围是_________.5.函数y=-3x+2的图像上存在点P ,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.6.过点P (8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=23x 与y=-2x+3的图像的交点在第_________象限. 8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a 年,他的退休金比原有的多p 元,如果他多工作b 年(b ≠a ),他的退休金比原来的多q 元,那么他每年的退休金是(以a 、b 、p 、•q•)表示______元.9.若一次函数y=kx+b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,•则一次函数的解析式为________.10.(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为S k (k=1,2,3,……,2008),那么S 1+S 2+…+S 2008=_______.11.据有关资料统计,两个城市之间每天的电话通话次数T•与这两个城市的人口数m 、n (单位:万人)以及两个城市间的距离d (单位:km )有T=2kmn d的关系(k 为常数).•现测得A 、B 、C 三个城市的人口及它们之间的距离如图所示,且已知A 、B 两个城市间每天的电话通话次数为t ,那么B 、C 两个城市间每天的电话次数为_______次(用t 表示).三、解答题1.已知一次函数y=ax+b 的图象经过点A (2,0)与B (0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y 的值在-4≤y ≤4范围内,求相应的y 的值在什么范围内.2.已知y=p+z ,这里p 是一个常数,z 与x 成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y 与x 之间的函数关系式;(2)如果x 的取值范围是1≤x ≤4,求y 的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=3的图象与x轴,y轴,分别交于A、B两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.已知直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P(•0,-1),Q(0,k),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,⊙Q•与直线AB相切?11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f(x)=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:根据上表的表格中的数据,求a、b、c.15.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E 市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D 市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W (元),并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为(1,a+b),•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,∴5,50,1410,,4mmm m≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即∴m=-14,故应选C.11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p,∴①若a+b+c≠0,则p=()()()a b b c c aa b c+++++++=2;②若a+b+c=0,则p=a b cc c+-==-1,∴当p=2时,y=px+q 过第一、二、三象限;当p=-1时,y=px+p 过第二、三、四象限,综上所述,y=px+p 一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q │>0, ||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭k ·b<0,一次函数y=kx+b 中,y 随x 的增大而减小000k k b <⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A .二、1.-5≤y ≤19 2.2<m<3 3.如y=-x+1等.4.m ≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全.5.(13,3)或(53,-3).提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-3 当y=3时,x=13;当y=-3时,x=53;∴点P 的坐标为(13,3)或(53,-3). 提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b .∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b .将P (8,2)代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得 ∴两函数的交点坐标为(98,34),在第一象限. 8.222()aq bp bp aq --. 9.y=2x+7或y=-2x+3 10.1004200911.据题意,有t=25080160⨯k ,∴k=325t . 因此,B 、C 两个城市间每天的电话通话次数为T BC =k ×2801003253205642t t ⨯=⨯=.三、1.(1)由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4(•函数图象略).(2)∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z与x成正比例,∴设z=kx(k≠0)为常数,则y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,得2131k pk p+=⎧⎨+=-⎩解得k=-2,p=5,∴y与x之间的函数关系是y=-2x+5;(2)∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)设一次函数为y=kx+b,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15),∴y=15x.(0≤x≤1),•分别令y=12,得x=265(小时),x=45(小时).答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B(-2,y B),其中y B<0,∵S△AOB=6,∴12AO·│y B│=6,∴y B=-2,把点B(-2,-2)代入正比例函数y=kx,•得k=1.把点A(-6,0)、B(-2,-2)代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴== 5.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;当x<1,y≥1时,y=x+1;当x<•1,y<1时,y=-x+1.,面积为2.8.∵点A、B分别是直线y=3与x轴和y轴交点,∴A(-3,0),B(0,),∵点C坐标(1,0)由勾股定理得,,设点D的坐标为(x,0).(1)当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD=,∴=①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为(52,0).设图象过B、D两点的一次函数解析式为y=kx+b,5 52b kk bb⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-5.(2)若点D在点C左侧则x<1,可证△ABC∽△ADB,∴AD BDAB CB=,∴=②∴8x2-18x-5=0,∴x1=-14,x2=52,经检验x1=14,x2=52,都是方程②的根.∵x2=52不合题意舍去,∴x1=-14,∴D点坐标为(-14,0),∴图象过B、D(-14,0)两点的一次函数解析式为,综上所述,满足题意的一次函数为y=-5或.9.直线y=12x-3与x轴交于点A(6,0),与y轴交于点B(0,-3),∴OA=6,OB=3,∵OA⊥OB,CD⊥AB,∴∠ODC=∠OAB,∴cot∠ODC=cot∠OAB,即OD OA OC OB=,∴OD=463OC OAOB⨯==8.∴点D的坐标为(0,8),设过CD的直线解析式为y=kx+8,将C(4,0)代入0=4k+8,解得k=-2.∴直线CD:y=-2x+8,由22 13524 285xy xy x y⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得∴点E的坐标为(225,-45).10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x xy y==-⎧⎧⎨⎨==⎩⎩∴A、B两点的坐标分别为(-3,0),(0,4)•.•∵OA=3,OB=4,∴AB=5,BQ=4-k,QP=k+1.当QQ′⊥AB于Q′(如图),当QQ′=QP时,⊙Q与直线AB相切.由Rt△BQQ′∽Rt△BAO,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78. ∴当k=78时,⊙Q 与直线AB 相切. 11.(1)y=200x+74000,10≤x ≤30(2)三种方案,依次为x=28,29,30的情况.12.设稿费为x 元,∵x>7104>400,∴x-f (x )=x-x (1-20%)20%(1-30%)=x-x ·45·15·710x=111125x=7104. ∴x=7104×111125=8000(元).答:这笔稿费是8000元. 13.(1)设预计购买甲、乙商品的单价分别为a 元和b 元,则原计划是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5, ③.由①,②,③得: 1.51044,568.5.x y a x y a +-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186. (2)依题意有:205<2x+y<210及x+2y=186,得54<y<5523. 由于y 是整数,得y=55,从而得x=76.14.设每月用水量为xm 3,支付水费为y 元.则y=8,08(),c x a b x a c x a +≤≤⎧⎨+-+≥⎩由题意知:0<c ≤5,∴0<8+c ≤13.从表中可知,第二、三月份的水费均大于13元, 故用水量15m 3、22m 3均大于最低限量am 3,将x=15,x=22分别代入②式,得198(15)338(22)b a c b a c=+-+⎧⎨=+-+⎩ 解得b=2,2a=c+19, ⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a ,将x=9代入②,得9=8+2(9-a )+c ,即2a=c+17, ⑥.⑥与⑤矛盾.故9≤a ,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数).由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+•400(19-x-y)+500(x+y-10)=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩(x,y为整数).W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.。