八年级数学下册数据的分析复习练习题

合集下载

人教版八年级下数学第二十章《数据的分析》单元复习练习

人教版八年级下数学第二十章《数据的分析》单元复习练习

数据的分析——复习练习一、单选题1.某校要从四名学生中选拔一名参加市“风华小主播”大赛,将多轮选拔赛的成绩的数据进行分析得到每名学生的平均成绩x及其方差s2如下表所示,如果要选择一名成绩高且发挥稳定的学生参赛,那么应选择的学生是()A.甲B.乙C.丙D.丁2.某工厂为了选拔1名车工参加加工直径为10mm的精密零件的技术比赛,随机分别抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较2s甲、2s乙的大小()A.22s s>甲乙B.22s s=甲乙C.22s s<甲乙D.22s s≤甲乙3.为迎接“劳动周”的到来,某校将九(1)班50名学生本周的课后劳动时间比上周都延长了10分钟,则该班学生本周劳动时间的下列数据与上周比较不发生变化的是() A.平均数B.中位数C.众数D.方差4.已知数据9.9,10.3,9.8,10.1,10.4,10,9.8,9.7,利用计算器求得这组数据的平均数是()A.9.7B.9.9C.9.8D.105.世界因爱而美好,在今年我校举行的“献爱心”捐款活动中,八年级二班40名学生积极参加捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数、中位数、平均数分别是()A.20、20、20B.30、30、31C.20、30、31D.30、30、30二、填空题6.商店想调查哪种品牌的空调销售量大,用来描述较好,想知道总体盈利的情况用来描述较好;某同学的身高在全班57人中排名第29,则他的身高值可看作是全班同学身高值的.(填“中位数”“众数”或“平均数”)7.一组数据:3、4、5、6、6、6,则众数是.8.在数据1,2,4,5中加入一个正整数x,使得到的新一组数据的平均数与中位数相等,则x .三、解答题9.某水库为了解某种鱼的生长情况,从水库中捕捞了20条这种鱼,称得它们的质量(单位:kg)如下:1.15 1.04 1.11 1.07 1.10 1.32 1.25 1.19 1.15 1.211.18 1.14 1.09 1.25 1.21 1.29 1.16 1.24 1.12 1.16计算样本平均数(结果保留小数点后两位),并根据计算结果估计水库中这种鱼的平均质量.10.某中学一次数学期中考试前10名同学的成绩为129,133,125,120,107,125,107,129,120,125.求这10名同学的平均成绩.11.某车间为了改变管理松懈的状况,准备采取每天任务定额和超产有奖的措施,从而提高工作效率.下面是该车间15名工人过去一天中各自装配机器的数量(单位:台):15,6,16,7,15,8,7,13,8,11,8,10,9,10,9.请回答下列问题:(1)这组数据的平均数、众数和中位数各是多少(结果精确到0.01台)?(2)管理者应确定每人标准日产量为多少台比较合适?。

专题数据的分析(常考知识点分类专题)(基础篇)(专项练习)八年级数学下册基础知识专项讲练

专题数据的分析(常考知识点分类专题)(基础篇)(专项练习)八年级数学下册基础知识专项讲练

专题20.5 数据的分析(常考知识点分类专题)(基础篇)(专项练习)一、单选题★【知识点一】平均数与加权平均数1. 一组数据,有4个数的平均数为20,另外16个数的平均数为15,则这20个数的平均数是()A. 16B. 17.5C. 18D. 202. 思政课上,某小组的2023全国“两会”知识测试成绩统计如表(满分10分):成绩78910频数1342则该组测试成绩的平均数为( )(单位:分)A. 8.2B. 8.3C. 8.7D. 8.9★【知识点二】利用平均数与加权平均数做出决策3. 实验中学举行了以“爱我中华”为主题的演讲比赛,7名评委为某选手的打分如表(满分10分),去除一个最高分和一个最低分之后取平均值为最后得分,该选手的最后得分为()分数8.308.509.009.50频数1312A. 8.24B. 8.65C. 8.80D. 8.924. 某商店在一段时间内销售了某种女鞋30双,各种尺码的销售量如表所示,如果鞋店要购进100双这种女鞋,那么购进24厘米、24.5厘米和25厘米三种女鞋数量之和最合适的是()尺码/厘米2222.52323.52424.525销售量/双12512631A. 20双B. 33双C. 50双D. 80双★【知识点三】众数与中位数5. 样本数据1-,4,7,a的中位数与平均数相同,则a的值是( )A. 4-或2或12B. 2或5或12C. 4-或2D. 2-或126. 荸荠口感脆甜,营养丰富,黄岩院桥素有“店头荸荠三根葱”的美誉.某校兴趣小组对50株荸荠的叶状茎生长度进行测量、记录,统计如下表:株数(株)712238叶状茎长度45.646.546.947.8(cm)这批荸荠叶状茎长度的众数为( )A. 45.6B. 46.5C. 46.9D. 47.8★【知识点四】利用众数与中位数做出决策7. 从小到大的一组数据-1,1,2,x,6,8的中位数为2,则这组数据的众数和平均数分别是()A. 2,4B. 2,3C. 1,4D. 1,38. 2012年5月份,齐齐哈尔市一周空气质量报告中某项污染指数的数据是:31,35,30,31,34,32,31,这组数据的中位数、众数分别是【】A. 32,31B. 31,31C. 31,32D. 32,35★【知识点五】方差、极差与标准差9. 一个样本有20个数据,其中最小值为61,最大值为70,若取组距为2,则可分为( )A. 5组B. 6组C. 7组D. 8组10. 某小组五位同学参加某次考试(满分20分)的平均成绩是16分,其中三位男生成绩的方差为6,两位女生的成绩分别为17分、15分,则这五位同学成绩的标准差为()B. 2C.D. 6A.★【知识点六】利用方差做出决策11. 某校队有A ,B ,C 三位短跑运动员,下表是三人最近10次百米赛跑的成绩平均分以及方差,如果现在要推荐一位运动员参加区级比赛,你认为最合适的运动员是( )ABCx1320'''1305'''1305'''2s 2.16.40.9A. AB. BC. CD. 无法确定12. 某鞋店对某款女鞋一周的销售情况进行统计,结果如下:尺码353637383940销售量(双)618331221根据上表信息,该店主决定下周多进一些37码的鞋子,影响店主进货决策的统计量是( )A. 众数B. 中位数C. 平均数D. 方差二、填空题★【知识点一】平均数与加权平均数13. 已知数据a ,b ,c 的平均数为8,那么数据123a b c +++,,的平均数是_________.14. 面试时,某人的基本知识、表达能力、工作态度的得分分别是85分,80分,88分,若依次按20%,30%,50%的比例确定成绩,则这个人的面试成绩是______分.★【知识点二】利用平均数与加权平均数做出决策15. 某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分),将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,被录用的是_________.应聘者阅读能力思维能力表达能力甲859080乙95809516. 某公司招聘,甲、乙两位候选人面试和笔试成绩如表所示.若面试与笔试成绩按6和4的权计算每人的平均成绩,从两人的成绩看,公司录取的是__________(填“甲”或“乙”).候选人面试笔试甲9284乙9086★【知识点三】众数与中位数17. 小王统计了一周家庭用水量,绘制了如图的统计图,那么这周用水量的众数是______,中位数是________.18. 已知3、2、n的平均数与2n、3、n、3、5的唯一众数相同,则这8个数的中位数是______.★【知识点四】利用众数与中位数做出决策19. 如图是容容前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千a___________.克,发现这四个单价的中位数恰好也是众数,则20. 家鞋店对上周某一品牌女鞋的销售量统计如下:尺码/厘米2222.52323.52424.5销售量/双1251173该鞋店决定本周进该品牌女鞋时多进一些尺码为23.5厘米的鞋,则影响鞋店决策的统计量是_____.★【知识点五】方差、极差与标准差21. 一组数据2,3,4,7,a,3,5,1的平均数是4,则这组数据的方差为____________.22. 如果有一组数据-2,0,1,3,x的极差是6,那么x的值是_________.★【知识点六】利用方差做出决策23. 甲、乙、丙、丁四名短跑运动员进行百米测试,每人5场测试成绩的平均数x (单位:秒)及方差2s(单位:秒2)如下表所示:甲乙丙丁x1010.110102s2 1.6 2.5 1.5根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择__.24. 某校要从甲、乙两名同学中选取一名成绩稳定的同学去参加数学竞赛,已知五次模拟测试中统计所得的信息为x甲=115,S甲2=12,x乙=115,S乙2=36,则应选择____参加竞赛.三、解答题25. 某校有3600名学生,为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.(1)参与本次问卷调查的学生共有 人,其中选择D类的人数有 人;(2)在扇形统计图中,求E类对应的扇形圆心角 的度数,并补全C对应的条形统计图;(3)若将A、B、C.D.E这四类上学方式视为“绿色出行”,请估计该校选择“绿色出行”的学生人数.26. 小明随机抽取了某校八年级部分学生,针对他们晚上在家学习时间的情况进行调查,并将调查结果绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)本次抽取的八年级学生晚上学习时间的众数是小时,中位数是小时;(3)若该校共有600 名八年级学生,则晚上学习时间超过1.5 小时的约有多少名学生?27. 某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.28. 在本学期某次考试中,某校八⑴、八⑵两班学生数学成绩统计如下表:分数5060708090100八⑴351631112班人数八⑵251112137班请根据表格提供的信息回答下列问题:1.八⑴班平均成绩为_________分,八⑵班平均成绩为________分,从平均成绩看两个班成绩谁优谁次?____________________2.八⑴班众数为________分,八⑵班众数为________分.从众数看两个班的成绩谁优谁次?____________________3.已知八⑴班的方差大于八⑵班的方差,那么说明什么?专题20.5 数据的分析(常考知识点分类专题)(基础篇)(专项练习)一、单选题★【知识点一】平均数与加权平均数【1题答案】【答案】A 【解析】【分析】根据平均数的计算方法进行计算即可求解.【详解】解:依题意,这20个数的平均数是()142016151620⨯+⨯=故选:A .【点睛】本题考查了求一组数据的平均数,熟练掌握平均数的定义是解题的关键.平均数:是指一组数据中所有数据之和再除以数据的个数.【2题答案】【答案】C 【解析】【分析】根据表格中的数据和加权平均数的计算方法,可以计算出该组测试成绩的平均数.【详解】解:由表格可得,该组测试成绩的平均数为:7183941028.71342⨯+⨯+⨯+⨯=+++,故选:C .【点睛】本题考查加权平均数、频数分布表,解答本题的关键是明确加权平均数的计算方法.★【知识点二】利用平均数与加权平均数做出决策【3题答案】【答案】C 【解析】【分析】去除一个最高分,取出一个最低分之后,只剩下五个数据,依据加权平均数的概念计算可得.【详解】解:该名选手的最后得分为8.5039.009.508.805⨯++=.故选:C .【点睛】考查了加权平均数,关键是熟练掌握加权平均数公式,注意要去掉一个8.30,一个9.50.【4题答案】【答案】B 【解析】【分析】求得销售这三种鞋数量之和为10,是30的三分之一,故要购进的这三种鞋应是100的三分之.【详解】根据题意可得:∵销售的某种女鞋30双,24厘米、24.5厘米和25厘米三种女鞋数量之和为10,∴要购进100双这种女鞋,购进这三种女鞋数量之和应是100333≈ ,∴购进100双这种女鞋,购进这三种女鞋数量之和最合适的是33双,故选:B【点睛】本题主要考查了综合运用统计知识解决问题的能力,理清题意,是解决此类问题的关键.★【知识点三】众数与中位数【5题答案】【答案】A 【解析】【分析】根据中位数和平均数的意义列方程求解.对于a 的取值分情况讨论:①1a ≤-;②17a -<<;③7a ≥.【详解】①当1a ≤-时,平均数为()11474a -+++,中位数为32,故可得:()1314742a -+++=,解得:4a =-.②当17a -<<时,平均数为()11474a -+++,中位数为42a +,故可得:()1414742a a +-+++=,解得:2a =.③当7a ≥时,平均数为()11474a -+++,中位数为112,故可得:()11114742a -+++=,解得:12a =.综上所述,a 可取4-或2或12.故选:A .【点睛】本题主要考查中位数和平均数的意义.解题的关键是对于a 的值要分情况讨论.【6题答案】【答案】C【解析】【分析】根据众数的定义即可求解,众数:在一组数据中出现次数最多的数.【详解】解:在这组数据中,46.9出现23次,次数最多,∴这批荸荠叶状茎长度的众数为46.9,故选:C .【点睛】本题考查了求一组数据的众数,熟练掌握众数的定义是解题的关键.★【知识点四】利用众数与中位数做出决策【7题答案】【答案】B【解析】【分析】先利用中位数的定义求出x 的值,再根据众数的定义和平均数的公式,即可求出这组数据的众数和平均数.【详解】解:∵一组数据-1,1,2,x ,6,8的中位数为2,∴x =2×2-2=2,2出现的次数最多,故这组数据的众数是2,这组数据的平均数是()11226863-+++++÷=.【点睛】本题主要考查了众数,平均数及中位数,解题的关键是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【8题答案】【答案】B【解析】【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).【详解】解:由此将这组数据重新排序为30、31、31、31、32、34、35,∴中位数是按从小到大排列后第4个数为:31.众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是31,故这组数据的众数为31.所以这组数据的中位数是31,众数是31.故选B .★【知识点五】方差、极差与标准差【9题答案】【答案】A【解析】【分析】先计算这组数据的极差,再根据组数=极差÷组距,进行计算即可.【详解】解:最小值为61,最大值为70,即极差是70619-=,则组数是925÷≈(组).故选:A .【点睛】本题考查的是频数分布表,掌握组距、分组数的确定方法:组距=(最大值-最小值)÷组数是解题的关键.【10题答案】【答案】B【分析】设三位男生的成绩分别为a 、b 、c ,可求得3位男同学考试分数的平均数,再由三位男生的方差为6,求得这个学习小组5位同学考试分数的方差,从而求得标准差.【详解】解:∵两位女生的成绩分别为17分、15分,∴两位女生的成绩的平均数是()1715216+÷=(分),∴三位男生成绩的平均数是16分.三位男生的方差2221[(16)(16)(16)]63a b c =⨯-+-+-=,222(16)(16)(16)18a b c ∴-+-+-=,∴这个学习小组5位同学考试分数的方差222221[(16)(16)(16)(1716)(1516)]5a b c =⨯-+-+-+-+-1(1811)5=⨯++4=,∴2=,故选:B .【点睛】本题考查标准差,计算标准差需要先算出方差,标准差即方差的算术平方根;注意标准差和方差一样都是非负数.★【知识点六】利用方差做出决策【11题答案】【答案】C【解析】【分析】通过比较平均数和方差进行选择即可.【详解】解:A ,B ,C 三位短跑运动员中B 和C 的平均数最小且相等,A ,B ,C 三位运动员中C 的方差最小,∴综合平均数和方差两个方面说明C 成绩既高又稳定,∴最合适的人选是C .故选:C .【点睛】本题考查了平均数和方差数据特征并根据题意进行决策,理解平均数和方差的特征是解题的关键.【12题答案】【答案】A【解析】【分析】根据各种统计量的含义与性质进行选择即可【详解】A 、众数是最多的数,它代表了销量最好,故符合题意;B 、中位数是指排好序后最中间的数,对进货没有指导意义,故不符题意;C 、平均数是所有尺码的平均销售量,反映整体水平,也不能做进货指导,故不符题意;D 、方差反映的是波动水平,不能做进货指导,故不符题意.故选:A【点睛】本题题考查众数、中位数、平均数、方差的理解与应用,理解这些概念是关键.二、填空题★【知识点一】平均数与加权平均数【13题答案】【答案】10【解析】【分析】根据数据a ,b ,c 的平均数为8,求出24a b c ++=,进而求出123a b c +++,,的平均数为10.【详解】解:∵数据a ,b ,c 的平均数为8,∴8324a b c ++=⨯=,∴12312324630a b c a b c +++++=+++++=+=,∴123a b c +++,,的平均数13003==.故答案为10.【点睛】本题考查了算术平均数,平均数是指在一组数据中所有数据之和除以这组数据的个数所得的商,熟悉掌握算术平均数的公式是本题的解题关键.【14题答案】【答案】85【解析】【分析】根据加权平均数进行求解即可.【详解】解:根据题意这个人的面试乘积为85208030885017244485⨯+⨯+⨯=++=%%%,故答案为:85.【点睛】本题考查了加权平均数的计算,熟练掌握加权平均数的计算方法是解本题的关键.★【知识点二】利用平均数与加权平均数做出决策【15题答案】【答案】甲【解析】【分析】分别求出三个人的加权成绩,然后进行比较即可.【详解】解:由题意得:甲的成绩85190380187131⨯+⨯+⨯==++分;乙的成绩95180395186131⨯+⨯+⨯==++分,∴乙的成绩<甲的成绩,∴被录取的是甲,故答案为:甲.【点睛】本题主要考查了加权平均数,解题的关键在于能够熟练掌握加权平均数的求法.【16题答案】【答案】甲【解析】【分析】根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.【详解】解:甲的平均成绩为:(92×6+84×4)÷10=88.8(分),乙的平均成绩为:(90×6+86×4)÷10=88.4(分),因为88.8>88.4,所以甲将被录取.故答案为:甲【点睛】本题考查了加权平均数,熟练握加权平均数的计算公式是解题的关键.★【知识点三】众数与中位数【17题答案】【答案】①. 1 ②. 1【解析】【分析】根据众数和中位数的定义解答即可.【详解】根据统计图可知用水量为1的天数为3天,最多,故这周用水量的众数是1;将这周用水量按从小到大排列为:0.5,1,1,1,1.5,1.5,2,∴这周用水量的中位数是1.故答案为:1,1.【点睛】本题考查众数和中位数的定义.解题的关键是掌握一组数据中出现次数最多的数值为众数;按顺序排列的一组数据中居于中间位置的数为中位数,当数据为偶数个时,为最中间两个数的平均值.【18题答案】【答案】3.5【解析】【分析】先求出n的值,再求出中位数,求一组数据的中位数是将这组数据从小到大排列,再求这组数据中间的数,即为中位数.【详解】∵2n、3、n、3、5有唯一众数∴2n、3、n、3、5这组数中的众数为3∵3、2、n的平均数与2n、3、n、3、5的唯一众数相同∴3、2、n的平均数为3∴4n=∴这8个数从小到大排列一次是:2、3、3、3、4、4、5、8∴这8个数的中位数是343.52+=.故答案为:3.5.【点睛】本题考查中位数、众数和平均数的求解方法,解题的关键是掌握相关概念,进行数据分析.★【知识点四】利用众数与中位数做出决策【19题答案】【答案】8【解析】【分析】根据统计图中的数据利用中位数和众数的定义即可得到a的值.【详解】由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,a=时,中位数是8.5,众数是9,不合题意;∴当9a=时,中位数是8,众数是8,符合题意;当8a=时,中位数是7,众数是6,不符合题意;当6故答案为:8.【点睛】本题考查条形统计图、中位数、众数,解答本题的关键是明确题意,利用数形结合的思想解答.【20题答案】【答案】众数【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:鞋店最关心的应该是某一尺码鞋子的销售量最多,在统计量中也就是众数,所以影响鞋店决策的统计量是众数,故答案为:众数.【点睛】此题主要考查统计的有关知识,熟练掌握平均数、中位数、众数、方差的意义是解题的关键.★【知识点五】方差、极差与标准差【21题答案】【答案】4.25【解析】【分析】根据平均数的定义先求出x 的值,再根据方差的定义求出这组数的方差即可.【详解】利用平均数的计算公式,得234735148a +++++++=⨯,解得7a =,∴这组数据为2,3,4,7,7,3,5,1,∴这组数据的方差为()()()()()()2222222124234442745414 4.258s ⎡⎤=-+⨯-+-+⨯-+-+-=⎣⎦.故答案为:4.25.【点睛】本题考查了方差的定义、平均数,掌握公式正确求解计算是解题关键.【22题答案】【答案】4或-3##-3或4【解析】【分析】根据极差的定义求解.分两种情况:x 为最大值或最小值.【详解】解:∵3-(-2)=5,一组数据-2,0,1,3,x 的极差是6,∴当x 为最大值时,x -(-2)=6,解得x =4;当x 是最小值时,3-x =6,解得:x =-3.故答案为:4或-3.【点睛】此题主要考查了极差的定义,正确理解极差的定义,能够注意到应该分两种情况讨论是解决本题的关键.★【知识点六】利用方差做出决策【23题答案】【答案】丁【解析】【分析】根据平均数比较成绩的好坏,根据方差比较数据的稳定程度.【详解】甲、丙、丁的平均数较小,丁的方差<甲的方差<丙的方差,∴丁比较稳定,∴成绩较好状态稳定的运动员是丁,故答案为:丁.【点睛】本题重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【24题答案】【答案】甲【解析】【分析】比较两人的平均数和方差,方差越小,成绩越稳定,反之,方差越大,成绩越不稳定.【详解】解:∵x甲=x乙=115,S甲2=12<S乙2=36,∴甲、乙的平均成绩相同,但甲的成绩比乙的成绩稳定,∴应该选择甲同学参加竞赛,故答案为:甲.【点睛】本题考查了平均数和方差,熟悉它们的意义是解题的关键.三、解答题【25题答案】α=︒,答案见解析;(3)3456人.【答案】(1)450,72;(2)36【解析】【分析】(1)用A的人数除以A所占总人数的百分比即得总的学生数;用D所占总人数的百分比乘以总的学生数即得D的学生人数;(2)用100%减去A、B、C、D、F所占的百分比,得到E所占的百分比,然后再乘360°,即得到E类对应的圆心角;用20%乘以总的学生数即得到C类的学生数;(3)用3600×4%即得到F类学生的人数,再用3600减去F类学生数即可.【详解】解:(1)用A的人数除以A占总人数的比值:162÷36%=450(人),故本次问卷调查的学生共有450人,其中D类的人数有:450×16%=72(人).故答案为:共有460人,D类的人数有72人.(2)E类学生占总人数的百分比为:1-36%-14%-20%-16%-4%=10%,故E类对应的圆心角为:10%×360°=36°,C类学生为:20%×450=90(人),如下图所示:α=︒.所以36(3)3600名学生中,F类所占的人数为:3600×4%=144(人),故选择“绿色出行”的学生人数为:3600-144=3456(人),所以该校选择“绿色出行”的学生人数为3456(人).【点睛】本题考查了扇形统计图及条形统计图的相关知识,两个统计图要结合看,考查了学生数形结合的思想,熟练的掌握统计图所代表的每一部分的含义是解题的关键.【26题答案】【答案】(1)补全条形统计图和扇形统计图见解析;(2)2,2;(3)晚上学习时间超过1.5 小时的约有450名学生.【解析】【分析】(1)先由1小时的人数及其所占百分比求得总人数,总人数乘以2.5小时对应百分比求得其人数,用2小时人数除以总人数可得其百分比;(2)根据人数、中位数的定义求解可得;(3)总人数乘以样本中2小时和2.5小时人数所占百分比之和可得.【详解】(1)分别由条形统计图和扇形统计图知:1小时的人数为2人、所占百分比为5%,∴被调查的学生总人数为2÷5%=40人,∴2.5小时的人数为40×30%=12人,2小时人数所占百分比为18100%45% 40⨯=,补全条形统计图和扇形统计图如下:(2)2小时出现的次数最多,是18次,因此众数是2小时,把这40个数据从小到大排列后处在第20、21位的数都是2,因此中位数是2小时,故答案为:2,2;(3)晚上学习时间超过1.5小时的学生约有600(30%45%)450⨯+=(人)答:晚上学习时间超过1.5 小时的约有450名学生.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.【27题答案】【答案】(Ⅰ)40,25;(Ⅱ)平均数是1.5,众数为1.5,中位数为1.5;(Ⅲ)每天在校体育活动时间大于1h的学生人数约为720.【解析】【分析】(Ⅰ)求得直方图中各组人数的和即可求得学生人数,利用百分比的意义求得m;(Ⅱ)利用加权平均数公式求得平均数,然后利用众数、中位数定义求解;(Ⅲ)利用总人数乘以对应的百分比即可求解.【详解】解:(Ⅰ)本次接受调查的初中学生人数为:4+8+15+10+3=40(人),m=100×1040=25.故答案是:40,25;(Ⅱ)观察条形统计图,∵0.94 1.28 1.515 1.810 2.13 1.54815103x ⨯+⨯+⨯+⨯+⨯==++++,∴这组数据的平均数是1.5.∵在这组数据中,1.5出现了15次,出现的次数最多,∴这组数据的众数为1.5.∵将这组数据按从小到大的顺序棑列,其中处于中间的两个数都是1.5,有1.5 1.5 1.52+=,∴这组数据的中位数为1.5.(Ⅲ)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1h 的学生人数占90%,∴估计该校800名初中学生中,每天在校体育活动时间大于1h 的人数约占90%.有80090%720⨯=.∴该校800名初中学生中,每天在校体育活动时间大于1h 的学生人数约为720.【点睛】本题考查的是条形统计图的综合运用,还考查了加权平均数、中位数和众数以及用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.【28题答案】【答案】【答题空1】80【答题空2】80【答题空3】70【答题空4】90【答题空5】(2)班成绩好【解析】【分析】(1)根据平均数的计算公式计算出两个班的平均成绩,即可比较;(2)求出两个班成绩的众数,根据众数的大小即可比较;(3)根据方差的特征即可回答.【详解】(1)八(1)班平均成绩为:503605701680390111001280351631112⨯+⨯+⨯+⨯+⨯+⨯=+++++(分);八(2)班平均成绩为: 502605701180129013100780251112137⨯+⨯+⨯+⨯+⨯+⨯=+++++(分);从平均成绩看两个班成绩一样.(2)八(1)班70分的有16人,人数最多,众数为70(分);八(2)班90分的有13人,人数最多,众数为90(分);从众数看两个班的成绩八(2)班成绩优.(3)八(1)班的方差大于八(2)班的方差,说明八(1)班的学生成绩不很稳定,波动较大.【点睛】本题考查加权平均数、众数的求法以及方差的意义.加权平均数:若n 个数x 1,x 2,x 3,…,x n 的权分别是w 1,w 2,w 3,…,w n ,则112212......n nnx w x w x w w w w ++++++叫做这n 个数的加权平均数.一组数据中出现次数最多的数据叫做众数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.。

人教版八年级数学下册期末复习资料《数据的分析》复习题

人教版八年级数学下册期末复习资料《数据的分析》复习题

《数据的分析》期末复习题一、选择题1、数据5、3、2、1、4的平均数是( )A : 2B : 5C : 4D : 3 2、六个学生进行投篮比赛,投进的个数分别为2,3,3,5,10,13,•这六个数的中位数是( ) A :3 B :4 C :5 D :63、10名学生的体重分别是41、48、50、53、49、53、53、51、67(单位:kg),这组数据的极差是( )A :27B :26C :25D :24 4、甲、乙两个样本,计算得出=2甲s 0.2,=2乙s 0.5。

那么比较甲、乙两个样本波动的大小关系是 ( )A :甲的波动比乙的大B :乙的波动比甲的大C :甲、乙波动的大小一样D :无法确定5、某电视台举办的青年歌手电视大奖赛上,六位评委给3号选手的评分如下:90、96、91、96、95、94,这组数据的中位数是( )A :95B :94C :94.5D :96 6. 某校四个科技兴趣小组在“科技活动周”上交的作品数分别如下:10、10、x 、8,已知这组数据的众数与平均数相等,则这组数据的中位数是( ) A. 8 B. 9 C. 10 D. 127、从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为1.5、1.6、1.4、1.3、1.5、1.2、1.7、1.8(单位:千克),那么可估计这240条鱼的总质量大约为( ) A : 300千克 B :360千克 C :36千克 D :30千克8、一个射手连续射靶22次,其中三次射中10环,7次射中9环,9次射中8环,3•次射中7环,则射中环数的中位数和众数分别为( )A :8,9B :8,8C :8.5,8D :8.5,99. 有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛。

某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学得分的( ) A .平均数 B. 中位数 C. 众数 D. 方差10(1) 甲乙两班学生成绩平均水平相同(2) 乙班优秀人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀)(3) 甲班的成绩的波动比乙班大;上述结论正确的是( )A (1)(2)(3) B (1)(2) C (1)(3) D (2)(3)二、填空题11、对于数据组3,3,2,3,6,3,6,3,2中,众数是_______;平均数是______; •极差是_______,中位数是______;12、8个数的平均数12,4个数的平均为18,则这12个数的平均数为 ; 13、已知数据a 、b 、c 的平均数为8,那么数据a +l ,b +2,c +3的平均数是 ;14、右图是一组数据的折线统计图,这组数据的极差是 ,三、解答题(1)分别求这些男生考核成绩的众数、中位数与平均数。

《第20章数据的分析》期末复习综合提升训练2套(附答案)-人教版八年级数学下册

《第20章数据的分析》期末复习综合提升训练2套(附答案)-人教版八年级数学下册

人教版八年级数学下册《第20章数据的分析》期末复习综合提升训练1(附答案)1.女子排球队6名场上队员的身高(单位:cm)是:170,174,178,180,180,184.现用身高178cm的队员替换场上身高174cm的队员,与换人前相比,场上队员的身高()A.平均数变大,中位数不变B.平均数变大,中位数变大C.平均数变小,中位数不变D.平均数变小,中位数变大2.甲、乙、丙、丁四人各进行10次射击测试,它们的平均成绩相同,方差分别是S甲2=1,S乙2=1.1,S丙2=0.6,S丁2=0.9,则射击成绩最稳定的是()A.甲B.乙C.丙D.丁3.已知两组数据:x1、x2、x3、x4、x5和x1+2、x2+2、x3+2、x4+2、x5+2,下列有关这两组数据的说法中,正确的是()A.平均数相等B.中位数相等C.众数相等D.方差相等4.在一次体育测试中,小明记录了本班10名同学一分钟跳绳的成绩,如表:成绩150160170180190人数23221对于这10名学生的跳绳成绩,下列说法错误的是()A.众数是160B.中位数是165C.平均数是167D.方差是104.55.李明参加某单位招聘测试,他的笔试、面试、技能操作得分分别为86分、80分、90分,若依次按照2:3:5的比例确定成绩,则李明的成绩是()A.256分B.86分C.86.2分D.88分6.学校举行演讲比赛,共有13名同学进入决赛,比赛将评出金奖1名,银奖2名,铜奖3名,某选手知道自己的分数后,要判断自己能否获奖,他应当关注有关成绩的()A.平均数B.中位数C.众数D.方差7.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是()A.平均数B.中位数C.方差D.众数8.为筹备班级联欢会,班长对全班同学爱吃哪几种水果做了民意调查,然后决定买什么水果,最值得关注的应该是统计调查数据的()A.中位数B.平均数C.众数D.方差9.若x1,x2,x3,x4的平均数为4,x5,x6,x7,…,x10的平均数为6,则x1,x2,…,x10的平均数为()A.5B.4.8C.5.2D.810.数据201,202,198,199,200的方差与极差分别是()A.1,4B.2,2C.2,4D.4,211.在防治新型冠状病毒知识问答中10名参赛选手得分情况如表:人数1342分数80859095那么这10名选手所得分数的中位数.12.某班40位同学参加“慈善一日捐”活动,具体捐款情况如下表:捐款/元51015202530人数4510786则捐款的平均数为元.13.小芳同学10周的综合素质评价成绩统计如下:成绩(分)94959798100周数12241这10周的综合素质评价成绩的中位数、众数和方差分别为:、、.14.样本数据1,5,n,6,8的众数是1,则这组数的中位数是.15.某地教育局拟招聘一批数学教师,现有一名应聘者笔试成绩88分、面试成绩90分,综合成绩按照笔试占40%、面试占60%进行计算,该应聘者的综合成绩为分.16.一组数1、2、3、4、5的方差是S12与另一组数3、4、5、6、7的方差S22的大小比较S12S22(填写:大于、等于、小于).17.若5个正数a1,a2,a3,a4,a5的平均数是a,则a1,a2,0,a3,a4,a5的平均数是.18.若一组数据x1,x2,…,x n的方差为9,则数据2x1+3,2x2+3,…,2x n+3的方差为.19.小明用s2=[(x1﹣6)2+(x2﹣6)2+…+(x10﹣6)2]计算一组数据的方差,那么x1+x2+x3+…+x10=.20.若一组数据3,4,5,x的极差是5,则x=.21.某校为了解学生对防疫知识的掌握情况,进行了一次“防疫知识测试”,随机抽取了部分学生的成绩,整理并绘制出如下不完整的统计表和统计图,请根据图表所提供的信息,解答下列问题:组别分数/分频数A80≤x<85aB85≤x<908C90≤x<9516D95≤x<100b (1)本次调查一共随机抽取了名学生的成绩,表格中的a=,b=;(2)本次调查中,学生成绩的中位数落在组内(填字母);(3)该校共有3000名学生,估计成绩达到90分以上(含90分)的学生人数约有多少人?22.2020年是全面建设小康社会实现之年,是脱贫攻坚战收关之年.某县政府派出调查小组对农村地区经济情况进行摸底,以便出台更精准的扶贫政策.调查小组开展了一次调查研究,请将下面的过程补全.[收集数据]调查小组计划选取A、B两村各20户上一年度家庭收入作为样本,下面的取样方法中,合理的是______(填字母);A.随机抽取A、B两村各20户上一年度家庭收入组成样本B.抽取A、B两村各20户上一年度家庭收入较好的组成样本C.抽取A、B两村各20户上一年度家庭收入较差的组成样本[整理数据]抽样方法确定后,调查小组获得的数据(单位:万元)如下:A村:1.8,1.5,2.2,2.4,2.4,2.2,2.6,2.0,1.8,2.1,1.6,2.0,2.4,2.4,2.1,3.0,3.2,2.8,2.7,2.8B村:1.6,1.7,2.2,2.2,2.1,2.2,2.2,3.0,2.8,2.2,1.5,1.8,2.0,2.2,2.6,2.8,3.1,3.0,2.8,2.0[描述数据]按如下分段整理,描述这两组样本数据:1.5≤x<22≤x<2.5 2.5≤x<33≤x<3.5上一年度家庭收入(单位:万元)A村4a4bB村4943 [分析数据]两组样本数据的平均数、中位数、众数如下表所示:平均数中位数众数A村 2.3c 2.4B村 2.3 2.2 2.2 [得出结论]请根据以上数据,回答下列问题:(1)在[收集数据]阶段,取样方法合理的是(填字母);(2)填空:a=,b=,c=;(3)若A村有300户人家,请估计A村上一年度家庭收入不少于2.5万元的户数;(4)结合这两组样本数据的平均数、中位数和众数,你认为A村和B村中哪个经济比较好?请至少从两个方面说明理由.23.某集团旗下有两家酒店A,B,2020年下半年的月营业额统计如下:[信息一]A,B两家酒店2020年下半年月营业额(单位:百万元)统计图如下[信息二]A,B两家酒店2020年下半年月营业额的相关数据统计如下:酒店平均数中位数众数方差A 2.5 2.2 2.20.73B 2.3 1.9△0.59(1)已知A酒店2020年11月份月营业额为3百万元,求A酒店2020年下半年的营业总额;(2)求B酒店2020年8月份的月营业额,并补全[信息二]中缺失数据;(3)结合数据分析,2020年下半年A,B两家酒店哪家经营状况较好,请说明理由.24.小明本学期的数学成绩如表所示:测验类别平时成绩1平时成绩2平时成绩3平时成绩4平时平均数期中考试期末考试成绩108103101108a110114(1)六次测试成绩的中位数和众数分别是什么?(2)请计算出小明该学期的平时成绩平均分a的值;(3)如果学期的数学总评成绩是根据一定的权重计算所得,其中平时成绩a所占权重为20%,已知小明该学期的总评成绩为111分,请计算出期中考试和期末考试各自所占权重.25.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加比赛.两校派出选手的比赛成绩如图所示.根据以上信息.整理分析数据:平均数/分中位数/分众数/分A校858585B校85a b(1)a=;b=;(2)填空:(填“A校”或“B校”)①从两校比赛成绩的平均数和中位数的角度来比较,成绩较好的是;②从两校比赛成绩的平均数和众数的角度来比较,成绩较好的是;③从两校比赛成绩的方差的角度来比较,代表队选手成绩的方差较大.参考答案1.解:用身高为178cm的队员替换场上身高为174cm的队员,使总身高增加,进而平均数身高变大,但换人后,从小到大排列的顺序不变,因此中位数不变,故选:A.2.解:∵S甲2=1,S乙2=1.1,S丙2=0.6,S丁2=0.9,∴S丙2<S丁2<S甲2<S乙2,∴射击成绩最稳定的是丙,故选:C.3.解:因为新数据是在原数据的基础上每个加2,∴这两组数据的波动幅度不变,故选:D.4.解:A.这组数据中160出现3次,次数最多,所以这组数据的众数为160,此选项正确,不符合题意;B.这组数据的中位数为=165,此选项正确,不符合题意;C.这组数据的平均数为×(2×150+3×160+2×170+2×180+190)=167,此选项正确,不符合题意;D.这组数据的方差为×[2×(150﹣167)2+3×(160﹣167)2+2×(170﹣167)2+2×(180﹣167)2+(190﹣167)2]=161,此选项错误,符合题意;故选:D.5.解:=86.2(分),即李明的成绩是86.2分.故选:C.6.解:∵进入决赛的13名学生所得分数互不相同,共有1+2+3=6个奖项,∴这13名学生所得分数的中位数即是获奖的学生中的最低分,∴某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数,如果这名学生的分数大于或等于中位数,则他能获奖,如果这名学生的分数小于中位数,则他不能获奖.故选:B.7.解:原数据的3,5,5,7的平均数为=5,中位数为5,众数为5,方差为×[(3﹣5)2+(5﹣5)2×2+(7﹣5)2]=2;新数据3,5,5,5,7的平均数为=5,中位数为5,众数为5,方差为×[(3﹣5)2+(5﹣5)2×3+(7﹣5)2]=1.6;所以添加一个数据5,方差发生变化,故选:C.8.解:由于众数是数据中出现次数最多的数,故班长最值得关注的应该是统计调查数据的众数.故选:C.9.解:由题意可得,x1,x2,…,x10的平均数为:===5.2,故选:C.10.解:极差为202﹣198=4,∵平均数为=200,∴方差为×[(201﹣200)2+(202﹣200)2+(198﹣200)2+(199﹣200)2+(200﹣200)2]=2,故选:C.11.解:将这10名参赛选手的得分从小到大排列处在中间位置的两个数都是90分,因此中位数是90分,故答案为:90.12.解:捐款的平均数为×(5×4+10×5+15×10+20×7+25×8+30×6)=18.5(元),13.解:这组数据中98出现次数最多,有4次,所以这组数据的众数为98分,由于一共有10个数据,其中位数是第5、6个数据的平均数,所以中位数为=97.5(分),∵这组数据的平均数为=97(分),方差为×[(94﹣97)2+2×(95﹣97)2+2×(97﹣97)2+4×(98﹣97)2+(100﹣97)2]=3,故答案为:97.5分、98分、3.14.解:∵数据1,5,n,6,8的众数是1,∴n=1,则这组数据为1、1、5、6、8,∴这组数据的中位数为5,故答案为:5.15.解:该应聘者的综合成绩为88×40%+90×60%=89.2(分),故答案为:89.2.16.解:由题意知,第2组数据是在第1组数据的基础上每个数据都加上2的,∴第2组数据的波动性与第1组数据的波动性相同,即S12=S22,故答案为:等于.17.解:∵正数a1,a2,a3,a4,a5的平均数是a,∴a1+a2+a3+a4+a5=5a,∴(a1+a2+0+a3+a4+a5)=a;故答案为:a.18.解:设一组数据x1,x2…x n的方差S2=9,则另一组数据2x1+3,2x2+3…2x n+3的S′2=22S2=36,故答案为:36.19.解:由s2=[(x1﹣6)2+(x2﹣6)2+…+(x10﹣6)2]知这10个数据的平均数为6,所以x1+x2+x3+…+x10=6×10=60,20.解:①x是最小的数时,5﹣x=5,解得x=0,②x是最大的数时,x﹣3=5,解得x=8,所以,x的值为0或8.故答案为:0或8.21.解:(1)8÷20%=40(人),b=40×35%=14(人),a=40﹣14﹣8﹣16=2(人),故答案为:40,2,14;(2)将这40名学生的成绩从小到大排列处在中间位置的两个数都在C组,故答案为:C;(3)1000×=750(人),答:该校共有3000名学生中成绩达到90分以上(含90分)的有750人.22.解:(1)根据样本的广泛性和代表性可知,取样方法中,合理的是:A.随机抽取A、B两村各20户上一年度家庭收入组成样本,故选:A;(2)由统计频数的方法可得,a=10,b=2,A村家庭收入出现次数最多的是2.4万元,因此众数是2.4万元,即c=2.4,故答案为:10,2,2.4;(3)300×=90(户),答:A村有300户人家中一年度家庭收入不少于2.5万元的大约有90户;(4)A村的比较好,理由为:由于A村、B村的平均数相同,而A村的中位数、众数都比B村的高,所以A村的紧急情况比较好.23.解:(1)2.5×6=15(百万元),答:A酒店2020年下半年的营业总额为15百万元;(2)B酒店下半年的总营业额为2.3×6=13.8(百万元),因此B酒店8月份的营业额为13.8﹣1.5﹣1.7﹣2.3﹣1.7﹣3.6=3(百万元),补全条形统计图如图所示:(3)A酒店的经营状况较好,理由:A酒店经营营业额的平均数、中位数、众数均比B 酒店的高.24.解:(1)六次数据依次为:101、103、108、108、110、114,则中位数为:108,众数为:108;(2)a==105;(3)设期中考试所占权重是x,期末考试所占权重是y,由题意得,解得:.答:期中考试所占权重是30%,期末考试所占权重是50%.25.解:(1)将B校5名选手的成绩重新排列为:70、75、80、100、100,所以其中位数a=80、众数b=100,故答案为:80、100;(2)①从两校比赛成绩的平均数和中位数的角度来比较,成绩较好的是A校;②从两校比赛成绩的平均数和众数的角度来比较,成绩较好的是B校;③=×[(75﹣85)2+(80﹣85)2+2×(85﹣85)2+(100﹣85)2]=70,=×[(70﹣85)2+(75﹣85)2+(80﹣85)2+2×(100﹣85)2]=160,∴从两校比赛成绩的方差的角度来比较,B校代表队选手成绩的方差较大.故答案为:A校、B校、B校.人教版八年级数学下册《第20章数据的分析》期末复习综合提升训练2(附答案)1.已知一组数据1,0,3,﹣1,x,2,3的平均数是1,则这组数据的中位数是()A.﹣1B.1C.3D.﹣1或者3 2.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如右表:根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()册数/册12345人数/人25742A.3,3B.3,7C.2,7D.7,33.某家书店对上季度该店中国古代四大名著的销售量统计如表:书名《西游记》《水浒传》《三国演义》《红楼梦》销售量/本180********依据统计数据,为了更好地满足读者需求,该书店决定本季度购进中国古代四大名著时多购进一些《西游记》,你认为最影响该书店决策的统计量是()A.平均数B.众数C.中位数D.方差4.参加第六届京津冀羽毛球冠军挑战赛的一个代表队的年龄分别是49,20,20,25,31,40,46,20,44,25,这组数据的平均数,众数,中位数分别是()A.33,21,27B.32,20,28C.33,49,27D.32,21,22 5.测试五位学生的“1000米”跑成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将跑的最快一名学生成绩写得更快了,则计算结果不受影响的是()A.总成绩B.方差C.中位数D.平均数6.某校七年级学生的平均年龄为13岁,年龄的方差为3,若学生人数没有变动,则两年后的同一批学生,对其年龄的说法正确的是()A.平均年龄为13岁,方差改变B.平均年龄为15岁,方差不变C.平均年龄为15岁,方差改变D.平均年龄为13岁,方差不变7.已知样本数据2,3,5,3,7,下列说法不正确的是()A.平均数是4B.众数是3C.中位数是5D.方差是3.28.在样本方差的计算式s2=[(x1﹣10)2+(x2﹣10)2+…+(x5﹣10)2]中,数字5和10分别表示样本的()A.容量,方差B.平均数,众数C.标准差,平均数D.容量,平均数9.已知一组数据a1,a2,a3,a4,a5的方差是S1,另一组数据a1﹣6,a2﹣6,a3﹣6,a4﹣6,a5﹣6的方差是S2,则S1与S2的大小关系是S1S2(填写“>”“<”或“=”).10.已知a,b,c,d的平均数是3,则2a﹣1,2b﹣1,2c﹣1,2d﹣1的平均数是.11.已知一组数据x1,x2,x3的平均数是15,方差是2,那么另一组数据2x1﹣4,2x2﹣4,2x3﹣4的平均数是.12.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示:则在这四个选手中,成绩最稳定的是.选手甲乙丙丁方差0.560.600.500.4513.一组数据1,1,x,2,4,5的平均数是3,则这组数据的中位数是.14.一组数据4,7,x,6,9众数是9,则这5个数据的平均数为.15.小明在跳绳考核中,前4次跳绳成绩(次数/分钟)记录为:180,178,180,177,若要使5次跳绳成绩的平均数与众数相同,则小明第5次跳绳成绩是.16.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,﹣2,+1,0,+2,﹣3,0,+1,则这组数据的方差是.17.某班40位同学参加“慈善一日捐”活动,具体捐款情况如下表:捐款/元51015202530人数4510786则捐款的平均数为元.18.小芳同学10周的综合素质评价成绩统计如下:成绩(分)94959798100周数12241这10周的综合素质评价成绩的中位数、众数和方差分别为:、、.19.一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则x﹣y=.20.如果一组数据5、8、a、7、4的平均数是a,那么这组数据的方差为.21.某快餐店某天销售3种盒饭的有关数据如图所示,则3种盒饭的价格平均数是元.22.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为,.23.某地农业科技部门积极助力家乡农产品的改良与推广,为了解甲、乙两种新品橙子的质量,进行了抽样调查在相同条件下,随机抽取了甲、乙各25份样品,对大小甜度等各方面进行了综合测评,并对数据进行收集、整理、描述和分析,下面给出了部分信息.a.测评分数(百分制)如下:甲:77,79,80,80,85,86,86,87,88,89,89,90,91,91,91,91,91,92,93,95,95,96,97,98,98乙:69,79,79,79,86,87,87,89,89,90,90,90,90,90,91,92,92,92,94,95,96,96,97,98,98b.按如下分组整理、描述这两组样本数据:60≤x<7070≤x<8080≤x<9090≤x≤100甲02914乙13516 c.甲、乙两种橙子测评分数的平均数、众数、中位数如下表所示:品种平均数众数中位数甲89.4m91乙89.490n 根据以上信息,回答下列问题(1)写出表中m,n的值(2)记甲种橙子测评分数的方差为s12,乙种橙子测评分数的方差为s22,则s12,s22的大小关系为;(3)根据抽样调查情况,可以推断种橙子的质量较好,理由为.(至少从两个不同的角度说明推断的合理性)24.张老师对李华和刘强两位同学从数学运算、逻辑推理、直观想象和数据分析四个方面考核他们的数学素养,单项检测成绩(百分制)列表如下:姓名数学运算逻辑推理直观想象数据分析李华86858085刘强74878784(1)分别对两个人的检测成绩进行数据计算,补全下表:姓名平均分中位数众数方差李华848585刘强838722.8(2)你认为李华和刘强谁的数学素养更好?结合数据,从两个角度进行分析.(3)若将数学运算、逻辑推理、直观想象、数据分析四个检测成绩分别按权重30%,40%,20%,10%的比例计算最终考核得分,请分别计算李华和刘强的最终得分.25.杭州市建兰中学开展防疫知识线上竞赛活动,九年级(1)、(2)班各选出5名选手参加竞赛,两个班选出的5名选手的竞赛成绩(满分为100分)如图所示.(1)求九(1)班的众数和九(2)班的中位数;(2)计算两个班竞赛成绩的方差,并说明哪个班的成绩较为整齐.26.某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周第2周第3周第4周第5周第6周甲9101091210乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数中位数众数甲10乙107(1)填空:根据表Ⅰ的数据补全表Ⅱ;(2)老师计算了乙品牌冰箱销量的方差:S乙2=[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=(台2).请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?27.甲、乙两班各选派10名学生参加“文明城市创建”知识问答.各参赛选手的成绩如下:甲班:93,98,89,93,95,96,93,96,98,99;乙班:93,95,88,100,92,93,100,98,98,93;通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差甲班999595.5a b乙班10095c9313.8(1)填空:a=,b=,c=;(2)根据上述数据,你认为哪个班的成绩好一些?请简要说明理由.28.九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表Ⅰ)所示:小华708090807090801006080小红908010060908090606090现根据上表数据进行统计得到下表(表Ⅱ):姓名平均成绩中位数众数小华80小红8090(1)填空:根据表Ⅰ的数据完成表Ⅱ中所缺的数据;(2)老师计算了小红的方差[4×(90﹣80)2+3×(60﹣80)2+(100﹣80)2]=200,请你计算小华的方差并说明哪名学生的成绩较为稳定.参考答案1.解:∵一组数据1,0,3,﹣1,x,2,3的平均数是1,∴[1+0+3+(﹣1)+x+2+3]÷7=1,解得x=﹣1,∴这组数据按照从小到大排列是:﹣1,﹣1,0,1,2,3,3,∴这组数据的中位数是1,故选:B.2.解:因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=3,由表格知数据3出现了7次,次数最多,所以众数为3.故选:A.3.解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:B.4.解:这组数据的平均数是:(49+20+20+25+31+40+46+20+44+25)÷10=32(岁),这组数据出现最多的数是20,所以这组数据的众数是20岁;把这些数按从小到大的顺序排列为:20,20,20,25,25,31,40,44,46,49,则这组数据的中位数是:(25+31)÷2=28(岁).故选:B.5.解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数.故选:C.6.解:两年后的同一批学生的年龄均增加2岁,其年龄的波动幅度不变,所以平均年龄为15岁,方差不变,故选:B.7.解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S2=[(2﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(7﹣4)2]=3.2.故选:C.8.解:在方差的计算公式中,n代表容量,代表平均数.故选:D.9.解:根据题意知,数据a1﹣6,a2﹣6,a3﹣6,a4﹣6,a5﹣6是将数据a1,a2,a3,a4,a5分别减去6所得,所以两组数据的波动幅度相同,∴S1=S2,故答案为:=.10.解:∵a,b,c,d的平均数是3,∴a+b+c+d=12,∴[(2a﹣1)+(2b﹣1)+(2c﹣1)+(2d﹣1)]÷4=(2a﹣1+2b﹣1+2c﹣1+2d﹣1)÷4=[2(a+b+c+d)﹣4]×=﹣1=﹣1=6﹣1=5,故答案为:5.11.解:∵数据x1,x2,x3的平均数是15,∴数据2x1﹣4,2x2﹣4,2x3﹣4的平均数是2×15﹣4=26;故答案为:26.12.解:∵0.60>0.56>0.50>0.45,∴丁的方差最小,∴成绩最稳定的是丁,故答案为:丁.13.解:∵数据1,1,x,2,4,5的平均数是3,∴=3,解得x=5,所以这组数据为1,1,2,4,5,5,则这组数据的中位数为=3,故答案为:3.14.解:∵数据4,7,x,6,9众数是9,∴x=9,∴这组数据的平均数是(4+7+9+6+9)÷5=7;故答案为:7.15.解:设小明第5次跳绳成绩是x次数/分钟,根据题意得,(180+178+180+177+x)=180,解得,x=185.故答案为:185.16.解:平均数=,方差==2.5,故答案为:2.517.解:捐款的平均数为×(5×4+10×5+15×10+20×7+25×8+30×6)=18.5(元),故答案为:18.5.18.解:这组数据中98出现次数最多,有4次,所以这组数据的众数为98分,由于一共有10个数据,其中位数是第5、6个数据的平均数,所以中位数为=97.5(分),∵这组数据的平均数为=97(分),方差为×[(94﹣97)2+2×(95﹣97)2+2×(97﹣97)2+4×(98﹣97)2+(100﹣97)2]=3,故答案为:97.5分、98分、3.19.解:∵一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,∴(2+5+x+y+2x+11)=(x+y)=7,解得y=9,x=5,∴x﹣y=5﹣9=﹣4,故答案为﹣4.20.解:根据题意知=a,解得a=6,所以这组数据为5、8、6、7、4,则这组数据的方差为×[(5﹣6)2+(8﹣6)2+(6﹣6)2+(7﹣6)2+(4﹣6)2]=2,故答案为:2.21.解:3种盒饭的价格平均数是6×25%+8×15%+10×60%=8.7(元),故答案为:8.7.22.解:∵共有22个数据,其中位数是第11、12个数据的平均数,而第11、12个数据分别为8环、8环,∴射中环数的中位数为=8(环),∵这组数据中8环次数最多,∴众数为8环,故答案为:8环,8环.23.解:(1)甲品种橙子测评成绩出现次数最多的是91分,所以众数是91,即m=91,将乙品种橙子的测评成绩从小到大排列处在中间位置的一个数是90,因此中位数是90,即n=90,答:m=91,n=90;(2)由甲、乙两种橙子的测评成绩的大小波动情况,直观可得s12<s22,故答案为:<;(3)甲品种较好,理由为:甲品种橙子的中位数、众数均比乙品种的高.故答案为:甲,甲品种橙子的中位数、众数均比乙品种的高.24.解:(1)李华成绩的方差为×[(86﹣84)2+2×(85﹣84)2+(80﹣84)2]=5.5,刘强成绩的中位数为=85.5,补全表格如下:姓名平均分中位数众数方差李华848585 5.5刘强8385.58722.8故答案为:5.5、85.5;(2)李华的数学素养更好,从平均数看,李华的平均分高于刘强,所以李华的平均成绩更好;从方差看,李华的方差小于刘强,所以李华的成绩更加稳定(答案不唯一,合理均可);(3)李华的最终成绩为86×30%+85×40%+80×20%+85×10%=84.3(分),刘强的最终成绩为74×30%+87×40%+87×20%+84×10%=82.8(分).25.解:(1)由图知,九(1)班成绩为80、80、80、90、100,九(2)班成绩为70、80、85、95、100,所以九(1)班成绩的众数为80分,九(2)班成绩的中位数为85分;(2)九(1)班成绩的平均数为=86(分),九(2)班成绩的平均数为=86(分),∴九(1)班成绩的方差为×[3×(80﹣86)2+(90﹣86)2+(100﹣86)2]=64,九(2)班成绩的方差为×[(70﹣86)2+(80﹣86)2+(85﹣86)2+(95﹣86)2+(100﹣86)2]=114,∴九(1)班成绩较为整齐.26.解:(1)甲品牌销售数量从小到大排列为:9、9、10、10、10、12,所以甲品牌销售数量的平均数为=10(台),众数为10台,乙品牌销售数量从小到大排列为7、7、10、11、12、13,所以乙品牌销售数量的中位数为=10.5(台),补全表格如下:平均数中位数众数甲101010乙1010.57故答案为:10、10、10.5;(2)建议商家可多采购甲品牌冰箱,∵甲品牌冰箱销量的方差=×[(9﹣10)2×2+(10﹣10)2×3+(12﹣10)2]=1,S乙2=,∴<S乙2,∴甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱.27.解:(1)甲班成绩出现次数最多的是93,所以甲班成绩的众数a=93,方差b=×[(89﹣95)2+3×(93﹣95)2+(95﹣95)2+2×(96﹣95)2+2×(98﹣95)2+(99﹣95)2]=8.4,乙班成绩重新排列为:88,92,93,93,93,95,98,98,100,100;所以乙班成绩的中位数c==94,故答案为:93、8.4、94;(2)∵甲班的方差是8.4,乙班的方差是12,甲的方差小于乙的方差,∵甲班代表队成绩稳定;∵甲班的中位数是95,乙班的中位数是94,∴甲班的高分人数多于乙班的平均数,∴综上甲班代表队成绩好.28.解:(1)小华的平均成绩为=80,众数为80,小红的成绩重新排列为60、60、60、80、80、90、90、90、90、100,所以小红成绩的中位数为=85,补全表格如下:姓名平均成绩中位数众数小华808080小红808590(2)小华的方差为×[(60﹣80)2+2×(70﹣80)2+4×(80﹣80)2+2×(90﹣80)2+(100﹣80)2]=120,∵120<200,∴小华成绩稳定。

八年级数学下册《第二十章 数据的分析》同步练习题含答案(人教版)

八年级数学下册《第二十章 数据的分析》同步练习题含答案(人教版)

八年级数学下册《第二十章 数据的分析》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点一、平均数1、平均数的概念(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x nx +++= 叫做这n 个数的平均数,x 读作“x 拔”。

(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次…k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x kk ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。

2、平均数的计算方法 (1)定义法当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x nx +++= (2)加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x kk ++=2211,其中n f f f k =++ 21。

(3)新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。

其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11'与a x x -=22'…ax x n n -=')'''(1'21n x x x nx +++=是新数据的平均数(通常把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据)。

二、众数、中位数 1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数。

2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

八年级数学下册第二十章数据的分析重点知识归纳(带答案)

八年级数学下册第二十章数据的分析重点知识归纳(带答案)

八年级数学下册第二十章数据的分析重点知识归纳单选题1、数据10,3,a,7,5的平均数是6,则a等于().A.3B.4C.5D.6答案:C分析:利用平均数的计算公式进行计算即可.=6,解得:a=5;解:由题意得:10+3+a+7+55故选C.小提示:本题考查平均数.熟练掌握平均数的计算方法:数据总和÷数据个数是解题的关键.2、某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()答案:D分析:先根据数据的总个数及中位数得出x=3、y=2,再利用众数和方差的定义求解可得.∵共有10个数据,∴x+y=5,又该队队员年龄的中位数为21.5,即2.15=21+22,2∴x=3、y=2,=22,则这组数据的众数为21,平均数为19+20+21×3+22×2+24×2+2610×[(19﹣22)2+(20﹣22)2+3×(21﹣22)2+2×(22﹣22)2+2×(24﹣22)2+(26﹣22)2]=4,所以方差为110故选D.小提示:本题主要考查中位数、众数、方差,熟练掌握方差的计算公式、根据中位数的定义得出x、y的值是解题的关键.3、一组数据40,37,x,64的平均数是53,则x的值是()A.67B.69C.71D.72答案:C分析:根据求平均数公式即得出关于x的等式,解出x即可.根据题意可知40+37+x+644=53,解得:x=71.故选C.小提示:本题考查已知一组数据的平均数,求未知数据的值.掌握求平均数的公式是解题关键.4、甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x甲,x乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.x甲=x乙,s甲2>s乙2B.x甲=x乙,s甲2<s乙2C.x甲>x乙,s甲2>s乙2D.x甲<x乙,s甲2<s乙2答案:A分析:分别计算平均数和方差后比较即可得到答案.解:(1)x甲=110(8×4+9×2+10×4)=9;x 乙=110(8×3+9×4+10×3)=9;s甲2=110[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s乙2=110[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7;∴x甲=x乙,s甲2>s乙2,故选:A.小提示:本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、五名同学捐款数分别是5,3,6,5,10(单位:元),捐10元的同学后来又追加了10元.追加后的5个数据与之前的5个数据相比,集中趋势相同的是()A.只有平均数B.只有中位数C.只有众数D.中位数和众数答案:D分析:分别计算前后数据的平均数、中位数、众数,比较即可得出答案.(5+3+6+5+10)=5.8;解:追加前的平均数为:15从小到大排列为3,5,5,6,10,则中位数为5;5出现次数最多,众数为5;追加后的平均数为:1(5+3+6+5+20)=7.8;5从小到大排列为3,5,5,6,20,则中位数为5;5出现次数最多,众数为5;综上,中位数和众数都没有改变,故选:D.小提示:本题为统计题,考查了平均数、众数与中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数据,注意众数可以不只一个.6、小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是()A.5,10B.5,9C.6,8D.7,8答案:C分析:先求出已知数组的中位数和众数,再根据中位数和众数的定义逐项判断即可.数列5,5,6,7,8,9,10的众数是5,中位数是7,去掉两个数后中位数和众数保持不变,据此逐项判断:A项,去掉5之后,数列的众数不再是5,故A项错误;B项,去掉5之后,数列的众数不再是5,故B项错误;C项,去掉6和8之后,新数列的中位数和众数依旧保持不变,故C项正确;D项,去掉7和8之后,新数列的中位数为6,发生变化,故D项错误,故选:C.小提示:本题考查了中位数和众数的知识,掌握中位数和众数的定义是解答本题的关键.7、某市在一次空气污染指数抽查中,收集到10天的数据如下:61,75,70,56,81,91,92,91,75,81,该组数据的中位数是()A.78B.81C.91D.77.3答案:A分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:将这组数据重新排列为:56、61、70、75、75、81、81、91、91、92,=78,则其中位数为75+812故选:A.小提示:本题考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8、在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x答案:A分析:根据题意,可以判断x、y、z的大小关系,从而可以解答本题.由题意可得,去掉一个最低分,平均分为y最大,去掉一个最高分,平均分为x最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y>z>x,故选:A.小提示:此题主要考查了平均数的大小判断,分别确定各种情况的平均值是解答此题的关键.9、在音乐比赛中,常采用“打分类制”,经常采用这样的办法来得到一名选手的最后成绩:将所有评委的打分组成一组数据,去掉一个最高分和一个最低分,得到一组新的数据,再计算平均分.假设评委不少于10人,则比较两组数据,一定不会发生变化的是()A.平均数B.中位数C.众数D.方差答案:B分析:去掉一个最高分和最低分后不会对数据的中间的数产生影响,即中位数.统计每位选手得分时,会去掉一个最高分和一个最低分,这样做不会对数据中间的数产生影响,即中位数故选B.小提示:本题考查了统计量的选择,解题的关键在于理解这些统计量的意义.10、某班级共有41人,在一次体质测试中,有1人未参加集体测试,老师对集体测试的成绩按40人进行了统计,得到测试成绩分数的平均数是88,中位数是85.缺席集体测试的同学后面进行了补测,成绩为88分,关于该班级41人的体质测试成绩,下列说法正确的是()A.平均数不变,中位数变大B.平均数不变,中位数无法确定C.平均数变大,中位数变大D.平均数不变,中位数变小答案:B分析:平均数是指在一组数据中所有数据之和再除以数据的个数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,依此计算即可求解.解:∵缺席集体测试的同学的成绩和其他40人的平均数相同,都是88分,∴该班41人的测试成绩的平均分为88分不变,中位数是从小到大第21个人的成绩,原来是第20个和第21个人成绩的平均数,中位数可能不变,可能变大,故中位数无法确定.故选:B.小提示:本题考查中位数,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.填空题11、如图为某校男子足球队的年龄分布条形图,这些队员年龄的平均数为____,中位数为____.答案:15.5 15分析:根据条形分布图的数据求得平均数,将数据从小到大排列,按照中位数的定义即可找到中位数.解:这些队员年龄的平均数=13×2+14×6+15×8+16×3+17×2+18×1=15.52+6+8+3++1这些队员年龄的中位数:共20人,第10和11两位数的平均数是中位数,∴中位数为15小提示:本题考查了条形统计图,平均数,中位数,读懂统计图是解题的关键.12、东门某商场试销一种新款衬衫,一周内销售情况如下表所示:________.(填“平均数”或“中位数”或“众数”)答案:众数分析:根据众数的概念进行求解即可;解:对商场经理来说,知道哪一种型号的销售量最多,是最有意义的;∴对商场经理来说最有意义的是众数;所以答案是:众数.小提示:本题主要考查众数的概念,掌握众数的概念是解题的关键.13、如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG ,则DG 的长为__________.答案:√192分析:连接DE ,根据题意可得ΔDEG 是直角三角形,然后根据勾股定理即可求解DG 的长.解:连接DE ,∵D 、E 分别是AB 、BC 的中点,∴DE ∥AC ,DE=12AC .∵ΔABC 是等边三角形,且BC=4,∴∠DEB=60°,DE=2.∵EF ⊥AC ,∠C=60°,EC=2,∴∠FEC=30°,EF=√3.∴∠DEG=180°-60°-30°=90°.∵G 是EF 的中点,∴EG=√32.在RtΔDEG 中,DG=√DE 2+EG 2=√22+(√32)2=√192. 故答案为√192. 小提示:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.14、如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳?________(填“甲”或“乙”)答案:甲分析:先分别求出甲乙的平均数,再求出甲乙的方差,由方差越小成绩越稳定做出判断即可.=(7+6+9+6+7)÷5=7(环),解:x̅甲x̅=(5+9+6+7+8)÷5=7(环),乙=[(7﹣7)2+(6﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2]÷5=1.2,s2甲s2=[(5﹣7)2+(9﹣7)2+(6﹣7)2+(7﹣7)2+(8﹣7)2]÷5=2,乙∵1.2<2,∴甲的成绩较为稳定,所以答案是:甲.小提示:本题考查平均数、方差、折线统计图,会求一组数据的平均数、方差,会根据方差判断一组数据的稳定性是解答的关键.15、在一组数据1, 0, 4, 5, 8中插入一个数据x,使该组数据中位数为3,则插入数据x的值为________.答案:2分析:根据中位数的定义得到数据-1,0,4,5,8中插入一个数据x,共有6个数,最中间的数只能为x和4,然后根据计算它们的中位数为3求出x.解:∵数据-1,0,4,5,8中插入一个数据x,∴数据共有6个数,而4为中间的一个数,∵该组数据的中位数是3,∴x+4=3,2解得x=2.所以答案是:2.小提示:本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解答题16、绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x(单位:万元).销售部规定:当x<16时,为“不称职”,当16≤x<20时为“基本称职”,当20≤x<25时为“称职”,当x≥25时为“优秀”.根据以上信息,解答下列问题:(1)补全折线统计图和扇形统计图;(2)求所有“称职”和“优秀”的销售员销售额的中位数和众数;(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.答案:(1)补全统计图如图见解析;(2)“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.分析:(1)根据称职的人数及其所占百分比求得总人数,据此求得不称职、基本称职和优秀的百分比,再求出优秀的总人数,从而得出销售 26 万元的人数,据此即可补全图形.(2)根据中位数和众数的定义求解可得;(3)根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据.(1)依题可得:“不称职”人数为:2+2=4(人),“基本称职”人数为:2+3+3+2=10(人),“称职”人数为:4+5+4+3+4=20(人),∴总人数为:20÷50%=40(人),∴不称职”百分比:a=4÷40=10%,“基本称职”百分比:b=10÷40=25%,“优秀”百分比:d=1-10%-25%-50%=15%,∴“优秀”人数为:40×15%=6(人),∴得26分的人数为:6-2-1-1=2(人),补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,“优秀”25万2人,26万2人,27万1人,28万1人;“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.小提示:考查频数分布直方图、扇形统计图、中位数、众数等知识,解题的关键是灵活运用所学知识解决问题.17、甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如图所示的尚不完整的统计图表(其中图①中“10分”所在扇形圆心角为90°).甲校成绩统计表人数11 0 8(1)在图1中,求“7分”所在扇形的圆心角度数:并将2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请求出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;(3)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?答案:(1)144°,图见解析(2)甲的平均数为8.3分,中位数为7分;乙的平均数为8.3分,中位数为8分;乙校成绩较好;(3)甲校分析:(1)求出“7分”占的百分比,乘以360即可得到结果,根据“7分”的人数除以占的百分比求出总人数,确定出“8分”的人数,补全条形统计图即可;(2)分别求出甲乙两校的平均分、中位数,比较即可得到结果;(3)利用两校满分人数,比较即可得到结果.(1)解:根据题意得:“7分”所在扇形的圆心角等于360°×(1−25%−20%−15%)=144°;8÷40%=20(人),则得“8分”的人数为20×15%=3(人),补全条形统计图,如图所示:(2)×(7×11+8×0+9×1+10×8)=8.3(分),中位数为7分;解:甲校:平均分为120乙校:平均分为:1×(7×8+8×3+9×4+10×5)=8.3(分),中位数为8分,20平均数相同,乙校中位数较大,故乙校成绩较好;(3)解:因为甲校有8人满分,而乙校有5人满分,应该选择甲校.小提示:本题考查了条形统计图,扇形统计图,以及中位数,平均数,弄清题意是解本题的关键.18、2021年,全世界自然灾害形势严峻,洪水、地震等不仅给人们的财产带来巨大损失,更是威胁着人们的生命安全.保护生态环境即是保护民生,功在当代,利在千秋;做好综合环境治理,协调人与自然的关系,以求人和自然和谐相处迫在眉急.近日,某校组织了一场关于防自然灾害的知识讲座,并在讲座后进行了满分为100分的“防自然灾害知识测评”,为了了解学生的测评情况,该校在七、八年级中分别抽取了50名学生的分数进行整理分析,已知分数x均为整数,且分为A,B,C,D,E五个等级,分别是A:90≤x≤100;B:80≤x<90;C:70≤x<80;D:60≤x<70;E:0≤x<60.并给出了部分信息:【一】八年级D等级的学生人数占八年级抽取人数的20% ;七年级C等级中最低的10个分数分别为:70,70,72,73,73,73,74,74,75,75;【二】两个年级学生防自然灾害知识测评分数统计图:【三】两个年级学生防自然灾害知识测评分数样本数据的平均数、中位数、众数如下:= =(2)根据以上数据,你认为在此次测评中,哪一个年级的学生对防自然灾害知识掌握较好?请说明理由(说明一条即可).(3)若分数不低于90分表示该生对防自然灾害知识测评等级为优秀,且该校七年级有1000人,八年级有1200人,请估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有多少人?答案:(1)74,32,补全条形统计图见解析(2)八年级的学生对防自然灾害知识掌握较好,理由见解析(3)估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有400人分析:(1)根据题意和统计图中的数据、表格中的数据可以分别得到a、m的值,根据八年级D等级的学生人数占七年级抽取人数的20%求出八年级D等级的学生人数,再求出E等级的学生人数,即可补全条形统计图;(2)根据表格中的数据,由中位数和众数的大小判断即可;(3)分别求出该校七、八年级不低于90分的人数,再相加即可求解.(1)解:根据题意,由七年级学生防自然灾害知识测评分统计图可知,(1−16%−16%−4%)÷2=32%,∴m=32,七年级学生中,测评成绩A级有50×16%=8人,B级有50×16%=8人,C级有50×32%=16人,D级有50×32%=16人,E级有50×4%=2人,测评成绩按从小到大排列,其中第25、26位为C级中74、74两个成绩,可知七年级测评成绩中位数为a=74+74=74,2所以答案是:74,32;八年级D等级的学生人数为:50×20%=10人,E等级的学生人数为:50﹣10﹣12﹣16﹣10=2人,故补全条形统计图如图:(2)解:八年级的学生对防自然灾害知识掌握较好.理由如下:虽然七、八年级测评成绩的平均数相同,但是八年级测评成绩的中位数和众数较高,因此八年级的测评成绩较好;=400(人)(3)解:1000×16%+1200×1050答:估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有400人.小提示:本题考查用样本估计总体、统计图、中位数、众数等知识,解答本题的关键是明确题意,灵活运用所学知识解答问题.。

八年级下册数学期末复习《数据的分析》作业

八年级下册数学期末复习《数据的分析》作业

第二十章数据的分析作业卷一、选择题1、在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是()A、方差B、平均数C、中位数D、众数2、下列选项中,能够反映一组数据离散程度的统计量是()A、平均数B、中位数C、众数D、方差3、某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的()A、最高分B、中位数C、极差D、平均数4、要调查某校八年级学生周末的阅读课外书籍的时间,选取调查对象最合适的是()A、选取该校一个班级的学生B、选取该校50名学生C、随机选取该校50名八年级男生D、随机选取该校50名八年级学生5、图中是交警在一个路口统计的某个时段往来车辆的车速情况(单位:千米/小时),则大多数车速和中间车速分别为()A.52,52 B.52,52.5 C.53,52.5 D.53,526、为了考察甲、乙两种小麦的长势,分别从中抽取10株麦苗,测得苗高如下:(单位:cm)甲12 13 14 15 10 16 13 11 15 11乙11 16 17 14 13 19 6 8 10 16下列说法中正确的是()A.甲种小麦长势比乙种小麦整齐B.乙种小麦长势比甲种小麦整齐C.两种小麦长势一样整齐D.无法判断哪种小麦长势更整齐二、填空题7、为了检查一批零件的质量,从中抽取10件,测得它们的长度如下(单位:毫米)22.36 22.35 22.33 22.35 22.3722.34 22.38 22.36 22.32 22.35根据以上数据,计算这批零件的平均长度8、在青年歌手电视大奖赛中,采用10位评委现场打分,每位选手的最后得分为去掉一个最低分,去掉一个最高分后的平均分,已知10位评委给某位歌手的打分分别是:9.5 9.5 9.3 9.8 9.48.8 9.6 9.5 9.2 9.6则这位歌手的最后得分为9、为了解某一路口的汽车流量,调查了10天中同一时段通过该路口的汽车数量(单位:辆),结果如下:183 209 195 178 204 215 191 208 167 197在该时段中,平均约有辆汽车通过这个路口。

初二数学八下数据的分析知识点总结和常考题型练习题

初二数学八下数据的分析知识点总结和常考题型练习题

初二数学八下数据的分析知识点总结和常考题型练习题TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】数据的分析练习一、选择题1.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7 B.7, C.,7 D.,72.在一次青年歌手大奖赛上,七位评委为某位歌手打出的分数如下:,,,,,,,去掉一个最高分和一个最低分后,所剩数据的平均数是()A. B. C. D.3.今年我国发现的首例甲型H1N1流感确诊病例在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需了解这位病人7天体温的()A.众数 B.方差 C.平均数 D.频数4.某公司员工的月工资如下表,则平均数、众数、中位数分别为()A.2200元 1800元 1600元 B.2000元 1600元 1800元C.2200元 1600元 1800元 D.1600元 1800元 1900元7、为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别为().A、 26B、26C、26 26D、8.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小3 4时)人数 2 2 4 2A中位数是4,平均数是B众数是4,平均数是..C .中位数是4,平均数是D.众数是2,平均数是7.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为201817101510,,,,,.对于这组数据,下列说法错误的是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是344 8. 为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是50 B.众数是51 C.方差是42 D.极差是219. 某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩二、填空题1、某公司员工的月工资统计如下:则该公司员工月工资的平均数为、中位数为和众数为.2、某超市招聘收银员一名,对三名申请人进行了三项素质测试.下面是三名候选人的素质测试成绩:公司根据实际需要,对计算机、商品知识、语言三项测试成绩分别赋予权重4、3、2,这三人中将被录用.3、已知一组数据-3,-2,1,3,6,x的中位数为1,则其方差为 .4、体育老师对甲.乙两名同学分别进行了5次立定跳远测试,经计算这两名同学成绩的平均数相同,甲同学成绩的方差是,乙同学的成绩(单位:m)如下:,那么这两名同学立定跳远成绩比较稳定的是____同学.5、市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛。

初二数学下册:数据的分析经典题+答案

初二数学下册:数据的分析经典题+答案

初二数学下册:数据的分析经典题+答案一.选择题1.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是(D)A.平均数和众数B.众数和极差C.众数和方差D.中位数和极差2.在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的(D)A.众数B.方差C.平均数D.中位数3.下列特征量不能反映一组数据集中趋势的是(C)A.众数B.中位数C.方差D.平均数4.表为甲班55人某次数学小考成绩的统计结果,关于甲班男、女生此次小考成绩的统计量,下列叙述何者正确?(A)A.男生成绩的四分位距大于女生成绩的四分位距B.男生成绩的四分位距小于女生成绩的四分位距C.男生成绩的平均数大于女生成绩的平均数D.男生成绩的平均数小于女生成绩的平均数5.刻画一组数据波动大小的统计量是(B)A.平均数B.方差C.众数D.中位数6.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的(B)A.平均数B.中位数C.众数D.方差7.小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如学校附近的商店经理根据表中决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用了哪个统计知识(A)A.众数B.中位数C.平均数D.方差如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是(B)A.平均数B.中位数C.众数D.方差9.以下是期中考试后,班里两位同学的对话:小晖:我们小组成绩是85分的人最多;小聪:我们小组7位同学成绩排在最中间的恰好也是85分以上两位同学的对话反映出的统计量是(D)A.众数和方差B.平均数和中位数C.众数和平均数D.众数和中位数解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选.10.下列说法不正确的是(A)A.数据0、1、2、3、4、5的平均数是3B.选举中,人们通常最关心的数据是众数C.数据3、5、4、1、2的中位数是3D.甲、乙两组数据的平均数相同,方差分别是S甲²=0.1,S乙²=0.11,则甲组数据比乙组数据更稳定该店经理如果想要了解哪种型号女式T恤销售量最大,那么他应关注的统计量是众数.14.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件,对它们的使用寿命进行跟踪调查,结果如下:(单位:年)【甲:4,6,6,6,8,9,12,13.乙:3,3,4,7,9,10,11,12.丙:3,4,5,6,8,8,8,10.三个厂家在广告中都称该产品的使用寿命是8年.请根据结果判断,厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲:平均数,乙:中位数,丙:众数.三.解答题(2)根据如表,请选择一个合适的统计量作为选择标准,说明哪一个你认为这个销售记录对老板管理鞋店生意有用吗?如果你认为有用,请说明你的理由,并请你帮这个老板策划一下如何利用这些信息?】解:这个销售记录对老板有用,∵众数体现数据的最集中的一点,这样可以确定进货的数量,∴鞋店老板最喜欢的是众数.∴建议老板进货时多进41号的男鞋.18.在八次数学测试中,甲、乙两人的成绩如下:甲:89,93,88,91,94,90,88,87乙:92,90,85,93,95,86,87,92请你从下列角度比较两人成绩的情况,并说明理由:(1)分别计算两人的极差;并说明谁的成绩变化范围大;(2)根据平均数来判断两人的成绩谁优谁次;(3)根据众数来判断两人的成绩谁优谁次;解:(1)甲的极差为:94﹣87=7分乙的极差为:95﹣85=10∴乙的变化范围大;∴乙的变化范围大.89,93,88,91,94,90,88,87乙:92,90,85,93,95,86,87,92(2)甲的平均数为:(89+93+88+91+94+90+88+87)÷8=90,乙的平均数为:(92+90+85+93+95+86+87+92)÷8=90,∴两人的成绩相当;(3)甲的众数为88,乙的众数为92,∴从众数的角度看乙的成绩稍好;。

(必考题)初中八年级数学下册第二十章《数据的分析》经典复习题(含答案解析)

(必考题)初中八年级数学下册第二十章《数据的分析》经典复习题(含答案解析)

一、选择题1.某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为( ) A .85B .90C .92D .892.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是( ) A .中位数是55B .众数是60C .平均数是54D .方差是293.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( )A .甲B .乙C .丙D .丁4.已知数据12,,,n x x x 的平均数是2,方差是0.1,则1242,42,,42n x x x ---的平均数和标准差分别为( ) A .2,1.6B .210C .6,0.4D .2105.一组数据,6、4、a 、3、2的平均数是5,这组数据的方差为( ) A .8B .5C .6D .36.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( ) A .50分B .82分C .84分D .86分7.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( ) A .8.5,9 B .8.5,8 C .8,8 D .8,9 8.一组数据3,4,6,8,8,9的中位数和众数分别是( )A .7,8B .7,8,5C .5,8D .7,5,79.某校10名学生参加某项比赛成绩统计如图所示。

对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .参赛学生最高成绩与最低成绩之差是1510.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲 乙 丙 丁平均数x (厘米) 375 350 375 350 方差2s12.5 13.5 2.45.4要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是( ) A .甲B .乙C .丙D .丁11.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是( ) A .87,87B .87,85C .83,87D .83,8512.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:C ):-6,-4,-2,0,-2,2.关于这组数据,下列结论不正确的是( ) A .平均数是-2B .中位数是-2C .众数是-2D .方差是513.随着时代的进步,人们对 2.5PM (空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中 2.5PM 的值1y (3/ug m )随时间t (h )的变化如图所示,设2y 表示0时到t 时 2.5PM 的值的极差(即0时到t 时 2.5PM 的最大值与最小值的差),则2y 与t的函数关系大致是( )A.B.C.D.14.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37B.40,39C.39,40D.40,38 15.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分8177808280则被遮盖的两个数据依次是()A.80,80B.81,80C.80,2D.81,2二、填空题16.将一组数据中的每一数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数_______________.17.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z-2所示,那么三人中成绩最稳定的是________.18.在一次数学测验中,甲组4名同学的平均成绩是70分,乙组6名同学的平均成绩是80分,则这10名同学的平均成绩是______________.19.已知一个样本的方差s2=113[(x1﹣8)2+(x2﹣8)2+…+(x13﹣8)2],那么这个样本的平均数是_____,样本中数据的个数是_____.20.一组数据:1,2,x,y,4,6,其中x<y,中位数是2.5,众数是2.则这组数据的平均数是______;方差是______.21.某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是_______和_______.22.已知一组数据5,10,15,x ,9的平均数是8,那么这组数据的中位数是______. 23.根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图中所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐______.24.一组数据2、3、5、6、x 的平均数正好也是这组数据的中位数,那么正整数x 为_____.25.已知一组数据:3,3,4,5,5,则它的方差为____________26.已知一组数据123x x x ,,,平均数和方差分别是322,,那么另一组数据1232x 12x 12x 1---,,的平均数和方差分别是______.三、解答题27.甲、乙两名同学本学期的五次数学测试成绩如下(单位:分):第1次 第2次 第3次 第4次 第5次甲 86 83 90 80 86 乙 7882848992中位数 平均数 方差甲 ▲ 85 ▲ 乙 848524.828.某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100; 乙组:50,60,60,60,70,70,70,70,80,90. (1)以上成绩统计分析表如表:组别平均分中位数方差合格率优秀率甲组68a37630%乙组b c90%则表中a=,b=,c=.(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.29.为了了解某学校八年级学生每周平均体育锻炼时间的情况,随机抽查了该年级的部分学生,对其每周锻炼时间进行统计,根据统计数据绘制成图1和图2两个不完整的统计图.请你根据统计图提供的信息,回答下列问题:(1)本次共抽取了学生人,并请将图1条形统计图补充完整;(2)这组数据的中位数是,求出这组数据的平均数;(3)若八年级有学生1800人,请你估计体育锻炼时间为3小时的学生有多少人?30.为响应我市创建“全国文明城市”的号召,我区某校举办了一次“秀美巴中,绿色家园”主题演讲比赛,满分10分,得分均为整数,成绩大于等于6分为合格,大于等于9分为优秀,这次演讲比赛中甲、乙两组学生(各10名学生)成绩分布的条形统计图如下图:(1)补充完成下列的成绩统计分析表:组别平均分中位数众数方差合格率优秀率甲 6.76 3.4190%20%乙7.17.5 1.6980%10%可知,小王是________组的学生;(填“甲”或“乙”)(3)结合两个小组的成绩分析,你觉得哪个组的成绩更好一些?说说你的理由.。

八年级数学下册第二十章数据的分析知识总结例题(带答案)

八年级数学下册第二十章数据的分析知识总结例题(带答案)

八年级数学下册第二十章数据的分析知识总结例题单选题1、某汽车评测机构对市面上多款新能源汽车的0~100km/h的加速时间和满电续航里程进行了性能评测,评测结果绘制如下,每个点都对应一款新能源汽车的评测数据.已知0~100km/h的加速时间的中位数是ms,满电续航里程的中位数是nkm,相应的直线将平面分成了①、②、③、④四个区域(直线不属于任何区域).欲将最新上市的两款新能源汽车的评测数据对应的点绘制到平面内,若以上两组数据的中位数均保持不变,则这两个点可能分别落在()A.区域①、②B.区域①、③C.区域①、④D.区域③、④答案:B分析:根据中位数的性质即可作答.在添加了两款新能源汽车的测评数据之后,0~100km/h的加速时间的中位数m s,满电续航里程的中位数n km,这两组中位数的值不变,即可知这两款新能源汽车的0~100km/h的加速时间的数值分别处于直线m的上方和下方,满电续航里程的数值分别位于直线n的左侧和右侧,据此逐项判断即可:A项,两款车的0~100km/h的加速时间均在直线m下方,不符合要求,故A项错误;B项,可知这两款新能源汽车的0~100km/h的加速时间的数值分别处于直线m的上方和下方,满电续航里程的数值分别位于直线n的左侧和右侧,符合要求;C项,两款车的满电续航里程的数值均在直线n的左侧,不符合要求,故C项错误;D项,两款车的0~100km/h的加速时间均在直线m上方,不符合要求,故D项错误;故选:B.小提示:本题考查了中位数的概念,根据中位数的值不变可知新添加的一组数据分别处在中位数的左右两侧或刚好都等于该中位数,理解这一点是解答本题的关键.2、一组数据x、0、1、-2、3的平均数是1,则x的值是()A.3B.1C.2.5D.0答案:A分析:根据题意,得x+0+1-2+3=5,求得x的值即可.∵x、0、1、-2、3的平均数是1,∴x+0+1-2+3=5,解得x=3,故选A.,正确进行公式变形计算是解题的关键.小提示:本题考查了算术平均数的定义即x̅=x1+x2+x3+⋯+x n−1+x nn3、生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的m天数据,整理后绘制成统计表进行分析.表中3≤x4组的频率a满足0.20≤a≤0.30.下面有四个推断:①表中m的值为20;②表中b的值可以为7;③这m天的日均可回收物回收量的中位数在4≤x<5组;④这m天的日均可回收物回收量的平均数不低于3.所有合理推断的序号是()A.①②B.①③C.②③④D.①③④答案:D分析:①根据数据总和=频数÷频率,列式计算即可得出m的值;②根据3≤x<4的频率a满足0.20≤a≤0.30,可求出该范围的频数,进一步得出b的值的范围,从而求解;③根据中位数的定义即可求解;④根据加权平均数的计算公式即可求解.解:①日均可回收物回收量(千吨)为1≤x<2时,频数为1,频率为0.05,所以总数m=1÷0.05=20,推断合理;②20×0.2=4,20×0.3=6,1+2+6+3=12,故表中b的值可以为7,是不合理的推断;③1+2+6=9,故这m天的日均可回收物回收量的中位数在4≤x<5组,是合理推断;④(1+5)÷2=3,0.05+0.10=0.15,这m天的日均可回收物回收量的平均数不低于3,是合理推断.故选:D小提示:本题考查频数(率)分布表,从表中获取数量及数量之间的关系是解题问题的关键.4、河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7%B.众数是15.3%C.平均数是15.98%D.方差是0答案:B分析:直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.详解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;C、15D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选B.点睛:此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.5、某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是()A.最高成绩是9.4环B.平均成绩是9环C.这组成绩的众数是9环D.这组成绩的方差是8.7答案:D分析:根据统计图即可判断选项A,根据统计图可求出平均成绩,即可判断选项B,根据统计图即可判断选项C,根据所给数据进行计算即可判断选项D.解:A、由统计图得,最高成绩是9.4环,选项说法正确,不符合题意;B、平均成绩:1×(9.4+8.4+9.2+9.2+8.8+9+8.6+9+9+9.4)=9,选项说法正确,符合题意;10C、由统计图得,9出现了3次,出现的次数最多,选项说法正确,不符合题意;×[(9.4−9)2+(8.4−9)2+(9.2−9)2+(9.2−9)2+(8.8−9)2+(9−9)2+(8.6−9)2+D、方差:110(9−9)2+(9−9)2+(9.4−9)2]=0.096,选项说法错误,符合题意;故选D.小提示:本题考查了平均数,众数,方差,解题的关键是理解题意掌握平均数,众数和方差的计算方法.6、某班级共有41人,在一次体质测试中,有1人未参加集体测试,老师对集体测试的成绩按40人进行了统计,得到测试成绩分数的平均数是88,中位数是85.缺席集体测试的同学后面进行了补测,成绩为88分,关于该班级41人的体质测试成绩,下列说法正确的是()A.平均数不变,中位数变大B.平均数不变,中位数无法确定C.平均数变大,中位数变大D.平均数不变,中位数变小答案:B分析:平均数是指在一组数据中所有数据之和再除以数据的个数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,依此计算即可求解.解:∵缺席集体测试的同学的成绩和其他40人的平均数相同,都是88分,∴该班41人的测试成绩的平均分为88分不变,中位数是从小到大第21个人的成绩,原来是第20个和第21个人成绩的平均数,中位数可能不变,可能变大,故中位数无法确定.故选:B.小提示:本题考查中位数,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7、小楠所在社会实践活动小组的同学们响应“垃圾分类,从我做起”的号召,主动到附近的7个社区宣传垃圾分类.她们记录的各社区参加活动的人数如图所示,那么这组数据的众数和中位数分别是()A.42,40B.42,38C.2,40D.2,38答案:A分析:根据众数和中位数的定义分别进行解答啊即可.解:在这一组数据中42是出现次数最多的,故众数是42 ;而将这组数据从小到大的顺序排列后,处于中间位置的那个数是40,由中位数的定义可知,这组数据的中位数是40.故选:A.小提示:本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个,正确理解众数及中位数的定义是解题的关键.8、某4S店今年1~5月新能源汽车的销量(辆数)分别如下:25,33,36,31,40,这组数据的平均数是()A.34B.33C.32.5D.31答案:B分析:根据算术平均数的计算方法进行计算即可.=33(辆),解:这组数据的平均数为:25+33+36+31+405故选:B.小提示:本题考查平均数,掌握算术平均数的计算方法是正确计算的关键.9、12名射击运动员一轮射击成绩绘制如图所示的条形统计图,则下列错误的是()A.中位数是8环B.平均数是8环C.众数是8环D.极差是4环答案:C分析:中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;对于众数可由条形统计图中出现频数最大或条形最高的数据写出;极差=最大值-最小值.解:A.由于共有12个数据,排在第6和第7的数均为8,所以中位数为8环,故本选项不合题意;B.平均数为:(6+7×4+8×2+9×4+10)÷12=8(环),故本选项不合题意;C.众数是7环和9环,故本选项符合题意;D.极差为:10-6=4(环),故本选项不合题意;故选:C.小提示:本题主要考查了确定一组数据的中位数,极差,众数以及平均数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10、为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如表,则这些被调查学生睡眠时间的众数和中位数分别是()答案:A分析:根据中位数、众数的意义求解即可.解:抽查学生的人数为:7+9+11+3=30(人),这30名学生的睡眠时间出现次数最多的是9小时,共出现11次,因此众数是9小时,将这30名学生的睡眠时间从小到大排列,处在中间位置的两个数的平均数为8+8=8,因此中位数是8小时.2故选:A.小提示:本题考查中位数、众数,理解中位数、众数的意义,掌握中位数、众数的计算方法是解决问题的关键.填空题11、东门某商场试销一种新款衬衫,一周内销售情况如下表所示:________.(填“平均数”或“中位数”或“众数”)答案:众数分析:根据众数的概念进行求解即可;解:对商场经理来说,知道哪一种型号的销售量最多,是最有意义的;∴对商场经理来说最有意义的是众数;所以答案是:众数.小提示:本题主要考查众数的概念,掌握众数的概念是解题的关键.12、数据-1,0,1的方差为_______.答案:23 分析:先求出3个数的平均数,再根据方差公式计算.解:数据-1,0,1的平均数:13(−1+0+1)=0, 方差S 2=13[(−1−0)2+(0−0)2+(1−0)2] =23,所以答案是:23. 小提示:本题考查方差的计算,方差S 2=1n [(x 1−x̅)2+(x 2−x̅)2+⋯+(x n −x̅)2],熟记方差公式是解题的关键.13、甲、乙两台机床在相同的条件下,同时生产一种直径为10mm 的滚珠.现在从中各抽取100个进行检测,结果这两台机床生产的滚珠平均直径均为10mm ,但s 甲2=0.288,s 乙2=0.024,则______机床生产这种滚珠的质量更稳定.答案:乙分析:根据甲的方差大于乙的方差,即可得出乙机床生产这种滚珠的质量更稳定.解:∵这两台机床生产的滚珠平均直径均为10mm ,S 2甲>S2乙,∴乙机床生产这种滚珠的质量更稳定.所以答案是:乙.小提示:本题主要考查方差,方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.本题考查方差的定义与意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14、某校招聘教师,规定综合成绩由笔试成绩和面试成绩构成,其中笔试占60%,面试占40%,有一名应聘者的综合成绩为84分,笔试成绩是80分,则面试成绩为______分.答案:90分析:根据综合成绩笔试占60%,面试占40%,即综合成绩等于笔试成绩乘以60%,加上面试成绩乘以40%,即可求解;解:设面试成绩为x分,根据题意知,该名老师的综合成绩为80×60%+40%⋅x=84(分)解得x=90所以答案是:90.小提示:本题考查一元一次方程实际问题和加权平均数及其计算,是中考的常考知识点,熟练掌握其计算方法是解题的关键.15、八(1)班一组女生的体重(单位:kg)分别是:35,36,38,40,42,42,45.则这组数据的众数为 _____.答案:42分析:根据众数的定义即可求得.解:在这组数据中42出现了2次,出现的次数最多,故这组数据的众数是42.所以答案是:42.小提示:本题考查了众数的定义,熟练掌握和运用众数的定义是解决本题的关键.解答题16、近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.)这天部分出行学生使用共享单车次数的中位数是,众数是,该中位数的意义是;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?答案:(1)3、3、表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次);(2)这天部分出行学生平均每人使用共享单车约2次;(3)估计这天使用共享单车次数在3次以上(含3次)的学生有765人.分析:(1)根据中位数和众数的定义进行求解即可得;(2)根据加权平均数的公式列式计算即可;(3)用总人数乘以样本中使用共享单车次数在3次以上(含3次)的学生所占比例即可得.(1)∵总人数为11+15+23+28+18+5=100,∴中位数为第50、51个数据的平均数,即中位数为3+3=3次,众数为3次,2其中中位数表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次),故答案为3、3、表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次);(2)x=0×11+1×15+2×23+3×28+4×18+5×5≈2(次),100答:这天部分出行学生平均每人使用共享单车约2次;=765(人),(3)1500×28+18+5100答:估计这天使用共享单车次数在3次以上(含3次)的学生有765人.小提示:本题考查了中位数、众数、平均数、用样本估计总体等,熟练掌握中位数、众数、平均数的定义以及求解方法是解题的关键.17、某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10 ,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).答案:(1)8.6(2)甲(3)丙分析:(1)根据平均数的定义求出丙的平均数即可求解.(2)根据方差的计算方法先算出甲、乙的方差,再进行比较即可求解.(3)按去掉一个最高分和一个最低分后分别计算出甲、乙、丙的平均分,再进行比较即可求解.(1)=8.6,解:丙的平均数:10+10+10+9+9+8+3+9+8+1010则m =8.6.(2)s 甲2=110[2×(8.6−8)2+4×(8.6−9)2+2×(8.6−7)2+2×(8.6−10)2]=1.04, s 乙2=110[4×(8.6−7)2+4×(8.6−10)2+2×(8.6−9)2]=1.84,∵s 甲2<s 乙2,∴甲、乙两位同学中,评委对甲的评价更一致,所以答案是:甲.(3)由题意得,去掉一个最高分和一个最低分后的平均分为:甲:8+8+9+7+9+9+9+108=8.625, 乙:7+7+7+9+9+10+10+108=8.625, 丙:10+10+9+9+8+9+8+108=9.125, ∵去掉一个最高分和一个最低分后丙的平均分最高,因此最优秀的是丙,所以答案是:丙.小提示:本题考查了折线统计图、中位数、方差及平均数,理解折线统计图,从图中获取信息,掌握中位数、方差及去掉一个最高分和一个最低分后的平均分的求法是解题的关键.18、如图,直角坐标系xOy 中,一次函数y =﹣12x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4).(1)求m 的值及l 2的解析式;(2)求S △AOC ﹣S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.答案:(1)m =2,l 2的解析式为y =2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12.分析:(1)先求得点C 的坐标,再运用待定系数法即可得到l 2的解析式;(2)过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =4,CE =2,再根据A (10,0),B (0,5),可得AO =10,BO =5,进而得出S △AOC ﹣S △BOC 的值;(3)分三种情况:当l 3经过点C (2,4)时,k =32;当l 2,l 3平行时,k =2;当11,l 3平行时,k =﹣12;故k 的值为32或2或﹣12.解:(1)把C (m ,4)代入一次函数y =﹣12x +5,可得 4=﹣12m +5,解得m =2,∴C (2,4),设l 2的解析式为y =ax ,则4=2a ,解得a =2,∴l 2的解析式为y =2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =4,CE =2, y =﹣12x +5,令x =0,则y =5;令y =0,则x =10,∴A (10,0),B (0,5),∴AO =10,BO =5,∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y =kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k =32; 当l 2,l 3平行时,k =2;当11,l 3平行时,k =﹣12;故k 的值为32或2或﹣12.小提示:本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.。

八年级数学下《数据的分析》练习题(可编辑修改word版)

八年级数学下《数据的分析》练习题(可编辑修改word版)

11. 平均数:八年级下数学《数据的分析》(1) 算术平均数:一组数据中,有 n 个数据 x 1,x 2, ,x n ,则它们的算术平均数为x = x 1 + x 2 + + x n .n(2) 加权平均数:若在一组数字中,x 1的权为 w 1, x 2的权为 w 2,…, x n的权为 w n,那么x = x 1w 1+ x 2w 2+ + x nw n叫做 x , x ,… x 的加权平均数。

w + w + + w1 2 n其中, w 1 、 w 2 、…、 w n 分别是 x 1 , x 2 ,… x n的权.权的理解:反映了某个数据在整个数据中的重要程度。

权的表示方法:比、百分比、频数(人数、个数、次数等)。

2. 中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数, 则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

3. 众数:一组数据中出现次数最多的数据就是这组数据的众数。

4. 极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差。

极差反映的是数据的变化范围。

平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。

(受极端值影响)中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。

众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。

这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。

(中位数,众数不受极端值影响)5. 方差: 设有 n 个数据 x 1,x 2, ,x n , 各数据与它们的平均数的差的平方分别是(x 1 - x )2,(x - x )2 ,…, (x - x )2, 我们用它们的平均数,即用S 2 = 1[(x - x )2 + (x - x )2 + + (x - x )2 ]n 12 n来衡量这组数据的波动大小,并把它叫做这组数据的方差。

最新人教版八年级数学下册第二十章 数据的分析 期末复习试题

最新人教版八年级数学下册第二十章 数据的分析 期末复习试题

人教版八年级数学下册第二十章数据的分析(fēnxī) 期末复习试题一、选择题(每小题3分,共24分)1.一组数据3,2,4,2,5的中位数和众数(zhònɡ shù)分别是(A)A.3,2 B.3,3 C.4,2 D.4,32.小明和小强同学分别统计(tǒngjì)了自己最近10次“一分钟跳绳(tiàoshéng)”的成绩,下列(xiàliè)统计量中能用来比较两人成绩稳定程度的是(C)A.平均数B.中位数C.方差D.众数3.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次.射击成绩统计如下:命中环数/环7 8 9 10甲命中相应环数的次2 2 0 1数乙命中相应环数的次1 3 1 0数A.甲比乙高B.甲、乙一样C.乙比甲高D.不能确定4.“莲城读书月”活动结束后,对八年级(3)班45人所阅读书籍数量情况的统计结果如下表所示:阅读数量1本2本3本3本以上人数/人10 18 13 4根据统计结果,阅读A.平均数 B.中位数C.众数 D.方差5.张大叔有一片果林,共有80棵果树.某日,张大叔开始采摘今年第一批成熟的果子,他随机选取1棵果树的10个果子,称得质量分别为(单位:kg):0.28,0.26,0.24,0.23,0.25,0.24,0.26,0.26,0.25,0.23.如果一棵树平均结有120个果子,以此估算,张大叔收获的这批果子的单个质量和总质量分别约为(A)A.0.25 kg,2 400 kgB.2.5 kg,2 400 kgC.0.25 kg,4 800 kgD.2.5 kg,4 800 kg6.学校(xuéxiào)举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:售价3元4元5元6元数目14本11本10本15本下列说法(shuōfǎ)A.该班级(bānjí)所售图书的总收入是226元B.在该班级所售图书(túshū)价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一组数据(shùjù)中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是27.根据下表中的信息解决问题:数据37 38 39 40 41频数8 4 5 a 1(C)A.3个 B.4个C.5个 D.6个8.已知一组数据a,b,c的平均数为5,方差为4,那么数据a-2,b-2,c-2的平均数和方差分别是(B)A.3,2 B.3,4C.5,2 D.5,4二、填空题(每小题3分,共18分)9.某校拟招聘一批优秀教师,其中某位教师笔试、试讲、面试(miàn shì)三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,试讲占40%,面试占20%,则该名教师的综合成绩为88.8分.10.一组数据(shùjù)2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是5.11.小李和小林练习射箭,射完10箭后两人的成绩(chéngjì)如图所示,通常新手的成绩不太稳定.根据图中的信息,估计这两人中的新手是小李(xiǎo lǐ).12.为了发展农业经济,致富奔小康,李伯伯家2022年养了4 000条鲤鱼,现在准备打捞出售.为了估计(gūjì)鱼塘中鲤鱼的总质量,从鱼塘中捕捞了三次进行统计,得到的数据如下表所示:鱼的条数/条鱼的总质量/千克第一次捕捞25 41第二次捕捞10 17第三次捕捞15 276__800千克.13.一组数据2,3,x,y,12中,唯一众数是12,平均数是6,这组数据的中位数是3.14.(2022·北京)小天想要计算一组数据92,90,94,86,99,85的方差s20,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5,记这组新数据的方差为s21,则s21=s20.(填“>”“=”或“<”)三、解答题(共78分)15.某专业养羊户要出售100只羊.现在市场上羊的价格为11元/kg,为了估计这100只羊能卖多少钱,该专业养羊户从中随机抽取5只羊,称得它们的质量分别为(单位:kg):26,31,32,36,37.(1)估计这100只羊中每只羊的平均质量;(2)估计这100只羊一共能卖多少钱.解:(1)15×(26+31+32+36+37)=32.4(kg).答:估计(gūjì)这100只羊中每只羊的平均质量约为32.4 kg. (2)32.4×100×11=35 640(元).答:估计(gūjì)这100只羊一共能卖约35 640元.16.某校八年级(1)班积极响应校团委的号召(hàozhào),每位同学都向“希望工程(xī wànɡ ɡōnɡ chénɡ)”捐献图书,全班40名同学共捐图书400册.特别(tèbié)值得一提的是李保、王刚两位同学在父母的支持下各捐献了90册图书.班长统计了全班捐书情况如下表(被粗心的马小虎用墨水污染了一部分):册数 4 5 6 7 8 90 人数68152(1)(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般情况,说明理由.解:(1)设捐7册图书的有x 人,捐8册图书的有y 人.由题意,得 ⎩⎨⎧4×6+5×8+6×15+7x +8y +90×2=400,6+8+15+x +y +2=40. 解得⎩⎨⎧x =6,y =3.答:捐7册图书的有6人,捐8册图书的有3人.(2)平均数是10,中位数是6,众数是6.其中平均数10不能反映该班同学捐书册数的一般情况,因为40名同学中有38名同学的捐书册数都没有达到10册,平均数主要受到捐书90册的2位同学的捐书册数的影响,故不能反映该班同学捐书册数的一般情况.17.中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据(gēnjù)上图填写下表:平均数中位数众数方差甲班8.5 8.5 8.5 0.7乙班8.5 8 10 1.6(2)好.解:从平均数看,两班平均数相同,所以(suǒyǐ)甲、乙两班的成绩一样好;从中位数看,甲班的中位数大,所以(suǒyǐ)甲班的成绩较好;从众(cónɡ zhònɡ)数看,乙班的众数大,所以乙班的成绩较好;从方差看,甲班的方差小,所以甲班的成绩更稳定.18.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:表1知识竞赛成绩分组统计表组别分数/分频数A 60≤x<70 aB 70≤x<80 10C 80≤x<90 14D 90≤x<100 18(1)本次调查一共随机(suí jī)抽取了50个参赛学生(xué sheng)的成绩; (2)表1中a =8;(3)所抽取的参赛(cān sài)学生的成绩的中位数落在的“组别”是C ;(4)请你估计,该校九年级竞赛成绩(chéngjì)达到80分以上(含80分)的学生(xué sheng)约有320人.19.某射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了8次测试,测试成绩如下表(单位:环):第一 次第二次 第三次 第四次 第五次 第六次 第七次 第八次 甲 10 8 9 8 10 9 10 8 乙107101098810(1)9环,乙的平均成绩是9环;(2)分别计算甲、乙两名运动员8次测试成绩的方差;(3)根据(1)(2)计算的结果,你认为推荐谁参加全国比赛更合适?并说明理由.解:(2)s 2甲=18×[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2+(10-9)2+(8-9)2]=0.75,s 2乙=18×[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2+(8-9)2+(10-9)2]=1.25. (3)由(1)(2)知,x 甲=x 乙,s 2甲<s 2乙,∴甲的成绩比较稳定. 故选甲参加全国比赛更合适.20.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理(zhěnglǐ)分析数据如下:平均成绩/环中位数众数方差甲 a 7 7 1.2乙7 b 8 c(1)写出表格(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为(rènwéi)应选哪名队员?【解答(jiědá)】(1)甲的平均(píngjūn)成绩:a=5×1+6×2+7×4+8×2+9×11+2+4+2+1=7.∵乙射击的成绩从小到大排列为3,4,6,7,7,8,8,8,9,10,∴乙射击成绩的中位数:b=7+82=7.5.其方差:c=110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=110×(16+9+1+3+4+9)=4.2.(2)从平均成绩看,甲、乙两人的成绩相等均为7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多而乙射中8环的次数最多;从方差看,甲的成绩比乙的成绩稳定.综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能性更大.21.某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图有一处错误.回答(huídá)下列问题:(1)写出条形图中存在的错误(cuòwù),并说明理由; (2)写出这20名学生每人(měi rén)植树量的众数、中位数;(3)在求这20名学生每人(měi rén)植树量的平均数时,小宇是这样分析的: 第一步:求平均数的公式(gōngshì)是x =x 1+x 2+…+x n n ;第二步:在该问题中,n =4,x 1=4,x 2=5,x 3=6,x 4=7; 第三步:x =4+5+6+74=5.5.①小宇的分析是从哪一步开始出现错误的?②请你帮他计算正确的平均数,并估计这260名学生共植树多少棵. 【解答】 (1)D 错误,理由:∵共随机抽查了20名学生每人的植树量,由扇形图知D 占10%, ∴D 的人数为20×10%=2≠3. (2)众数为5,中位数为5.(3)①小宇的分析是从第二步开始出现错误的. ②x =4×4+5×8+6×6+7×220=5.3(棵),估计260名学生共植树 5.3×260= 1 378(棵).、最困难的事就是认识自己。

八年级数学下册《第二十章-数据分析》练习题附答案-人教版

八年级数学下册《第二十章-数据分析》练习题附答案-人教版

八年级数学下册《第二十章数据分析》练习题附答案-人教版一、选择题1.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.50B.52C.48D.22.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:每户节水量(单位:吨) 1 1.2 1.5节水户数52 30 18那么,8月份这100户平均节约用水的吨数为(精确到0.01t) ( )A.1.5tB.1.20tC.1.05tD.1t3.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲 90 83 95乙 98 90 95丙 80 88 90A.甲B.乙丙C.甲乙D.甲丙4.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A.15.5,15.5B.15.5,15C.15,15.5D.15,155.如图所示为根据某市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是( )A.30 ℃,22 ℃B.26 ℃,22 ℃C.28 ℃,22 ℃D.26 ℃,26 ℃6.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( )月用水量(吨) 4 5 6 9户数(户) 3 4 2 1A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨7.已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( )A.平均数B.中位数C.众数D.方差8.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:队员1 队员2 队员3 队员4平均数(秒)51 50 51 50方差s2(秒2) 3.5 3.5 14.5 15.5)A.队员1B.队员2C.队员3D.队员49.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级参加人数中位数方差平均数甲 55 149 191 135乙 55 151 110 135(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小上述结论中正确的是( )A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)二、填空题10.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_____.11.一组数据2,4,a,7,7的平均数x=5,则方差s2=.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于 .13.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85 83 78 75乙73 80 85 82如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,则甲的得分为,乙的得分为,应该录取 .14.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.15.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,则这5个整数可能的最大的和是_____.三、解答题16.饮料店为了了解本店罐装饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?17.某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)若将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,谁将被录用?18.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.19.某校举办“校园唱红歌”比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理的方案来确定演唱者的最后得分(每个评委打分最高为10分).方案一:所有评委给分的平均分;方案二:在所有评委中,去掉一个最高分和一个最低分,再计算剩余评委的平均分;方案三:所有评委给分的中位数;方案四:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计实验,下图是这个同学的得分统计图:(1)分别按上述四种方案计算这个同学演唱的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合用来确定这个同学演唱的最后得分?20.某中学的国旗护卫队需从甲、乙两队中选择一队身高比较整齐的队员担任护旗手,每队中每个队员的身高(单位:cm)如下表及图1所示:甲队178 177 179 179 178 178 177 178 177 179图1分析数据:两组样本数据的平均数、中位数、众数、方差如表所示:整理、描述数据:平均数中位数众数方差甲队178 178 b 0.6乙队178 a 178 c=,=,=;(2)根据表格中的数据,你认为选择哪个队比较好?请说明理由.21.今年五一旅游黄金周期间,某旅游区的开放时间为每天10小时,并每小时对进入旅游区的游客人数进行一次统计,下表是5月2日对进入旅游区人数的7次抽样统计数据.记数的次数第1次第2次第3次第4次第5次第6次第7次每小时进入旅游区的人318 310 310 286 280 312 284 数(1)(2)若旅游区的门票为60元/张,则5月2日这一天门票收入是多少?(3)据统计,5月1日至5月5日,每天进入旅游区的人数相同,5月6日和5月7日这两天进入旅游区的人数分别比前一天减少10%和20%,那么从5月1日至5月7日旅游区门票收入是多少?22.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数 2 m 10 6 2 1b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为;②一分钟仰卧起坐成绩的中位数为;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.1 7.7 7.5 7.5 7.3 7.2 7.0 6.5一分钟仰卧起坐* 42 47 * 47 52 * 49其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.参考答案1.【答案】B2.【答案】C3.【答案】C4.【答案】D.5.【答案】B6.【答案】C7.【答案】D.8.【答案】B9.【答案】B. 10.【答案】﹣2•℃ 11.【答案】3.6. 12.【答案】mx +nym +n13.【答案】81,79.3,甲 14.【答案】23.4. 15.【答案】21,20.16.【答案】解:(1)18×(33+32+28+32+25+24+31+35)=30(听).(2)181×30=5 430(听). 17.【答案】解:(1)∵=(85+90+80)÷3=85(分),=(95+80+95)÷3=90(分)∴<,∴乙将被录用;(2)根据题意得:==87(分),==86(分);∴>,∴甲将被录用.18.【答案】解:(1)该班学生60秒跳绳的平均次数至少是:(60×4+80×13+100×19+120×7+140×5+160×2)÷50=100.8(次). 因为100.8>100 所以超过全校平均次数.(2)这个学生的跳绳成绩在该班是中位数由4+13+19=36,可知该生跳绳成绩一定在100~120次范围内.19.【答案】解:(1)方案一最后得分为110(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7(分);方案二最后得分为18(7.0+7.8+3×8+3×8.4)=8(分);方案三最后得分为8分;方案四最后得分为8分或8.4分.(2)因为方案一中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案一不适合用来确定最后得分.因为方案四中的众数有两个,众数失去了实际意义所以方案四也不适合用来确定最后得分.20.解:(1)乙队共10名队员,中位数落在第3组,为178,即a=178;甲队178出现的次数最多,故众数为178,即b=178;c=110×[(176﹣178)2×2+(177﹣178)2+(178﹣178)2×4+(179﹣178)2+(180﹣178)2×2]=1.8;(2)选甲队好.∵甲队的方差为0.6,乙队的方差为1.8∴甲队的方差小于乙队的方差∴甲队的身高比乙队整齐,故选甲队比较好.21.【答案】解:(1)=17(318+310+310+286+280+312+284)=300(人);(2)300×10×60=180 000(元);(3)5月1日至5月5日每天进入旅游区的人数为300×10=3 000(人);5月6日进入旅游区的人数为3 000×90%=2 700(人);5月7日进入旅游区的人数为2 700×80%=2 160(人);5月1日至5月7日进入旅游区的人数共为3 000×5+2 700+2 160=19 860(人);门票收入为19 860×60=1 191 600(元)22.【答案】解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,故答案为:45;(2)①∵实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3∴实心球成绩在7.0≤x<7.4这一组优秀的有4人∴全年级女生实心球成绩达到优秀的人数是:65答:全年级女生实心球成绩达到优秀的有65人;②同意理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.。

人教版初中八年级数学下册第二十章《数据的分析》复习题(含答案解析)(1)

人教版初中八年级数学下册第二十章《数据的分析》复习题(含答案解析)(1)

一、选择题1.已知5个数1a 、2a 、3a 、4a 、5a 的平均数是a ,则数据11a +、22a +、33a +、44a +、55a +的平均数为( )A .aB .3a +C .56a D .15a +B解析:B 【分析】根据数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的和多15,可得数据11a +、22a +、33a +、44a +、55a +的平均数比a 多3,据此求解即可 【详解】解:a+()()24512345132+4+51+3+-+a a a a a a a a a a ++++++++⎡⎤⎣⎦ ÷5 =a+[1+2+3+4+5] ÷5 =a+15÷5 =a+3 故选:B 【点睛】此题主要考察了算术平均数的含义和求法,解题关键是判断出:数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的平均数多3.2.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A .众数是5 B .中位数是5C .平均数是6D .方差是3.6D解析:D 【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可. 【详解】A 、数据中5出现2次,所以众数为5,此选项正确;B 、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C 、平均数为(7+5+3+5+10)÷5=6,此选项正确;D 、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误; 故选D . 【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.3.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是( )A .10,12B .12,11C .11,12D .12,12C解析:C 【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解. 【详解】原数据按由小到大排列为:7,8,9,10,12,12,14,16, 所以这组数据的中位数=12(10+12)=11, 众数为12. 故选:C . 【点睛】此题考查众数,中位数的定义,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.4.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( )A .甲B .乙C .丙D .丁B解析:B 【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可. 【详解】解:∵20.56S =甲,20.45S =乙,20.50S 丙=,20.60S =丁, ∴2S 乙<2S 丙<2S 甲<2S 丁,∴成绩最稳定的是乙. 故选B . 【点睛】此题主要考查了方差,正确理解方差的意义是解题关键. 5.下图是2019年5月17日至31日某市的空气质量指数趋势图.(说明:空气质量指数为0-50、51-100、101-150分别表示空气质量为优、良、轻度污染)有如下结论:①在此次统计中,空气质量为优的天数少于轻度污染的天数;②在此次统计中,空气质量为优良的天数占45;③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差.上述结论中,所有正确结论的序号是()A.①B.①③C.②③D.①②③C解析:C【分析】根据折线统计图的数据,逐一分析即可.【详解】解:①中:当空气质量指数为0-50时表示优,数出折线图中在这个范围内的天数有5天;当空气质量指数为101-150是表示轻度污染,数出折线图中在这个范围内的天数有3天,故空气质量优的天数大于轻度污染的天数,故①错误;②中:空气质量指数在0-100范围内为优良,其天数共有12天,故空气质量为优良的天数所占比例为:124=155,故②正确;③中:20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,故③正确.∴正确的有:②③.故答案为:C.【点睛】本题是复式折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.6.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲B解析:B【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.7.下表为某校八年级72位女生在规定时间内的立定投篮数统计,a b的值为()若投篮投进个数的中位数为a,众数为b,则A.20 B.21 C.22 D.23A解析:A【分析】根据中位数与众数的求法,分别求出投中个数的中位数与众数再相加即可解答.【详解】第36 与37人投中的个数均为9,故中位数a=9,11出现了13次,次数最多,故众数b=11,所以a+b=9+11=20.故选A.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是()A.87,87 B.87,85 C.83,87 D.83,85A解析:A【分析】首先对这组数据进行排序,根据中位数和众数的定义回答即可.【详解】∵这组数据排序后为83,83,87,87,87,90,∴这组数据的众数是87,这组数据的中位数是87872=87.故选A.【点睛】本题考查了中位数和众数的定义.注意找中位数的时候一定要先排好顺序,然后再根据数据个数确定中位数:如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.9.为了帮助我市一名贫困学生,某校组织捐款,现从全校所有学生的捐款数额中随机抽取10名学生的捐款数统计如下表:A.10名学生是总体的一个样本B.中位数是40C.众数是90D.方差是400D解析:D【分析】根据样本、众数、中位数及方差的定义,结合表格分别进行解答,即可得出答案.【详解】A、10名学生的捐款数是总体的一个样本,故本选项错误;B、中位数是30,故本选项错误;C、众数是30,故本选项错误;D、平均数是:(20×2+30×4+50×3+90)÷10=40(元),则方差是:110×[2×(20﹣40)2+4×(30﹣40)2+3×(50﹣40)2+(90﹣40)2]=400,故本选项正确,故选D.【点睛】本题考查了中位数、方差、众数及样本的知识,掌握相关的定义以及求解方法是解题的关键.10.为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为()A.20,16 B.l6,20 C.20,l2 D.16,l2A解析:A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中20是出现次数最多的,故众数是20;将这组数据从大到小的顺序排列后,处于中间位置的数是16,16,那么这组数据的中位数16.故选:A.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.二、填空题11.据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个2,引入新技术后,每名员工每天都比原先多生产1个零件,则现在日平均生产零件个数为______个,方差为______个2.925【分析】根据平均数与方差的定义计算即可得答案【详解】∵每名员工每天都比原先多生产1个零件∴现在日平均生产零件个数为=9设原先每人日生产零件的个数为:x1x2x3……x10∴原先的方差为=25∴解析:9 2.5【分析】根据平均数与方差的定义计算即可得答案. 【详解】∵每名员工每天都比原先多生产1个零件, ∴现在日平均生产零件个数为8101010⨯+=9, 设原先每人日生产零件的个数为:x 1、x 2、x 3、……x 10, ∴原先的方差为22212101(8)(8)(8)10x x x ⎡⎤-+-+-⎣⎦…+=2.5, ∴现在的方差为22212101(19)(19)(19)10x x x ⎡⎤+-++-++-⎣⎦…+=22212101(8)(8)(8)10x x x ⎡⎤-+-+-⎣⎦…+=2.5, 故答案为:9,2.5 【点睛】本题考查平均数与方差,熟练掌握定义与计算公式是解题关键.12.为了增强青少年的防毒拒毒意识,学校举办了一次“禁毒教育”演讲比赛,其中某位选手的演讲内容、语言表达、演讲技巧这三项得分分别为90分,80分,85分,若依次按50%,30%,20%的比例确定成绩,则该选手的最后得分是__________分.86【分析】根据加权平均数的计算公式列出算式再进行计算即可得出答案【详解】解:根据题意得:90×50+80×30+85×20=45+24+17=86(分)答:该选手的最后得分是86分故答案为86【点解析:86 【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案. 【详解】 解:根据题意得: 90×50%+80×30%+85×20% =45+24+17 =86(分).答:该选手的最后得分是86分. 故答案为86. 【点睛】本题考查了加权平均数的求法.本题易出现的错误是求90,80,85这三个数的平均数,对平均数的理解不正确.13.已知点(x 1,y 1),(x 2,y 2),(x 3,y 3)都在函数y=-2x +7的图象上,若数据x 1,x 2,x 3的方差为5,则另一组数据y 1,y 2,y 3的方差为_________.20【解析】【分析】把x1x2x3分别代入y=-2x+7得出y1y2y3设这组数据x1x2x3的平均数为由方差S2=5则另一组新数据-2x1+7-2x2+7-2x3+7的平均数为-2+7方差为S′2解析:20. 【解析】 【分析】把x 1、x 2、x 3分别代入y=-2x+7,得出y 1、y 2、y 3,设这组数据x 1,x 2,x 3的平均数为x ,由方差S 2=5,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7,方差为S′2,代入公式S 2=()()()222121n x x x x x x n ⎡⎤-+-+⋯+-⎣⎦计算即可. 【详解】设这组数据x 1,x 2,x 3的平均数为x ,则另一组新数据-2x 1+7,-2x 2+7,-2x 3+7的平均数为-2x +7, ∵S 2=13[(x 1-x )2+(x 2-x )2+(x 3-x )2]=5, ∴方差为S′2=13[(-2x 1+7+2x -7)2+(-2x 2+7+2x -7)2+(-2x 3+7+2x -7)2] =13 [4(x 1-x )2+4(x 2-x )2+4(x 3-x )2] =4S 2 =4×5 =20,故答案为:20. 【点睛】本题说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.14.在一次数学测验中,甲组4名同学的平均成绩是70分,乙组6名同学的平均成绩是80分,则这10名同学的平均成绩是______________.76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩再除以10即可得出答案【详解】这10名同学的平均成绩为:=76(分)故答案为:76分【点睛】本题考查的是加权平均数的求法本解析:76分; 【解析】 【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩,再除以10,即可得出答案. 【详解】这10名同学的平均成绩为:7048106⨯+⨯=76(分),故答案为:76分.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求70、80这两个数的平均数.15.李老师为了了解学生的数学周考成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:则这10名学生的数学周考成绩的中位数是________分.134【解析】【分析】根据表格中的数据可以求得这10名学生的数学周考成绩的中位数【详解】由表格可得这10名学生的数学周考成绩的中位数是:(132+136)÷2=134(分)故答案为:134【点睛】本解析:134 【解析】 【分析】根据表格中的数据可以求得这10名学生的数学周考成绩的中位数. 【详解】 由表格可得,这10名学生的数学周考成绩的中位数是:(132+136)÷2=134(分), 故答案为:134. 【点睛】本题考查中位数,解答本题的关键是明确中位数的含义,会求一组数据的中位数. 16.一组数据1、2、3、4、5的方差为21S ,另一组数据6、7、8、9、10的方差为22S ,那么21S ______22(S 填“>”、“=”或“<”).=【分析】根据方差的定义分别计算出两组数据的方差即可得【详解】第1组数据的平均数为×(1+2+3+4+5)=3则其方差S12=×(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2=解析:= 【分析】根据方差的定义分别计算出两组数据的方差即可得. 【详解】第1组数据的平均数为15×(1+2+3+4+5)=3,则其方差S 12=15×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2;第2组数据的平均数为15×(6+7+8+9+10)=8,则其方差S 22=15×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2; ∴S 12=S 22.故答案为=.【点睛】本题考查了方差的意义,解题的关键是观察数据,找到波动较小的就方差小,也可以分别求得方差后再比较,难度不大.17.如果一组数据-2,0,1,3,x的极差是7,那么x的值是___________.5或-4【解析】【分析】根据极差的定义求解分两种情况:x为最大值或最小值【详解】一组数据-2013x的极差是7当x为最大值时x-(-2)=7解得x=5;当x是最小值时3-x=7解得:x=-4故答案为解析:5或-4,【解析】【分析】根据极差的定义求解.分两种情况:x为最大值或最小值.【详解】一组数据-2,0,1,3,x的极差是7,当x为最大值时,x-(-2)=7,解得x=5;当x是最小值时,3-x=7,解得:x=-4.故答案为:5或-4.【点睛】此题主要考查了极差的定义,正确理解极差的定义,能够注意到应该分两种情况讨论是解决本题的关键.18.某组数据按从小到大的顺序如下:2、4、8、x、10、14,已知这组数据的中位数是9,则这组数据的众数是_____.10【解析】分析:根据中位数为9可求出x的值继而可判断出众数详解:由题意得:(8+x)÷2=9解得:x=10则这组数据中出现次数最多的是10故众数为10故答案为10点睛:本题考查了中位数及众数的知识解析:10【解析】分析:根据中位数为9,可求出x的值,继而可判断出众数.详解:由题意得:(8+x)÷2=9,解得:x=10,则这组数据中出现次数最多的是10,故众数为10.故答案为10.点睛:本题考查了中位数及众数的知识,属于基础题,掌握中位数及众数的定义是关键.19.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,6,9,8,8,则这组数据的方差是______________________ .【解析】分析:先计算出这组数据的平均数再根据方差公式进行计算即可详解:故答案为:点睛:此题考查了方差用到的知识点是方差公式一般地设n个数据x1x2…xn的平均数为则方差它反映了一组数据的波动大小方差解析:87【解析】分析:先计算出这组数据的平均数,再根据方差公式进行计算即可. 详解:1(7996988)87x =++++++=, 2222218[(78)3(98)(68)2(88)]77S =-+-+-+-=.故答案为:87点睛:此题考查了方差,用到的知识点是方差公式,一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差2222121[()()...()]n S x x x x x x n=-+-++-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20.一组数据1、2、3、4、5的方差为S 12,另一组数据6、7、8、9、10的方差为S 22,那么S 12_______________ S 22(填“>”、“=”或“<”).=【解析】分析:根据方差公式分别计算出这两组数据的方差比较即可解答详解:数据12345的平均数为3方差S12=;数据678910的平均数为8方差S22=;∴S12=S22故答案为=点睛::本题考查了解析:= 【解析】分析:根据方差公式分别计算出这两组数据的方差,比较即可解答. 详解:数据1、2、3、4、5的平均数为3,方差S 12=2222211(13)(23)(33)(43)(53)10255⎡⎤-+-+-+-+-=⨯=⎣⎦ ; 数据6、7、8、9、10的平均数为8,方差S 22=2222211(68)(78)(88)(98)(108)10255⎡⎤-+-+-+-+-=⨯=⎣⎦ ; ∴S 12=S 22. 故答案为=.点睛::本题考查了方差、平均数等知识,解题的关键是利用方差公式计算出这两组数据的方差.三、解答题21.嘉淇同学利用业余时间进行射击训练,一共射击 7 次,经过统计,制成如图所示的折线统计图.(1)这组成绩的众数是 ;中位数是 ; (2)求这组成绩的方差;解析:(1)10,9(2)87【分析】(1)根据众数的定义:一组数据中出现次数最多的数和中位数的定义:按照顺序排列的一组数据中居于中间位置的数,结合统计图得到答案; (2)先求出这组数的平均数,再求出这组成绩的方差. 【详解】解:(1)由折线统计图可知第1次:10环;第2次:7环;第3次:10环;第4次:10环;第5次:9环;第6次:8环;第7次:9环 10出现的次数最多,所以众数为10;这7次成绩从小到大排列为:7,8,9,9,10,10,10, 故中位数为9.(2)这组成绩的平均数为:()1107101098997++++++=, 这组成绩的方差为:()()()()2222181093992897977⎡⎤-⨯+-⨯+-+-=⎣⎦ 【点睛】本题考查了折线统计图,中位数,众数及方差.掌握中位数,众数及方差的定义是解题的关键.22.学校午餐采用自助的形式,并倡导学生和教师“厉行勤俭节约,践行光盘行动” .学校共有6个年级,且各年级的人数基本相同.为了解午餐的浪费情况,从这6年级中随机抽取了A 、B 两个年级,进行了连续四周(20个工作日)的调查,得到这两个年级每天午餐浪费饭菜的质量,以下简称“每日餐余质量”(单位:kg ),并对这些数据进行了整理、描述和分析.下面给出了部分信息.a .A 年级每日餐余质量的频数分布直方图如下(数据分成6组:02,24,46,68,810,1012)x x x x x x <<<<<<≤≤≤≤≤≤:b .A 年级每日餐余质量在68x ≤<这一组的是:6.1,6.6,7.0,7.0,7.0,7.8c .B 年级每日餐余质量如下:1.4,2.8,6.9,7.8,1.9,9.7,3.1,4.6,6.9,10.8,6.9,2.6,7.5,6.9,9.5,7.8,8.4,8.3,9.4,8.8d .A 、B 两个年级这20个工作日每日餐余质量的平均数、中位数、众数如下:年级平均数中位数众数A 6.4 m 7.0 B6.67.2n根据以上信息,回答下列问题:(1)m = ____________,n = _____________.(2)A 、B 这两个年级中,“厉行勤俭节约,践行光盘行动”做的较好的年级是______. (3)结合A 、B 这两个年级每日餐余质量的数据,估计该学校(6个年级)一年(按240个工作日计算)的餐余总质量.解析:(1)6.8;6.9.(2)A ;(3)9360(kg ). 【分析】(1)判断出A 组样本容量,根据中位数的定义和A 年级在68x ≤<这一组的数值即可求解;根据中位数的定义即可得出B 组统计的众数; (2)根据平均数和中位数进行比较,即可得出结论; (3)用A 、B 两个年级的平均数乘以6再乘以天数即可求解. 【详解】(1)解:由A 组的直方图可得样本容量为1+2+5+6+4+2=20, 故中位数为排序后第10、11个数的中位数, 又因为这两个数都落在68x ≤<这一组, 所以第10、11个数分别是6.6、7.0, 故 6.67.06.82m +==, 在B 组数据中6.9出现的次数最多, 故众数n=6.9;(2)从平均数、中位数看,A 组学生做的比较好,故答案为:A ; (3)6.4 6.6624093602+⨯⨯=(kg ). 答:该学校一年的餐余总质量约为9360kg . 【点睛】本题考查平均数、中位数、众数,直方图、用样本估计总体等知识,综合性较强,根据所学知识理解题意好题意,并结合相关统计量分析是解题关键.23.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题. (1)这次调查获取的样本容量是 .(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.解析:(1)40;(2)30,50;(3)50500元【分析】(1)根据条形统计图中的数据可以求得这次调查获取的样本容量;(2)根据条形统计图中的数据可以得到这次调查获取的样本数据的众数和中位数;(3)根据条形统计图中的数据可以得到该校本学期计划购买课外书的总花费.【详解】解:(1)样本容量是:6+12+10+8+4=40,(2)由统计图可得,这次调查获取的样本数据的众数是30,中位数是50;(3)2063012501080810046121084⨯+⨯+⨯+⨯+⨯++++×1000=50500(元),答:该校本学期计划购买课外书的总花费是50500元.故答案为(1)40;(2)30,50;(3)50500元.【点睛】本题考查众数、中位数、加权平均数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24.为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生287(1)这个班共有男生人,共有女生人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并说明理由.(至少从两个不同的角度说明推断的合理性)解析:(1)20,25;(2)7.9,8;(3)女生队表现更突出,理由见解析【分析】(1)由条形图可得男生总人数,总人数减去男生人数可得女生人数;(2)根据平均数和众数定义可得.(3)可从平均数、方差、众数和中位数的意义求解可得.【详解】解:(1)这个班共有男生1+2+6+3+5+3=20(人),共有女生45﹣20=25(人),故答案为:20、25;(2)男生的平均分为120×(5+6×2+7×6+8×3+9×5+10×3)=7.9(分),女生的众数为8分,补全表格如下:理由为:女生队的平均数较高,表示女生队测试成绩较好;女生队的方差小,表示女生队测试成绩比较集中,整体水平较好;女生队的众数较高,女生队的众数为8,中位数也为8,而男生队众数为7低于中位数8,表示女生队的测试成绩高分较多.【点睛】本题主要考查加权平均数、利用众数、方差、平均数、众数作出决策.注意方差越小,说明数据越稳定.25.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析: ①绘制如下的统计图,请补充完整;②求这30户家庭2018年4月份义务植树数量的平均数是和中位数分别是多少? (2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有多少户?解析:(1)①补图见解析;②这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵;(2)估计该小区采用这种形式的家庭有70户. 【分析】(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得; ②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得. 【详解】(1)①由已知数据知3棵的有12人、4棵的有8人, 补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是12233124854613.430⨯+⨯+⨯+⨯+⨯+⨯=(棵)中位数:从小到大排列,中位数应为第15位和第16位的数的平均值:3332+=(棵)答:这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵.(2)估计该小区采用这种形式的家庭有300×730=70户,答:估计该小区采用这种形式的家庭有70户.【点睛】本题主要考查了频数分布直方图,中位数、平均数的定义及样本估计总体思想的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.26.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C级所在的扇形圆心角的度数;(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?解析:(1)4%;(2)72°;(3)落在B等级内;(4)380人【分析】(1)先求出总人数,再求D成绩的人数占的比例;(2)C成绩的人数为10人,占的比例=10÷50=20%,表示C的扇形的圆心角=360°×20%=72°,(3)根据中位数的定义判断;(4)该班占全年级的比例=50÷500=10%,所以,这次考试中A级和B级的学生数=(13+25)÷10%=380人,【详解】(1)总人数为25÷50%=50人,D成绩的人数占的比例:2÷50=4%;(2)表示C的扇形的圆心角360°×(10÷50)=360°×20%=72°;(3)由于A成绩人数为13人,C成绩人数为10人,D成绩人数为2人,而B成绩人数为25人,故该班学生体育测试成绩的中位数落在B等级内;(4)这次考试中A级和B级的学生数:(13+25)÷(50÷500)=(13+25)÷10%=380(人).【点睛】本题主要考查统计图和用样本估计总体,提取统计图中的有效信息是解答此题的关键. 27.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲乙射击成绩统计表平均数 中位数 方差 命中10环的次数 甲 7乙7.5 5.41甲乙射击成绩折线图(1)请补全上述图表(请直接在统计表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,则_____胜出,理由是____________________; (3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?说明理由.解析:(1)补全图表见解析;(2)甲,理由见解析;(3)可制定评判规则为:命中10环次数较多者胜出,理由见解析. 【分析】(1)根据甲选手成绩的平均数可求出甲选手第8次命中的环数,即可补全折线图;然后根据平均数、中位数和方差的求法补全统计表; (2)根据方差的意义可得答案;(3)可根据乙选手命中10环1次,甲选手没有命中10环来制定评判规则. 【详解】解:(1)甲选手第8次命中的环数为:7×10-(9+6+7+6+5+7+7+8+9)=6, 将甲选手的成绩从小到大排列为:5,6,6,6,7,7,7,8,9,9, 中间两次的环数分别为:7,7,故中位数为7772+=, 2222221=5767377387972=1.610S 甲,乙选手成绩的平均数为:24687789910=710,补全表格和折线图为:平均数 中位数 方差 命中10环的次数 甲771.6。

八年级数学下期期末复习专题5(数据的分析 1)

八年级数学下期期末复习专题5(数据的分析 1)

教师姓名学生姓名填写时间学科数学年级八年级教材版本人教版课题名称期末复习专题五(数据的分析1)本人课时统计共()课时上课时间一、选择题(每题3分,共30分)1、已知数据2,3,2,3,5,x的众数是2,则x的值是()A.3 B.2C.2.5D.32、小明五次跳远的成绩(单位:米)是:3.6,3.8,4.2,4.0,3.9,这组数据的中位数是()A.3.9米 B.3.8米 C.4.2米 D.4.0米3、2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,这组数据的中位数、众数分别是()A.32,31 B.31,32 C.31,31 D.32,354、要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是()A.平均数B.中位数C.众数D.方差5、筹建中的安徽芜湖核电站芭茅山厂址位于长江南岸繁昌县狄港镇,距离繁昌县县城约17km,距离芜湖市区约35km,距离无为县城约18km,距离巢湖市区约50km,距离铜陵市区约36km,距离合肥市区约99km.以上这组数据17、35、18、50、36、99的中位数为().A.18 B.50 C.35 D.35.56、我市某一周的最高气温统计如下表:最高气温(℃)25 26 27 28天数 1 1 2 3则这组数据的中位数与众数分别是()A.27,28 B.27.5,28 C.28,27 D.26.5,277、某学习小组5位同学参加初中毕业生实验操作考试(满分20分)的平均成绩是16分.其中三位男生的方差为6(分2),两位女生的成绩分别为17分,15分.则这个学习小组5位同学考试分数的标准差为()A.3B.2C.6D.68、某地统计部门公布最近5年国民消费指数增长率分别为8.5%、9.2%、9.9%、10.2%、9.8%,业内人士评论说:“这五年消费指数增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”说明这组数据( A )比较小A、方差B、平均数C、众数D、中位数9、一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:尺码/厘米22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 12 6 3 1如果鞋店要购进100双这种女鞋,那么购进24厘米、24.5厘米和25厘米三种女鞋数量之和最.合适..的是( B ).(A)20双(B)30双(C)50双(D)80双10、甲、乙、丙、丁四位选手各10次射击成绩的平均数都是8环,众数和方差如表,则这四人中水平发挥最稳定的是( B )选手甲I 乙丙丁众数(环) 9 8 8 10方差(环2) 0.035 0.O15 0.025 0.27(A)甲 (B)乙 (C)丙 (D)丁二、填空题:(每小题3分,共30分)11、一组数据35,35,36,36,37,38,38,38,39,40的极差是________。

最新初二数学八下数据的分析知识点总结和常考题型练习题

最新初二数学八下数据的分析知识点总结和常考题型练习题

数据的分析练习一、选择题1.一组数据4,5,6,7,7,8的中位数和众数分别是( )A .7,7B .7,6.5C .5.5,7D .6.5,72.在一次青年歌手大奖赛上,七位评委为某位歌手打出的分数如下:9.5, 9.4, 9.6, 9.9, 9.3, 9.7,9.0,去掉一个最高分和一个最低分后,所剩数据的平均数是( ) A .9.2 B .9.3 C .9.4 D .9.53.今年我国发现的首例甲型H1N1流感确诊病例在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需了解这位病人7天体温的( )A .众数B .方差C .平均数D .频数 4.某公司员工的月工资如下表,则平均数、众数、中位数分别为( )A .2200元 1800元 1600元B .2000元 1600元 1800元C .2200元 1600元 1800元D .1600元 1800元 1900元7、为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别为( ).A 、25.6 26B 、26 25.5C 、26 26D 、25.5 25.58.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )7.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为20 18 17 10 15 10,,,,,.对于这组数据,下列说法错误的是( )A .平均数是15B .众数是10C .中位数是17D .方差是3448. 为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是50 B.众数是51 C.方差是42 D.极差是219. 某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩二、三、填空题1、某公司员工的月工资统计如下:则该公司员工月工资的平均数为、中位数为和众数为.2、某超市招聘收银员一名,对三名申请人进行了三项素质测试.下面是三名候选人的素质测试成绩:公司根据实际需要,对计算机、商品知识、语言三项测试成绩分别赋予权重4、3、2,这三人中将被录用.3、已知一组数据-3,-2,1,3,6,x的中位数为1,则其方差为.4、体育老师对甲.乙两名同学分别进行了5次立定跳远测试,经计算这两名同学成绩的平均数相同,甲同学成绩的方差是0.03,乙同学的成绩(单位:m)如下:2.3 2.2 2.5 2.1 2.4,那么这两名同学立定跳远成绩比较稳定的是____同学.5、市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数据的分析》复习一、选择题)1.为了了解参加某运动会的200名运动员的年龄情况,从中抽查了20名运动员的年龄,就这个问题来说,下面说法正确的是( )A .200名运动员是总体B .每个运动员是总体C .20名运动员是所抽取的一个样本D .样本容量是202.一城市准备选购一千株高度大约为2m 的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高请你帮采购小组出谋划策,应选购( )A .甲苗圃的树苗B .乙苗圃的树苗;C .丙苗圃的树苗D .丁苗圃的树苗 3.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,•则原来那组数据的平均数是( )A .50B .52C .48D .24.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( )A .8,9B .8,8C .8.5,8D .8.5,95.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:那么,8月份这100户平均节约用水的吨数为(精确到0.01t ) ( ) A .1.5t B .1.20t C .1.05t D .1t6.已知一组数据-2,-2,3,-2,-x ,-1的平均数是-0.5,•那么这组数据的众数与中位数分别是( )A .-2和3B .-2和0.5C .-2和-1D .-2和-1.5 7.方差为2的是( )A .1,2,3,4,5B .0,1,2,3,5C .2,2,2,2,2D .2,2,2,3,38.甲、乙两班举行电脑汉字输入速度比赛,•参赛学生每分钟输入汉字的个数经统计计算后结果如下表:某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小上述结论中正确的是()A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)9.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()纸笔测试实践能力成长记录甲90 83 95乙98 90 95丙80 88 90A.甲B.乙丙C.甲乙D.甲丙10.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.(2005,深圳)下图是根据某地近两年6•月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是_____年.12.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_________.13.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若去掉一个最高分和一个最低分后的平均分为得分,则这名歌手最后得分约为________.14.一个样本,各个数据的和为515,如果这个样本的平均数为5,那么这个样本的容量是_________.15.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,•则估计湖里约有鱼_______条.16.一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7.•则这名学生射击环数的方差是_________.17.某人开车旅行100km,在前60km内,时速为90km,在后40km内,时速为120km,则此人的平均速度为_________.18.小明家去年的旅游、教育、饮食支出分别出3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小时家今年的总支出比去年增长的百分数是_________.19.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,•则这5个整数可能的最大的和是_____.20.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知三项得分分别为88,72,50,•则这位候选人的招聘得分为________.三、解答题(60分)21.(6分)某校规定学生期末数学总评成绩由三部分构成:卷面成绩、•课外论文成绩、平日表现成绩(三部分所占比例如图),若方方的三部分得分依次是92、80、•84,则她这学期期末数学总评成绩是多少?22.(8分)为了了解某小区居民的用水情况,随机抽查了该小区10•户家庭的月用水量,结果如下:月用水量(吨)10 13 14 17 18户数 2 2 3 2 1(1)计算这10(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?23.(8成绩(分)60 70 80 90 100人数(人) 1 5 x y 2(1)若这20名学生成绩的平均分数为82分,求x和y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.24.(8分)某乡镇企业生产部有技术工人15人,•生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:每人加工件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),•你认为这个定额是否合理,为什么?25.(8分)题中给出的条形图是截止到2002年44位费尔兹奖得主获奖时的年龄统计图.经计算费尔兹奖得主获奖时的平均年龄是35岁.根据条形图回答问题:(1)费尔兹奖得主获奖时的年龄超过..中位数的有多少人?(2)费尔兹奖得主获奖时年龄的众数是多少?(3)•费尔兹奖得主获奖时的年龄高于..平均年龄的人数占获奖人数的百分比是多少?26.(10分)某学校对初中毕业班经过初步比较后,决定从九年级(1)、(4)、(8)•班这三个班中推荐一个班为市级先进班集体的候选班,•现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表:(以分为单位,每项满分为10分)班级行为规范学习成绩校运动会艺术获奖劳动卫生九年级(1)班10 10 6 10 7九年级(4)班10 8 8 9 8九年级(8)班9 10 9 6 9 (1)请问各班五项考评分的平均数、•中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们的得分进行排序.(2)根据你对表中五个项目的重要程度的认识,•设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),•按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高....的班作为市级先进班集体的候选班.27.(12分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,•下图是其中的甲、乙两段台阶的示意图.请你用所学过的有关统计的知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(•单位:cm).并且数据15,16,16,14,14,15的方差S甲2=23,数据11,15,18,17,10,19的方差S乙2=353).答案:1.D 2.D 3.B 4.B 5.A 6.D 7.A 8.B 9.C 10.A 11.2005 12.-2•℃13.9.4分14.103 15.1500 16.3 17.100km/h 18.27.3% 19.21 20.65.•75分21.解:9070%8020%8410%70%20%10%⨯+⨯+⨯++=88.8(分)22.(1)=14(吨);(2)7000吨.23.(1)x=5,y=7;(2)a=90,b=80.24.(1)平均数:260(件)中位数:240(件)众数:240(件);(2)不合理,•因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,•尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.25.解:(1)中位数为35.5岁,•年龄超过中位数的有22人.(2)众数是38岁.(3)高于平均年龄的人数为22人,22÷44=50%.26.(1)平均数不能反映三个班的考评结果的差异,用中位数或众数可以反映.(2)行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:3:2:1:1.x1=1.78,x4=•1.74,x8=1.8 ∴x8>x1>x4,所以推荐九年级(8)班作为市场先进班集体的候选班级合适.27.(1)相同点:两段台阶路台阶高度的平均数相同.不同点:•两段台阶路台阶高度的中位数、方差和极差均不相同.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数)使得方差为0.。

相关文档
最新文档