(完整版)物理学促进了现代技术的发展的策略
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理学促进了现代技术的发展的策略
当前,我国为了赶上世界新科学技术的发展速度,要努力在生物工程、电子技术、自动化技术、新材料、新能源、航空航天、海洋工程、激光、超导、通讯等等新技术领域取得新的科技发展。这些科技发展,都与物理学的应用有着非常密切的关系。
一、信息科技与现代通信
信息技术涵盖信息的采集、变换、存储、处理、传送、接收和再现。电子学研究电子的运动、电磁波的传播和它们之间的相互作用。建立在麦克斯韦电磁理论基础上的电子学,是当代信息技术最主要的手段。1887年德国物理学家赫兹发现电磁波及1897年英国物理学家汤姆孙发现电子,标志着电子学的开端。在赫兹实验的基础上,1895年意大利科学家马可尼进行了2.5公里的无线电报传送实验。1901年跨越大西洋3200公里的无线电报实验获得成功,这是远程通信的一件划时代的大事。此后,人类陆续发明了无线电广播、电视等。
第一代电子器件电子管,建立在热电子发射的基础上。1904年,英国物理学家弗莱明发明二极管;1906年,美国的德福雷斯特发明三极管。20世纪上半叶的电子设备,如广播电视的发射接收装置、雷达、计算机等,全部使用电子管。
1947年肖克利、巴丁、布拉坦发明了晶体管。晶体管使电子设备具有省电、小型化、可靠性高的优点,开辟了电子学的新时代。
物理学最新成果的大量采用,使光通信、移动通信产业以空前的速度和规模发展。仅我国,手机用户即已近4亿。物理学的发展必将使21世纪信息技术发生飞跃。
二、材料科学与新材料
物理学是材料科学的重要基础。量子力学、凝聚态物理学,特别是固体物理学和能带理论极大地推动了材料科学的发展。现代物理学的发展,导致了诸如半导体材料、光电材料、超导材料、复合功能材料、纳米材料、软物质材料等大量具有独特性能的新材料出现,并将不断地为研制新型材料、改善材料性能提供新的理论和实验手段。
人工晶体用人工方法生长的单晶体在激光产生、非线性光学、光探测、辐射探测、换能器等方面都有重要应用。我国在这一领域具有一定优势。
三、物理学手段与现代医学
物理学手段在现代医学中得到广泛应用,它们既用于诊断——x射线透视、B超、计算机断层成像即CT、磁共振成像即HRI,又用于治疗——超声波粉碎结石、激光手术、伽玛刀。
四、计量与全球定位系统GPS
计时标准:从观测天体到使用各种物理方法,人类计时精度不断提高。
全球定位系统GPS,由24颗均匀分布在6个轨道平面内的卫星组成,卫星上安装了高精度的原子钟。卫星高度2万公里。它是一个全天候的自动定位和导航系统,通过接收GPS卫星发射的时间—频率信号,判断和计算接收者的位置。经过广义相对论修正(时钟快慢随引力场强度而变)的GPS精度可在1米以内。现在的GPS系统已可装备到家用汽车上。
五、物理学与激光技术
1917年爱因斯坦提出“受激辐射”的概念,奠定了激光的理论基础。1958年美国科学家肖洛和汤斯发现了一种奇怪的现象:当他们将闪光灯泡所发射的光照在一种稀土晶体上时,晶体的分子会发出鲜艳的、始终会聚在一起的强光。由此他们提出了“激光原理”,受激辐射可以得到一种单色性、亮度又很高的新型光源。1958年,贝尔实验室的汤斯和肖洛发表了关于激光器的经典论文,奠定了激光发展的基础。1960年,美国人梅曼(T.H.Maiman)发明了世界上第一台红宝石激光器。梅曼利用红宝石晶体做发光材料,用发光度很高的脉冲氙灯做激发光源,获得了人类有史以来的第一束激光。1965年,第一台可产生大功率激光的器件——二氧
化碳激光器诞生。1967年,第一台X射线激光器研制成功。1997年,美国麻省理工学院的研究人员研制出第一台原子激光器。
六、物理学与国家安全
现代战争是高科技的战争,物理学在国防现代化中起着核心的作用。核武器是释放核能的大规模杀伤性武器。1945年美国首先制成原子弹,并投放到日本的广岛和长崎。为了对抗核讹诈,1964年我国成功试爆了第一颗原子弹,1967年成功试爆了第一颗氢弹。研制“两弹一星”的23位功勋科学家中有13位物理学家。
当前各大国正建立以不同射程的制导导弹为核心的天军。“二战”中德国发展了V2火箭。“二战”后,各国发展不同射程的制导导弹,用作弹头运载工具。
“二战”中,发展雷达和声呐。沃森?瓦特设计了第一套雷达警戒系统,部署在英伦海峡西岸,有效地抗击了德国的空袭。战后各国继续发展雷达系统。为了对抗雷达,又发展了隐形飞行器,利用吸收雷达波的材料和特殊的飞行器形状以