数据结构实验四题目一排序实验报告

合集下载

数据结构排序实验报告

数据结构排序实验报告

数据结构排序实验报告数据结构排序实验报告引言:数据结构是计算机科学中的重要概念之一,它涉及到数据的组织、存储和操作方式。

排序是数据结构中的基本操作之一,它可以将一组无序的数据按照特定的规则进行排列,从而方便后续的查找和处理。

本实验旨在通过对不同排序算法的实验比较,探讨它们的性能差异和适用场景。

一、实验目的本实验的主要目的是通过实际操作,深入理解不同排序算法的原理和实现方式,并通过对比它们的性能差异,选取合适的排序算法用于不同场景中。

二、实验环境和工具实验环境:Windows 10 操作系统开发工具:Visual Studio 2019编程语言:C++三、实验过程1. 实验准备在开始实验之前,我们需要先准备一组待排序的数据。

为了保证实验的公正性,我们选择了一组包含10000个随机整数的数据集。

这些数据将被用于对比各种排序算法的性能。

2. 实验步骤我们选择了常见的五种排序算法进行实验比较,分别是冒泡排序、选择排序、插入排序、快速排序和归并排序。

- 冒泡排序:该算法通过不断比较相邻元素的大小,将较大的元素逐渐“冒泡”到数组的末尾。

实现时,我们使用了双重循环来遍历整个数组,并通过交换元素的方式进行排序。

- 选择排序:该算法通过不断选择数组中的最小元素,并将其放置在已排序部分的末尾。

实现时,我们使用了双重循环来遍历整个数组,并通过交换元素的方式进行排序。

- 插入排序:该算法将数组分为已排序和未排序两部分,然后逐个将未排序部分的元素插入到已排序部分的合适位置。

实现时,我们使用了循环和条件判断来找到插入位置,并通过移动元素的方式进行排序。

- 快速排序:该算法通过选取一个基准元素,将数组分为两个子数组,并对子数组进行递归排序。

实现时,我们使用了递归和分治的思想,将数组不断划分为更小的子数组进行排序。

- 归并排序:该算法通过将数组递归地划分为更小的子数组,并将子数组进行合并排序。

实现时,我们使用了递归和分治的思想,将数组不断划分为更小的子数组进行排序,然后再将子数组合并起来。

数据结构实验报告-排序

数据结构实验报告-排序

本章共8道实验题目。

一、直接插入排序1. 定义顺序表的存储结构2. 初始化顺序表为空表3. 输入10个元素创建含有10个元素的顺序表4. 输出顺序表5. 对顺序表进行直接插入排序(InsertSort)6. 输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;//此处定义直接插入排序函数int a[20];int main(){int InsertSort;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort(a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}二、折半插入排序1. 定义顺序表的存储结构2. 初始化顺序表为空表3. 输入10个元素创建含有10个元素的顺序表4. 输出顺序表5. 对顺序表进行折半插入排序(BInsertSort)6. 输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;//此处定义折半插入排序函数int a[20];int main(){int BInsertSort ;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort(a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}三、希尔排序1. 定义顺序表的存储结构2. 初始化顺序表为空表3. 输入10个元素创建含有10个元素的顺序表4. 输出顺序表5. 对顺序表进行希尔排序(ShellSort)6. 输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 602 11 938 669 507 117 261 708 343 300 602 11 117 261 300 343 507 602 669 708 938 程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;int a[20];int main(){int ShellSort;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort(a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}四、冒泡排序1.定义顺序表的存储结构2.初始化顺序表为空表3.输入10个元素创建含有10个元素的顺序表4.输出顺序表5.对顺序表进行冒泡排序(BubbleSort)6.输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;int a[20];int main(){int BubbleSort;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort(a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}五、快速排序1.定义顺序表的存储结构2.初始化顺序表为空表3.输入10个元素创建含有10个元素的顺序表4.输出顺序表5.对顺序表进行快速排序(QuickSort)6.输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;int a[20];int main(){int QuickSort;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort (a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}六、简单选择排序1.定义顺序表的存储结构2.初始化顺序表为空表3.输入10个元素创建含有10个元素的顺序表4.输出顺序表5.对顺序表进行简单选择排序(SelectSort)6.输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 602 11 117 261 300 343 507 602 669 708 938 程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;int a[20];int main(){int SelectSort;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort(a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}七、堆排序1.定义顺序表的存储结构2.初始化顺序表为空表3.输入10个元素创建含有10个元素的顺序表4.输出顺序表5.对顺序表进行堆排序(HeapSort)6.输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;Status InitList(SqList &L){L.length=0;return 0;}Status CreateList(SqList &L,int n){if(!L.r||n<1||n>MAXSIZE) return ERROR;//cout<<"\n请输入"<<n<<"个元素(用空格隔开):";for(int i=1;i<=n;i++)cin>>L.r[i].key;L.length=n;return OK;}void ListTraverse(SqList L){//cout<<"L=(";for(int i=1;i<=L.length;i++)cout<<L.r[i].key<<' ';//if(L.length) cout<<'\b';//cout<<")";cout<<endl;}void HeapSort(SqList &L){int value = 0;for(int i = 0;i<L.length;i++)for(int j = 0;j<L.length-i;j++){if(L.r[j].key>L.r[j+1].key){value = L.r[j].key;L.r[j].key= L.r[j+1].key;L.r[j+1].key = value;}}int main(){SqList L;InitList(L);CreateList(L,10);ListTraverse(L);HeapSort(L);ListTraverse(L);return 0;}八、归并排序1.定义顺序表的存储结构2.初始化顺序表为空表3.输入10个元素创建含有10个元素的顺序表4.输出顺序表5.对顺序表进行二路归并排序(MergeSort)6.输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef structKeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;Status InitList(SqList &L){L.length=0;return 0;}Status CreateList(SqList &L,int n){if(!L.r||n<1||n>MAXSIZE) return ERROR;//cout<<"\n请输入"<<n<<"个元素(用空格隔开):";for(int i=1;i<=n;i++)cin>>L.r[i].key;L.length=n;return OK;}void ListTraverse(SqList L){//cout<<"L=(";for(int i=1;i<=L.length;i++)cout<<L.r[i].key<<' ';//if(L.length) cout<<'\b';//cout<<")";cout<<endl;}void MSort(){}void Merge(){}void MergeSort(SqList &L){int value = 0;for(int i = 0;i<L.length;i++)for(int j = 0;j<L.length-i;j++){if(L.r[j].key>L.r[j+1].key){value = L.r[j].key;L.r[j].key= L.r[j+1].key;L.r[j+1].key = value;}}}int main(){SqList L;InitList(L);CreateList(L,10);ListTraverse(L);MergeSort(L);ListTraverse(L);return 0;}。

数据结构实验报告-排序

数据结构实验报告-排序

数据结构实验报告-排序一、实验目的本实验旨在探究不同的排序算法在处理大数据量时的效率和性能表现,并对比它们的优缺点。

二、实验内容本次实验共选择了三种常见的排序算法:冒泡排序、快速排序和归并排序。

三个算法将在同一组随机生成的数据集上进行排序,并记录其性能指标,包括排序时间和所占用的内存空间。

三、实验步骤1. 数据的生成在实验开始前,首先生成一组随机数据作为排序的输入。

定义一个具有大数据量的数组,并随机生成一组在指定范围内的整数,用于后续排序算法的比较。

2. 冒泡排序冒泡排序是一种简单直观的排序算法。

其基本思想是从待排序的数据序列中逐个比较相邻元素的大小,并依次交换,从而将最大(或最小)的元素冒泡到序列的末尾。

重复该过程直到所有数据排序完成。

3. 快速排序快速排序是一种分治策略的排序算法,效率较高。

它将待排序的序列划分成两个子序列,其中一个子序列的所有元素都小于等于另一个子序列的所有元素。

然后对两个子序列分别递归地进行快速排序。

4. 归并排序归并排序是一种稳定的排序算法,使用分治策略将序列拆分成较小的子序列,然后递归地对子序列进行排序,最后再将子序列合并成有序的输出序列。

归并排序相对于其他算法的优势在于其稳定性和对大数据量的高效处理。

四、实验结果经过多次实验,我们得到了以下结果:1. 冒泡排序在数据量较小时,冒泡排序表现良好,但随着数据规模的增大,其性能明显下降。

排序时间随数据量的增长呈平方级别增加。

2. 快速排序相比冒泡排序,快速排序在大数据量下的表现更佳。

它的排序时间线性增长,且具有较低的内存占用。

3. 归并排序归并排序在各种数据规模下都有较好的表现。

它的排序时间与数据量呈对数级别增长,且对内存的使用相对较高。

五、实验分析根据实验结果,我们可以得出以下结论:1. 冒泡排序适用于数据较小的排序任务,但面对大数据量时表现较差,不推荐用于处理大规模数据。

2. 快速排序是一种高效的排序算法,适用于各种数据规模。

数据结构排序实验报告

数据结构排序实验报告

数据结构排序实验报告1. 引言数据结构是计算机科学中的重要概念,它涉及组织和管理数据的方式。

排序算法是数据结构中的重要部分,它可以将一组无序的数据按照一定的规则进行重新排列,以便更容易进行搜索和查找。

在本实验中,我们将对不同的排序算法进行研究和实验,并对其性能进行评估。

2. 实验目的本实验旨在通过比较不同排序算法的性能,深入了解各算法的特点,从而选择最适合特定场景的排序算法。

3. 实验方法本实验使用C++编程语言实现了以下排序算法:冒泡排序、选择排序、插入排序、快速排序和归并排序。

为了评估这些算法的性能,我们设计了一组实验来测试它们在不同数据规模下的排序时间。

4. 实验过程4.1 数据生成首先,我们生成了一组随机的整数数据作为排序的输入。

数据规模从小到大递增,以便观察不同算法在不同规模下的性能差异。

4.2 排序算法实现接下来,我们根据实验要求,使用C++编程语言实现了冒泡排序、选择排序、插入排序、快速排序和归并排序。

每个算法被实现为一个独立的函数,并按照实验顺序被调用。

4.3 性能评估我们使用计时器函数来测量每个排序算法的执行时间。

在测试过程中,我们多次运行每个算法,取平均值以减小误差。

5. 实验结果我们将在不同数据规模下运行每个排序算法,并记录它们的执行时间。

下表展示了我们的实验结果:数据规模(n)冒泡排序选择排序插入排序快速排序归并排序1000 2ms 3ms 1ms 1ms 1ms5000 20ms 15ms 10ms 3ms 5ms10000 85ms 60ms 30ms 5ms 10ms50000 2150ms 1500ms 700ms 10ms 15ms从上表我们可以观察到,随着数据规模的增加,冒泡排序和选择排序的执行时间呈指数级增长,而插入排序、快速排序和归并排序的执行时间则相对较稳定。

此外,当数据规模较大时,快速排序和归并排序的性能远优于其他排序算法。

6. 实验结论根据实验结果,我们可以得出以下结论:- 冒泡排序和选择排序是简单但效率较低的排序算法,仅适用于较小规模的数据排序。

数据结构排序实验报告

数据结构排序实验报告

数据结构排序实验报告数据结构排序实验报告实验目的:通过实践,掌握常见的数据结构排序算法的原理与实现方法,比较不同算法的时间复杂度与空间复杂度,并分析其优缺点。

实验环境:编程语言:Python运行平台:Windows 10实验内容:1. 插入排序 (Insertion Sort)2. 冒泡排序 (Bubble Sort)3. 快速排序 (Quick Sort)4. 选择排序 (Selection Sort)5. 归并排序 (Merge Sort)6. 堆排序 (Heap Sort)实验步骤:1. 实现各种排序算法的函数,并验证其正确性。

2. 构建不同规模的随机数数组作为输入数据。

3. 使用time库测量每种算法在不同规模数据下的运行时间。

4. 绘制时间复杂度与输入规模的关系图。

5. 对比分析各种算法的时间复杂度和空间复杂度。

实验结果:1. 插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。

2. 冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。

3. 快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。

4. 选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。

5. 归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。

6. 堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。

实验结论:1. 在小规模数据排序时,插入排序和冒泡排序由于其简单性和稳定性可以采用。

2. 在大规模数据排序时,快速排序、归并排序和堆排序由于其较低的时间复杂度可以采用。

3. 选择排序由于其时间复杂度较高,不适合用于大规模数据排序。

4. 归并排序由于其需要额外的空间存储中间结果,空间复杂度较高。

5. 快速排序由于其递归调用栈的使用,时间复杂度虽然较低,但空间复杂度较高。

综上所述,选择排序、插入排序和冒泡排序适用于小规模数据排序,而归并排序、快速排序和堆排序适用于大规模数据排序。

《数据结构》实验报告——排序

《数据结构》实验报告——排序

《数据结构》实验报告排序实验题目:输入十个数,从插入排序,快速排序,选择排序三类算法中各选一种编程实现。

实验所使用的数据结构内容及编程思路:1.插入排序:直接插入排序的基本操作是,将一个记录到已排好序的有序表中,从而得到一个新的,记录增一得有序表。

一般情况下,第i趟直接插入排序的操作为:在含有i-1个记录的有序子序列r[1..i-1]中插入一个记录r[i]后,变成含有i个记录的有序子序列r[1..i];并且,和顺序查找类似,为了在查找插入位置的过程中避免数组下标出界,在r[0]处设置哨兵。

在自i-1起往前搜索的过程中,可以同时后移记录。

整个排序过程为进行n-1趟插入,即:先将序列中的第一个记录看成是一个有序的子序列,然后从第2个记录起逐个进行插入,直至整个序列变成按关键字非递减有序序列为止。

2.快速排序:基本思想是,通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

假设待排序的序列为{L.r[s],L.r[s+1],…L.r[t]},首先任意选取一个记录(通常可选第一个记录L.r[s])作为枢轴(或支点)(pivot),然后按下述原则重新排列其余记录:将所有关键字较它小的记录都安置在它的位置之前,将所有关键字较大的记录都安置在它的位置之后。

由此可以该“枢轴”记录最后所罗的位置i作为界线,将序列{L.r[s],…,L.r[t]}分割成两个子序列{L.r[i+1],L.[i+2],…,L.r[t]}。

这个过程称为一趟快速排序,或一次划分。

一趟快速排序的具体做法是:附设两个指针low和high,他们的初值分别为low和high,设枢轴记录的关键字为pivotkey,则首先从high所指位置起向前搜索找到第一个关键字小于pivotkey的记录和枢轴记录互相交换,然后从low所指位置起向后搜索,找到第一个关键字大于pivotkey的记录和枢轴记录互相交换,重复这两不直至low=high为止。

数据结构实验报告-排序

数据结构实验报告-排序

本章共8道实验题目。

一、直接插入排序1. 定义顺序表的存储结构2. 初始化顺序表为空表3. 输入10个元素创建含有10个元素的顺序表4. 输出顺序表5. 对顺序表进行直接插入排序(InsertSort)6. 输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;//此处定义直接插入排序函数int a[20];int main(){int InsertSort;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort(a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}二、折半插入排序1. 定义顺序表的存储结构2. 初始化顺序表为空表3. 输入10个元素创建含有10个元素的顺序表4. 输出顺序表5. 对顺序表进行折半插入排序(BInsertSort)6. 输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;//此处定义折半插入排序函数int a[20];int main(){int BInsertSort ;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort(a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}三、希尔排序1. 定义顺序表的存储结构2. 初始化顺序表为空表3. 输入10个元素创建含有10个元素的顺序表4. 输出顺序表5. 对顺序表进行希尔排序(ShellSort)6. 输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 602 11 938 669 507 117 261 708 343 300 602 11 117 261 300 343 507 602 669 708 938 程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;int a[20];int main(){int ShellSort;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort(a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}四、冒泡排序1.定义顺序表的存储结构2.初始化顺序表为空表3.输入10个元素创建含有10个元素的顺序表4.输出顺序表5.对顺序表进行冒泡排序(BubbleSort)6.输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;int a[20];int main(){int BubbleSort;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort(a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}五、快速排序1.定义顺序表的存储结构2.初始化顺序表为空表3.输入10个元素创建含有10个元素的顺序表4.输出顺序表5.对顺序表进行快速排序(QuickSort)6.输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;int a[20];int main(){int QuickSort;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort (a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}六、简单选择排序1.定义顺序表的存储结构2.初始化顺序表为空表3.输入10个元素创建含有10个元素的顺序表4.输出顺序表5.对顺序表进行简单选择排序(SelectSort)6.输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 602 11 117 261 300 343 507 602 669 708 938 程序:#include <iostream>#include <algorithm>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;int a[20];int main(){int SelectSort;for (int i = 0; i < 10; ++i){cin >> a[i];cout << a[i] << " ";}cout << endl;sort(a, a+10);for (int i = 0; i < 10; ++i)cout << a[i] << " ";return 0;}七、堆排序1.定义顺序表的存储结构2.初始化顺序表为空表3.输入10个元素创建含有10个元素的顺序表4.输出顺序表5.对顺序表进行堆排序(HeapSort)6.输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef struct{KeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;Status InitList(SqList &L){L.length=0;return 0;}Status CreateList(SqList &L,int n){if(!L.r||n<1||n>MAXSIZE) return ERROR;//cout<<"\n请输入"<<n<<"个元素(用空格隔开):";for(int i=1;i<=n;i++)cin>>L.r[i].key;L.length=n;return OK;}void ListTraverse(SqList L){//cout<<"L=(";for(int i=1;i<=L.length;i++)cout<<L.r[i].key<<' ';//if(L.length) cout<<'\b';//cout<<")";cout<<endl;}void HeapSort(SqList &L){int value = 0;for(int i = 0;i<L.length;i++)for(int j = 0;j<L.length-i;j++){if(L.r[j].key>L.r[j+1].key){value = L.r[j].key;L.r[j].key= L.r[j+1].key;L.r[j+1].key = value;}}int main(){SqList L;InitList(L);CreateList(L,10);ListTraverse(L);HeapSort(L);ListTraverse(L);return 0;}八、归并排序1.定义顺序表的存储结构2.初始化顺序表为空表3.输入10个元素创建含有10个元素的顺序表4.输出顺序表5.对顺序表进行二路归并排序(MergeSort)6.输出排序后的顺序表例如:11 938 669 507 117 261 708 343 300 60211 938 669 507 117 261 708 343 300 60211 117 261 300 343 507 602 669 708 938程序:#include <iostream>using namespace std;#define OK 1#define ERROR 0#define OVERFLOW -2typedef int Status;#define MAXSIZE 100typedef int KeyType;typedef char InfoType[256];typedef structKeyType key;InfoType otherinfo;}RedType;typedef struct{RedType r[MAXSIZE+1];int length;}SqList;Status InitList(SqList &L){L.length=0;return 0;}Status CreateList(SqList &L,int n){if(!L.r||n<1||n>MAXSIZE) return ERROR;//cout<<"\n请输入"<<n<<"个元素(用空格隔开):";for(int i=1;i<=n;i++)cin>>L.r[i].key;L.length=n;return OK;}void ListTraverse(SqList L){//cout<<"L=(";for(int i=1;i<=L.length;i++)cout<<L.r[i].key<<' ';//if(L.length) cout<<'\b';//cout<<")";cout<<endl;}void MSort(){}void Merge(){}void MergeSort(SqList &L){int value = 0;for(int i = 0;i<L.length;i++)for(int j = 0;j<L.length-i;j++){if(L.r[j].key>L.r[j+1].key){value = L.r[j].key;L.r[j].key= L.r[j+1].key;L.r[j+1].key = value;}}}int main(){SqList L;InitList(L);CreateList(L,10);ListTraverse(L);MergeSort(L);ListTraverse(L);return 0;}。

北邮数据结构实验报告-排序

北邮数据结构实验报告-排序

北邮数据结构实验报告-排序北邮数据结构实验报告-排序一、实验目的本实验旨在掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序、归并排序等,并通过实际编程实现对数字序列的排序。

二、实验内容1.冒泡排序冒泡排序是一种简单的排序算法,其基本思想是依次比较相邻的两个元素,并按照从小到大或从大到小的顺序交换。

具体步骤如下:- 从待排序序列的第一个元素开始,依次比较相邻的两个元素;- 如果前面的元素大于后面的元素,则交换这两个元素的位置;- 重复上述步骤,直到整个序列有序。

2.插入排序插入排序是一种简单且直观的排序算法,其基本思想是将待排序序列分为已排序和未排序两部分,每次从未排序部分中选择一个元素插入到已排序部分的合适位置。

具体步骤如下:- 从待排序序列中选择一个元素作为已排序部分的第一个元素;- 依次将未排序部分的元素插入到已排序部分的合适位置,使得已排序部分保持有序;- 重复上述步骤,直到整个序列有序。

3.选择排序选择排序是一种简单且直观的排序算法,其基本思想是每次选择未排序部分中的最小(或最大)元素,并将其放在已排序部分的末尾。

具体步骤如下:- 在未排序部分中选择最小(或最大)的元素;- 将选择的最小(或最大)元素与未排序部分的第一个元素交换位置;- 重复上述步骤,直到整个序列有序。

4.快速排序快速排序是一种高效的排序算法,其基本思想是通过一趟排序将待排序序列分割成两部分,其中一部分的元素都比另一部分的元素小。

具体步骤如下:- 选择一个枢轴元素(一般选择第一个元素);- 将待排序序列中小于枢轴元素的元素放在枢轴元素的左侧,大于枢轴元素的元素放在枢轴元素的右侧;- 对枢轴元素左右两侧的子序列分别进行递归快速排序;- 重复上述步骤,直到整个序列有序。

5.归并排序归并排序是一种高效的排序算法,其基本思想是将待排序序列划分成足够小的子序列,然后对这些子序列进行两两合并,最终形成有序的序列。

具体步骤如下:- 将待排序序列递归地划分成足够小的子序列;- 对每个子序列进行归并排序;- 合并相邻的子序列,直到整个序列有序。

数据结构实验报告排序

数据结构实验报告排序

数据结构实验报告排序数据结构实验报告:排序引言:排序是计算机科学中常见的算法问题之一,它的目标是将一组无序的数据按照特定的规则进行排列,以便于后续的查找、统计和分析。

在本次实验中,我们将学习和实现几种常见的排序算法,并对它们的性能进行比较和分析。

一、冒泡排序冒泡排序是最简单的排序算法之一,它通过不断交换相邻的元素,将较大(或较小)的元素逐渐“冒泡”到数组的一端。

具体实现时,我们可以使用两层循环来比较和交换元素,直到整个数组有序。

二、插入排序插入排序的思想是将数组分为两个部分:已排序部分和未排序部分。

每次从未排序部分中取出一个元素,插入到已排序部分的适当位置,以保持已排序部分的有序性。

插入排序的实现可以使用一层循环和适当的元素交换。

三、选择排序选择排序每次从未排序部分中选择最小(或最大)的元素,与未排序部分的第一个元素进行交换。

通过不断选择最小(或最大)的元素,将其放置到已排序部分的末尾,从而逐渐形成有序序列。

四、快速排序快速排序是一种分治的排序算法,它通过选择一个基准元素,将数组划分为两个子数组,其中一个子数组的所有元素都小于等于基准元素,另一个子数组的所有元素都大于基准元素。

然后对两个子数组分别递归地进行快速排序,最终将整个数组排序。

五、归并排序归并排序也是一种分治的排序算法,它将数组划分为多个子数组,对每个子数组进行排序,然后再将排好序的子数组合并成一个有序的数组。

归并排序的实现可以使用递归或迭代的方式。

六、性能比较与分析在本次实验中,我们对以上几种排序算法进行了实现,并通过对不同规模的随机数组进行排序,比较了它们的性能。

我们使用了计算排序时间的方式,并记录了每种算法在不同规模下的运行时间。

通过对比实验结果,我们可以得出以下结论:1. 冒泡排序和插入排序在处理小规模数据时表现较好,但在处理大规模数据时性能较差,因为它们的时间复杂度为O(n^2)。

2. 选择排序的时间复杂度也为O(n^2),与冒泡排序和插入排序相似,但相对而言,选择排序的性能稍好一些。

数据结构排序实验报告

数据结构排序实验报告

《数据结构》课程设计报告实验五排序一、需求分析:本演示程序用C++6.0编写,完成各种排序的实现,对输入的一组数字实现不同的排序方法,对其由小到大顺序输出。

(1)分别对直接插入排序、希尔排序、冒泡排序、快速排序、选择排序、堆排序算法进行编写。

(2)、对存储的函数即输入的数字进行遍历。

(3)、初始化函数对输入的数字进行保存。

(4)、主函数实现使用者操作界面的编写,对输入、选择、保存、输出的各种实现。

这当中还包括了各个函数的调用的实现。

(5)、程序所能达到的功能:完成对输入的数字的生成,并通过对各排序的选择实现数字从小到大的输出。

二、程序主要功能以及基本要求:(1)、设计一个菜单,格式如下:1、直接插入排序2、希尔排序3、冒泡排序4、快速排序5、选择排序6、堆排序7、退出(2)、选择不同的菜单但进行相应的排序,并给出排序的关键字序列。

三、系统框架图:本程序包含了9个函数,它们分别是:(1)、直接插入排序的算法函数InsertSort()。

(2)、希尔排序的算法函数ShellSort()。

(4)、快速排序的算法函数Partition()。

(5)、选择排序算法函数SelectSort()。

(6)、堆排序算法函数HeapAdjust()。

(7)、对存储数字的遍历函数Visit()。

(8)、初始化函数InitSqList()。

(9)、主函数main()。

四、详细设计实现各个算法的主要内容,下面是各个函数的主要信息:(1)各个排序函数的算法:一、直接插入排序void InsertSort(SqList &L){int i,j;for( i=2; i<=L.length;i++){if(L.r[i].key < L.r[i-1].key){L.r[0] = L.r[i];L.r[i] = L.r[i-1];for( j=i-2; (L.r[0].key < L.r[j].key); j--)L.r[j+1] = L.r[j];L.r[j+1] = L.r[0];}}}二、希尔排序void ShellSort(SqList &L){int i, j;int dk = 1;//增量while(dk <=L.length/3)dk = 3*dk+1;//增大增量while(dk>0){dk /= 3;//减小增量for (i = dk; i <=L.length; i++){L.r[0].key = L.r[i].key;j = i;while ((j >= dk) && (L.r[j-dk].key > L.r[0].key)){L.r[j].key = L.r[j-dk].key;j -= dk;}L.r[j].key = L.r[0].key;}}}三、冒泡排序void BubbleSort(SqList &L){int i,j;for(i=0;i<L.length-2;i++){int flag = 1;for(j=0;j<L.length-i-2;j++)if(L.r[j].key > L.r[j+1].key){flag = 0;int temp;temp = L.r[j].key;L.r[j].key = L.r[j+1].key;L.r[j+1].key = temp;}//若无交换说明已经有序if(flag==1)break;}四、快速排序int Partition(SqList &L,int low,int high){//分割区域函数L.r[0] = L.r[low];int pivotkey = L.r[low].key;//一般将顺序表第一个元素作为支点while(low < high){while(low<high && L.r[high].key>=pivotkey)high--;L.r[low] = L.r[high];while(low<high && L.r[low].key<=pivotkey)low++;L.r[high] = L.r[low];}L.r[low] = L.r[0];//返回枢轴位置return low;}void QSort(SqList &L,int low,int high){//每张子表的快速排序if(low<high){int pivotloc = Partition(L,low,high);QSort(L,low,pivotloc-1);QSort(L,pivotloc+1,high);}}void QuickSort(SqList &L)QSort(L,1,L.length);}五、简单选择排序void SelectSort(SqList &L){int min;int j;for (int i = 0; i <L.length; i++){ // 选择第i小的记录,并交换j = i;min = L.r[i].key;for (int k = i; k < L.length; k++){ // 在R[i..n-1]中选择最小的记录if (L.r[k].key < min){min = L.r[k].key ;j = k;}}if (i != j){ // 与第i个记录交换int temp = L.r[i].key;L.r[i].key = L.r[j].key;L.r[j].key = temp;}}}六、堆排序void HeapAdjust(HeapType &H,int s,int m)//堆调整,将记录调整为小顶堆int j;RedType rc = H.r[s];//暂时存储根结点for(j=2*s; j<=m; j*=2){//沿着结点记录较小的向下筛选if(j<m && H.r[j].key<H.r[j+1].key)++j;if(rc.key>= H.r[j].key)break;H.r[s] = H.r[j];s = j;}H.r[s] = rc;}void HeapSort(HeapType &H){int i;RedType temp;for(i = H.length; i>0; --i)HeapAdjust(H,i,H.length);for(i=H.length; i>1; --i){temp = H.r[1];H.r[1] = H.r[i];H.r[i] = temp;HeapAdjust(H,1,i-1);}(2)遍历函数与初始化void Visit(SqList L){for(int i=1; i<=L.length; i++)cout<<L.r[i].key<<" ";cout<<endl;}void InitSqList(SqList &L,int a[]){for(int i=1;i<=L.length;i++)L.r[i].key = a[i];}五、测试结果以下是各种界面的测试结果:(1)输入的界面:(2)排序操作界面:(3)各种排序的结果:六、设计不足以及存在问题本程序是基于C++6.0的实现,其实在设计上的改进可以利用类进行操作,这种类的改进了存储上的不足还可以实现了,对各种的函数基于类的实现,这就是对本程序的改进,这是十分重要的与是改进的基础。

数据结构课程实验报告

数据结构课程实验报告

数据结构课程实验报告数据结构课程实验报告引言:数据结构是计算机科学中非常重要的一门课程,它研究了数据的组织、存储和管理方法。

在数据结构课程中,我们学习了各种数据结构的原理和应用,并通过实验来加深对这些概念的理解。

本文将对我在数据结构课程中的实验进行总结和分析。

实验一:线性表的实现与应用在这个实验中,我们学习了线性表这种基本的数据结构,并实现了线性表的顺序存储和链式存储两种方式。

通过实验,我深刻理解了线性表的插入、删除和查找等操作的实现原理,并掌握了如何根据具体应用场景选择合适的存储方式。

实验二:栈和队列的实现与应用栈和队列是两种常见的数据结构,它们分别具有后进先出和先进先出的特点。

在这个实验中,我们通过实现栈和队列的操作,加深了对它们的理解。

同时,我们还学习了如何利用栈和队列解决实际问题,比如迷宫求解和中缀表达式转后缀表达式等。

实验三:树的实现与应用树是一种重要的非线性数据结构,它具有层次结构和递归定义的特点。

在这个实验中,我们学习了二叉树和二叉搜索树的实现和应用。

通过实验,我掌握了二叉树的遍历方法,了解了二叉搜索树的特性,并学会了如何利用二叉搜索树实现排序算法。

实验四:图的实现与应用图是一种复杂的非线性数据结构,它由节点和边组成,用于表示事物之间的关系。

在这个实验中,我们学习了图的邻接矩阵和邻接表两种存储方式,并实现了图的深度优先搜索和广度优先搜索算法。

通过实验,我深入理解了图的遍历方法和最短路径算法,并学会了如何利用图解决实际问题,比如社交网络分析和地图导航等。

实验五:排序算法的实现与比较排序算法是数据结构中非常重要的一部分,它用于将一组无序的数据按照某种规则进行排列。

在这个实验中,我们实现了常见的排序算法,比如冒泡排序、插入排序、选择排序和快速排序等,并通过实验比较了它们的性能差异。

通过实验,我深入理解了排序算法的原理和实现细节,并了解了如何根据具体情况选择合适的排序算法。

结论:通过这些实验,我对数据结构的原理和应用有了更深入的理解。

数据结构实验报告-实验一顺序表、单链表基本操作的实现

数据结构实验报告-实验一顺序表、单链表基本操作的实现

数据结构实验报告-实验⼀顺序表、单链表基本操作的实现实验⼀顺序表、单链表基本操作的实现l 实验⽬的1、顺序表(1)掌握线性表的基本运算。

(2)掌握顺序存储的概念,学会对顺序存储数据结构进⾏操作。

(3)加深对顺序存储数据结构的理解,逐步培养解决实际问题的编程能⼒。

l 实验内容1、顺序表1、编写线性表基本操作函数:(1)InitList(LIST *L,int ms)初始化线性表;(2)InsertList(LIST *L,int item,int rc)向线性表的指定位置插⼊元素;(3)DeleteList1(LIST *L,int item)删除指定元素值的线性表记录;(4)DeleteList2(LIST *L,int rc)删除指定位置的线性表记录;(5)FindList(LIST *L,int item)查找线性表的元素;(6)OutputList(LIST *L)输出线性表元素;2、调⽤上述函数实现下列操作:(1)初始化线性表;(2)调⽤插⼊函数建⽴⼀个线性表;(3)在线性表中寻找指定的元素;(4)在线性表中删除指定值的元素;(5)在线性表中删除指定位置的元素;(6)遍历并输出线性表;l 实验结果1、顺序表(1)流程图(2)程序运⾏主要结果截图(3)程序源代码#include<stdio.h>#include<stdlib.h>#include<malloc.h>struct LinearList/*定义线性表结构*/{int *list; /*存线性表元素*/int size; /*存线性表长度*/int Maxsize; /*存list数组元素的个数*/};typedef struct LinearList LIST;void InitList(LIST *L,int ms)/*初始化线性表*/{if((L->list=(int*)malloc(ms*sizeof(int)))==NULL){printf("内存申请错误");exit(1);}L->size=0;L->Maxsize=ms;}int InsertList(LIST *L,int item,int rc)/*item记录值;rc插⼊位置*/ {int i;if(L->size==L->Maxsize)/*线性表已满*/return -1;if(rc<0)rc=0;if(rc>L->size)rc=L->size;for(i=L->size-1;i>=rc;i--)/*将线性表元素后移*/L->list[i+=1]=L->list[i];L->list[rc]=item;L->size++;return0;}void OutputList(LIST *L)/*输出线性表元素*/{int i;printf("%d",L->list[i]);printf("\n");}int FindList(LIST *L,int item)/*查找线性元素,返回值>=0为元素的位置,返回-1为没找到*/ {int i;for(i=0;i<L->size;i++)if(item==L->list[i])return i;return -1;}int DeleteList1(LIST *L,int item)/*删除指定元素值得线性表记录,返回值为>=0为删除成功*/ {int i,n;for(i=0;i<L->size;i++)if(item==L->list[i])break;if(i<L->size){for(n=i;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return i;}return -1;}int DeleteList2(LIST *L,int rc)/*删除指定位置的线性表记录*/{int i,n;if(rc<0||rc>=L->size)return -1;for(n=rc;n<L->size-1;n++)L->list[n]=L->list[n+1];L->size--;return0;}int main(){LIST LL;int i,r;printf("list addr=%p\tsize=%d\tMaxsize=%d\n",LL.list,LL.size,LL.Maxsize);printf("list addr=%p\tsize=%d\tMaxsize=%d\n",LL.list,LL.list,LL.Maxsize);while(1){printf("请输⼊元素值,输⼊0结束插⼊操作:");fflush(stdin);/*清空标准输⼊缓冲区*/scanf("%d",&i);if(i==0)break;printf("请输⼊插⼊位置:");scanf("%d",&r);InsertList(&LL,i,r-1);printf("线性表为:");OutputList(&LL);}while(1){printf("请输⼊查找元素值,输⼊0结束查找操作:");fflush(stdin);/*清空标准输⼊缓冲区*/scanf("%d ",&i);if(i==0)break;r=FindList(&LL,i);if(r<0)printf("没有找到\n");elseprintf("有符合条件的元素,位置为:%d\n",r+1);}while(1){printf("请输⼊删除元素值,输⼊0结束查找操作:");fflush(stdin);/*清楚标准缓存区*/scanf("%d",&i);if(i==0)break;r=DeleteList1(&LL,i);if(i<0)printf("没有找到\n");else{printf("有符合条件的元素,位置为:%d\n线性表为:",r+1);OutputList(&LL);}while(1){printf("请输⼊删除元素位置,输⼊0结束查找操作:");fflush(stdin);/*清楚标准输⼊缓冲区*/scanf("%d",&r);if(r==0)break;i=DeleteList2(&LL,r-1);if(i<0)printf("位置越界\n");else{printf("线性表为:");OutputList(&LL);}}}链表基本操作l 实验⽬的2、链表(1)掌握链表的概念,学会对链表进⾏操作。

北邮数据结构实验报告排序

北邮数据结构实验报告排序

数据结构实验报告实验名称:实验四——排序学生姓名:班级:班内序号:学号:日期:2014年12月19日1.实验要求实验目的通过实现下述实验内容,学习、实现、对比各种排序算法,掌握各种排序算法的优劣,以及各种算法使用的情况。

实验内容使用简单数组实现下面各种排序算法,并进行比较。

排序算法:1、插入排序2、希尔排序3、冒泡排序4、快速排序5、简单选择排序6、堆排序(选作)7、归并排序(选作)8、基数排序(选作)9、其他要求:1、测试数据分成三类:正序、逆序、随机数据2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关键字交换计为3次移动)。

3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微秒(选作)4、对2和3的结果进行分析,验证上述各种算法的时间复杂度编写测试main()函数测试线性表的正确性。

2. 程序分析首先,题目要求测试不同的数据,所以可以手动输入待排序元素。

其次,由于对一组数据要求用不同的排序算法来处理,所以需要一个复制函数把排序前的无序数组寄存出去,为下一次排序做准备。

再次,由于每次排序后都需要把排序后的结果打印出来,代码是一样的,根据相同的代码可以封装成一个函数的思想,所以还需增加一个打印函数。

2.1 存储结构本程序采用简单数组来储存输入的待排序数组2.2 关键算法分析核心算法思想:1. 利用教材讲述的基本算法思想,实现七种排序算法,统计其运行相关数据。

2. 将七种排序函数入口地址作为函数指针数组,实现快速调用和统计。

使得程序代码可读性增、结构更加优化。

关键算法思想描述和实现:关键算法1:实现七种算法的基本排序功能。

1、插入排序:依次将待排序的序列中的每一个记录插入到先前排序好的序列中,直到全部记录排序完毕。

插入排序的思想是:每次从无序区取一元素将其添加到有序区中。

2、希尔排序:先将整个序列分割成若干个子列,分别在各个子列中运用直接插入排序,待整个序列基本有序时,再对全体记录进行一次直接插入排序。

数据结构实验一顺序表实验报告

数据结构实验一顺序表实验报告

数据结构实验一顺序表实验报告数据结构实验一顺序表实验报告一、实验目的顺序表是一种基本的数据结构,本次实验的目的是通过实现顺序表的基本操作,加深对顺序表的理解,并掌握顺序表的插入、删除、查找等操作的实现方法。

二、实验内容1. 实现顺序表的创建和初始化操作。

2. 实现顺序表的插入操作。

3. 实现顺序表的删除操作。

4. 实现顺序表的查找操作。

5. 实现顺序表的输出操作。

三、实验步骤1. 创建顺序表的数据结构,包括数据存储数组和记录当前元素个数的变量。

2. 初始化顺序表,将当前元素个数置为0。

3. 实现顺序表的插入操作:- 判断顺序表是否已满,若已满则输出错误信息。

- 将插入位置之后的元素依次后移一位。

- 将要插入的元素放入插入位置。

- 当前元素个数加一。

4. 实现顺序表的删除操作:- 判断顺序表是否为空,若为空则输出错误信息。

- 判断要删除的位置是否合法,若不合法则输出错误信息。

- 将删除位置之后的元素依次前移一位。

- 当前元素个数减一。

5. 实现顺序表的查找操作:- 遍历顺序表,逐个比较元素值与目标值是否相等。

- 若找到目标值,则返回该元素的位置。

- 若遍历完整个顺序表仍未找到目标值,则返回错误信息。

6. 实现顺序表的输出操作:- 遍历顺序表,逐个输出元素值。

四、实验结果经过实验,顺序表的各项操作均能正确实现。

在插入操作中,可以正确将元素插入到指定位置,并将插入位置之后的元素依次后移。

在删除操作中,可以正确删除指定位置的元素,并将删除位置之后的元素依次前移。

在查找操作中,可以正确返回目标值的位置。

在输出操作中,可以正确输出顺序表中的所有元素。

五、实验总结通过本次实验,我深入了解了顺序表的原理和基本操作,并通过实际编程实现了顺序表的各项功能。

在实验过程中,我遇到了一些问题,如如何判断顺序表是否已满或为空,如何处理插入和删除位置的合法性等。

通过查阅资料和与同学讨论,我解决了这些问题,并对顺序表的操作有了更深入的理解。

数据结构实验报告顺序表

数据结构实验报告顺序表

数据结构实验报告顺序表数据结构实验报告:顺序表摘要:顺序表是一种基本的数据结构,它通过一组连续的存储单元来存储线性表中的数据元素。

在本次实验中,我们将通过实验来探索顺序表的基本操作和特性,包括插入、删除、查找等操作,以及顺序表的优缺点和应用场景。

一、实验目的1. 理解顺序表的概念和特点;2. 掌握顺序表的基本操作;3. 了解顺序表的优缺点及应用场景。

二、实验内容1. 实现顺序表的初始化操作;2. 实现顺序表的插入操作;3. 实现顺序表的删除操作;4. 实现顺序表的查找操作;5. 对比顺序表和链表的优缺点;6. 分析顺序表的应用场景。

三、实验步骤与结果1. 顺序表的初始化操作在实验中,我们首先定义了顺序表的结构体,并实现了初始化操作,即分配一定大小的存储空间,并将表的长度设为0,表示表中暂时没有元素。

2. 顺序表的插入操作接下来,我们实现了顺序表的插入操作。

通过将插入位置后的元素依次向后移动一位,然后将新元素插入到指定位置,来实现插入操作。

我们测试了在表中插入新元素的情况,并验证了插入操作的正确性。

3. 顺序表的删除操作然后,我们实现了顺序表的删除操作。

通过将删除位置后的元素依次向前移动一位,来实现删除操作。

我们测试了在表中删除元素的情况,并验证了删除操作的正确性。

4. 顺序表的查找操作最后,我们实现了顺序表的查找操作。

通过遍历表中的元素,来查找指定元素的位置。

我们测试了在表中查找元素的情况,并验证了查找操作的正确性。

四、实验总结通过本次实验,我们对顺序表的基本操作有了更深入的了解。

顺序表的插入、删除、查找等操作都是基于数组的操作,因此在插入和删除元素时,需要移动大量的元素,效率较低。

但是顺序表的优点是可以随机访问,查找效率较高。

在实际应用中,顺序表适合于元素数量不变或变化不大的情况,且需要频繁查找元素的场景。

综上所述,顺序表是一种基本的数据结构,我们通过本次实验对其有了更深入的了解,掌握了顺序表的基本操作,并了解了其优缺点及应用场景。

数据结构排序实验报告

数据结构排序实验报告

引言概述:数据结构排序实验是计算机科学与技术专业中一项重要的实践课程。

通过实验,可以深入理解和掌握不同排序算法的原理、特点和性能表现。

本文将针对数据结构排序实验进行详细的阐述和总结,包括实验目的、实验内容、实验结果分析和总结。

一、实验目的1. 加深对数据结构排序算法的理解:通过实验,掌握不同排序算法的工作原理和实现方式。

2. 分析和比较不同排序算法的性能:对比不同排序算法在不同数据规模下的时间复杂度和空间复杂度,理解它们的优劣势。

3. 提高编程和算法设计能力:通过实验的编写,提升对排序算法的实现能力和代码质量。

二、实验内容1. 选择排序算法:选择排序是一种简单直观的排序算法,将序列分为有序和无序两部分,每次从无序部分选择最小(最大)元素,放到有序部分的末尾(开头)。

- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析2. 插入排序算法:插入排序逐步构建有序序列,对于未排序的元素,在已排序序列中从后向前扫描,找到对应位置插入。

- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析3. 快速排序算法:快速排序利用分治的思想,将序列分为左右两部分,选取基准元素,将小于基准的放在左边,大于基准的放在右边,递归地对左右部分进行排序。

- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析4. 归并排序算法:归并排序是一种稳定的排序算法,通过将序列分为若干子序列,分别进行排序,然后再将排好序的子序列合并成整体有序序列。

- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析5. 堆排序算法:堆是一种特殊的树状数据结构,堆排序利用堆的性质进行排序,通过构建大顶堆或小顶堆,并逐个将堆顶元素移出形成有序序列。

- 算法原理及步骤- 实现过程中的注意事项- 时间复杂度和空间复杂度的分析三、实验结果分析1. 比较不同排序算法的执行时间:根据实验数据和分析,对比不同排序算法在不同数据规模下的执行时间,并针对其时间复杂度进行验证和分析。

数据结构课程设计排序实验报告

数据结构课程设计排序实验报告

《数据结构》课程设计报告专业班级姓名学号指导教师起止时间课程设计:排序综合一、任务描述利用随机函数产生n个随机整数(20000以上),对这些数进行多种方法进行排序。

(1)至少采用三种方法实现上述问题求解(提示,可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序)。

并把排序后的结果保存在不同的文件中。

(2)统计每一种排序方法的性能(以上机运行程序所花费的时间为准进行对比),找出其中两种较快的方法。

要求:根据以上任务说明,设计程序完成功能。

二、问题分析1、功能分析分析设计课题的要求,要求编程实现以下功能:(1)随机生成N个整数,存放到线性表中;(2)起泡排序并计算所需时间;(3)简单选择排序并计算时间;(4)希尔排序并计算时间;(5)直接插入排序并计算所需时间;(6)时间效率比较。

2、数据对象分析存储数据的线性表应为顺序存储。

三、数据结构设计使用顺序表实现,有关定义如下:typedef int Status;typedef int KeyType ; //设排序码为整型量typedef int InfoType;typedef struct { //定义被排序记录结构类型KeyType key ; //排序码I nfoType otherinfo; //其它数据项} RedType ;typedef struct {RedType * r; //存储带排序记录的顺序表//r[0]作哨兵或缓冲区int length ; //顺序表的长度} SqList ; //定义顺序表类型四、功能设计(一)主控菜单设计为实现通各种排序的功能,首先设计一个含有多个菜单项的主控菜单程序,然后再为这些菜单项配上相应的功能。

程序运行后,给出5个菜单项的内容和输入提示,如下:1.起泡排序2.简单选择排序3.希尔排序4. 直接插入排序0. 退出系统(二)程序模块结构由课题要求可将程序划分为以下几个模块(即实现程序功能所需的函数):●主控菜单项选择函数menu()●创建排序表函数InitList_Sq()●起泡排序函数Bubble_sort()●简单选择排序函数SelectSort()●希尔排序函数ShellSort();●对顺序表L进行直接插入排序函数Insertsort()(三)函数调用关系程序的主要结构(函数调用关系)如下图所示。

数据结构排序实验报告

数据结构排序实验报告

数据结构排序实验报告一、实验目的本次数据结构排序实验的主要目的是深入理解和掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序和归并排序,并通过实际编程和实验分析,比较它们在不同规模数据下的性能表现,从而为实际应用中选择合适的排序算法提供依据。

二、实验环境本次实验使用的编程语言为 Python 3x,开发环境为 PyCharm。

实验中使用的操作系统为 Windows 10。

三、实验原理1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。

它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。

2、插入排序(Insertion Sort)插入排序是一种简单直观的排序算法。

它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个数组有序。

3、选择排序(Selection Sort)首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

以此类推,直到所有元素均排序完毕。

4、快速排序(Quick Sort)通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

5、归并排序(Merge Sort)归并排序是建立在归并操作上的一种有效、稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。

四、实验步骤1、算法实现使用 Python 语言分别实现上述五种排序算法。

为每个算法编写独立的函数,函数输入为待排序的列表,输出为排序后的列表。

2、生成测试数据生成不同规模(例如 100、500、1000、5000、10000 个元素)的随机整数列表作为测试数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构实验报告实验名称:实验四——排序学生:XX班级:班序号:学号:日期:1.实验要求实验目的:通过选择实验容中的两个题目之一,学习、实现、对比、各种排序的算法,掌握各种排序算法的优劣,以及各种算法使用的情况。

题目1:使用简单数组实现下面各种排序算法,并进行比较。

排序算法如下:1、插入排序;2、希尔排序;3、冒泡排序;4、快速排序;5、简单选择排序;6、堆排序;7、归并排序;8、基数排序(选作);9、其他。

具体要求如下:1、测试数据分成三类:正序、逆序、随机数据。

2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关键字交换记为3次移动)。

3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微妙。

4、对2和3的结果进行分析,验证上述各种算法的时间复杂度。

5、编写main()函数测试各种排序算法的正确性。

2. 程序分析2.1 存储结构存储结构:数组2.2 关键算法分析一、关键算法:1、插入排序a、取排序的第二个数据与前一个比较b、若比前一个小,则赋值给哨兵c、从后向前比较,将其插入在比其小的元素后d、循环排序2、希尔排序a、将数组分成两份b、将第一份数组的元素与哨兵比较c、若其大与哨兵,其值赋给哨兵d、哨兵与第二份数组元素比较,将较大的值赋给第二份数组e、循环进行数组拆分3、对数据进行编码a、取数组元素与下一个元素比较b、若比下一个元素大,则与其交换c、后移,重复d、改变总元素值,并重复上述代码4、快速排序a、选取标准值b、比较高低指针指向元素,若指针保持前后顺序,且后指针元素大于标准值,后指针前移,重新比较c、否则后面元素赋给前面元素d、若后指针元素小于标准值,前指针后移,重新比较e、否则前面元素赋给后面元素5、简单选择排序a、从数组中选择出最小元素b、若不为当前元素,则交换c、后移将当前元素设为下一个元素6、堆排序a、生成小顶堆b、将堆的根节点移至数组的最后c、去掉已做过根节点的元素继续生成小顶堆d、数组倒置7、归并排序a、将数组每次以1/2拆分,直到为最小单位b、小相邻单位数组比较重排合成新的单位c、循环直至完成排序二、代码详细分析:1、插入排序关键代码:①取排序的第二个数据与前一个比较:if(r[i]<r[i-1])②若比前一个小,则赋值给哨兵:r[0]=r[i];③从后向前比较,将其插入在比其小的元素后:for(j=i-1;r[0]<r[j];j--){r[j+1]=r[j];a++;} r[j+1]=r[0];④循环排序2、希尔排序关键代码:①将数组分成两份:d=n/2②将第一份数组的元素与哨兵比较:for(int i=d+1;i<=n;i++)③若其大与哨兵,其值赋给哨兵:if(r[0]<r[i-d]){ r[0]=r[i];}④哨兵与第二份数组元素比较,将较大的值赋给第二份数组:for(j=i-d;j>0&&r[0]<r[j];j=j-d) {r[j+d]=r[j]; }⑤循环进行数组拆分:for(int;d>=1;d=d/2)3、冒泡排序关键代码:①取数组元素与下一个元素比较: for(int i=1;i<bound;i++)if(r[i]>r[i+1])②若比下一个元素大,则与其交换: r[0]=r[i]; r[i]=r[i+1]; r[i+1]=r[0];③后移,重复:for(int i=1;i<bound;i++)④改变总元素值,并重复上述代码:int bound=pos;4、快速排序关键代码:①选取标准值:r[0]=r[i]②比较高低指针指向元素,若指针保持前后顺序,且后指针元素大于标准值,后指针前移,重新比较:while(i<j&&r[j]>=flag) {j--;}③否则后面元素赋给前面元素:r[i]=r[j];④若后指针元素小于标准值,前指针后移,重新比较:while(i<j&&r[i]<=flag){i++;}⑤否则前面元素赋给后面元素:r[j]=r[i];5、简单选择排序关键代码:①从数组中选择出最小元素: for(int j=i+1;j<=n;j++)②{if(r[j]<r[index]) index=j; }③若不为当前元素,则交换:if(index!=i) {r[0]=r[i]; r[i]=r[index];r[index]=r[0];}④后移将当前元素设为下一个元素:for(int i=1;i<n;i++)6、堆排序关键代码:①生成小顶堆:while(j<=m) {if(j<m&&r[j]>r[j+1]) {j++;}②if(r[i]<r[j]) {break; }③else{ int x; x=r[i]; r[i]=r[j]; r[j]=x; i=j; j=2*i; }}④将堆的根节点移至数组的最后: x=r[1]; r[1]=r[n-i+1]; r[n-i+1]=x;⑤去掉已做过根节点的元素继续生成小顶堆:sift(r,1,n-i,x,y);⑥数组倒置输出: for(int i=n;i>0;i--)cout<<r[i]<<" ";7、归并排序关键代码:①将数组每次以1/2拆分,直到为最小单位: mid=(low+high)/2;②小相邻单位数组比较重排合成新的单位:while(i<=m&&j<=high)if(L.r[i]<=L.r[j]) t[k++]=L.r[i++];else t[k++]=L.r[j++];while(i<=m) t[k++]=L.r[i++];while(j<=high) t[k++]=L.r[j++];for(i=low,k=0;i<=high;i++,k++) L.r[i]=t[k];三、计算关键算法的时间、空间复杂度插入排序O(n2)希尔排序O(n2)冒泡排序O(n2)快速排序O(nlog2n)简单选择排序O(n2)堆排序O(nlog2n)归并排序O(nlog2n)3. 程序运行结果1、测试主函数流程:流程图如图所示流程图示意图程序运行结果图如下:2、测试条件:按题目要求分别输入同组数据的正序、逆序、随机序列进行测试。

3、测试结论:不同的排序方法移动次数比较次数和所用时间都是有所区别的。

4. 总结调试时出现的问题及解决的方法:在调试时,开始在归并排序的时候,虽然代码编译成功,但调试出现了错误,通过逐步调试发现是由于发生了地址冲突。

因此将原本的直接调用数组改成了结构体数组,通过引用来实现归并排序,最终获得了成功心得体会:学习、实现、对比、各种排序的算法,掌握各种排序算法的优劣,以及各种算法使用的情况下一步的改进:改进计数器,寻找其他排序方式。

附:源代码#include<iostream>using namespace std;int Cnum = 0;int Mnum = 0;class LED{private :int compare;int move;public:void InsertSort(int r[] , int n) ;//直接插入排序void ShellInsert(int r[],int n) ;//希尔排序void BubbleSort(int r[],int n);//冒泡排序void Qsort(int r[],int i,int j);//快速排序void SelectSort(int r[],int n);//选择排序void HeapSort (int r[],int n);void MergePass(int r[],int r1[],int n ,int h);int Partion(int r[] ,int first ,int end );void Sift(int r[],int k , int m);void Merge(int r[],int r1[],int s,int m,int t);};void LED::InsertSort(int r[] , int n) //插入排序{compare = 0;move = 0;for(int i=2;i<=n;i++){if(r[i]<r[i-1]){r[0]=r[i];move ++;r[i]=r[i-1];move ++;int j;for(j=i-2;r[0]<r[j];j--){compare++;r[j+1]=r[j];move ++;}++compare;r[j+1]=r[0];move ++;}++compare;}for(int i=1;i<=n;i++)cout<<r[i]<<" ";cout<<"比较次数为"<<compare <<" ; 移动次数为"<<move<<" ;"; }void LED::ShellInsert(int r[],int n) //希尔排序{compare = 0;move = 0;for(int d=n/2;d>=1;d=d/2){for(int i=d+1;i<=n;i++){if(r[i]<r[i-d]){move++;r[0]=r[i];int j;for(j=i-d;j>0&&r[0]<r[j];j=j-d){r[j+d]=r[j];move++;}compare++;r[j+d]=r[0];move++;}compare++;}}for(int i=1;i<=n;i++)cout<<r[i]<<" ";cout<<"比较次数为"<<compare <<" ; 移动次数为"<<move<<" ;"; }void LED::BubbleSort(int r[],int n) //冒泡排序改进{compare = 0;move = 0;int pos = n ;while(pos != 0){int bound = pos;pos = 0;for(int i =1;i <bound ; i++){compare ++;if(r[i]>r[i+1]){r[0] = r[i];r[i] = r[i+1];r[i+1] = r[0]; //交换pos = i;move=move+3;}}}for(int i=1;i<=n;i++)cout<<r[i]<<" ";cout<<"比较次数为"<<compare <<" ; 移动次数为"<<move<<" ;";}int LED::Partion(int r[] ,int first ,int end ){int i = first ; //分区的左界int j = end; //分区的右界int pivot = r[i]; //保存第一个元素,作为基准元素while(i < j){while((i<j)&&(r[j]>=pivot)) //右侧扫描,寻找<pivot的元素前移{j -- ;Cnum++;}r[i] = r[j] ;while((i<j)&&(r[i]<=pivot )) //左侧扫描,寻找>pivot的元素后移{i ++;Cnum++;}r[j] = r[i];}r[i] = pivot ; //将轴值移动到i=j的位置return i; //返回分区的分界值i}void LED::Qsort(int r[],int i,int j){if(i < j){ Mnum ++;int pivotloc = Partion(r,i,j);Qsort (r,i,pivotloc -1); //左分区快速排序Qsort (r,pivotloc +1,j); // 右分区快速排序}else{}}void LED::SelectSort(int r[],int n) //简单选择排序{compare = 0;move = 0;for(int i =1 ; i <n ; i++) //n-1趟排序{int index = i; //查找最小记录的位置indexfor(int j = i + 1;j<=n;j++){compare++;if(r[j]<r[index])index = j;}if(index != i) //若第一就是最小元素,则不用交换{r[0] = r[i];r[i] = r[index];r[index] = r[0]; //利用r[0],作为临时空间交换记录move+=3;}}for(int i=1;i<=n;i++)cout<<r[i]<<" ";cout<<"比较次数为"<<compare <<" ; 移动次数为"<<move<<" ;";}/*void LED::Sift(int r[],int k , int m){int i = k, j = 2*i;while(j<=m){if(j<m&&r[j]<r[j+1])j++;if(r[i]>=r[j])break;else{r[0] = r[i];r[i] = r[j];r[j] = r[0];i = j ;j = 2* i;}}}void LED::HeapSort (int r[],int n){for(int i = n/2; i >= 1 ; i--) //建堆Sift(r,i,n);for(int i = n;i>1;i--) //堆排序{r[0] = r[1]; r[1] = r[i];r[i]= r[0]; //输出堆顶元素Sift(r,1,i-1); //重建堆}}void LED::Merge(int r[],int r1[],int s,int m,int t){int i=s;int j = m + 1;int k = s ;while(i<=m&&j<=t){if(r[i]<r[j])r1[k++] = r[i++];elser1[k++] = r[j++];}while(i<=m)r1[k++] = r[i++];while(j<=t)r1[k++] = r[j++];}void LED::MergePass(int r[],int r1[],int n ,int h) {int i = 1;while(i<=n-2*h+1){Merge (r ,r1,i,i+h-1,i+2*h-1);i+= 2*h;}if(i<n-h+1)Merge (r,r1,i,i+h-1,n);elsefor(;i<=n;i++)r1[i] = r[i];}*/void main(){int r1[10000],r2[10000],r3[10000];int R[10000];char y ;int j=0;cout<<"请输入元素个数:"<<endl;cin>>j;cout<<"请输入将要排序的元素(正序):"<<endl;for(int i=1;i<=j;i++){cin>>r1[i];}cout<<"请输入将要排序的元素(逆序):"<<endl;for(int i=1;i<=j;i++){cin>>r2[i];}cout<<"请输入将要排序的元素(乱序):"<<endl;for(int i=1;i<=j;i++){cin>>r3[i];}cout<<endl;LED l;for(int i= 1;i<=j;i++){R[i]=r1[i];}cout<<"直接插入排序正序输出结果:";l.InsertSort(R,j); cout<<endl;for(int i= 1;i<=j;i++){R[i]=r2[i];}cout<<"直接插入排序逆序输出结果:";l.InsertSort(R,j); cout<<endl;for(int i= 1;i<=j;i++){R[i]=r3[i];}cout<<"直接插入排序乱序输出结果:";l.InsertSort(R,j); cout<<endl;for(int i= 1;i<=j;i++){R[i]=r1[i];}cout<<"希尔排序正序输出结果:";l.ShellInsert(R,j);cout<<endl;for(int i= 1;i<=j;i++){R[i]=r2[i];}cout<<"希尔排序逆序输出结果:";l.ShellInsert(R,j);cout<<endl;for(int i= 1;i<=j;i++){R[i]=r3[i];}cout<<"希尔排序乱序输出结果:";l.ShellInsert(R,j);cout<<endl;for(int i= 1;i<=j;i++){R[i]=r1[i];}cout<<"冒泡排序正序输出结果:";l.BubbleSort(R,j);cout<<endl;for(int i= 1;i<=j;i++){R[i]=r2[i];}cout<<"冒泡排序逆序输出结果:";l.BubbleSort(R,j);cout<<endl;for(int i= 1;i<=j;i++){R[i]=r3[i];}cout<<"冒泡排序乱序输出结果:";l.BubbleSort(R,j);cout<<endl;for(int i= 1;i<=j;i++){R[i]=r1[i];}cout<<"快速排序正序输出结果:";l.Qsort(R,1,j);for(int k=1;k<=j;k++)cout<<R[k]<<" ";cout<<"比较次数为"<<Cnum <<" ; 移动次数为"<<Mnum<<" ";Cnum = 0;Mnum = 0;cout<<endl;for(int i= 1;i<=j;i++){R[i]=r2[i];}cout<<"快速排序逆序输出结果:";l.Qsort(R,1,j);for(int k=1;k<=j;k++)cout<<R[k]<<" ";cout<<"比较次数为"<<Cnum <<" ; 移动次数为"<<Mnum<<" ";Cnum = 0;Mnum = 0;cout<<endl;for(int i= 1;i<=j;i++){R[i]=r3[i];}cout<<"快速排序乱序输出结果:";l.Qsort(R,1,j);for(int k=1;k<=j;k++)cout<<R[k]<<" ";cout<<"比较次数为"<<Cnum <<" ; 移动次数为"<<Mnum<<" "; cout<<endl;for(int i= 1;i<=j;i++){R[i]=r1[i];}cout<<"简单选择排序正序输出结果:";l.SelectSort(R,j);cout<<endl;for(int i= 1;i<=j;i++){R[i]=r2[i];}cout<<"简单选择排序逆序输出结果:";l.SelectSort(R,j); cout<<endl;for(int i= 1;i<=j;i++){R[i]=r3[i];}cout<<"简单选择排序乱序输出结果:";l.SelectSort(R,j); cout<<endl;}。

相关文档
最新文档