(完整版)北师大版数学八年级下第三章图形的旋转分类练习

合集下载

北师大版八年级数学下册第三章图形的平移与旋转:3.2 图形的旋转 同步练习题(含答案)

北师大版八年级数学下册第三章图形的平移与旋转:3.2 图形的旋转 同步练习题(含答案)

第三章图形的平移与旋转3.2图形的旋转(1)一、选择题1.观察下列图案,其中旋转角最大的是()2.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD. 下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC3.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°4.如图,在△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,则点B到C′的距离是()A.4 B.4 2C.4 3 D.35.如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′∥AB,则∠BAC的大小是()A.55°B.60°C.65°D.70°6.如图,将等腰直角三角形ABC绕点A逆时针旋转15°得到△AEF,若AC=3,则阴影部分的面积为()A.1 B.1 2C.32D. 37.如图,将矩形ABCD绕点A顺时针旋转90°后,得到矩形AB′C′D′,若CD=8,AD=6,连接CC′,那么CC′的长是()A.20 B.100C.10 3 D.10 28.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3C.2 D.1二、填空题9.将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是.10.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm. 将△AOB 绕顶点O按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=.11.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为.12.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C 按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为.三、解答题13.如图,已知AC⊥BC,垂足为C,AC=4,BC=33,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=4;(2)求线段DB的长度.14.如图1,在△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图1中的△BCD绕点B顺时针旋转得到△BC′D′. 当点D′恰好落在BC边上时,如图2所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD′≌△CAE.15.如图,四边形ABCD是正方形,BM=DF,AF垂直AM,M、B、C在一条直线上,且△AEM与△AEF恰好关于AE所在直线成轴对称,已知EF=x,正方形边长为y.(1)图中△ADF可以绕点A按顺时针方向旋转后能与重合;(2)用x、y的代数式表示△AEM与△EFC的面积为S△AME=;S△CEF=.3.2图形的旋转(2)一、选择题1.△AOB绕点O旋转180°得到△DOE,则下列作图正确的是( )2.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是( )A.55°B.60°C.65°D.70°3.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是( )A.∠BCB′=∠ACA′B.∠B′CA=∠B′ACC.∠ACB=2∠B D.B′C平分∠BB′A′4.如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )A.75°B.65°C.55°D.85°5.如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°). 若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°6.将一副三角板按图1的位置摆放,将△DEF 绕点A (F)逆时针旋转60°后,得到图2,测得CG =62,则AC 长是( )A .9B .6+2 3C .10D .6+6 37.如图,在△OAB 中,OA =OB ,∠AOB =15°,在△OCD 中,OC =OD ,∠COD =45°,且点C 在边OA 上,连接CB ,将线段OB 绕点O 逆时针旋转一定角度得到线段OE ,使得DE =CB ,则∠BOE 的度数为( )A .15°B .15°或45°C .45°D .45°或60°8.如图,OA ⊥OB ,等腰直角三角形CDE 的腰CD 在OB 上,∠ECD =45°,将三角形CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC CD的值为( )A .12B .13C .22D .33二、填空题9.如图,点P 是等边三角形ABC 内的一点,若将△PAB 绕点A 逆时针旋转到△P ′AC ,则∠PAP ′的度数为 .10.如图,在△ABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到△A′B′C′,且点A在A′B′上,则旋转角为.11.如图,在等边△ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长度为.12.如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是.三、解答题13.(1)如图1选择点O为对称中心,画出线段AB关于点O的对称线段A′B′.(2)如图2选择△ABC内一点P为对称中心,画出△ABC关于点P的对称△A′B′C′.14.在下面的网格图中,每个小正方形的边长均为1个单位长度,在Rt△ABC 中,∠C=90°,AC=3,BC=6.(1)试作出△ABC以A为旋转中心、沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-5,5),试建立合适的直角坐标系,并写出A、C两点的坐标.15.如图,在四边形ABCD中,AB=3,BC=2,若AC=AD且∠ACD=60°,则对角线BD的长最大值为.第三章图形的平移与旋转3.2图形的旋转(1)答案与解析一、选择题1.观察下列图案,其中旋转角最大的是(A)2.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD. 下列结论一定正确的是(C)A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC3.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为(C)A.30°B.60°C.90°D.120°4.如图,在△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,则点B到C′的距离是(A)A.4 B.4 2C.4 3 D.35.如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′∥AB,则∠BAC的大小是(D)A.55°B.60°C.65°D.70°6.如图,将等腰直角三角形ABC绕点A逆时针旋转15°得到△AEF,若AC=3,则阴影部分的面积为(C)A.1 B.1 2C.32D. 37.如图,将矩形ABCD绕点A顺时针旋转90°后,得到矩形AB′C′D′,若CD=8,AD=6,连接CC′,那么CC′的长是(D)A.20 B.100C.10 3 D.10 28.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是(B)A.4 B.3C.2 D.1二、填空题9.将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是60°.10.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm. 将△AOB 绕顶点O按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=1.5 cm.11.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为6.12.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C 按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为60°、2三、解答题13.如图,已知AC⊥BC,垂足为C,AC=4,BC=33,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=4;(2)求线段DB的长度.解:(2)作DE⊥BC于点E.∵△ACD是等边三角形,∴∠ACD=60°,又∵AC⊥BC,∴∠DCE=∠ACB-∠ACD=90°-60°=30°,∴Rt△CDE中,DE=12DC=2,由勾股定理得CE=23,∴BE=BC-CE=33-23= 3. 在Rt△BDE中,BD=DE2+BE2=22+(3)2=7.14.如图1,在△ABC 中,AC =BC ,∠A =30°,点D 在AB 边上且∠ADC =45°.(1)求∠BCD 的度数;(2)将图1中的△BCD 绕点B 顺时针旋转得到△BC ′D ′. 当点D ′恰好落在BC 边上时,如图2所示,连接C ′C 并延长交AB 于点E .①求∠C ′CB 的度数;②求证:△C ′BD ′≌△CAE .解:(1)∵AC =BC ,∠A =30°,∴∠CBA =∠CAB =30°.∵∠ADC =45°,∴∠BCD =∠ADC -∠CBA =15°;(2)①由旋转可得CB =C ′B =AC ,∠C ′BD ′=∠CBD =∠A =30°,∴∠CC ′B =∠C ′CB =75°;②证明:∵AC =C ′B ,∠C ′BD ′=∠A ,∴∠CEB =∠C ′CB -∠CBA =45°,∴∠ACE =∠CEB -∠A =15°,∴∠BC ′D ′=∠BCD =∠ACE ,在△C ′BD ′和△CAE 中,⎩⎨⎧∠BC ′D ′=∠ACEAC =BC ′∠C ′BD ′=∠A,∴△C ′BD ′≌△CAE (ASA).15.如图,四边形ABCD 是正方形,BM =DF ,AF 垂直AM ,M 、B 、C 在一条直线上,且△AEM 与△AEF 恰好关于AE 所在直线成轴对称,已知EF =x ,正方形边长为y .(1)图中△ADF 可以绕点A 按顺时针方向旋转90°后能与△ABM 重合;(2)用x 、y 的代数式表示△AEM 与△EFC 的面积为S △AME =12xy ;S △CEF =y 2-xy .3.2图形的旋转(2)一、选择题1.△AOB绕点O旋转180°得到△DOE,则下列作图正确的是(C)2.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是(C)A.55°B.60°C.65°D.70°3.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是(B)A.∠BCB′=∠ACA′B.∠B′CA=∠B′ACC.∠ACB=2∠B D.B′C平分∠BB′A′4.如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为(A)A.75°B.65°C.55°D.85°5.如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°). 若∠1=112°,则∠α的大小是(D)A .68°B .20°C .28°D .22°6.将一副三角板按图1的位置摆放,将△DEF 绕点A (F)逆时针旋转60°后,得到图2,测得CG =62,则AC 长是(B)A .9B .6+2 3C .10D .6+6 37.如图,在△OAB 中,OA =OB ,∠AOB =15°,在△OCD 中,OC =OD ,∠COD =45°,且点C 在边OA 上,连接CB ,将线段OB 绕点O 逆时针旋转一定角度得到线段OE ,使得DE =CB ,则∠BOE 的度数为(B)A .15°B .15°或45°C .45°D .45°或60°8.如图,OA ⊥OB ,等腰直角三角形CDE 的腰CD 在OB 上,∠ECD =45°,将三角形CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OC CD的值为(C)A .12B .13C .22D .33二、填空题9.如图,点P 是等边三角形ABC 内的一点,若将△PAB 绕点A 逆时针旋转到△P ′AC ,则∠PAP ′的度数为60°.10.如图,在△ABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到△A′B′C′,且点A在A′B′上,则旋转角为50°.11.如图,在等边△ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长度为12.如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM三、解答题13.(1)如图1选择点O为对称中心,画出线段AB关于点O的对称线段A′B′.(2)如图2选择△ABC内一点P为对称中心,画出△ABC关于点P的对称△A′B′C′.答案如下图:14.在下面的网格图中,每个小正方形的边长均为1个单位长度,在Rt△ABC 中,∠C=90°,AC=3,BC=6.(1)试作出△ABC以A为旋转中心、沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-5,5),试建立合适的直角坐标系,并写出A、C两点的坐标.解:(1)如图:(2)A(-2,-1);C(-5,-1).15.如图,在四边形ABCD中,AB=3,BC=2,若AC=AD且∠ACD=60°,则对角线BD的长最大值为5.。

(精练)北师大版八年级下册数学第三章 图形的平移与旋转含答案

(精练)北师大版八年级下册数学第三章 图形的平移与旋转含答案

北师大版八年级下册数学第三章图形的平移与旋转含答案一、单选题(共15题,共计45分)1、下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.2、下列图形中,是轴对称图形但不是中心对称图形的是()A. B. C. D.3、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4、下列各网格中的图形是用其图形中的一部分平移得到的是()A. B. C.D.5、下列图形中,是轴对称图形但不是中心对称图形的是()A. B.C. D.6、下列交通标志图案中,是中心对称图形的是()A. B. C. D.7、下列四个图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.8、下列图形是中心对称图形的是()A. B. C. D..9、下列图形中可以由一个基础图形通过平移变换得到的是()A. B. C. D.10、如图,将△ABC沿边BC向右平移2个单位长度得到△DEF,若AC的长为3个单位长度,则四边形ACFD的周长为()A.6B.10C.8D.1211、如图,将正方形图案绕中心O旋转180°后,得到的图案是()A. B. C. D.12、如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB 为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格13、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.14、下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形15、将点 A( 2, -1) 向左平移 3 个单位长度,再向上平移 4 个单位长度得到点 B ,则点B 的坐标是()A.(5, 3)B.( -1, 3)C.( -1, -5)D.(5, -5)二、填空题(共10题,共计30分)16、在直角坐标系中,△ABC的顶点坐标是A(﹣1,2)、B(﹣3,1)、C (0,﹣1).(1)若将△ABC向右平移2个单位得到,画出△A′B′C′,A点的对应点A′的坐标是________ .(2)若将△A′B′C′绕点C′按顺时针方向旋转90°后得到△A1B1C′,则A′点的对应点A1的坐标是________ .(3)直接写出两次变换过程中线段BC扫过的面积之和为________ .17、将一个自然数旋转180°后,可以发现一个有趣的现象,有的自然数旋转后还是自然数.例如,808,旋转180°后仍是808.又如169旋转180°后是691.而有的旋转180°后就不是自然数了,如37.试写一个五位数,使旋转180°后仍等于本身的五位数________.(数字不得完全相同)18、如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,则tanα=________.19、如图,已知面积为1的正方形ABCD的对角线相交于点O,过点O任作一条直线分别交AD,BC于E,F,则阴影部分的面积是________20、一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是________.21、如图所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=________度.22、中,,,,将此三角形绕点旋转,当点落在直线上的点处时,点落在点处,此时点到直线的距离为________.23、如图,已知在矩形0ABC中,0A=3,OC=2,以边OA,OC所在的直线为轴建立平面直角坐标系xOy,反比例函数y= (x>0)的图象经过点B,点P(t,0)是x轴正半轴上的动点,将点B绕点P顺时针旋转90°,使点B恰好落在反比例y= (x>0)的图象上,则t的值是________。

2020-2021学年北师大版八年级数学下册《第3章图形的平移与旋转》知识点分类训练(附答案)

2020-2021学年北师大版八年级数学下册《第3章图形的平移与旋转》知识点分类训练(附答案)

2021年北师大版八年级数学下册《第3章图形的平移与旋转》知识点分类训练(附答案)一.生活中的平移现象1.下面生活中的物体的运动情况可以看成平移的是(填写序号即可).①摆动的钟摆;②在笔直的公路上行驶的汽车;③随风摆动的旗帜;④摇动的大绳;⑤汽车玻璃上雨刷的运动.二.平移的性质2.如图,△ABC沿AC平移得到△A'B'C',A'B'交BC于点D,若AC=6,D是BC的中点,则C'C=.三.坐标与图形变化-平移3.如图,点A、B分别在x轴和y轴上,OA=1,OB=2,若将线段AB平移至A'B',则a+b 的值为.四.作图-平移变换4.如图,△ABC的三个顶点坐标分别为A(0,2),B(﹣3,1),C(﹣2,﹣2).(1)将△ABC向右平移3个单位,作出△A′B′C′;(2)写出△A′B′C′的面积;(3)在y轴上是否存在点P,使得△APC的面积与△ABC的面积相等,若存在,求出P 点的坐标;若不存在,说明理由.五.利用平移设计图案5.如图,下列图案中可以看成是由图案自身的一部分经平移后而得到的是()A.B.C.D.六.生活中的旋转现象6.分别以正方形的各边为直径向其内部作半圆得到的图形如图所示,将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是度.七.旋转的性质7.如图,Rt△ABC中,∠ACB=90°,∠B=30°,S△ABC=2,将△ABC绕点C逆时针旋转至△A′B′C,使得点A'恰好落在AB上,A'B′与BC交于点D,则S△A′CD为()A.+1B.C.D.2﹣1八.旋转对称图形8.如图,三角形ABC中,∠BAC=150°,AB=6cm,三角形ABC逆时针方向旋转一定角度后,与三角形ADE重合,且点C恰好为AD中点.(1)指出旋转中心和图中所有相等的角;(2)求:AE的长度,请说明理由;(3)若是顺时针旋转,把三角形ABC旋转到与三角形ADE重合,则这个最小旋转角是多少.九.中心对称9.如图,点M为线段EF的中点,△AEC与△BFD成中心对称,试确定对称中心,并指出图中相等的线段和相等的角.十.中心对称图形10.不考虑颜色,对如图的对称性表述,正确的是()A.中心对称图形B.轴对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形十一.关于原点对称的点的坐标11.平面直角坐标系中,点P(﹣2,3)与点Q(a,b)关于原点对称,则a+b=.十二.作图-旋转变换12.如图,在平面直角坐标系中,Rt△ABC的顶点坐标分别为A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1B1C1是由△ABC经过顺时针旋转变换得到的.(1)请写出旋转中心的坐标是,旋转角的大小是.(2)以(1)中的旋转中心为中心,画出△A1B1C1按顺时针方向旋转90°得到的△A2B2C2,并写出A2、B2、C2的坐标.十三.利用旋转设计图案13.如图是4×4的网格图.将图中标有①、②、③、④的一个小正方形涂灰,使所有的灰色图形构成中心对称图形,则涂灰的小正方形是()A.①B.②C.③D.④十四.几何变换的类型14.下列关于△ABC与△A'B'C'的几何变换中,配对正确的是()Ⅰ.轴对称;Ⅱ.中心对称;Ⅲ.旋转;Ⅳ.平移.A.①﹣Ⅰ,②﹣Ⅱ,③﹣Ⅲ,④﹣ⅣB.①﹣Ⅱ,②﹣Ⅰ,③﹣Ⅲ,④﹣ⅢC.①﹣Ⅱ,②﹣Ⅰ,③﹣Ⅲ,④﹣ⅣD.①﹣Ⅰ,②﹣Ⅱ,③﹣Ⅲ,④﹣Ⅲ参考答案一.生活中的平移现象1.解:①摆动的钟摆,属于旋转.②在笔直的公路上行驶的汽车,属于平移.③随风摆动的旗帜,不属于平移.④摇动的大绳,不属于平移.⑤汽车玻璃上雨刷的运动,属于旋转.故答案为:②二.平移的性质2.解:由平移的性质,可知,A′D∥AB,∵BD=CD,∴AA′=A′C=3,∴CC′=AA′=3,故答案为:3.三.坐标与图形变化-平移3.解:由作图可知,线段AB向右平移3个单位,再向下平移1个单位得到线段A′B′,∵A(﹣1,0),B(0,2),∴A′(2,﹣1),B′(3,1),∴a=﹣1,b=3,∴a+b=2,故答案为:2.四.作图-平移变换4.解:(1)如图,△A′B′C′即为所求作.(2)△A′B′C′的面积=××=5.(3)存在.设P(0,m),由题意,×|2﹣m|×2=5,解得m=7或﹣3,∴P(0,7)或(0,﹣3).五.利用平移设计图案5.解:A、是一个对称图形,不能由平移得到;B、是应该轴对称图形,不是平移;C、是平移;D、是中心对称图形,不是平移.故选:C.六.生活中的旋转现象6.解:图形可看作由一个基本图形每次旋转90°,旋转4次所组成,故最小旋转角为90°.故答案为:90.七.旋转的性质7.解:过C作CH⊥AB于H,∵∠ACB=90°,∠B=30°,∴∠A=60°,∴∠ACH=30°,∴AC=AB,∴CH=AC=AB,∵S△ABC=2,∴AB•CH=AB•AB=2,∴AB=4,∴AC=2,∵△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,∴CA=CA′=2,∠CA′B′=∠A=60°,∴△CAA′为等边三角形,∴∠ACA′=60°,∴∠BCA′=30°,∴∠A′DC=90°,在Rt△A′DC中,∵∠A′CD=30°,∴A′D=CA′=1,CD=A′D=,∴△A′CD的面积=×1×=.故选:C.八.旋转对称图形8.解:(1)旋转中心是点A,∠ACB=∠E,∠BAC=∠DAE,∠B=∠D;(2)由旋转的性质可知,AB=AD=6cm,AC=AE,∵AC=CD,∴AE=CD=AD=3(cm).(3)顺时针的最小旋转角=360°﹣∠BAC=210°.九.中心对称9.解:观察图形可知,A、E、M、F、B共线,∴旋转中心为M点,旋转角的度数为180°;根据旋转的性质可知,相等线段为:AC=BD,CE=DF,AE=BF,EM=FM,AM=BM,AF=BE,相等的角为:∠A=∠B,∠C=∠D,∠CEA=∠DFB.十.中心对称图形10.解:根据中心对称图形的概念和轴对称图形的概念可知:此图形是中心对称图形,不是轴对称图形,所以A选项正确.故选:A.十一.关于原点对称的点的坐标11.解:由点P(﹣2,3)与点Q(a,b)关于原点对称,得a=2,b=﹣3,则a+b=2+(﹣3)=﹣1,故答案为:﹣1.十二.作图-旋转变换12.解:(1)观察图象可知,旋转中心的坐标是O(0,0),旋转角为90°.故答案为:O(0,0),90°.(2)如图,△A2B2C2即为所求作.A2(1,﹣3),B2(3,1),C2(3,﹣3).十三.利用旋转设计图案13.解:如图,观察图象可知,把③涂灰,所有的灰色图形构成中心对称图形.故选:C.十四.几何变换的类型14.解:观察图象可知:①是中心对称,②是轴对称,③是旋转变换,④是平移变换.故选:B.。

(完整版)北师大版数学八年级下第三章图形的旋转分类练习

(完整版)北师大版数学八年级下第三章图形的旋转分类练习

第三章图形的旋转图形的旋转一、知识点1、旋转的定义:在平面内,将一个图形绕着一个沿________________ 专动一个角度,这样的图形运动称为旋转.这个定点称为 ___________ 转动的角称为 __________ 旋转不改变图形的____________ .练习:1、日常生活中,我们经常见到以下情景:①钟表指针的转动;②汽车方向盘的转动;③打气筒打气时,活塞的运动;④传送带上瓶装饮料的移动.其中属于旋转的是2、如图所示,如果把钟表的指针看作四边形AOBC它绕0点按顺时针方向旋转得到四边形DOEF在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A B分别移到什么位置?(3)A0与DO勺长有什么关系?B0与E0呢?A(4)Z AOD^Z BOE有什么大小关系?再找一个具有这种关系的角2、选择图形的性质:旋转不改变图形的和,但图形上的每个点同时都按相同的方式转动相同的。

旋转前后两个图形对应点到旋转中心的距离—;对应点与旋转中心的连线所成的角都等于;对应线段________ ,对应角___________ .练习:1、判断题一个图形经过旋转①图形上的每一个点到旋转中心的距离相等. ()②图形上可能存在不动点. ()③图形上任意两点的连线与其对应点的连线相等. ()2、旋转作图的一般步骤:(1)找出旋转中心和 ______ ⑵找出构成图形的______ (3)按指定的方向和____ ,通过截取线段的方法,旋转各个关键点(4)顺次连接各个关键点的对应点,并标上相应的字母。

3、如图,△ ABC绕O点旋转后,顶点A的对应点为点D,试确定顶点B、C对应点的位置,指出这一旋转的旋转角,最后画出旋转后的三角形O二、练习:1、上右图是正六边形,这个图案可以看做是由 _______________ “基本图案”通过旋转得到的•3、 有一种几何图形,它绕某来的图形完全重合在一起,这种几何图形是( )A 、正三角形B 、正方形C 、圆D 正六边形4、 如图,矩形ABCD 勺对角线AC 和 BD 相交于点0,过点0的直线分别交AD 和BC 于点E ,F ,AB=2 BC=3则图中阴影部分的面积为 ________________ .4、如图,△ ABC^P ^ DCE 是等边三角形, 得到△ BCD.5、如图,四边形ABCD 勺/ BAD 2C=9G0,AB=AD,AEL BC 于E, △ BEA 旋转后能与厶DFA 重合。

第三章图形的旋转综合训练练习 2023—2024学年北师大版数学八年级下册

第三章图形的旋转综合训练练习 2023—2024学年北师大版数学八年级下册

第三章图形的旋转综合训练练习北师大版2023—2024学年八年级下册一、选择题1.下列图形中,既是中心对称,又是轴对称的是()A .B.C .D .2.如图,将△OAB 绕点O 逆时针旋转70°到△OCD 的位置,若∠AOB =40°,则∠AOD =()A .45°B .40°C .35°D .30°3.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A .30°B .90°C .120°D .180°4.如图,在平面直角坐标系中,将点P (2,3)绕原点O 顺时针旋转90°得到点P ',则P '的坐标为()A .(3,2)B .(3,﹣1)C .(2,﹣3)D .(3,﹣2)5.如图,在△ABC 中,AB =2,BC =3.6,∠B =60°,将△ABC 绕点A 顺时针旋转得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为()A .1.6B .1.8C .2D .2.66.若点P (m ﹣1,5)与点Q m +n 的值是()A .1B .3C .5D .77.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB =20°,则∠ADC 的度数是()A .55°B .60°C .65°D .70°8.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ′B ′C ,连接AA ′,若∠1=25°,则∠BAA ′的度数是()A .55°B .60°C .65°D .70°9.如图,△ODC 是由△OAB 绕点O 顺时针旋转31°后得到的图形,若点D 恰好落在AB 上,且∠AOC 的度数为100°,则∠DOB 的度数是()A .34°B .36°C .38°D .40°10.如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE 绕着点A 顺时针旋转到与△ABF 重合,则EF =()A .B .C .5D .2第2题第4题第5题11.如图,在正方形网格中,线段A ′B ′是线段AB 绕某点逆时针旋转角α得到的,点A ′与A 对应,则角α的大小为()A .30°B .60°C .90°D .120°12.如图,将边长为的正方形绕点B 逆时针旋转30°,那么图中阴影部分的面积为()A .3B .C .3﹣D .3﹣二、填空13.如图,在直角坐标系中,已知点A (3,2),将△ABO 绕点O 逆时针方向旋转180°后得到△CDO ,则点C的坐标是.14.如图,将△ABC 绕点A 逆时针旋转150°,得到△ADE ,这时点B ,C ,D 恰好在同一直线上,则∠B 的度数为.15.如图,在矩形ABCD 中,AD =3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE =EF ,则AB 的长为.16.如图,将△ABC 绕点A 顺时针旋转60°得到△AED ,若线段AB =3,则BE =.17.如图,在△OAB 中,∠AOB =55°,将△OAB 在平面内绕点O 顺时针旋转到△OA 'B ’的位置,使得BB ′∥AO ,则旋转角的度数为.18.如图,在Rt △ABC 中,∠B =90°,AB =BC =2,将△ABC 绕点C 顺时针旋转60°,得到△DEC ,则AE 的长是.19.如图,正方形ABCD 的边长为2,点E ,F 分别在边AD ,CD 上,若∠EBF =45°,则△EDF 的周长等于.第7题第8题第9题第10题第11题第12题第13题第14题第15题第16题第17题第18题20.如图,在等边△ABC 中,D 是边AC 上一点,连接BD .将△BCD 绕点B 逆时针旋转60°得到△BAE ,连接ED .若BC =10,BD =9,则△AED的周长是.三、解答题21.如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A (1,1),B (4,1),C (3,3).(1)将△ABC 向下平移5个单位后得到△A 1B 1C 1;(2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2;(3)判断以O ,A 1,B 为顶点的三角形的形状,并说明理由。

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (18)

北师大版八年级数学下册第3章《图形的平移与旋转》单元练习题含答案解析 (18)

一、选择题1.世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是( )A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量2.一本笔记本4.5元,买x本共付y元,则4.5和y分别是( )A.常量,常量B.变量,变量C.变量,常量D.常量,变量3.一列火车从兰州出发,加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达酒泉车站减速停下,下列图形中,能刻画火车在这段时间内速度随时间变化情况的是( )A.B.C.D.4.小明在6月份的某一天倒了一杯开水,水太烫,他将这杯开水晾在桌上,则这杯水的水温(∘C)与时间(t)之间的关系图象大致是( )A.B.C.D.5.一辆货车从A地开往B地,一辆小汽车从B地开往A地,同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t之间的函数关系如图所示.下列说法中:① A,B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶60千米;⑤出发2小时,小货车离终点还有80千米.其中正确的有( )A.5个B.4个C.3个D.2个6.如图,AB是半圆O的直径,点P从点O出发,沿线段OA−弧AB−线段BO的路径运动一周.设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是( )A.B.C.D.7.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子得意洋洋地躺在一棵大树下睡起觉来,乌龟一直坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程随时间变化情况的是( )A.B.C.D.8.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是( )A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米9.如图所示的图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是( )A.第3min时汽车的速度是40km/hB.第12min时汽车的速度是0km/hC.从第3min到第6min,汽车行驶了120kmD.从第9min到第12min,汽车的速度从60km/h减少到0km/h10.如图1,⊙O过正方形ABCD的顶点A,D,且与边BC相切于点E,分别交AB,DC于点M,N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为( )A.从D点出发,沿弧DA→弧AM→线段MB→线段BCB.从B点出发,沿线段BC→线段CN→弧ND→弧DAC.从C点出发,沿线段CN→弧ND→弧DA→线段ABD.从A点出发,沿弧AM→线段MB→线段BC→线段CN二、填空题11.已知函数f(x)=x,那么f(−2)=.x+112.某品牌汽车每千米的耗油量是0.1L,用s(km)表示行驶的路程,p(L)表示耗油量.在此过程中,变量是,常量是;p关于s的函数表达式是,当s=200km时,函数p的值是L.13.自2020年1月1日延庆区开展创城以来,积极推广垃圾分类,在垃圾分类指导员的帮助下,居民的投放正确率不断提升,分类习惯正在养成.尤其是在5月1日新版《北京市生活垃圾管理条例》实施以来,延庆区城管委为全区从源头上规范垃圾投放,18个街乡镇新配备户用分类垃圾桶20万个,助力推进垃圾分类.下面两张图表是某小区每个月的厨余垃圾量和其他垃圾量.(1)3月份厨余垃圾量比其他垃圾量多吨;(2)月份两类垃圾量(单位:吨)的差距最大.14.已知甲乙两地之间的距离为810米,小明和小天分别从甲乙两地出发,匀速相向而行,已知小明先出发1分钟后,小天再出发,两人在甲乙之间的丙地相遇,此时,小明发现有小学同学也在丙地,于是聊了一会儿,随后以原来速度的4倍返回甲地,小天相遇后继续以原速向甲地前行,到3达甲地后立即原速返回,直至再次与小明相遇.已知在整个过程中,小明、小天两人之间的距离y(米)与小明出发的时间x(分钟)之间的关系如图所示,则在第二次相遇时两人距离乙地米.15.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙继续骑分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚分钟到达B地.16.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有个.17.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是.三、解答题18.人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐遗忘,为提升记忆的效果,需要有计划的按时复习巩固,图中的实线部分是记忆保持量(%)与时间(天)之间的关系图.请根据图回答下列问题:(1) 图中的自变量是,因变量是;(2) 如果不复习,3天后记忆保持量约为;(3) 图中点A表示的意义是;(4) 图中射线BC表示的意义是;(5) 经过第1次复习与不进行复习,3天后记忆保持量相差约为;(6) 10天后,经过第2次复习与从来都没有复习的记忆保持量相差约为.19.从甲城向乙城打长途电话,通话时间不超过3分钟收费2.4元,超过3分钟后每分钟加收1元,写出通话费用y(元)关于通话时间x(分)的函数关系式,如果通话10.5分钟,需要多少话费?(本题中x取整数,不足1分钟按1分钟计算)20.回答下列问题:(1) 某礼堂共有25排座位,第一排有20个座位,后面每一排都比前一排多1个座位,写出每排的座位数m与这排的排数n的函数关系式并写出自变量n的取值范围.本题中,在其他条件不变的情况下请探究下列问题:(2) 当后面每一排都比前一排多2个座位时,则每排的座位数m与这排的排数n的函数关系式是,其中1≤n≤25,且n是正整数;(3) 当后面每一排都比前一排多3个座位、4个座位时,则每排的座位数m与这排的排数n的函数关系式分别是,,其中1≤n≤25,且n是正整数;(4) 某礼堂共有p排座位,第一排有a个座位,后面每一排都比前一排多b个座位,试写出每排的座位数m与这排的排数n的函数关系式,并写出自变量n的取值范围.21.某中学九年级甲、乙两班商定举行一次远足活动,A,B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1,y2千米,y1,y2与x的函数关系图象如图所示.根据图象解答下列问题.(1) 直接写出,y1,y2与x的函数关系式;(2) 求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?(3) 甲、乙两班首次相距4千米时所用时间是多少小时?22.在某次大型的活动中,用无人机进行航拍,在操控无人机时根据现场状况调节高度,已知无人机在上升和下降过程中速度相同.设无人机的飞行高度ℎ(m)与操控无人机的时间t(min)之间的关系如图中的实线所示,根据图象回答下列问题:(1) 图中的自变量是,因变量是;(2) 无人机在75m高的上空停留的时间是min;(3) 在上升或下降过程中,无人机的速度为m/min;(4) 图中a表示的数是;b表示的数是;(5) 求第14min时无人机的飞行高度是多少米?23.A,B两地相距60km,甲、乙二人分别骑自行车和摩托车沿相同路线匀速行驶,由A地到达B地,他们行进中的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示.(1) 乙比甲晚出发几小时?比甲早到几小时?(2) 分别写出甲走的路程s1(km)、乙走的路程s2(km)与时间t(h)之间的函数解析式.(3) 乙在甲出发后几小时追上了甲,追上甲的地点离A地多远?24.如图1,四边形ABCD为矩形,曲线L经过点D.点Q是四边形ABCD内一定点,点P是线段AB上一动点,作PM⊥AB交曲线L于点M,连接QM.小东同学发现:在点P由A运动到B的过程中,对于x1=AP的每一个确定的值,θ=∠QMP都有唯一确定的值与其对应,x1与θ的对应关系如下表所示:x1=AP012345θ=∠QMPα85∘130∘180∘145∘130∘小芸同学在读书时,发现了另外一个函数:对于自变量x2在−2≤x2≤2范围内的每一个值,都有唯一确定的角度θ与之对应,x2与θ的对应关系如图2所示:根据以上材料,回答问题:(1) 表格中α的值为.(2) 如果令表格中x1所对应的θ的值与图2中x2所对应的θ的值相等,可以在两个变量x1与x2之间建立函数关系.①在这个函数关系中,自变量是,因变量是;(分别填入x1和x2)②请在网格中建立平面直角坐标系,并画出这个函数的图象;③根据画出的函数图象,当AP=3.5时,x2的值约为.25.已知甲,乙两名自行车骑手均从P地出发,骑车前往距P地60千米的Q地,当乙骑手出发了 1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q地后立即又原路返回P地,甲,乙两名骑手距P地的路程y(千米)与时间x(时)的函数图象如图所示.(其中折线O−A−B−C−D(实线)表示甲,折线O−E−F−G(虚线)表示乙)(1) 甲骑手在路上停留小时,甲从Q地返回P地时的骑车速度为千米/时;(2) 求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;(3) 在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.答案一、选择题1. 【答案】D【知识点】常量、变量2. 【答案】D【知识点】常量、变量3. 【答案】B【知识点】用函数图象表示实际问题中的函数关系4. 【答案】C【解析】∵水很烫,则其温度超过外界温度,∴水的温度会随时间而降低,直到水温与外界温度相同.【知识点】图像法5. 【答案】C【知识点】用函数图象表示实际问题中的函数关系6. 【答案】C【知识点】图像法7. 【答案】C【知识点】用函数图象表示实际问题中的函数关系8. 【答案】D【解析】开始甲,乙两人相距660米,由图可知,前24分钟甲,乙两人相相距的路程在逐渐缩小.24分钟时,乙到达景点,此时甲、乙两人相距420米之后甲又走了6分钟与乙相遇,−70(米/分)甲总共走了30分钟,∴甲的速度=4206∴甲距景点30×70=2100米,由前24分钟甲、乙两人相距660来缩小到420米,得(甲的速度−乙的速度)×24=660−420,得乙的速度=60米/分,乙总共走了24分钟,∴乙距景点60×24=1440米.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】C【知识点】用函数图象表示实际问题中的函数关系10. 【答案】D【知识点】图像法二、填空题11. 【答案】2=2.【解析】当x=−2时,f(−2)=−2−2+1【知识点】函数的概念12. 【答案】s,p;0.1L/km;p=0.1s;20【知识点】解析式法13. 【答案】1;5【解析】(1)5−4=1(吨);(2)2月的差距约是:6.2−5.6=0.6(吨);3月分的差距是:5−4=1(吨);4月份的差距约是:4.3−2.3=2(吨);5月份的差距约是:3.8−1.3=2.5(吨);6月份的差距是:3−1=2(吨);7月份的差距约是:2.2−1.2=1(吨).【知识点】用函数图象表示实际问题中的函数关系14. 【答案】738【解析】设小明、小天速度分别为V1,V2米/分钟.A到B阶段:V1×1=810−750,∴V1=60米/分钟.B到C阶段:(V1+V2)(3.7−1)=750−345,∴V2=90米/分钟.第一次相遇在丙地,即B到D阶段,(V1+V2)(t D−1)=750,∴t D=6,∴甲地到丙地距离为V1t D=60×6=360米,=4分钟,小天从丙地到甲地用时:360V2D到E阶段小明停留在丙地,F点状态是小天到达甲地,小明速度为43V1=80米/分钟,43V1[4−(7.2−6)]=80×2.8=224米,小天到达甲地,小明、小天相距360−224=136米,F到G阶段,小天从甲地返回与小明相遇,136V2+43V1=13690+80=0.8分钟,第二次相遇地点距离甲地:0.8V2=72米,810−72=738米,故第二次相遇地两人距离乙地738米.【知识点】用函数图象表示实际问题中的函数关系15. 【答案】12【解析】由图及题意易乙的速度为300米/分,甲原速度为250米/分.当x=25后,甲提速为400米/分;当x=86时,甲到达B地,此时乙距B地为250(25−5)+400(86−25)−300×86=3600.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】1【解析】在两人出发后0.5小时之前,甲的速度小于乙的速度;0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,乙的路程为15千米,甲的路程为12千米,甲的行程比乙少3千米,故③错误;乙到达终点所用的时间较少,因此乙比甲先到达终点,故④错误.【知识点】用函数图象表示实际问题中的函数关系17. 【答案】①②③【知识点】用函数图象表示实际问题中的函数关系三、解答题18. 【答案】(1) 时间;记忆的保持量(2) 40%(3) 经过第1次复习,第10天时的记忆保持量约为55%(4) 经过第5次复习,记忆保持量为100%(或经过第5次复习,能保持长久记忆;或经过第5次复习,不会再遗忘;⋯⋯)(5) 28%(所有百分数均为近似数,只要相差不大,均可视为正确)(6) 46%(所有百分数均为近似数,只要相差不大,均可视为正确)【知识点】用函数图象表示实际问题中的函数关系、函数的概念19. 【答案】当0<x≤3时,y=2.4;当x>3时,y=2.4+(x−3)=x−0.6,把x=11代入y=x−0.6得:y=11−0.6=10.4.答:如果通话10.5分钟,需要10.4元话费.【知识点】解析式法、分段函数20. 【答案】(1) m=19+n,1≤n≤25,且n是正整数.(2) m=2n+18(3) m=3n+17;m=4n+16(4) m=bn+a−b(1≤n≤p,且n是正整数).【知识点】解析式法21. 【答案】(1) y1=4x,y2=−5x+10.(2) 由图象可知甲班速度为4 km/h,乙班速度为5 km/h,设甲、乙两班学生出发后,x小时相遇,则4x+5x=10,解得x=109.当x=109时,y2=−5×109+10=409,∴相遇时乙班离A地为409千米.(3) 甲、乙两班首次相距4千米,即两班走的路程之和为6 km,故4x+5x=6,解得x=23.∴甲、乙两班首次相距4千米时所用时间是23小时.【解析】(1) 根据图象可以得到甲班 2.5小时走了10千米,则每小时走4千米,则函数关系式是:y1=4x;乙班从B地出发匀速步行到A地,2小时走了10千米,则每小时走5千米,则函数关系式是:y2=−5x+10.【知识点】用函数图象表示实际问题中的函数关系22. 【答案】(1) 时间(或t);飞行高度(或ℎ)(2) 5(3) 25(4) 2;15(5) 75−2×25=25(m).答:第14min时无人机的飞行高度是25m.【解析】(2) 无人机在75m高的上空停留的时间是12−7=5(min).(3) 在上升或下降过程中,无人机的速度75−507−6=25(m/min).(4) 图中a表示的数是5025=2min;b表示的数是12+7525=15(min).【知识点】用函数图象表示实际问题中的函数关系23. 【答案】(1) 乙比甲晚出发1小时;比甲早到2小时.(2) s1=15t(0≤t≤4);s2=60t−60(1≤t≤2).(3) 当s1=s2,乙追上了甲,即15t=60t−60,解得t=43,当t=43时,s1=15×43=20,所以乙在甲出发后43小时追上了甲,追上甲的地点离A地20千米.【知识点】用函数图象表示实际问题中的函数关系、行程问题24. 【答案】(1) 50∘(2) ①x1;x2;②③−1.87.【知识点】函数的概念、图像法、列表法25. 【答案】(1) 1;30(2) 乙出发 1.5 小时,甲走了 20×(2.5−1)=30(千米),甲乙相距 6 千米, ∴ 乙走了:30−6=24(千米), 设 EF 的解析式为 y =k 1+b 1,把 (1,0),(2.5,24) 代入得:{k 1+b 1=0,2.5k 1+b 1=24,解得 {k 1=16,b 1=−16,∴y =16x −16,令 y =60,则 16x −16=60,解得 x =4.75, ∴x 的取值范围为:1≤x ≤4.75.(3) 设 BC 的解析式为 y =kx +b , 由 B (2,20),C (4,60) 得 {2k +b =20,4k +b =60,解得 {k =20,b =−20,∴BC 的解析式为 y =20x −20,当 0≤x ≤2 时,20−(16x −16)=8,解得 x =74; 当 2<x ≤4 时,(20x −20)+(16x −16)=8,解得 x =3;当4≤x≤630时,(x−4)+(16x−16)=60−8,解得x=9423.综上所述,当x=74或3或9423时,甲、乙两骑手相距8千米.【解析】(1) 由图象可知,甲骑手在路上停留1小时,甲从Q地返回P地时的骑车速度为:60÷(6−4)=30(千米/时).【知识点】行程问题、用函数图象表示实际问题中的函数关系。

北师大八年级下3.2《图形的旋转》习题含答案解析

北师大八年级下3.2《图形的旋转》习题含答案解析

《图形的旋转》习题一、选择题1.下列图形中,绕某个点旋转90°能与自身重合的有( )①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形.A.1个B.2个C.3个D.4个2.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是( )A.36°B.60°C.72°D.90°3.下面的图形(1)-(4),绕着一个点旋转120°后,能与原来的位置重合的是( )A.(1),(4)B.(1),(3)C.(1),(2)D.(3),(4)4.在平面上有一个角是60°的菱形绕它的中心旋转,使它与原来的菱形重合,那么旋转的角度至少是( )A.90°B.180°C.270°D.360°5.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是( )A.甲B.乙C.丙D.丁6.下面四个图案中,是旋转对称图形的是( )A. B. C. D.7.如图所示的图形中,是旋转对称图形的有( )A.1个B.2个C.3个D.4个二、填空题8.请写出一个既是轴对称图形又是旋转对称图形的图形_____.9.将等边三角形绕其对称中心O旋转后,恰好能与原来的等边三角形重合,那么旋转的角度至少是_____.10.如图所示的五角星_____旋转对称图形.(填“是”或“不是”).11.给出下列图形:①线段、②平行四边形、③圆、④矩形、⑤等腰梯形,其中,旋转对称图形有_____(只填序号).三、解答题12.如下图是由三个叶片组成的,绕点O旋转120°后可以和自身重合,若每个叶片的面积为5cm2,∠AOB=120°,则图中阴影部分的面积之和为多少cm2.13.如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?14.如图,△ABC和△BED是等边三角形,则图中三角形ABE绕B点旋转多少度能够与三角形重合.15.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.参考答案一、选择题1.答案:A解析:【解答】①正方形旋转的最小的能与自身重合的度数是90度,正确;②长方形旋转的最小的能与自身重合的度数是180度,错误;③等边三角形旋转的最小的能与自身重合的度数是120度,错误;④线段旋转的最小的能与自身重合的度数是180度,错误;⑤角旋转的最小的能与自身重合的度数是360度,错误;⑥平行四边形旋转的最小的能与自身重合的度数是180度,错误.故选A.【分析】根据旋转对称图形的旋转角的概念作答.2.答案:C解析:【解答】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C【分析】分清基本图形,判断旋转中心,旋转次数,旋转一周为360°.3.答案:C解析:【解答】①旋转120°后,图形可以与原来的位置重合,故正确;②旋转120°后,图形可以与原来的位置重合,故正确;③五角星中心角是72°,120不是72的倍数,图形无法与原来的位置重合,故错误;④旋转90°后,图形无法与原来的位置重合,故错误.故选C.【分析】根据旋转的性质,对题中图形进行分析,判定正确选项.4.答案:B解析:【解答】因为菱形是中心对称图形也是旋转对称图形,要使它与原来的菱形重合,那么旋转的角度至少是180°.故选B.【分析】根据中心对称图形、旋转对称图形的性质.5.答案:B解析:【解答】圆被平分成八部分,旋转45°的整数倍,就可以与自身重合,因而甲,丙,丁都正确;错误的是乙.故选B【分析】根据圆周角的度数.6.答案:D解析:【解答】A、B、C不是旋转对称图形;D、是旋转对称图形.故选D.【分析】根据旋转的定义.7.答案:C解析:【解答】旋转对称图形的有①、②、③.故选C【分析】图形①可抽象出正六边形,图形②可抽象出正五边形,图形③可抽象出正六边形,而④中为等腰三角形,然后根据旋转对称图形的定义进行判断.二、填空题8.答案:圆(答案不唯一)解析:【解答】根据旋转对称图形和轴对称图形的定义:旋转对称图形:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.(0度<旋转角<360度).如果一个图形沿着一条直线对折后两部分完全重合,叫轴对称图形.可以得出圆、正方形等都符合答案.【分析】根据旋转对称图形和轴对称图形的定义找出符合图形,得出答案.9.答案:120°解析:【解答】该图形被经过中心的射线平分成三部分,因而每部分被分成的圆心角是120°,那么它至少要旋转120°.故答案为:120.【分析】正三角形被经过中心的射线平分成三部分,因而每部分被分成的圆心角是120°,因而旋转120度的整数倍,就可以与自身重合.10.答案:是.解析:【解答】因为五角星的五个顶点到其中心的距离相等,将圆周角5等分,故五角星是旋转对称图形.【分析】五角星的五个顶点到其中心的距离相等,将周角平分为5份,可判断是旋转图形.11.答案:①②③④解析:【解答】①线段,旋转中心为线段中点,旋转角为180°,是旋转对称图形;②平行四边形,旋转中心为对角线的交点,旋转角为180°,是旋转对称图形;③圆,旋转中心为圆心,旋转角任意,是旋转对称图形;④矩形,旋转中心为对角线交点,旋转角为180°,是旋转对称图形;⑤等腰梯形,是轴对称图形,不能旋转对称.故旋转对称图形有①②③④.【分析】根据每个图形的特点,寻找旋转中心,旋转角,逐一判断.三、解答题12.答案:5cm2解析:【解答】每个叶片的面积为5c m2,因而图形的面积是15cm2,图形中阴影部分的面积是图形的面积的三分之一,因而图中阴影部分的面积之和为5cm2.【分析】根据旋转的性质和图形的特点解答.13.答案:见解答过程.解析:【解答】(1)证明:在△AE B与△ADC中,AB=AC,∠A=∠A,AE=AD;∴△AEB≌△ADC,∴∠B=∠C.(2)解:先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.【分析】(1)要证明∠B=∠C,可以证明它们所在的三角形全等,即证明△ABE≌△ACD;已知两边和它们的夹角对应相等,由SAS即可判定两三角形全等.(2)因为△ADC≌△AED,公共点A,对应线段CD与BE相交,所以要通过旋转,翻折两次完成.14.答案:60度.解析:【解答】已知△ABC和△BED是等边三角形,∠ABC=∠EBD=60°⇒∠EBC=60°,又因为AB=BC,EB=BD,∠ABE=∠CBD=120°,所以△ABE≌△CBD.故△ABE绕B点旋转60度能够与△CBD重合.【分析】根据旋转对称图形的定义以及全等三角形的判定作答.15.答案:见解答过程.解析:【解答】(1)∵∠B=∠E,AB=AE,BC=EF,∴△ABC≌△AEF,∴∠C=∠F,∠BAC=∠EAF,∴∠BAC-∠PAF=∠EAF-∠PAF,∴∠BAE=∠CAF=25°;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,∴∠AMB=∠C+∠CAF=57°+25°=82°.【分析】(1)先利用已知条件∠B=∠E,AB=AE,BC=EF,利用SAS可证△ABC≌△AEF,那么就有∠C=∠F,∠BAC=∠EAF,那么∠BAC-∠PAF=∠EAF-∠PAF,即有∠BAE=∠CAF=25°;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB是△ACM的外角,根据三角形外角的性质可求∠AMB.。

(完整版)北师大版数学八年级下第三章图形的旋转分类练习

(完整版)北师大版数学八年级下第三章图形的旋转分类练习

第三章图形的旋转图形的旋转一、知识点1、旋转的定义:在平面内,将一个图形绕着一个_______ 沿专动一个角度,这样的图形运动称为旋转.这个定点称为转动的角称为旋转不改变图形的.练习:1、日常生活中,我们经常见到以下情景:①钟表指针的转动;②汽车方向盘的转动;③打气筒打气时,活塞的运动;④传送带上瓶装饮料的移动 .其中届丁旋转的是2、如图所示,如果把钟表的指针看作四边形AOBC它绕O点按顺时针方向旋转得到四边形DOEF在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A B分别移到什么位置?(3)AM DO勺长有什么关系?BO与EO呢?A(4)ZAO由Z BOEt什么大小关系?再找一个具有这种关系的角2、选择图形的性质:旋转不改变图形的和,但图形上的每个点同时都按相同的方式转动相同的。

旋转前后两个图形对应点到旋转中心的距离;对应点与旋转中心的连线所成的角都等丁;对应线段,对应角.练习:1、判断题一个图形经过旋转①图形上的每一个点到旋转中心的距离相等. ()②图形上可能存在不动点. ()③图形上任意两点的连线与其对应点的连线相等. ()2、旋转作图的一般步骤:(1)找出旋转中心和⑵找出构成图形的(3)按指定的方向和,通过截取线段的方法,旋转各个关键点(4) 顺次连接各个关键点的对应点,并标上相应的字母。

3、如图,AAB哙。

点旋转后,顶点A的对应点为点D,试确定顶点B、C对应点的位置,指出这一旋转的旋转角,最后画出旋转后的三角形^二、练习:1、上右图是正六边形,这个图案可以看做是由 旋转得到的.2、如图,ABC 绕点A 逆时针旋转至 ADE 的位置,请你写出其中的对应点、 对应角和对应线段。

•…二二3 E \0/\/ C D 3、 有一种几何图形,它绕某一定点旋转,不论旋转多少度,所得的图形都与原 来的图形完全重合在一起,这种几何图形是() A 、正三角形 B 、正方形 C 、圆 Dk 正六边形4、 如图,矩形ABCD 勺对角线AC 和BD 相交丁点0,过点O 的直线分别交AD 和 BC 于点E, F, AB=2 BC=3则图中阴影部分的面积为 .)度可8、在Rt ABC 中,C 90 ,AC 6,BC &先将ABC 绕点B 旋转90°,得到关 丁 A 的对应点D,则AD 的长是() “基本图案”通过 D B4、如图,/XABC^zX DC 既等边三角形,△ AC 欧着c 点旋转 ( 得到△ BCD.5、如图,四边形 ABCD 勺 Z BADW C=90b,AB=AD,Ad BC 丁 E, △ BEA 旋转后能与^ DFA 重合。

北师大版数学八年级下册 第三章 图形的平移与旋转 全章练习含答案

北师大版数学八年级下册 第三章 图形的平移与旋转 全章练习含答案

第三章 图形的平移与旋转1.下列图案中,是中心对称图形但不是轴对称图形的是( )2. 下列图形中可由其中的部分图形经过平移得到的是( )3. 如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是( )A .55°B .60°C .65°D .70°4.如图所示,在Rt △ABC 中,BC 是斜边,P 是三角形内一点,将△ABP 绕点A 逆时针旋转后,能与△ACP′重合,如果AP =3,则PP′的长为( ) A . 2 B .3 2 C .2 2 D .35.如图,已知正方形ABCD 的边长为3,点E 、F 分别是AB 、BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM.若AE =1,则FM 的长为( )A .2B .252C .3D .526. 如图,将△ABC 绕点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB的延长线上,连接AD,下列结论一定正确的是( )A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC7. 下列图形中,能由左图经过一次平移得到的图形是()8. 已知某一运动方式为:先竖直向上运动1个单位长度后,再水平向左运动2个单位长度,现有一动点P第一次从原点O出发,按运动方式运动到P1,第2次从点P1出发按运动方式运动到点P2,则此时点P2的坐标是()A.(4,2)B.(-4,2) C.(-4,-2) D.(4,-2)9. 如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.65°B.70°C.75°D.80°10. 在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是( )A.(4n-1,3) B.(2n-1,3) C.(4n+1,3) D.(2n+1,3) 11. 如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转a度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:①∠CDF=a度;②A1E=CF;③DF=FC;④BE=BF.其中正确的有(只填序号).12. 如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是.13. 如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为.14. 点A(4,3)向左平移个单位长度后得到A′(-1,3).15. 如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是.16. 将一个正三角形绕其一个顶点按同一方向连续旋转五次,每次转过的角度为60°,旋转前后所有的图形共同组成的图形是正形.17. 如图,△ABC与△DEF关于O点成中心对称,则线段BC与EF的关系是且.18. 下列图形中,能通过旋转得到的有个.19. 如图所示,若A、B、C分别为三个圆的圆心,且圆的半径都是2cm,则圆B可看做是圆A沿水平方向平移cm得到的;圆C可看做圆A沿着与水平方向成°角的方向平移cm得到的,点C到AB的距离是cm.20. 如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=22,将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,求CE′的长.21. 如图,在等腰Rt△ABC中,∠ACB=90°,AB=142,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.如图,若AD=BD,点E与点C重合,AF与DC相交于点O,求证:BD=2DO.22. 如图,△ABC是等边三角形,将△ABC沿直线BC向右平移,使B点与C 点重合,得到△DCE,连接BD,交AC于点F.猜想AC与BD的位置关系,并证明你的结论.23. 如图,点P是等边△ABC内一点,PA=4,PB=3,PC=5,线段AP绕点A逆时针旋转60°得到线段AQ,连接PQ.(1)求PQ的长;(2)求∠APB的度数.答案;1---10 CACBD CCBAC11. ①②④12. (-2,-4)13. 1014. 515. ②④16. 六边17. 平行相等18. 419. 4 60 4 2320.解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=22,∴AB=BC=22,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90°,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=22BE′=2,在Rt△BCH中,CH=BC2-BH2=6,∴CE′=2+ 6.21. 解:由旋转的性质得:CD =CF ,∠DCF=90°,∵△ABC 是等腰直角三角形,AD =BD ,∴∠ADO=90°,CD =BD =AD ,∴∠DCF=∠ADC,在△ADO 和△FCO 中,∵⎩⎪⎨⎪⎧∠AOD=∠FOC ∠ADO =∠FCO AD =FC,∴△ADO≌△FCO(AAS),∴DO =CO ,∴BD =CD =2DO.22. 解:垂直.证明:∵△DCE 由△ABC 平移而来,∴△DCE≌△ABC, ∴△DCE 是等边三角形,∴BC=CD ,∠ACB=∠DCE=60°,∴∠ACD=180°-120°=60°,∴∠ACD=∠ACB,∵BC=CD ,∴AC⊥BD.23. 解:(1)∵AP=AQ ,∠PAQ=60°,∴△APQ 是等边三角形,∴PQ=PA =4; (2)连接QC ,∵△ABC,△APQ 都是等边三角形,∴∠BAC=∠PAQ=60°,∴∠BAP=∠CAQ=60°-∠PAC,在△ABP 和△ACQ中,⎩⎪⎨⎪⎧AB =AC ∠BAP=∠CAQAP =AQ,∴△ABP≌△ACQ(SAS),∴BP =CQ =3,∠APB =∠AQC ,∵在△PQC 中,PQ 2+CQ 2=PC 2,∴△PQC 是直角三角形,且∠PQC =90°, ∵△APQ 是等边三角形,∴∠AQP =60°,∴∠APB =∠AQC =60°+90°=150°.。

北师大版八年级下册数学 第三章 图形的平移与旋转 同步课时练习题(含答案)

北师大版八年级下册数学 第三章 图形的平移与旋转 同步课时练习题(含答案)

北师大版八年级下册数学第三章图形的平移与旋转同步课时练习题3.1图形的平移第1课时平移的认识01基础题知识点1平移的认识1.下列现象中属于平移的是(A)A.升降电梯从一楼升到五楼B.闹钟的钟摆运动C.树叶从树上随风飘落D.汽车方向盘的转动2.下列选项中能由左图平移得到的是(C)3.如图,由△ABC平移得到的三角形有(B)A.15个B.5个C.10个D.8个知识点2平移的性质4.如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是(B)A.40°B.50°C.90°D.130°5.下列说法:①图形平移,对应点所连的线段互相平分;②确定一个图形平移后的位置需要知道平移的方向和距离;③平移不改变图形的形状和大小,只改变图形的位置;④一个图形和它经过平移所得的图形的对应线段平行(或在一条直线上)且相等.其中正确的有(C)A.1个B.2个C.3个D.4个6.如图,△ABC沿着点B到点E的方向,平移到△DEF,已知BC=5,EC=3,那么平移的距离为(A) A.2 B.3 C.5 D.77.如图,已知线段DE是由线段AB平移而得,AB=DC=4 cm,EC=5 cm,则△DCE的周长是13cm.8.如图,△ABC经过一次平移到△DFE的位置,请回答下列问题:(1)点C的对应点是点E,∠D=∠A,BC=FE;(2)连接CE,那么平移的方向就是点C到点E的方向,平移的距离就是线段CE的长度;(3)连接AD,BF,BE,与线段CE相等的线段有AD,BF.知识点3 平移作图9.下列平移作图错误的是(C)10.如图,经过平移,四边形ABCD 的顶点A 移到了点A′. (1)指出平移的方向和平移的距离; (2)画出平移后的四边形A′B′C′D′.解:(1)如图,连接AA′,平移的方向是点A 到点A′的方向,平移的距离是线段AA′的长度. (2)如图,四边形A′B′C′D′即为所求.02 中档题11.如图,已知△ABC 平移后得到△DEF ,则下列说法中,不正确的是(C)A .AB =DE B .BC ∥EFC .平移的距离是线段BD 的长 D .平移的距离是线段AD 的长 12.(2017·西安期中)如图,在两个重叠的直角三角形中,将其中的一个直角三角形沿着BC 方向平移BE 距离得到此图形,其中AB =6,BE =5,DH =3,则四边形DHCF 的面积为(C)A .35 B.652 C.452D .3113.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿着射线BC 的方向平移2个单位长度后,得到△A′B′C′,连接A′C ,则△A′B′C 的周长为12.14.(2016·安徽)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC. (1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位长度,画出平移后得到的四边形A′B′C′D′.解:(1)点D 以及四边形ABCD 另两条边如图所示. (2)得到的四边形A′B′C′D′如图所示.15.如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草. (1)请利用平移的知识求出种花草的面积;(2)若空白的部分种植花草共花费了4 620元,则每平方米种植花草的费用是多少元?解:(1)(8-2)×(8-1)=6×7=42(平方米). 答:种花草的面积为42平方米. (2)4 620÷42=110(元).答:每平方米种植花草的费用是110元.03 综合题16.如图,在Rt △ABC 中,∠C =90°,BC =4,AC =4,现将△ABC 沿CB 方向平移到△A′B′C′的位置. (1)若平移距离为3,求△ABC 与△A ′B ′C ′重叠部分的面积;(2)若平移距离为x(0≤x ≤4),用含x 的代数式表示△ABC 与△A ′B ′C ′重叠部分的面积.解:(1)由题意,得CC′=3,BB ′=3,∴BC ′=1.又由题意易得,重叠部分是一个等腰直角三角形, ∴重叠部分的面积为12×1×1=12.(2)当平移的距离是x 时,CC ′=BB′=x , 则BC′=4-x.∴重叠部分面积为12(4-x)2.第2课时 沿x 轴或y 轴方向平移的坐标变化01 基础题知识点 沿x 轴或y 轴方向平移的坐标变化 1.(2017·平顶山市宝丰县期中)如图,在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度后对应的点A′的坐标是(C)A.(-2,-3) B.(-2,6) C.(1,3) D.(-2,1)2.在平面直角坐标系中,将点(2,3)向上平移1个单位长度,所得到的点的坐标是(C)A.(1,3) B.(2,2)C.(2,4) D.(3,3)3.在平面直角坐标系中,将线段OA向下平移2个单位长度,平移后,点O,A的对应点分别为点O1,A1.若点O(0,0),A(1,4),则点O1,A1的坐标分别是(B)A.(0,-2),(-1,4) B.(0,-2),(1,2)C.(-2,0),(1,4) D.(-2,0),(-1,4)4.(2017·郴州)在平面直角坐标系中,把点A(2,3)向左平移1个单位长度得到点A′,则点A′的坐标为(1,3).5.如图所示的平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,2),B(3,-2),C(5,1),D(4,4),画出将四边形ABCD向左平移3个单位长度后得到的四边形A1B1C1D1,并写出平移后四边形各个顶点的坐标.解:如图所示.由图可知,A1(-2,2),B1(0,-2),C1(2,1),D1(1,4).02中档题6.将△ABC各顶点的纵坐标加“-3”,连接这三点所成的三角形是由△ABC(B)A.向上平移3个单位长度得到的B.向下平移3个单位长度得到的C.向左平移3个单位长度得到的D.向右平移3个单位长度得到的7.若将点P(m+2,2m+1)向右平移1个单位长度后,点P的对应点正好落在y轴上,则m=-3.8.如图,把“QQ”笑脸放在平面直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C的坐标为(-1,1),则将此“QQ”笑脸向右平移3个单位长度后,右眼B的坐标是(3,3).9.如图,在平面直角坐标系中,已知点A(-3,-1),点B(-2,1),平移线段AB,使点A落在A1(0,-1),点B落在点B1,则点B1的坐标为(1,1).10.观察下图,与图1中的鱼相比,图2中的鱼发生了一些变化,若图1中鱼上点P的坐标为(4,3.2),则这个点在图2中的对应点P1的坐标应为(4,2.2).11.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为(2,7),点C的坐标为(6,5);(2)将△ABC向下平移7个单位长度,请画出平移后的△A1B1C1;(3)如果M为△ABC内的一点,其坐标为(a,b),那么平移后点M的对应点M1的坐标为(a,b-7).解:平移后的△A1B1C1如图所示.第3课时沿x轴,y轴方向两次平移的坐标变化01基础题知识点沿x轴,y轴方向两次平移的坐标变化1.将点(1,2)先向左平移3个单位长度,再向上平移1个单位长度,所得的点的坐标是(A) A.(-2,3) B.(4,3)C.(-2,1) D.(4,1)2.如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为(D)A.(4,3) B.(2,4)C.(3,1) D.(2,5)3.在如图所示的平面直角坐标系内,画在透明胶片上的四边形ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是(B)A.先向右平移5个单位长度,再向下平移1个单位长度B.先向右平移5个单位长度,再向下平移3个单位长度C.先向右平移4个单位长度,再向下平移1个单位长度D.先向右平移4个单位长度,再向下平移3个单位长度4.将点P(-4,y)先向左平移2个单位长度,再向下平移3个单位长度后得到点Q(x,-1),则x=-6,y=2.5.(2017·西安高新区期中)在平面直角坐标系中,点A,B的坐标分别为(-3,1),(-1,-2),将线段AB沿某一方向平移后,得到点A的对应点A′的坐标为(-1,0),则点B的对应点B′的坐标为(1,-3).6.如图,下列网格中,每个小正方形的边长都是1个单位长度,图中鱼的各个顶点A,B,C,D都在格点上.(1)把鱼先向右平移4个单位长度,再向上平移2个单位长度,请你画出平移后得到的图形;(2)写出A,B,C,D四点平移后的对应点A′,B′,C′,D′的坐标.解:(1)如图所示,四边形A′B′C′D′即为所求.(2)A′(4,2),B′(0,6),C′(2,2),D′(1,1).02中档题7.如图,线段AB经过平移得到线段A1B1,其中A,B的对应点分别为A1,B1,这四个点都在格点上,若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P1的坐标为(A)A.(a-4,b+2) B.(a-4,b-2)C.(a+4,b+2) D.(a+4,b-2)8.如图,△ABC各顶点的坐标分别为A(-2,6),B(-3,2),C(0,3),将△ABC先向右平移4个单位长度,再向上平移3个单位长度,得到△DEF.(1)画出△DEF,并分别写出△DEF各顶点的坐标;(2)如果将△DEF看成是由△ABC经过一次平移得到的,请指出这一平移的平移方向和平移距离.解:(1)△DEF如图所示,其各顶点的坐标分别为D(2,9),E(1,5),F(4,6).(2)连接AD.由图可知,AD=32+42=5.∴如果将△DEF看成是由△ABC经过一次平移得到的,那么这一平移的平移方向是由A到D的方向,平移的距离是5个单位长度.03综合题9.在平面直角坐标系中,把点向右平移2个单位长度,再向上平移1个单位长度记为一次“跳跃”.点A(-6,-2)经过第一次“跳跃”后的位置记为A1,点A1再经过一次“跳跃”后的位置记为A2,…,以此类推.(1)写出点A3的坐标:A3(0,1);(2)写出点A n的坐标:A n(-6+2n,-2+n)(用含n的代数式表示).3.2图形的旋转第1课时旋转的认识01基础题知识点1旋转的有关概念1.下面生活中的实例,不是旋转的是(A)A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.(2017·西安期中)如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C的对应点C′落在AB边上,则旋转角为(B)A.40°B.70°C.80°D.140°3.如图,△ABC是等边三角形,D是BC边上的中点,△ABD经过旋转后到达△ACE的位置,那么:(1)旋转中心是点A;(2)点B,D的对应点分别是点C,E;(3)线段AB,BD,DA的对应线段分别是线段AC,CE,EA;(4)∠B的对应角是∠ACE;(5)旋转角度为60°.知识点2旋转的性质4.如图,将△AOB绕点O按逆时针方向旋转60°后得到△COD,若∠AOB=15°,则∠AOD的度数是(C) A.15 °B.60°C.45°D.75°5.(2017·平顶山市宝丰县期末)如图所示,在平面直角坐标系中,点A,B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A′的坐标为(B)A.(2,2) B.(2,4)C.(4,2) D.(1,2)6.如图,△ABC绕点A逆时针旋转30°至△ADE,AB=5 cm,BC=8 cm,∠BAC=130°,则AD=AB=5cm,DE=BC=8cm,∠EAC=∠BAD=30°,∠DAC=100°.02 中档题 7.(2016·大连)如图,将△ABC 绕点A 逆时针旋转得到△ADE ,点C 和点E 是对应点,若∠CAE =90°,AB =1,则BD =2.8.(2017·西安期中)如图,在△ABC 中,∠C =90°,AC =8,BC =6,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B ,D 两点间的距离为210.9.(2017·朝阳市建平县期末)如图,△ABC 中,AB =AC ,∠BAC =40°,将△ABC 绕点A 按逆时针方向旋转100°得到△ADE ,连接BD ,CE 交于点F. (1)求证:△ABD ≌△ACE ; (2)求∠ACE 的度数.解:(1)证明:∵△ABC 绕点A 按逆时针方向旋转100°得到△ADE , ∴∠BAD =∠CAE ,AB =AD ,AC =AE. 又∵AB =AC ,∴AB =AC =AD =AE. ∴△ABD ≌△ACE(SAS).(2)∵∠CAE =100°,AC =AE , ∴∠ACE =∠AEC.∴∠ACE =12×(180°-∠CAE)=12×(180°-100°)=40°.03 综合题 10.(2017·陕西蓝田县期末)如图,在Rt △ABC 中,∠B =90°,AB =BC =2,将△ABC 绕点C 顺时针旋转60°,得到△DEC ,连接AE ,则AE 的长为2+6.第2课时 旋转作图01 基础题 知识点 旋转作图1.将△AOB 绕点O 旋转180°得到△DOE ,则下列作图正确的是(C)2.(2017·广州)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为(A)3.(2017·枣庄)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是(B)A.96 B.69 C.66 D.994.如图,在正方形网格中,以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△AB1C1.解:如图.5.如图,△ABC绕点O旋转后,顶点A的对应点为A′,试确定旋转后的三角形.解:如图所示.02中档题6.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图看到的是万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的平行四边形AEFG可以看成是把平行四边形ABCD以A为中心(D)A.顺时针旋转60°得到B.顺时针旋转120°得到C.逆时针旋转60°得到D.逆时针旋转120°得到7.如图,已知Rt△ABC和三角形外一点P,按要求完成图形.(1)将△ABC绕顶点C顺时针方向旋转90°,得△A′B′C′;(2)将△ABC绕点P沿逆时针方向旋转60°,得△A″B″C″.解:(1)△A′B′C′如图所示. (2)△A″B″C″如图所示.8.(2017·平顶山市宝丰县期末)如图所示的网格中,每个小正方形的边长都是1,△ABC 的三个顶点都在格点上,点A(-4,2),点D(0,5).(1)画出△ABC 绕点D 逆时针方向旋转90°后的△EFG ; (2)写出点E ,F ,G 的坐标.解:(1)如图所示,△EFG 即为所求.(2)如图所示,E(3,1),F(1,2),G(3,4).小专题(五) 教材P89T12的变式与应用教材母题:(教材P89T12)如图,△ABC ,△ADE 均是顶角为42°的等腰三角形,BC ,DE 分别是底边,图中的哪两个三角形可以通过怎样的旋转而相互得到?解:∵△ABC ,△ADE 均是顶角为42°的等腰三角形, ∴∠BAC =∠DAE =42°,AB =AC ,AD =AE.∵∠BAD =∠BAC -∠DAC ,∠CAE =∠DAE -∠DAC , ∴∠BAD =∠CAE.在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE(SAS).∴△ABD 与△ACE 可通过旋转相互得到,△ABD 以点A 为旋转中心,逆时针旋转42°,使△ABD 与△ACE 重合.1.如图,△ABC 和△ADE 都是等腰直角三角形.(1)求证:BD =CE ;(2)△ABD 可以看作是由△ACE 逆时针旋转90°得到的.证明:△ABC 和△ADE 都是等腰直角三角形, ∴AB =AC ,AD =AE ,∠BAC =∠DAE =90°. ∴∠BAD =∠CAE.在△BAD 和△CAE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△BAD ≌△CAE(SAS). ∴BD =CE.2.如图,点P 是等边△ABC 内一点,PA =4,PB =3,PC =5.线段AP 绕点A 逆时针旋转60°到AQ ,连接PQ. (1)求PQ 的长.(2)求∠APB 的度数.解:(1)∵AP =AQ ,∠PAQ =60° ∴△APQ 是等边三角形. ∴PQ =AP =4. (2)连接QC.∵△ABC ,△APQ 都是等边三角形, ∴∠BAC =∠PAQ =60°.∴∠BAP =∠CAQ =60°-∠PAC.在△ABP 和△ACQ 中,⎩⎨⎧AB =AC ,∠BAP =∠CAQ ,AP =AQ ,∴△ABP ≌△ACQ(SAS).∴BP =CQ =3,∠APB =∠AQC. ∵在△PQC 中,PQ 2+CQ 2=PC 2,∴△PQC 是直角三角形,且∠PQC =90°. ∵△APQ 是等边三角形,∴∠AQP =60°.∴∠APB =∠AQC =60°+90°=150°.3.如图1,在△ABC 中,D ,E 分别是AB ,AC 上的点,AB =AC ,AD =AE ,然后将△ADE 绕点A 顺时针旋转一定角度,连接BD ,CE ,得到图2,将BD ,CE 分别延长至M ,N ,使DM =12BD ,EN =12CE ,得到图3,请解答下列问题:(1)在图2中,BD 与CE 的数量关系是BD =CE ;(2)在图3中,判断△AMN 的形状,及∠MAN 与∠BAC 的数量关系,并证明你的猜想. 解:△AMN 为等腰三角形,∠MAN =∠BAC. 证明:易证△BAD ≌△CAE , ∴∠ABD =∠ACE ,BD =CE. 又∵DM =12BD ,EN =12CE ,∴BM =CN.在△ABM 和△ACN 中,⎩⎨⎧BM =CN ,∠ABM =∠ACN ,BA =CA ,∴△ABM ≌△ACN(SAS).∴AM =AN ,∠BAM =∠CAN ,即∠BAC +∠CAM =∠CAM +∠MAN. ∴△AMN 为等腰三角形,∠MAN =∠BAC.3.3 中心对称01 基础题知识点1 中心对称的有关概念及性质 1.下列说法正确的是(B)A .全等的两个图形一定成中心对称B .关于某个点中心对称的两个图形一定全等C .关于某个点中心对称的两个图形不一定全等D .不全等的两个图形有可能关于某点中心对称2.如图,已知△ABC 与△A′B′C′关于点O 成中心对称,则下列说法不正确的是(B)A .∠ABC =∠A′B′C′B .∠BOC =∠B′A′C′ C .AB =A′B′D .OA =OA′3.如图所示的4组图形中,左边图形与右边图形成中心对称的有(C)A .1组B .2组C.3组D.4组4.如图,线段AB和CD关于点O中心对称,若∠B=40°,则∠D的度数为40°.5.如图,△ADE是由△ABC绕A点旋转180°后得到的,那么△ABC与△ADE关于A点中心对称,A点叫做对称中心.6.小明、小辉两家所在位置关于学校中心对称.如果小明家距学校2公里,那么他们两家相距4公里.知识点2画中心对称的图形7.如图,已知四边形ABCD和点O,画出四边形ABCD关于点O成中心对称的四边形A′B′C′D′.解:四边形A′B′C′D′如图所示.知识点3中心对称图形8.(2017·陕西师范大学附属中学期中)下列四个图形中是中心对称图形的是(D)9.(2017·成都)下列图标中,既是轴对称图形,又是中心对称图形的是(D)10.(2017·玉林)五星红旗上的每一个五角星(A)A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形11.请写出一个是中心对称图形的几何图形的名称:正方形(答案不唯一).02中档题12.(2017·河北)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是(C)A .①B .②C .③D .④13.如图是一个以点O 为对称中心的中心对称图形,若∠A =30°,∠C =90°,OC =1,则AB 的长为(A)A .4 B.33C.233D.43314.如图,△ABC 与△DEF 关于O 点中心对称,则线段BC 与EF 的关系是平行且相等.15.(2017·平顶山市宝丰县期中)如图,△ABO 与△CDO 关于O 点中心对称,点E ,F 在线段AC 上,且AF =CE.求证:DF =BE.证明:∵△ABO 与△CDO 关于O 点中心对称, ∴OB =OD ,OA =OC. ∵AF =CE ,∴OF =OE.在△DOF 和△BOE 中,⎩⎨⎧OD =OB ,∠DOF =∠BOE ,OF =OE ,∴△DOF ≌△BOE(SAS). ∴DF =BE.16.如图,正方形ABCD 与正方形A 1B 1C 1D 1关于某点中心对称,已知A ,D 1,D 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B ,C ,B 1,C 1的坐标.解:(1)根据中心对称的性质,可得:对称中心是D1D的中点.∵点D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵点A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是4-2=2.∴点B,C的坐标分别是(-2,4),(-2,2).∵A1D1=2,点D1的坐标是(0,3),∴点A1的坐标是(0,1).∴点B1,C1的坐标分别是(2,1),(2,3).综上可得:顶点B,C,B1,C1的坐标分别是(-2,4),(-2,2),(2,1),(2,3).03综合题17.如图,已知四边形ABCD.(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O中心对称;(3)四边形A1B1C1D1与四边形A2B2C2D2成轴对称或中心对称吗?若是,请在图上画出对称轴或对称中心.解:(1)(2)如图所示.(3)四边形A1B1C1D1与四边形A2B2C2D2成轴对称,对称轴是直线EF,如图.周周练(3.1~3.3)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.下列现象是数学中的平移的是(D)A.骑自行车时的轮胎滚动B.碟片在光驱中运行C.“神舟”十号宇宙飞船绕地球运动D.生产中传送带上的电视机的移动过程2.(2017·西安期中)下列图形是中心对称图形的是(C)3.平面直角坐标系中,将正方形向上平移3个单位长度后,得到的正方形各顶点与原正方形各顶点坐标相比(A) A.横坐标不变,纵坐标加3B.纵坐标不变,横坐标加3C.横坐标不变,纵坐标乘3D.纵坐标不变,横坐标乘34.将如图所示的图案以圆心为中心,旋转180°后得到的图案是(D)5.(2016·长春)如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为(A)A.42°B.48°C.52°D.58°6.△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是(A)A.(-4,-2) B.(4,-2)C.(-2,-3) D.(-2,-4)7.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是(D)A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长8.(2017·西安高新区期中)如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转的度数分别为(B)A.4,30°B.2,60°C.1,30°D.3,30°二、填空题(每小题5分,共30分)9.(2017·黔东南)在平面直角坐标系中有一点A(-2,1),将点A先向右平移3个单位长度,再向下平移2个单位长度,则平移后点A的坐标为(1,-1).10.如图所示,在正方形网格中,图①经过平移变换可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点A(填“A”“B”或“C”).11.(2017·平顶山市宝丰县期中)正三角形绕其中心至少旋转120度能与原三角形重合.12.(2017·宜宾)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是60°.13.(2017·太原)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(-1,1),C(-2,2),将△ABC向右平移4个单位长度,得到△A′B′C′,点A,B,C的对应点分别为A′,B′,C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′,B′,C′的对应点分别为A″,B″,C″,则点A″的坐标为(6,0).14.如图是两张全等的图案,它们完全重合地叠放在一起,按住下面的图案不动,将上面图案绕点O顺时针旋转,至少旋转60度角后,两张图案构成的图形是中心对称图形.三、解答题(共38分)15.(12分)如图,△ABC沿直线l向右平移3 cm得到△FDE,且BC=6 cm,∠B=40°.(1)求BE;(2)求∠FDB的度数;(3)找出图中相等的线段(不另外添加线段); (4)找出图中互相平行的线段(不另外添加线段).解:(1)∵△ABC 沿直线l 向右平移了3 cm , ∴CE =BD =3 cm.∴BE =BC +CE =6+3=9(cm). (2)∵∠FDE =∠B =40°,∴∠FDB =140°.(3)相等的线段有AB =FD ,AC =FE ,BC =DE ,BD =CE =CD. (4)平行的线段有AB ∥FD ,AC ∥FE.16.(12分)如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1,平移△ABC ,使点A 的对应点A 2的坐标为(0,-4),画出平移后对应的△A 2B 2C 2;(2)若将△A 1B 1C 1绕某一点旋转可以得到△A 2B 2C 2,请直接写出旋转中心的坐标. 解:(1)如图所示.(2)旋转中心的坐标为(32,-1).17.(14分)如图,固定一块三角板,另一块三角板按图示开始平移至两条较大直角边重合时停止.(两个同学为一组,利用30°角的三角板作图形的平移运动)(1)观察平移过程中的重叠部分是什么图形?你能把它画出来吗? (2)分别求出平移距离为4 cm 或10 cm 时,重叠部分的面积. 解:(1)平移过程中的重叠部分是三角形或五边形,如图:(2)当平移距离为4 cm 时,重叠部分是三角形OAA′,如图1,此时AA′=4 cm. ∵∠OAA ′=∠OA′A =60°, ∴△OAA ′是等边三角形. ∴S △OAA ′=4 3 cm 2.当平移距离为10 cm时,重叠部分是五边形ODC′CE,如图2,此时AA′=10 cm. ∵AC=A′C′=7 cm,∴A′C=AC′=3 cm.∵∠A=∠A′=60°,∠AC′D=∠A′CE=90°,∴C′D=CE=3 3 cm.∴S五边形ODC′CE=S△OAA′-S△AC′D-S△A′CE=12×10×53-12×3×33×2=163(cm2).3.4简单的图案设计01基础题知识点1分析图案的形成过程1.在图示的四个汽车标志图案中,能用平移交换来分析其形成过程的图案是(C)2.如图,国旗上的四个小五角星,通过怎样的变化可以相互得到(D)A.轴对称B.平移C.旋转D.平移或旋转3.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是(C)4.如图所示的图案中,可以由一个“基本图案”连续旋转45°得到的是(B)A. B. C. D.5.右边的图案是由下面五种基本图形中的两种拼接而成,这两种基本图形是(D)A.①⑤B.②④C.③⑤D.②⑤知识点2利用平移、旋转、轴对称等方式设计图案6.下列基本图形中,经过平移、旋转或轴对称变换后,不能得到如图所示图案的是(C)A. B.C. D.7.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是②.8.(2017·西安期中)如图,在4×3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).(1)是轴对称图形,但不是中心对称图形;(2)是中心对称图形,但不是轴对称图形;(3)既是轴对称图形,又是中心对称图形.解:如图所示.(1)(2)(3)02中档题9.下列能通过基本图形旋转得到的有(D)A.1个B.2个C.3个D.4个10.如图,下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,它们旋转的角度均是60°.11.如图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法将该图形绕O点顺时针依次旋转90°,180°,270°,你会得到一个什么样的立体图形?解:得到的是一个星星图案,如图.12.定义:两组邻边分别相等的四边形,称之为筝形.如图,四边形ABCD是筝形,其中AB=AD,CB=CD,请仿照图2的画法,在图3所示的8×8网格中重新设计一个由四个全等的筝形组成的新图案,具体要求如下:①顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影.解:如图所示:答案不唯一.13.请运用平移、轴对称和旋转分析下面图案的设计过程.解:若从原图中提取的基本图案如图所示,则可按下面的两种几何变换(不唯一)得到整个图案:形成方式一:形成方式二:03综合题14.已知每个网格中小正方形的边长都是1,图1中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.请你在图2中以图1为基本图案,借助轴对称、平移或旋转设计一个完整的花边图案(要求至少含有两种图形变换).图1图2解:答案不唯一,以下提供三种图案.章末复习(三)图形的平移与旋转01基础题知识点1平移1.下列图形中,可由左图经过平移得到的是(C)A B C D2.(2016·安顺)如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是(A)A.(-2,-4) B.(-2,4)C.(2,-3) D.(-1,-3)3.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=5.4.如图,△A1B1C1是△ABC向右平移4个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC ,并写出点A ,B ,C 的坐标; (2)求出△AOA 1的面积.解:(1)如图所示,A(-3,1),B(0,2),C(-1,4). (2)S △AOA 1=12×4×1=2.知识点2 旋转 5.(2016·新疆)如图所示,将一个含30°角的直角三角板ABC 绕点A 旋转,使得点B ,A ,C ′在同一条直线上,则三角板ABC 旋转的角度是(D)A .60°B .90°C .120°D .150°6.如图,在△ABC 中,∠ACB =90°,AB =5,BC =4,将△ABC 绕点C 顺时针旋转90°,若点A ,B 的对应点分别是点D ,E ,画出旋转后的三角形,并求点A 与点D 之间的距离.(不要求尺规作图)解:如图.连接AD.在Rt △ABC 中,AB =5,BC =4,∴AC =AB 2-BC 2=3.由旋转的性质,得CD =AC =3,∠ACD =90°. ∴AD =AC 2+CD 2=3 2. 知识点3 中心对称 7.(2017·郑州月考)下列图形中,是中心对称图形的是(A)8.如图,在平面直角坐标系中,若△ABC 与△A 1B 1C 1关于E 点成中心对称,则对称中心E 点的坐标是(A)A .(3,-1)B .(0,0)C .(2,-1)D .(-1,3)知识点4图案设计9.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.02中档题10.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是(C)A.30°B.60°C.72°D.90°11.如图,在平面直角坐标系中,点B,C,E在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是(A)A.△ABC绕点C顺时针旋转90°,再向下平移3 个单位长度B.△ABC绕点C顺时针旋转90°,再向下平移1 个单位长度C.△ABC绕点C逆时针旋转90°,再向下平移1 个单位长度D.△ABC绕点C逆时针旋转90°,再向下平移3 个单位长度12.(2017·西安高新区期中)某景点拟在如图的长方形荷塘上架设小桥,若荷塘中小桥的总长为100米,则荷塘周长为200米.13.如图是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分面积为4.解:如图所示:答案不唯一.14.(2017·郑州月考)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,Rt△ABC的顶点均在格点上,点A的坐标为(-6,1),点B的坐标为(-3,1),点C的坐标为(-3,3).(1)将Rt△ABC沿x轴正方向平移8个单位长度得到Rt△A1B1C1,试在图上画出Rt△A1B1C1的图形,并写出点A1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 图形的旋转 图形的旋转一、知识点1、旋转的定义:在平面内,将一个图形绕着一个_____沿_________转动一个角度,这样的图形运动称为旋转.这个定点称为_________,转动的角称为________.旋转不改变图形的___________.练习:1、日常生活中,我们经常见到以下情景:①钟表指针的转动;②汽车方向盘的转动;③打气筒打气时,活塞的运动;④传送带上瓶装饮料的移动.其中属于旋转的是 ___ .2、如图所示,如果把钟表的指针看作四边形AOBC,它绕O 点按顺时针方向旋转得到四边形DOEF 。

在这个旋转过程中: (1)旋转中心是什么?旋转角是什么? (2)经过旋转,点A 、B 分别移到什么位置? (3)AO 与DO 的长有什么关系?BO 与EO 呢? (4)∠AOD 与∠BOE 有什么大小关系?再找一个具有这种关系的角。

2、选择图形的性质:旋转不改变图形的 和 ,但图形上的每个点同时都按相同的方式转动相同的 。

旋转前后两个图形对应点到旋转中心的距离 __ ;对应点与旋转中心的连线所成的角都等于 ;对应线段________,对应角___________.练习:1、判断题 一个图形经过旋转①图形上的每一个点到旋转中心的距离相等. ( )②图形上可能存在不动点. ( )③图形上任意两点的连线与其对应点的连线相等. ( )2、旋转作图的一般步骤:(1)找出旋转中心和_______(2)找出构成图形的_______(3)按指定的方向和______,通过截取线段的方法,旋转各个关键点(4)顺次连接各个关键点的对应点,并标上相应的字母。

3、如图,△ABC 绕O 点旋转后,顶点A 的对应点为点D ,试确定顶点B 、C 对应点的位置,指出这一旋转的旋转角,最后画出旋转后的三角形.C BD AE O二、练习:1、上右图是正六边形,这个图案可以看做是由____________“基本图案”通过旋转得到的.2、如图,ABC∆绕点A逆时针旋转至ADE∆的位置,请你写出其中的对应点、对应角和对应线段。

3、有一种几何图形,它绕某一定点旋转,不论旋转多少度,所得的图形都与原来的图形完全重合在一起,这种几何图形是()A、正三角形B、正方形C、圆D、正六边形4、如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为______________.4、如图,△ABC和△DCE是等边三角形,△ACE绕着c点旋转()度可得到△BCD.5、如图,四边形ABCD的∠BAD=∠C=90º,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA重合。

(1)旋转中心是点_____(2)旋转了_____°(3)若AE=5㎝,求四边形AECF的面积。

8、在ABCRt∆中,,8,6,900===∠BCACC先将ABC∆绕点B旋转090,得到关于A的对应点D,则AD的长是()中心对称一、知识点1、在平面内,将一个图形绕着一个_____沿__________转动一个角ACDEB度,这样的图形运动称为旋转.这个定点称为_________,转动的角称为________.旋转不改变图形的______________.3、中心对称图形的定义:把一个图形绕着______旋转____度后能与自身重合的图形称为中心对称图形,这个中心点叫做___________。

4、中心对称的概念:把一个图形绕着中心旋转_____后能与另一个图形重合则这____个图形关于这个点中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点练习:看图思考:(1)△A ,B ,C ,与△ABC 关于点O 成中心对称吗?(2)点B 关于中心点___的对称点为 ;点C 关于对称中心点O 的对称点为 ;(3)你能从图中找到等量关系吗?(4)请找出图中的平行线段;A, 5、心对称的特征:(1)在成中心对称的两个图形中,连结_________的线段都经过________中心,并且被对称中心_______;(2)反之,如果两个图形的对应点连结的线段都经过某一点,并且被这点_____,那么这两个图形一定关于这点成中心对称。

二、练习:1、下列图形中不是轴对称而是中心对称图形的是 ( )A 等边三角形B 平行四边形C 矩形D 菱形2、下列图形中既是轴对称图形又是中心对称图形的是( )A 等边三角形B 等腰三角形C 菱形D 平行四边形3、线段、两相交直线、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形、圆等图形中是中心对称图形的有: ;4、如图1,已知△ABC 和点O ,画出△DEF ,使△DEF 和△ABC 关于点O 成中心对称。

A B COAB C D O图1 图25、如图2,已知四边形ABCD 和点O ,画四边形A ,B ,C ,D ,,使四边形A ,B ,C ,D ,和四边形ABCD 关于点O 成中心对称。

6判断(1)轴对称图形也是中心对称图形; ( )(2)旋转对称图形也是中心对称图形; ( )(3)对顶角是中心对称图形; ( )(4)中心对称图形是旋转角为180度的旋转对称图形。

( )7、如图,已知△ABC 和过点O 的两条互相垂直的直线x 、y ,画出△ABC 关于直线x 对称的△A ,B ,C ,,再画出△A ,B ,C ,关于直线y 对称的△A ,,B ,,C ,,,△A ,,B ,,C ,,与△ABC 是否关于点O 成中心对称?xy0AB C简单的图案设计一 、知识点1、图形的_________、_________、_____________是图形变换中最基本的三种变换方式。

2、平移、旋转、对称的联系:都是平面内的变换都不改变图形的________和__________,只改变图形的______;区别:①概念的区别;②运动方式的区别;③性质的区别。

实践练习:试用不同的方法分析上图中由三个正三角形组成图案的过程。

二、练习1、如图,有一池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点C ,连结AC 并延长到D ,使CD=CA .连结BC 并延长到E ,使CE=CB .连结DE ,那么量出DE 的长,就是A 、B 的距离,为什么?线段DE 可以看作哪条线段平移或旋转得到.2、在括号内填上图形从甲到乙的变换关系:3、上右图中的图案绕中心至少旋转 度后能和原来的图案相互重合。

4、如图,E 为正方形ABCD 内一点,∠AEB=135º,BE=3cm,AEB ∆按顺时针方向旋转一个角度后成为CFB ∆,图中________是旋转中心,旋转_______度,点A 与点______是对应点,点E 与点______是对应点,BEF ∆是_______三角形,∠CBF=∠______,∠BFC=___________度,∠EFC=__________度,BF=_________cm.5、已知正方形ABCD 和正方形AEFG 有一个公共点A,若将正方形AEFG 绕点A 按顺时针方向旋转, 连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG 的长始终相等.并说明理由.6、下列例题正确的是…………………………………( ).A 、两个会重合的三角形一定成轴对称.B 、两个会重合的三角形一定成中心对称.C 、成轴对称的两个图形中,对称线段平行且相等.D 、成中心对称的两个图形中,对称线段平行(或在同一条直线是)且相等7、下列的说法中,不正确的是……………………………………( ).(A )中心对称图形的对称中心也是连接对称点线段的中点.(B )轴对称图形的对称轴是连接对称点线段的垂直平分线(C )矩形是以对角线为对称轴的轴对称图形.(D )线段是以其中点为对称中心的中心对称图形.8、如图,ΔABC 和ΔADE 都是等腰直角三角形,∠ACB 和∠ADE 都是直角,点C 在AE 上,ΔABC 绕着A 点经过逆时针旋转后能够与ΔADE 重合得到左图,再将左图作为“基本图形”绕着A 点经过逆时针连续旋转得到右图.两次旋转的角度分别为( ). A 、45°,90° B 、90°,45°C 、60°,30°D 、30°,60°( ) 甲 乙 甲 乙 乙 甲 ( ) ( )A BCD E A BC D E _ D _ G _F _ C _ B _ A9、如图,ABC ∆的∠BAC=120º,以BC 为边向形外作等边BCD ∆,把ABD ∆ 绕着D 点按顺时针方向旋转60º后到ECD ∆的位置。

若3,2AB AC ==,求∠BAD 的度数和AD 的长.中考链接 一、求角1、(2012广东汕头4分)如图,将△ABC 绕着点C 顺时针旋转50°后得到△A ′B ′C ′.若∠A=40°.∠B ′=110°,则∠BCA ′的度数是【 】2、(2013•衡阳)如图,在直角△OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°得到△OA1B1,则∠A1OB= °.3.(2013•莆田)如图,将Rt △ABC (其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB1C1的位置,使得点C 、A 、B1在同一条直线上,那么旋转角等于( )4.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE=CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向转到△BCF ,旋转角为a (0°<a <180°),则∠a=______.5、(2013•吉林省)如图,把Rt ⊿ABC 绕点A 逆时针旋转40°,得到Rt ⊿AB ′C ′,点C ′恰好落在边AB 上,连接BB ′,则∠BB ′C ′= 度. A B C DF EDC B A6、(2013•宁夏)如图,在Rt △ABC 中,∠ACB=90°,∠A=α,将△ABC 绕点C 按顺时针方向旋转后得到△EDC ,此时点D 在AB 边上,则旋转角的大小为7、(2013• 东营)将等腰直角三角形AOB 按如图所示放置,然后绕点O 逆时针旋转90︒至的位置,点B 的横坐标为2,则点的坐标为( ) 二、求边1、(2013聊城)如图,在等边△ABC 中,AB=6,D 是BC 的中点,将△ABD 绕点A 旋转后得到△ACE ,那么线段DE 的长度为 .2.(2012•广州)如图,在等边三角形ABC 中,AB=6,D 是BC 上一点,且BC=3BD ,△ABD 绕点A 旋转后得到△ACE ,则CE 的长度为 .3、(2013•铁岭)如图,在△ABC 中,AB=2,BC=3.6,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为4、(2013•鄂州)如图,△AOB 中,∠AOB=90°,AO=3,BO=6,△AOB 绕顶点O 逆时针旋转到△A ′OB ′处,此时线段A ′B ′与BO 的交点E 为BO 的中点,则线段B ′E 的长度为 ______。

相关文档
最新文档