(试卷合集3份)2023届黑龙江省绥化市中考数学经典试题

合集下载

(试卷合集4份)2023届黑龙江省绥化市中考数学经典试题

(试卷合集4份)2023届黑龙江省绥化市中考数学经典试题

2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.一次函数y kx b =+满足0kb <,且y 随x 的增大而减小,则此函数的图像一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )A .B .C .D .3.某反比例函数的图象经过点(-2,3),则此函数图象也经过( )A .(2,-3)B .(-3,3)C .(2,3)D .(-4,6)4.下列图案是轴对称图形的是( )A .B .C .D .5.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+316.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为( )余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )A.4.50.51y xy x=+⎧⎨=-⎩B.4.521y xy x=+⎧⎨=-⎩C.4.50.51y xy x=-⎧⎨=+⎩D.4.521y xy x=-⎧⎨=-⎩8.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.149.△ABC在正方形网格中的位置如图所示,则cosB的值为( )A.55B.255C.12D.210.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=二、填空题(本题包括8个小题)11.⊙O的半径为10cm,AB,CD是⊙O的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是cm.12.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.13.一元二次方程2x2﹣3x﹣4=0根的判别式的值等于_____.14.计算:|-3|-1=__.15.如图,正方形ABCD边长为3,以直线AB为轴,将正方形旋转一周.所得圆柱的主视图(正视图)的周长是_____.17.计算:cos 245°-tan30°sin60°=______.18.若a:b=1:3,b:c=2:5,则a:c=_____.三、解答题(本题包括8个小题)19.(6分)先化简(31a +-a +1)÷2441a a a -++,并从0,-1,2中选一个合适的数作为a 的值代入求值. 20.(6分)如图,矩形ABCD 中,CE ⊥BD 于E ,CF 平分∠DCE 与DB 交于点F .求证:BF =BC ;若AB =4cm ,AD =3cm ,求CF 的长.21.(6分)如图,已知⊙O 的直径AB=10,弦AC=6,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E .求证:DE 是⊙O 的切线.求DE 的长.22.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC 的长为0.60m ,底座BC 与支架AC 所成的角∠ACB=75°,点A 、H 、F 在同一条直线上,支架AH 段的长为1m ,HF 段的长为1.50m ,篮板底部支架HE 的长为0.75m .求篮板底部支架HE 与支架AF 所成的角∠FHE 的度数.求篮板顶端F 到地面的距离.(结果精确到0.1 m ;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414)23.(8分)如图所示,在Rt ABC △中,90ACB ∠=︒,用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹)连接AP 当B 为多少度时,AP 平分CAB ∠.25.(10分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.26.(12分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】y随x的增大而减小,可得一次函数y=kx+b单调递减,k<0,又满足kb<0,可得b>0,由此即可得出答案.【详解】∵y随x的增大而减小,∴一次函数y=kx+b单调递减,∴k<0,∵kb<0,∴b>0,∴直线经过第二、一、四象限,不经过第三象限,故选C.【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k、b是常数)的图象和性质是解题的关键.2.B【解析】【分析】观察图形,利用中心对称图形的性质解答即可.选项B,新图形是中心对称图形,故此选项正确;选项C,新图形不是中心对称图形,故此选项错误;选项D,新图形不是中心对称图形,故此选项错误;故选B.【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.3.A【解析】【分析】设反比例函数y=kx(k为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断.【详解】设反比例函数y=kx(k为常数,k≠0),∵反比例函数的图象经过点(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴点(2,-3)在反比例函数y=-6x的图象上.故选A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.4.C【解析】解:A.此图形不是轴对称图形,不合题意;B.此图形不是轴对称图形,不合题意;C.此图形是轴对称图形,符合题意;D.此图形不是轴对称图形,不合题意.故选C.5.C【解析】“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n (n+1)和12(n+1)(n+2),所以由正方形数可以推得n 的值,然后求得三角形数的值.【详解】∵A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和.故选:C .【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.6.B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°. 考点:角度的计算7.A【解析】【分析】根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.【详解】由题意可得, 4.50.51y x y x =+⎧⎨=-⎩, 故选A .【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 8.B【解析】试题分析:根据平行四边形的性质可知AB=CD ,AD ∥BC ,AD=BC ,然后根据平行线的性质和角平分线的性质可知AB=AF ,DE=CD ,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.9.A【解析】【详解】解:在直角△ABD中,BD=2,AD=4,则AB=22222425BD AD+=+=,则cosB=25525BDAB==.故选A.10.A【解析】【分析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴AD BCDF CE=.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.二、填空题(本题包括8个小题)11.2或14【解析】【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】①当弦AB和CD在圆心同侧时,如图,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF−OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.12.1【解析】【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【详解】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;故腰长为1.故答案为:1.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.13.41【解析】【分析】已知一元二次方程的根判别式为△=b2﹣4ac,代入计算即可求解.【详解】依题意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程 ax 2+bx+c =0(a≠0)的根的判别式为△=b 2﹣4ac 是解决问题的关键.14.2【解析】【分析】根据有理数的加减混合运算法则计算.【详解】解:|﹣3|﹣1=3-1=2.故答案为2.【点睛】考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.15.1.【解析】分析:所得圆柱的主视图是一个矩形,矩形的宽是3,长是2.详解:矩形的周长=3+3+2+2=1.点睛:本题比较容易,考查三视图和学生的空间想象能力以及计算矩形的周长.16.2【解析】【分析】根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.【详解】解:要使分式有意义则20x +≠ ,即2x ≠-要使分式为零,则240x -= ,即2x =±综上可得2x =故答案为2【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.17.0【解析】【分析】2cos45tan30sin60︒-︒︒=21123222-=-=.故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18.2∶1【解析】分析:已知a、b两数的比为1:3,根据比的基本性质,a、b两数的比1:3=(1×2):(3×2)=2:6;而b、c的比为:2:5=(2×3):(5×3)=6:1;,所以a、c两数的比为2:1.详解:a:b=1:3=(1×2):(3×2)=2:6;b:c=2:5=(2×3):(5×3)=6:1;,所以a:c=2:1;故答案为2:1.点睛:本题主要考查比的基本性质的实际应用,如果已知甲乙、乙丙两数的比,那么可以根据比的基本性质求出任意两数的比.三、解答题(本题包括8个小题)19.1.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a aa a-++⨯+-=2(2)(2)11(2)a a aa a-+-+⨯+-=22aa+--;当a=0时,原式=1.考点:分式的化简求值.20.(1)见解析,(2)CF=5cm.【解析】【分析】(1)要求证:BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE=∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于1 2BD•CE=12BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中证明:(1)∵四边形ABCD 是矩形,∴∠BCD =90°,∴∠CDB+∠DBC =90°.∵CE ⊥BD ,∴∠DBC+∠ECB =90°.∴∠ECB =∠CDB .∵∠CFB =∠CDB+∠DCF ,∠BCF =∠ECB+∠ECF ,∠DCF =∠ECF ,∴∠CFB =∠BCF∴BF =BC(2)∵四边形ABCD 是矩形,∴DC =AB =4(cm ),BC =AD =3(cm ).在Rt △BCD 中,由勾股定理得BD =2222435AB AD +=+=. 又∵BD•CE =BC•DC ,∴CE =·125BC DC BD =. ∴BE =22221293()55BC CE -=-=. ∴EF =BF ﹣BE =3﹣9655=. ∴CF =222212665()()555CE EF +=+=cm . 【点睛】 本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题.21. (1)详见解析;(2)4.【解析】试题分析:(1)连结OD ,由AD 平分∠BAC,OA=OD ,可证得∠ODA=∠DAE,由平行线的性质可得OD ∥AE,再由DE ⊥AC 即可得OE ⊥DE ,即DE 是⊙O 的切线;(2)过点O 作OF ⊥AC 于点F ,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED 是矩形,即可得DE=OF=4.试题解析:(1)连结OD ,∵AD 平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切线;(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质. 22.(1)∠FHE=60°;(2)篮板顶端F 到地面的距离是4.4 米.【解析】【分析】(1)直接利用锐角三角函数关系得出cos∠FHE=12HEHF=,进而得出答案;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【详解】(1 )由题意可得:cos∠FHE=12HEHF=,则∠FHE=60°;(2)延长FE 交CB 的延长线于M,过 A 作AG⊥FM 于G,在Rt△ABC 中,tan∠ACB=AB BC,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM =AB =2.2392,在 Rt △AGF 中,∵∠FAG =∠FHE =60°,sin ∠FAG =FG AF , ∴sin60°=2.5FG =32, ∴FG≈2.17(m ),∴FM =FG+GM≈4.4(米),答:篮板顶端 F 到地面的距离是 4.4 米.【点睛】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.23.(1)详见解析;(2)30°.【解析】【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.24.12-. 【解析】【分析】先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=12x -,由于x 不能取±1,2,所以把x=0代入计算即可. 【详解】22211·1441x x x x x x -++--+-, =()()2211•11(2)1x x x x x x -+++---=12(1)(2)(1)(2)x x x x x -+---- =()()112x x x ---=12x -, 当x=0时,原式=11022=--. 25.证明见解析.【解析】由已知条件BE ∥DF ,可得出∠ABE=∠D ,再利用ASA 证明△ABE ≌△FDC 即可.证明:∵BE ∥DF ,∴∠ABE=∠D ,在△ABE 和△FDC 中,∠ABE=∠D ,AB=FD ,∠A=∠F∴△ABE≌△FDC(ASA),∴AE=FC.“点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.26.(1)14;(2)16.【解析】【分析】(1)直接根据概率公式求解;(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.【详解】(1)正数为2,所以该球上标记的数字为正数的概率为14;(2)画树状图为:共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率=212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A 或B的结果数目m,求出概率.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP,CP 分别平分∠EDC 、∠BCD ,则∠P 的度数是( )A .60°B .65°C .55°D .50°2.下列说法正确的是( )A .“明天降雨的概率是60%”表示明天有60%的时间都在降雨B .“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近 3.如果一组数据6,7,x ,9,5的平均数是2x ,那么这组数据的中位数为( ) A .5 B .6C .7D .9 4.将抛物线()2y x 13=-+向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A .()2y x 2=-B .()2y x 26=-+C .2y x 6=+D .2y x =5.已知关于x 的一元二次方程2230x kx -+=有两个相等的实根,则k 的值为( )A .6±B .6C .2或3D 236.已知关于x 的一元二次方程3x 2+4x ﹣5=0,下列说法正确的是( )A .方程有两个相等的实数根B .方程有两个不相等的实数根C .没有实数根D .无法确定719273 ) A .﹣2和﹣1 B .﹣3和﹣2 C .﹣4和﹣3 D .﹣5和﹣48.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( )A .10000x ﹣10=147000(140)0x + B .10000x +10=147000(140)0x + C .100000(140)0x -﹣10=14700x D .100000(140)0x -+10=14700x 9.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-10.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h 与时间t 之间的关系的图象是( )A .B .C .D .二、填空题(本题包括8个小题)11.已知一组数据1,2,0,﹣1,x ,1的平均数是1,则这组数据的中位数为_____.12.在矩形ABCD 中,AB=4, BC=3, 点P 在AB 上.若将△DAP 沿DP 折叠,使点A 落在矩形对角线上的处,则AP 的长为__________.13.若 m 、n 是方程 x 2+2018x ﹣1=0 的两个根,则 m 2n+mn 2﹣mn=_________.14.如图,已知点C 为反比例函数6y x=-上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为___________.15.如图,点 A 是反比例函数 y =﹣4x(x <0)图象上的点,分别过点 A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.16.不等式组20262xx->⎧⎨->⎩①②的解是________.17.如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.18.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.三、解答题(本题包括8个小题)19.(6分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.求篮板底部支架HE与支架AF所成的角∠FHE的度数.求篮板顶端F到地面的距离.(结果精确到0.1 m;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414)20.(6分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:根据以上统计图,解答下列问题:本次接受调查的市民共有人;扇形统计图中,扇形B的圆心角度数是;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数.21.(6分)如图,在锐角△ABC中,小明进行了如下的尺规作图:①分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;②作直线PQ分别交边AB、BC于点E、D.小明所求作的直线DE是线段AB的;联结AD,AD=7,sin∠DAC=,BC=9,求AC的长.22.(8分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?23.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题: 表中a=___ ;b=____ 请计算扇形统计图中B组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率. 24.(10分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM,垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.求证:AM是⊙O的切线;若⊙O的半径为4,求图中阴影部分的面积(结果保留π和根号).25.(10分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.26.(12分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】试题分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选A.考点:多边形内角与外角;三角形内角和定理.2.D【分析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A 不符合题意;B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B 不符合题意; C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C 不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D 符合题意; 故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.3.B【解析】【分析】直接利用平均数的求法进而得出x 的值,再利用中位数的定义求出答案.【详解】∵一组数据1,7,x ,9,5的平均数是2x ,∴679525x x ++++=⨯,解得:3x =,则从大到小排列为:3,5,1,7,9,故这组数据的中位数为:1.故选B .【点睛】此题主要考查了中位数以及平均数,正确得出x 的值是解题关键.4.D【解析】根据“左加右减、上加下减”的原则,将抛物线()2y x 13=-+向左平移1个单位所得直线解析式为:()22y x 113y x 3=-++⇒=+; 再向下平移3个单位为:22y x 33y x =+-⇒=.故选D .5.A【解析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.【详解】∵方程2230x kx-+=有两个相等的实根,∴△=k2-4×2×3=k2-24=0,解得:k=±故选A.【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.6.B【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.7.C【解析】﹣,然后根据二次根式的估算,由3<4可知﹣4和﹣3之间.故选C.点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.8.B【解析】【分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【详解】解:设第一批购进x件衬衫,则所列方程为:10000x +10=()147001400x+.故选B.【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.9.D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33,∴△ABC的面积为12BC•AD=1232⨯3S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣3﹣3故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.10.C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。

2024年黑龙江省绥化市中考数学试卷(附答案解析)

2024年黑龙江省绥化市中考数学试卷(附答案解析)

2024年黑龙江省绥化市中考数学试卷(附答案解析)一、单项选择题(本题共12个小题,每小题3分,共36分)1.(3分)实数﹣的相反数是()A.2025B.﹣2025C.﹣D.【解答】解:﹣的相反数是,故选:D.2.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形B.等腰三角形C.圆D.菱形【答案】B.分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.(3分)某几何体是由完全相同的小正方体组合而成,如图是这个几何体的三视图,那么构成这个几何体的小正方体的个数是()A.5个B.6个C.7个D.8个【答案】A.4.(3分)若式子有意义,则m的取值范围是()A.m≤B.m≥﹣C.m≥D.m≤﹣【解答】解:由题意得:2m﹣3≥0,解得:m≥,故选:C.5.(3分)下列计算中,结果正确的是()A.(﹣3)﹣2=B.(a+b)2=a2+b2C.=±3D.(﹣x2y)3=x6y3【解答】解:(﹣3)﹣2=,则A符合题意;(a +b )2=a 2+2ab +b 2,则B不符合题意;=3,则C 不符合题意;(﹣x 2y )3=﹣x 6y 3,则D 不符合题意;故选:A .6.(3分)小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是﹣2和﹣5.则原来的方程是()A .x 2+6x +5=0B .x 2﹣7x +10=0C .x 2﹣5x +2=0D .x 2﹣6x ﹣10=0【答案】B .7.(3分)某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:鞋码3637383940平均每天销售量/双1012201212如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的()A .平均数B .中位数C .众数D .方差【解答】解:因为众数是在一组数据中出现次数最多的数,又根据题意,每双鞋的销售利润相同,鞋店为销售额考虑,应关注卖出最多的鞋子的尺码,这样可以确定进货的数量,所以该店主最应关注的销售数据是众数.故选:C .8.(3分)一艘货轮在静水中的航速为40km /h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为()A .5km /hB .6km /hC .7km /hD .8km /h【解答】解:设江水的流速为x km /h ,则沿江顺流航行的速度为(40+x )km /h ,沿江逆流航行的速度为(40﹣x )km /h ,根据题意得:=,解得:x =8,∴江水的流速为8km /h .故选:D .【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.9.(3分)如图,矩形OABC各顶点的坐标分别为O(0,0),A(3,0),B(3,2),C(0,2),以原点O为位似中心,将这个矩形按相似比缩小,则顶点B在第一象限对应点的坐标是()A.(9,4)B.(4,9)C.(1,)D.(1,)【分析】根据位似变换的性质解答即可.【解答】解:∵以原点O为位似中心,将矩形OABC按相似比缩小,点B的坐标为(3,2),∴顶点B在第一象限对应点的坐标为(3×,2×),即(1,),故选:D.10.(3分)下列叙述正确的是()A.顺次连接平行四边形各边中点一定能得到一个矩形B.平分弦的直径垂直于弦C.物体在灯泡发出的光照射下形成的影子是中心投影D.相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等【分析】选项A根据中点四边形的定义以及矩形的判定方法解答即可;选项B根据垂径定理判断即可;选项C根据中心投影的定义判断即可;选项D根据圆心角、弧、弦、弦心距的关系定理判断即可.【答案】C.11.(3分)如图,四边形ABCD是菱形,CD=5,BD=8,AE⊥BC于点E,则AE的长是()A.B.6C.D.12【解答】解:∵四边形ABCD是菱形,CD=5,BD=8,∴BC=CD=5,BO=DO=4,OA=OC,AC⊥BD,∴∠BOC=90°,在Rt△OBC中,由勾股定理得:OC===3,∴AC=2OC=6,∵菱形ABCD的面积=AE•BC=BD×AC=OB•AC,∴AE===,故选:A.12.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,则下列结论中:①>0;②am2+bm≤a﹣b(m为任意实数);③3a+c<1;④若M(x1,y)、N(x2,y)是抛物线上不同的两个点,则x1+x2≤﹣3.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:由题意,∵抛物线开口向下,∴a<0.又抛物线的对称轴是直线x=﹣=﹣1,∴b=2a<0.又抛物线交y轴正半轴,∴当x=0时,y=c>0.∴<0,故①错误.由题意,当x=﹣1时,y取最大值为y=a﹣b+c,∴对于抛物线上任意的点对应的函数值都≤a﹣b+c.∴对于任意实数m,当x=m时,y=am2+bm+c≤a﹣b+c.∴am2+bm≤a﹣b,故②正确.由图象可得,当x=1时,y=a+b+c<0,又b=2a,∴3a+c<0<1,故③正确.由题意∵抛物线为y=ax2+bx+c,∴x1+x2=﹣=﹣=﹣2>﹣3,故④错误.综上,正确的有②③共2个.故选:B.二、填空题(本题共10个小题,每小题3分,共30分)13.(3分)我国疆域辽阔,其中领水面积约为370000km2,把370000这个数用科学记数法表示为.【解答】解:370000=3.7×105,故答案为:3.7×105.14.(3分)分解因式:2mx2﹣8my2=.【分析】先提取公因式再运用公式法进行因式分解即可得出答案.【解答】解:原式=2m(x2﹣4y2)=2m(x+2y)(x﹣2y).故答案为:2m(x+2y)(x﹣2y).15.(3分)如图,AB∥CD,∠C=33°,OC=OE.则∠A=°.【解答】解:∵OC=OE,∠C=33°,∴∠E=∠C=33°,∴∠DOE=∠E+∠C=66°,∵AB∥CD,∴∠A=∠DOE=66°,故答案为:66.16.(3分)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A测得该楼顶部点C的仰角为60°,测得底部点B的俯角为45°,点A与楼BC的水平距离AD=50m,则这栋楼的高度为m(结果保留根号).【解答】解:由题意得:AD⊥BC,在Rt△ACD中,∠CAD=60°,AD=50m,∴CD=AD•tan60°=50(m),在Rt△ABD中,∠BAD=45°,∴BD=AD•tan45°=50(m),∴BC=BD+CD=(50+50)m,∴这栋楼的高度为(50+50)m,故答案为:(50+50).17.(3分)化简:÷(x﹣)=.【解答】解:原式=÷=•=,故答案为:.18.(3分)用一个圆心角为126°,半径为10cm的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为__cm.【解答】解:扇形的弧长==7π(cm),故圆锥的底面半径为7π÷2π=(cm).故答案为:.19.(3分)如图,已知点A(﹣7,0),B(x,10),C(﹣17,y),在平行四边形ABCO中,它的对角线OB与反比例函数y=(k≠0)的图象相交于点D,且OD:OB=1:4,则k=.【分析】作BE⊥x轴,DG⊥x轴,根据点的坐标及相似三角形性质可求出点D坐标继而求出k值.【解答】解:如图,作BE⊥x轴,DG⊥x轴,垂足分别为E、G,∵点A(﹣7,0),B(x,10),C(﹣17,y),∴BE=10,OF=17,OA=7,∴EF=BC=OA=7,∴OE=17+7=24,∵BE∥DG,∴△ODG∽△OBE,∵OD:OB=1:4,∴=,∴,∴D(﹣,6),∵点D在反比例函数图象上,∴k=﹣=﹣15.故答案为:﹣15.20.(3分)如图,已知∠AOB=50°,点P为∠AOB内部一点,点M为射线OA、点N为射线OB上的两个动点,当△PMN的周长最小时,则∠MPN=.【解答】解:作P点关于OB的对称点E,连接EP,EO,EM;∴EM=MP,∠MPO=∠OEM,∠EOM=∠MOP,作P点关于OA的对称点F,连接NF,PF,OF,∴PN=FN,∠OPN=∠OFN,∠PON=∠NOF,∴PM+PN+MN=EM+NF+MN≥EF,当E,M,N,F共线时,△PMN周长最短,又∵∠EOF=∠EOM+∠MOP+∠PON+∠NOF,∠AOB=∠MOP+∠PON,∴∠EOF=2∠AOB,又∵∠AOB=50°,∴∠EOF=100°,∴在△EOF中,∠OEM+∠OFN+∠EOF=180°,∴∠OEM+∠OFN=180°﹣100°=80°,∵∠MPO=∠OEM,∠OPN=∠OFN,∴∠MPO+∠OPN=80°,∵∠MPN=∠MPO+OPN=80°,故答案为:80°.21.(3分)如图,已知A1(1,﹣),A2(3,﹣),A3(4,0),A4(6,0),A5(7,),A6(9,),A7(10,0),A8(11,﹣)…,依此规律,则点A2024的坐标为.【答案】(2891,).22.(3分)在矩形ABCD中,AB=4cm,BC=8cm,点E在直线AD上,且DE=2cm,则点E到矩形对角线所在直线的距离是或或cm.【解答】解:如图1,过点E作EF⊥BD于点F,∵四边形ABCD是矩形,∴∠BAD=∠ABC=∠ADC=90°,AC=BD,AD=BC,AB=CD,∵AB=4cm,BC=8cm,∴由勾股定理得cm,∴BD=cm,∵∠EFD=∠BAD=90°,∠EDF=∠BDA,∴△DEF∽△DBA,∴,∴,∴EF=cm;如图2,过点E作EM⊥AC于点M,∵AD=BC=8cm,DE=2cm,∴AE=6cm,∵∠AME=∠ADC=90°,∠EAM=∠CAD,∴△AEM∽△ACD,∴,∴∴EM=cm;如图3,过点E作EN⊥BD的延长线于点N,∴∠END=∠BAD=90°,∴∠EDN=∠BDA,∴△END∽△BAD,∴,∴,∴EN=cm;如图4,过点E作EH⊥AC的延长线于点H,∴∠AHE=∠ADC=90°,∴∠EAH=∠CAD,∴△AHE∽△ADC,∴,∵AD=BC=8cm,DE=2cm,∴AE=10cm,∴,∴EH=cm;综上,点E到矩形对角线所在直线的距离是cm或cm或cm,故答案为:或或.三、解答题(本题共6个小题,共54分)23.(7分)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5cm2,则△ABC的面积是cm2.【解答】解:(1)分别作出AB边和BC边的垂直平分线,与AB和BC边分别交于点N和点M,连接AM和CN,如图所示,点G即为所求作的点.(2)∵点G是△ABC的重心,∴AG=2MG,∵△ABG的面积等于5cm2,∴△BMG的面积等于2.5cm2,∴△ABM的面积等于7.5cm2.又∵AM是△ABC的中线,∴△ABC的面积等于15cm2.故答案为:15.24.(7分)为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动、为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图请根据统计图中的信息,解答下列问题:(1)参加本次问卷调查的学生共有人;(2)在扇形统计图中,A组所占的百分比是,并补全条形统计图.(3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示,请用树状图法或列表法,求选中的2个社团恰好是B和C的概率.【解答】解:(1)参加本次问卷调查的学生共有12÷20%=60(人).故答案为:60.(2)A组的人数为60﹣20﹣10﹣12=18(人),∴在扇形统计图中,A组所占的百分比是18÷60×100%=30%.故答案为:30%.补全条形统计图如图所示.(3)列表如下:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共有12种等可能的结果,其中选中的2个社团恰好是B和C的结果有:(B,C),(C,B),共2种,∴选中的2个社团恰好是B和C的概率为=.25.(9分)为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买A、B两种电动车.若购买A种电动车25辆、B种电动车80辆,需投入资金30.5万元;若购买A种电动车60辆、B 种电动车120辆,需投入资金48万元.已知这两种电动车的单价不变.(1)求A、B两种电动车的单价分别是多少元?(2)为适应共享电动车出行市场需求,该公司计划购买A、B两种电动车200辆,其中A种电动车的数量不多于B种电动车数量的一半.当购买A种电动车多少辆时,所需的总费用最少,最少费用是多少元?(3)该公司将购买的A、B两种电动车投放到出行市场后,发现消费者支付费用y元与骑行时间x min 之间的对应关系如图.其中A种电动车支付费用对应的函数为y1;B种电动车支付费用是10min之内,起步价6元,对应的函数为y2.请根据函数图象信息解决下列问题.①小刘每天早上需要骑行A种电动车或B种电动车去公司上班.已知两种电动车的平均行驶速度均为300m/min(每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的距离为8km,那么小刘选择B种电动车更省钱(填写A或B).②直接写出两种电动车支付费用相差4元时,x的值5或40.【解答】解:(1)设A、B两种电动车的单价分别为x元、y元,由题意得,,解得:,答:A、B两种电动车的单价分别为1000元、3500元.(2)设购买A种电动车m辆,则购买8种电动车(200﹣m)辆,m(200﹣m),解得:m≤,设所需购买总费用为w元,则w=1000m+3500(200﹣m)=﹣2500m+700000,∵﹣2500<0,∴w随着m的增大而减小,∵m取正整数,∴m=66时,w最少,=700000﹣2500x66=535000(元),∴w最少答:当购买A种电动车66辆时所需的总费用最少,最少费用为535000元.(3)①∵两种电动车的平均行驶速度均为300m/min,小刘家到公司的距离为8km,∴所用时间=26(分钟),根据函数图象可得当x>20时,y2<y1更省钱,∴小刘选择B种电动车更省钱,故答案为:B.②设y1=k1x,将(20,8)代入得,8=20k1,解得:k1=,∴y1=x,当0<x≤10时,y2=6,当x>10时,设y2=k2x+b2,将(10,6)、(20,8)代入得,,解得:,∴y2=x+4,依题意,当0<x<10时,y2﹣y1=4,即6﹣x=4,解得:x=5,当x>10时,|y2﹣y1|=4,即|x+4﹣x|=4,解得:x=0(舍去)或x=40,故答案为:5或40.【点评】本题考查了二元一次方程组的应用,一次函数的应用,找到等量关系是解题的关键.26.(10分)如图1,O是正方形ABCD对角线上一点,以O为圆心,OC长为半径的⊙O与AD相切于点E,与AC相交于点F.(1)求证:AB与⊙O相切;(2)若正方形ABCD的边长为+1,求⊙O的半径;(3)如图2,在(2)的条件下,若点M是半径OC上的一个动点,过点M作MN⊥OC交于点N.当CM:FM=1:4时,求CN的长.【解答】(1)证明:如图,连接OE,过点O作OG⊥AB于点G,∵⊙O与AD相切于点E,∴OE⊥AD,∵四边形ABCD是正方形,AC是正方形的对角线,∴∠BAC=∠DAC=45°,∴OE=OG,∵OE为⊙O的半径,∴OG为⊙O的半径,∵OG⊥AB,∴AB与⊙O相切;(2)解:如图,∵AC为正方形ABCD的对角线,∴∠DAC=45°,∵⊙O与AD相切于点E,∴∠AEO=90°,∴由(1)可知AE=OE,设AE=OE=OC=OF=R,在Rt△AEO中,∵AE2+EO2=AO2,∴AO2=R2+R2,∵R>0,∴,又∵正方形ABCD的边长为+1,在Rt△ADC中,∴,∵OA+OC=AC,∴,∴,∴⊙O的半径为;(3)解:如图,连接FN,ON,设CM=k,∵CM:FM=1:4,∴CF=5k,∴OC=ON=2.5k,∴OM=OC﹣CM=1.5k,在Rt△OMN中,由勾股定理得:MN=2k,在Rt△CMN中,由勾股定理得:,又∵,∴,∴.【点评】本题考查了圆的综合应用,其中掌握圆的相关知识点、正方形的性质、角平分线性质勾股定理的计算等知识点的应用是本题的解题关键.27.(10分)综合与实践问题情境在一次综合与实践课上,老师让同学们以两个全等的等腰直角三角形纸片为操作对象.纸片△ABC和△DEF满足∠ACB=∠EDF=90°,AC=BC=DF=DE=2cm.下面是创新小组的探究过程.操作发现(1)如图1,取AB的中点O,将两张纸片放置在同一平面内,使点O与点F重合.当旋转△DEF纸片交AC边于点H、交BC边于点G时,设AH=x(1<x<2),BG=y,请你探究出y与x的函数关系式,并写出解答过程.问题解决(2)如图2,在(1)的条件下连接GH,发现△CGH的周长是一个定值.请你写出这个定值,并说明理由.拓展延伸(3)如图3,当点F在AB边上运动(不包括端点A、B),且始终保持∠AFE=60°.请你直接写出△DEF纸片的斜边EF与△ABC纸片的直角边所夹锐角的正切值2+或2﹣(结果保留根号).【解答】解:(1)如图:∵∠ACB=∠EDF=90°,且AC=BC=DF=DE=2cm,∴∠A=∠B=∠DFE=45°,∴∠AFH+∠BFG=∠BFG+∠FGB=135°,∴∠AFH=∠FGB,∴△AFH∽△BGF,∴,∴AH•BG=AF•BF,在Rt△ACB中,AC=BC=2,∴,∵O是AB的中点,点O与点F重合,∴,∴,∴,∴y与x的函数关系式为;(2)△CGH的周长定值为2,理由如下:∵AC=BC=2,AH=x,BG=y,∴CH=2﹣x,CG=2﹣y,在Rt△HCG中,∴===,将(1)中xy=2代入得:=,∵1<x<2,y=,∴1<y<2,∴x+y>2,∴GH=x+y﹣2,∴△CHG的周长=CH+CG+GH=2﹣x+2﹣y+x+y﹣2=2;(3)①过点F作FN⊥AC于点N,作FH的垂直平分线交FN于点M,连接MH,如图:∵∠AFE=60°,∠A=45°,∴∠AHF=75°,∴FM=MH,∵∠FNH=90°,∴∠NFH=15°,∵FM=MH,∴∠NFH=∠MHF=15°,∴∠NMH=30°,在Rt△MNH中,设NH=k,∴MH=MF=2k,∴MN==k,∴FN=MF+MN=(2+)k,在Rt△FNH中,;②过点F作FN⊥BC于点N,作FG的垂直平分线交BG于点M,连接FM,∵∠AFE=60°,∠B=45°,∴∠FGB=∠AFE﹣∠B=15°,∵GM=MF,∴∠FGB=∠GFM=15°,∴∠FMB=30°,在Rt△FNM中,设FN=k,∴GM=MF=2k,由勾股定理得MN==k,∴GN=GM+MN=(2+)k,在Rt△FNG中,,综上所述,tan或,故答案为:2+或2﹣.【点评】本题考查几何变换综合应用,涉及相似三角形判定与性质,等腰直角三角形性质及应用,锐角三角函数,勾股定理及应用等知识,解题的关键是作辅助线,构造直角三角形解决问题.28.(11分)综合与探究如图,在平面直角坐标系中,已知抛物线y=﹣x2+bx+c与直线相交于A,B两点,其中点A(3,4),B (0,1).(1)求该抛物线的函数解析式;(2)过点B作BC∥x轴交抛物线于点C.连接AC,在抛物线上是否存在点P使tan∠BCP=tan∠ACB.若存在,请求出满足条件的所有点P的坐标;若不存在,请说明理由.(提示:依题意补全图形,并解答)(3)将该抛物线向左平移2个单位长度得到y1=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点D,点E为原抛物线对称轴上的一点,F是平面直角坐标系内的一点,当以点B,D,E,F为顶点的四边形是菱形时,请直接写出点F的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c过点A(3,4),B(0,1),∴,解得:,∴该抛物线的函数解析式为y=﹣x2+4x+1;(2)存在.理由如下:∵BC∥x轴,且B(0,1),∴点C的纵坐标为1,∴1=﹣x2+4x+1,解得:x1=0(舍去),x2=4,∴C(4,1),过点A作AQ⊥BC于Q,设直线CP交y轴于点M,如图,在Rt△ACQ中,∵A(3,4),∴Q(3,1),∵tan∠BCP=tan∠ACB,∴tan∠BCP=×=×=,∵BC=4,∠CBM=90°,∴=tan∠BCP=,∴BM=BC=×4=2,∴|y M﹣1|=2,∴y M=3或﹣1,∴M1(0,3),M2(0,﹣1),∴直线CM1的解析式为y=﹣x+3,直线CM2的解析式为y=x﹣1,由,解得,(舍去),由,解得,(舍去),∴P1(,),P2(﹣,﹣),综上所述,满足条件的点P的坐标为P1(,),P2(﹣,﹣);(3)∵y=﹣x2+4x+1=﹣(x﹣2)2+5,∴原抛物线的对称轴为直线x=2,顶点坐标为(2,5),∵将该抛物线向左平移2个单位长度得到新抛物线y′,∴y′=﹣x2+5,联立得,解得:,∴D(1,4),又B(0,1),设E(2,t),F(m,n),当BD、EF为对角线时,则,解得:,∴F(﹣1,3);当BE、DF为对角线时,则,解得:或,∴F(1,4)与点D重合,不符合题意,舍去,或F(1,﹣2);当BF、DE为对角线时,则,解得:或,∴F(3,4﹣)或F(3,4+);综上所述,点F的坐标为(﹣1,3)或(1,﹣2)或(3,4﹣)或(3,4+).。

2024年黑龙江省绥化市中考数学试题(解析版)

2024年黑龙江省绥化市中考数学试题(解析版)

二〇二四年绥化市初中毕业学业考试数学试题考生注意:1.考试时间120分钟2.本试题共三道大题,28个小题,总分120分3.所有答案都必须写在答题卡上所对应的题号后的指定区域内一、单项选择题(本题共12个小题,每小题3分,共36分)请在答题卡上用2B 铅笔将你的选项所对应的方框涂黑1.实数12025-的相反数是()A.2025B.2025- C.12025-D.12025【答案】D 【解析】【分析】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.【详解】解:实数12025-的相反数是12025,故选:D .2.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【答案】D 【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A 、是轴对称图形,也是中心对称图形,故此选项错误;B 、是轴对称图形,也是中心对称图形,故此选项错误;C 、不是轴对称图形,是中心对称图形,故此选项错误;D 、是轴对称图形,不是中心对称图形,故此选项正确,故选D .【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.3.某几何体是由完全相同的小正方体组合而成,下图是这个几何体的三视图,那么构成这个几何体的小正方体的个数是()A.5个B.6个C.7个D.8个【答案】A 【解析】【分析】此题主考查了三视图,由主视图易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图和左视图可得第二层立方体的个数,相加即可.【详解】解:由三视图易得最底层有3个正方体,第二层有2个正方体,那么共有325+=个正方体组成.故选:A .4.23m -有意义,则m 的取值范围是()A.23m ≤B.32m ≥-C.32m ≥D.23m ≤-【答案】C 【解析】【分析】本题考查了二次根式有意义的条件,根据题意可得230m -≥,即可求解.23m -有意义,∴230m -≥,解得:32m ≥,故选:C .5.下列计算中,结果正确的是()A.()2139--=B.()222a b a b +=+C.93=± D.()3263x y x y -=【答案】A 【解析】【分析】本题考查了负整数指数幂,完全平方公式,算术平方根,积的乘方,据此逐项分析计算,即可求解.【详解】解:A.()2139--=,故该选项正确,符合题意;B.()2222a b a ab b +=++,故该选项不正确,不符合题意;C.3=,故该选项不正确,不符合题意;D.()3263x y x y -=-,故该选项不正确,不符合题意;故选:A .6.小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是2-和5-.则原来的方程是()A.2650x x ++=B.27100x x -+=C.2520x x -+=D.26100x x --=【答案】B 【解析】【分析】本题考查了一元二次方程根与系数的关系,根据题意得出原方程中127x x +=,1210x x =,逐项分析判断,即可求解.【详解】解:∵小影在化简过程中写错了常数项,得到方程的两个根是6和1;∴12617x x +=+=,又∵写错了一次项的系数,因而得到方程的两个根是2-和5-.∴1210x x =A.2650x x ++=中,126x x +=-,125x x =,故该选项不符合题意;B.27100x x -+=中,127x x +=,1210x x =,故该选项符合题意;C.2520x x -+=中,125x x +=,122x x =,故该选项不符合题意;D.26100x x --=中,126x x +=,1210x x =-,故该选项不符合题意;故选:B .7.某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:鞋码3637383940平均每天销售量/双1012201212如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的()A.平均数B.中位数C.众数D.方差【分析】此题主要考查统计的有关知识,了解平均数、中位数、众数、方差的意义;平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故老板最关注的销售数据的统计量是众数.故选:C .8.一艘货轮在静水中的航速为40km /h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为()A.5km /hB.6km /hC.7km /hD.8km /h【答案】D 【解析】【分析】此题主要考查了分式方程的应用,利用顺水速=静水速+水速,逆水速=静水速-水速,设未知数列出方程,解方程即可求出答案.【详解】解:设江水的流速为km/h x ,根据题意可得:120804040x x=+-,解得:8x =,经检验:8x =是原方程的根,答:江水的流速为8km/h .故选:D .9.如图,矩形OABC 各顶点的坐标分别为()0,0O ,()3,0A ,()3,2B ,()0,2C ,以原点O 为位似中心,将这个矩形按相似比13缩小,则顶点B 在第一象限对应点的坐标是()A.()9,4 B.()4,9 C.31,2⎛⎫⎪⎝⎭D.21,3⎛⎫⎪⎝⎭【分析】本题考查了位似图形的性质,根据题意B 的坐标乘以13,即可求解.【详解】解:依题意,()3,2B ,以原点O 为位似中心,将这个矩形按相似比13缩小,则顶点B 在第一象限对应点的坐标是21,3⎛⎫ ⎪⎝⎭故选:D .10.下列叙述正确的是()A.顺次连接平行四边形各边中点一定能得到一个矩形B.平分弦的直径垂直于弦C.物体在灯泡发出的光照射下形成的影子是中心投影D.相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等【答案】C 【解析】【分析】本题考查了矩形的判定,垂径定理,中心投影,弧、弦与圆心角的关系,根据相关定理逐项分析判断,即可求解.【详解】A.顺次连接平行四边形各边中点不一定能得到一个矩形,故该选项不正确,不符合题意;B.平分弦(非直径)的直径垂直于弦,故该选项不正确,不符合题意;C.物体在灯泡发出的光照射下形成的影子是中心投影,故该选项正确,符合题意;D.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等,故该选项不正确,不符合题意;故选:C .11.如图,四边形ABCD 是菱形,5CD =,8BD =,AE BC ⊥于点E ,则AE 的长是()A.245B.6C.485D.12【答案】A【分析】本题考查了勾股定理,菱形的性质,根据勾股定理求得OC ,进而得出6AC =,进而根据等面积法,即可求解.【详解】解:∵四边形ABCD 是菱形,5CD =,8BD =,∴142DO BD ==,AC BD ⊥,5BC CD ==,在Rt CDO △中,3CO ==,∴26AC OC ==,∵菱形ABCD 的面积为12AC BD BC AE ⨯=⨯,∴18624255AE ⨯⨯==,故选:A .12.二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线=1x -,则下列结论中:①0b c>②2am bm a b +≤-(m 为任意实数)③31a c +<④若()1,M x y 、()2,N x y 是抛物线上不同的两个点,则123x x +≤-.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】B 【解析】【分析】本题考查了二次函数的图象的性质,根据抛物线的开口方向,对称轴可得a<0,20b a =<即可判断①,=1x -时,函数值最大,即可判断②,根据1x =时,0y <,即可判断③,根据对称性可得122x x +=-即可判段④,即可求解.【详解】解:∵二次函数图象开口向下∴a<0∵对称轴为直线=1x -,∴12bx a=-=-∴20b a =<∵抛物线与y 轴交于正半轴,则0c >∴0bc<,故①错误,∵抛物线开口向下,对称轴为直线=1x -,∴当=1x -时,y 取得最大值,最大值为a b c -+∴2am bm c a b c ++≤-+(m 为任意实数)即2am bm a b +≤-,故②正确;∵1x =时,0y <即0a b c ++<∵2b a =∴20a a c ++<即30a c +<∴31a c +<,故③正确;∵()1,M x y 、()2,N x y 是抛物线上不同的两个点,∴,M N 关于=1x -对称,∴1212x x +=-即122x x +=-故④不正确正确的有②③故选:B二、填空题(本题共10个小题,每小题3分,共30分)请在答题卡上把你的答案写在所对应的题号后的指定区域内13.中国的领水面积约为370000km 2,将数370000用科学记数法表示为:__________.【答案】3.7×105【解析】【详解】科学记数法是指:a ×10n ,且1≤a <10,n 为原数的整数位数减一,370000=3.7×510.故答案为:3.7×105.14.分解因式:2228mx my -=______.【答案】()()222m x y x y +-【解析】【分析】本题考查了因式分解,先提公因式2m ,然后根据平方差公式因式分解,即可求解.【详解】解:2228mx my -=()2224m x y -=()()222m x y x y +-故答案为:()()222m x y x y +-.15.如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠=______︒.【答案】66【解析】【分析】本题考查了平行线的性质,等边对等角,三角形外角的性质,根据等边对等角可得33E C ∠=∠=︒,根据三角形的外角的性质可得66DOE ∠=︒,根据平行线的性质,即可求解.【详解】解:∵OC OE =,33C ∠=︒,∴33E C ∠=∠=︒,∴66DOE E C ∠=∠+∠=︒,∵AB CD ∥,∴66A DOE =∠=︒∠,故答案为:66.16.如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为______m (结果保留根号).【答案】(50+##()50+【解析】【分析】本题考查解直角三角形—仰角俯角问题.注意准确构造直角三角形是解答此题的关键.根据题意得456050m BAD CAD AD ∠=︒∠=︒=,,,然后利用三角函数求解即可.【详解】解:依题意,456050m BAD CAD AD ∠=︒∠=︒=,,.在Rt △ABD 中,tan 4550150m BD AD =⋅︒=⨯=,在Rt ACD △中,tan 6050CD AD =⋅︒==,∴(m 50BC BD CD =+=+.故答案为:(50+.17.计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭_________.【答案】1x y-【解析】【分析】本题考查了分式的混合运算.先算括号内的减法,把除法变成乘法,再根据分式的乘法法则进行计算即可.【详解】解:22x y xy y x x x ⎛⎫--÷- ⎪⎝⎭222x y x xy y x x--+=÷2()x y x x x y -=-1x y=-,故答案为:1x y-.18.用一个圆心角为126︒,半径为10cm 的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为______cm .【答案】72【解析】【分析】本题考查了弧长公式,根据圆锥的底面圆的周长等于侧面的弧长,代入数据计算,即可求解.【详解】解:设这个圆锥的底面圆的半径为cm R ,由题意得,12610π2π180R ⨯⨯=解得:7cm 2R =故答案为:72.19.如图,已知点()7,0A -,(),10B x ,()17,C y -,在平行四边形ABCO 中,它的对角线OB 与反比例函数()0ky k x=≠的图象相交于点D ,且:1:4OD OB =,则k =______.【答案】15-【解析】【分析】本题考查了反比例函数与平行四边形综合,相似三角形的性质与判定,分别过点,B D ,作x 的垂线,垂足分别为,F E ,根据平行四边形的性质得出()2410B -,,证明ODE OBF △∽△得出6OE =,2.5DE =,进而可得()6,2.5D -,即可求解.【详解】如图所示,分别过点,B D ,作x 的垂线,垂足分别为,F E ,∵四边形AOCB 是平行四边形,点()7,0A -,(),10B x ,()17,C y -,∴7OA BC ==,∴24x =-,即()2410B -,,则24OF =,10BF =∵DE x ⊥轴,BF x ⊥轴,∴DE BF∥∴ODE OBF △∽△∴14OE OD DE OF OB BF ===∴6OE =, 2.5DE =∴()6,2.5D -∴6 2.515k =-⨯=-故答案为:15-.20.如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠=______.【答案】80︒##80度【解析】【分析】本题考查了轴对称-最短路线问题,等腰三角形的性质,三角形内角和定理的应用;作关于OA ,OB 的对称点12P P ,.连接12OP OP ,.则当M ,N 是12PP 与OA ,OB 的交点时,PMN 的周长最短,根据对称的性质可以证得:150OPM OPM ∠=∠=︒,12OP OP OP ==,根据等腰三角形的性质即可求解.【详解】解:作P 关于OA ,OB 的对称点12P P ,.连接12OP OP ,.则当M ,N 是12PP 与OA ,OB 的交点时,PMN 的周长最短,连接12PO P O 、,1PP 关于OA 对称,∴11112POP MOP OP OP PM PM OPM OPM ∠=∠==∠=∠,,,同理,222P OP NOP OP OP ∠=∠=,,12122(210)0POP POP P OP MOP NOP AOB ∴∠=∠+∠=∠+∠=∠=︒,12OP OP OP ==,∴12POP △是等腰三角形.∴2140OP N OPM ∠=∠=︒,∴2180MPN MPO NPO OP N OPM ∠=∠+∠=∠+∠=︒故答案为:80︒.21.如图,已知(11,A ,(23,A ,()34,0A ,()46,0A ,(5A ,(6A ,()710,0A ,(811,A …,依此规律,则点2024A 的坐标为______.【答案】(2891,【解析】【分析】本题考查了点坐标的规律探究.解题的关键在于根据题意推导出一般性规律.根据题意可知7个点坐标的纵坐标为一个循环,7n A 的坐标为()10,0n ,据此可求得2024A 的坐标.【详解】解:∵(11,A ,(23,A ,()34,0A ,()46,0A ,(5A ,(6A ,()710,0A ,(811,A …,,∴可知7个点坐标的纵坐标为一个循环,7n A 的坐标为()10,0n ,(71101,n A n ++∵202472891÷=⋅⋅⋅,∴2023A 的坐标为()2890,0.∴2024A 的坐标为(2891,故答案为:(2891,.22.在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是______cm .【答案】255或655或25【解析】【分析】本题考查了矩形的性质,解直角三角形,设,AC BD 交于点O ,点1E 在线段AD 上,2E 在AD 的延长线上,过点AC 作AC ,BD 的垂线,垂足分别为123,,F F F ,进而分别求得垂线段的长度,即可求解.【详解】解:∵四边形ABCD 是矩形,4AB =,8BC =,∴8AD BC ==,4CD AB ==,∴22224845AC AD CD =+=+=∴45sin 545CD CAD AC ∠===,825cos 545CAD ∠==,41tan 82CAD ∠==如图所示,设,AC BD 交于点O ,点1E 在线段AD 上,2E 在AD 的延长线上,过点AC 作AC ,BD 的垂线,垂足分别为123,,F F F ∵AO DO=∴OAD ODA∠=∠当E 在线段AD 上时,∴1826AE AD DE =-=-=在11Rt AE F 中个,111565sin 655E F AE CAD =⋅∠==∵OAD ODA∠=∠在12Rt E F D 中,12112525sin 255E F DE E DF =∠=⨯=;当E 在射线AD 上时,在2Rt DCE 中,221tan 42DCE ∠==∴CAD DCE∠=∠∴90DCE DCA ∠+∠=︒∴2E C AC⊥∴2E C ===在23Rt DE F中,232232sin 55E F DE E DF DE =⨯∠=⨯=综上所述,点E 到对角线所在直线的距离为:255或5或或655或三、解答题(本题共6个小题,共54分)请在答题卡上把你的答案写在所对应的题号后的指定区域内23.已知:ABC.(1)尺规作图:画出ABC 的重心G .(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG ,BG .已知ABG 的面积等于25cm ,则ABC 的面积是______2cm .【答案】(1)见解析(2)15【解析】【分析】本题考查了三角形重心的性质,画垂线;(1)分别作,BC AC 的中线,交点即为所求;(2)根据三角形重心的性质可得23ABG ABD S S = ,根据三角形中线的性质可得2215cm ABC ABD S S == 【小问1详解】解:作法:如图所示①作BC 的垂直平分线交BC 于点D②作AC 的垂直平分线交AC 于点F③连接AD 、BF 相交于点G④标出点G ,点G 即为所求【小问2详解】解:∵G 是ABC 的重心,∴23AG AD =∴23ABG ABD S S = ∵ABG 的面积等于25cm ,∴27.5cm ABD S = 又∵D 是BC 的中点,∴2215cmABC ABD S S == 故答案为:15.24.为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动.为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图.请根据统计图中的信息,解答下列问题:(1)参加本次问卷调查的学生共有______人.(2)在扇形统计图中,A组所占的百分比是______,并补全条形统计图.(3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示.请用树状图法或列表法,求选中的2个社团恰好是B和C的概率.【答案】(1)60(2)30%,作图见解析(3)1 6【解析】【分析】本题考查了条形统计图与扇形统计图信息关联,列表法或画树状图法求概率;(1)根据D组的人数除以占比得出总人数;(2)根据总人数求得A组的人数,进而求得占比,以及补全统计图;(3)根据列表法或画树状图法求概率,即可求解.【小问1详解】解:参加本次问卷调查的学生共有1220%60÷=(人);【小问2详解】解:A组人数为6020101218---=人A组所占的百分比为:18100%30% 60⨯=补全统计图如图所示,【小问3详解】画树状图法如下图列表法如下图A B C DA(),B A(),C A(),D AB(),A B(),C B(),D BC(),A C(),B C(),D CD(),A D(),B D(),C D由树状图法或列表法可以看出共有12种结果出现的可能性相等,选中的2个社团恰好是B和C的情况有两种.∴P(选中的2个社团恰好是B和C)21 126 ==.25.为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买A、B两种电动车.若购买A种电动车25辆、B种电动车80辆,需投入资金30.5万元;若购买A种电动车60辆、B种电动车120辆,需投入资金48万元.已知这两种电动车的单价不变.(1)求A、B两种电动车的单价分别是多少元?(2)为适应共享电动车出行市场需求,该公司计划购买A、B两种电动车200辆,其中A种电动车的数量不多于B种电动车数量的一半.当购买A种电动车多少辆时,所需的总费用最少,最少费用是多少元?(3)该公司将购买的A、B两种电动车投放到出行市场后,发现消费者支付费用y元与骑行时间minx之间的对应关系如图.其中A种电动车支付费用对应的函数为1y;B种电动车支付费用是10min之内,起步价6元,对应的函数为2y.请根据函数图象信息解决下列问题.①小刘每天早上需要骑行A 种电动车或B 种电动车去公司上班.已知两种电动车的平均行驶速度均为300m /min (每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的距离为8km ,那么小刘选择______种电动车更省钱(填写A 或B ).②直接写出两种电动车支付费用相差4元时,x 的值______.【答案】(1)A 、B 两种电动车的单价分别为1000元、3500元(2)当购买A 种电动车66辆时所需的总费用最少,最少费用为535000元(3)①B②5或40【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用;(1)设A 、B 两种电动车的单价分别为x 元、y 元,根据题意列二元一次方程组,解方程组,即可求解;(2)设购买A 种电动车m 辆,则购买B 种电动车()200m -辆,根据题意得出m 的范围,进而根据一次函数的性质,即可求解;(3)①根据函数图象,即可求解;②分别求得12,y y 的函数解析式,根据214y y -=,解方程,即可求解.【小问1详解】解:设A 、B 两种电动车的单价分别为x 元、y 元由题意得,258030500060120480000x y x y +=⎧⎨+=⎩解得10003500x y =⎧⎨=⎩答:A 、B 两种电动车的单价分别为1000元、3500元【小问2详解】设购买A 种电动车m 辆,则购买8种电动车()200m -辆,由题意得:()12002m m ≤-解得:2003m ≤设所需购买总费用为w 元,则()100035002002500700000w m m m =+-=-+25000-< ,w 随着m 的增大而减小,m 取正整数66m ∴=时,w 最少∴700000250066535000w =-⨯=最少(元)答:当购买A 种电动车66辆时所需的总费用最少,最少费用为535000元【小问3详解】解:①∵两种电动车的平均行驶速度均为300m /min ,小刘家到公司的距离为8km ,∴所用时间为80002263003=分钟,根据函数图象可得当20x >时,21y y <更省钱,∴小刘选择B 种电动车更省钱,故答案为:B .②设11y k x =,将()20,8代入得,1820k =解得:25k =∴125y x =;当010x <≤时,26y =,当10x >时,设222y k x b =+,将()10,6,()20,8代入得,2222610820k b k b =+⎧⎨=+⎩解得:22154k b ⎧=⎪⎨⎪=⎩∴2145y x =+依题意,当010x <<时,214y y -=即2645x -=解得:5x =当10x >时,214y y -=即124455x x +-=解得:0x =(舍去)或40x =故答案为:5或40.26.如图1,O 是正方形ABCD 对角线上一点,以O 为圆心,OC 长为半径的O 与AD 相切于点E ,与AC 相交于点F .(1)求证:AB 与O 相切.(2)若正方形ABCD 1,求O 的半径.(3)如图2,在(2)的条件下,若点M 是半径OC 上的一个动点,过点M 作MN OC ⊥交 CE 于点N .当:1:4CM FM =时,求CN 的长.【答案】(1)证明见解析(2(3)2105【解析】【分析】(1)方法一:连接OE ,过点O 作OG AB ⊥于点G ,四边形ABCD 是正方形,AC 是正方形的对角线,得出OE OG =,进而可得OG 为O 的半径,又OG AB ⊥,即可得证;方法二:连接OE ,过点O 作OG AB ⊥于点G ,根据正方形的性质证明()AAS AOE AOG ≌得出OE OG =,同方法一即可得证;方法三:过点O 作OG AB ⊥于点G ,连接OE .得出四边形AEOG 为正方形,则OE OG =,同方法一即可得证;(2)根据O 与AD 相切于点E ,得出90AEO ∠=︒,由(1)可知AE OE =,设AE OE OC OF R ====,在Rt AEO △中,勾股定理得出AO =,在Rt ADC 中,勾股定理求得AC ,进而根据OA OC AC +=建立方程,解方程,即可求解.(3)方法一:连接ON ,设CM k =,在Rt OMN △中,由勾股定理得:2MN k =,在Rt CMN 中,由勾股定理得:CN =,结合题意522FC k R ====得出225k =,即可得出CN =;方法二:连接FN ,证明CNM CFN ∽△△得出2CN CM CF =⋅,进而可得12255CM CF ==,同理可得CN方法三:连接FN ,证明CNM CFN ∽△△得出2NC MC FC =⋅,设CM k =,则5FC k =,进而可得NC =,进而同方法一,即可求解.【小问1详解】方法一:证明:连接OE ,过点O 作OG AB ⊥于点G ,O 与AD 相切于点E ,∴OE AD ⊥.四边形ABCD 是正方形,AC 是正方形的对角线,∴45BAC DAC ∠=∠=︒,∴OE OG =,OE 为O 的半径,OG ∴为O 的半径,OG AB ⊥,AB ∴与O 相切.方法二:证明:连接OE ,过点O 作OG AB ⊥于点G ,O 与AD 相切于点E ,∴OE AD ⊥,∴90AEO AGO ∠=∠=︒,四边形ABCD 是正方形,∴45BAC DAC ∠=∠=︒,又 AO AO =,∴()AAS AOE AOG ≌,∴OE OG =,OE 为O 的半径,OG ∴为O 的半径,OG AB ⊥,AB ∴与O 相切.方法三:证明:过点O 作OG AB ⊥于点G ,连接OE .AD 与O 相切,OE 为O 半径,∴OE AE ⊥,∴90AEO ∠=︒,OG AB ⊥,∴90AGO ∠=︒,又 四边形ABCD 为正方形,∴90BAD ∠=︒,∴四边形AEOG 为矩形,又AC 为正方形的对角线,∴45EAO GAO AOE ∠=∠=∠=︒,∴OE AE =,∴矩形AEOG 为正方形,∴OE OG =.又OE 为O 的半径,OG ∴为O 的半径,又 OG AB ⊥,AB ∴与O 相切.【小问2详解】解:AC 为正方形ABCD 的对角线,∴45DAC ∠=︒,O 与AD 相切于点E ,∴90AEO ∠=︒,∴由(1)可知AE OE =,设AE OE OC OF R ====,在Rt AEO △中,222AE EO AO +=,∴222AO R R =+,0R >,∴AO =,又 正方形ABCD 1.在Rt ADC 中,∴)1AC ==+, OA OC AC +=,∴)1R +=,∴R =.∴O 的半径为.【小问3详解】方法一:解:连接ON ,设CM k =,:1:4CM FM =,∴5CF k =,∴ 2.5OC ON k ==,∴ 1.5OM OC CM k =-=.在Rt OMN △中,由勾股定理得:2MN k =,在Rt CMN 中,由勾股定理得:CN =,又 522FC k R ====,∴225k =.∴55CN ==.方法二:解:连接FN ,CF 为O 的直径,∴90CNF ∠=︒,∴90FNM CNM ∠+∠=︒,MN AC ⊥,∴90NFM FNM ∠+∠=︒,∴NFM CNM ∠=∠,NCM FCN ∠=∠,∴CNM CFN ∽△△,∴2CN CM CF =⋅,:1:4CM FM =,5CF CM =,∴CN =, 22CF R ===∴12255CM CF ==,方法三:解:连接FN ,CF 为O 的直径,∴90CNF ∠=︒,∴90FNM CNM ∠+∠=︒,MN AC ⊥,∴90NFM FNM ∠+∠=︒,∴NFM CNM ∠=∠,NCM FCN ∠=∠,∴CNM CFN ∽△△,∴NC FC MC NC=,∴2NC MC FC =⋅,:1:4CM FM =,∴:1:5CM FC =,设CM k =,则5FC k =,∴25NC k k =⨯,∴NC =.又 522FC k R ====,∴225k =,【点睛】本题考查了切线的性质与判定,正方形的性质,全等三角形的性质与判定,勾股定理,垂径定理,相似三角形的性质与判定,正确的添加辅助线是解题的关键.27.综合与实践问题情境在一次综合与实践课上,老师让同学们以两个全等的等腰直角三角形纸片为操作对象.纸片ABC 和DEF 满足90ACB EDF ∠=∠=︒,2cm AC BC DF DE ====.下面是创新小组的探究过程.操作发现(1)如图1,取AB 的中点O ,将两张纸片放置在同一平面内,使点O 与点F 重合.当旋转DEF 纸片交AC 边于点H 、交BC 边于点G 时,设()12AH x x =<<,BG y =,请你探究出y 与x 的函数关系式,并写出解答过程.问题解决(2)如图2,在(1)的条件下连接GH ,发现CGH 的周长是一个定值.请你写出这个定值,并说明理由.拓展延伸(3)如图3,当点F 在AB 边上运动(不包括端点A 、B ),且始终保持60AFE ∠=︒.请你直接写出DEF 纸片的斜边EF 与ABC 纸片的直角边所夹锐角的正切值______(结果保留根号).【答案】(1)()212y x x=<<,见解析;(2)2,见解析;(3)2+或2【解析】【分析】(1)根据题意证明AFH BGF ∽△△,得出关系式AH BG AF BF ⋅=⋅,进而求得AB AF BC ===,代入比例式,即可求解;(2)方法一:勾股定理求得GH ,将将(1)中2xy =代入得2GH x y =+-,进而根据三角形的周长公式,即可求解;方法二:证明AOH BGO ∽△△,HAO HOG ∽△△,过O 作OM AH ⊥交AH 于点M ,作OP HG ⊥交HG 于点P ,作ON GB ⊥交GB 于点N .证明OMH OPH △≌△,OPG ONG △≌△,得出HG MH GN =+,得出112CM CN BC ===,进而根据三角形的周长公式可得CHG △的周长2212CM CN CM =+==⨯=.方法三:过O 作OM AH ⊥交AH 于点M ,作ON GB ⊥交GB 于点N ,在NB 上截取一点Q ,使NQ MH =,连接OC .得出OMH ONQ △≌△,OHG OQG △≌△,则HG GQ GN MH ==+,同方法二求得112CM CN BC ===,进而即可求解;(3)分两种情况讨论,EF 于,AC BC 的夹角;①过点F 作FN AC ⊥于点N ,作FH 的垂直平分线交FN于点M ,连接MH ,在Rt MNH △中,设NH k =,由勾股定理得,(2FN MN MF k =+=+,进而根据正确的定义,即可求解;②过点F 作FN BC ⊥于点N ,作FG 的垂直平分线交BG 于点M ,连接FM ,在Rt FNM △中,设FN k =,同①即可求解..【详解】操作发现解:(1)∵90ACB EDF ∠=∠=︒,且2cm AC BC DF DE ====.∴45A B DFE ∠=∠=∠=︒,∴135AFH BFG BFG FGB ∠+∠=∠+∠=︒,∴AFH FGB ∠=∠,∴AFH BGF ∽△△,∴AF AH BG BF=,∴AH BG AF BF ⋅=⋅.在Rt ACB △中,2AC BC ==,∴AB ===∵O 是AB 的中点,点O 与点F 重合,∴AF BF ==,∴xy =,∴()212y x x=<<.问题解决(2)方法一:解:CGH 的周长定值为2.理由如下:∵2AC BC ==,AH x =,BG y =,∴2CH x =-,2CG y =-,在Rt HCG 中,∴GH ===.将(1)中2xy =代入得:∴2GH x y ===+-.∵()22222244x y x y xy x y +=++=++≥,又∵12x <<,∴2x y +>,∴2GH x y =+-.∵CHG △的周长CH CG GH =++,∴CHG △的周长2222x y x y =-+-++-=.方法二:解:CGH 的周长定值为2.理由如下:∵ABC 和DEF 是等腰直角三角形,∴45A B E EOD ∠=∠=∠=∠=︒,∵180AOH BOG EOD ∠+∠+∠=︒,∴135AOH BOG ∠+∠=︒,在AOH △中,45A ∠=︒,∴135AOH AHO ∠+∠=︒,∴AHO BOG ∠=∠,∴AOH BGO ∽△△,∴AO OH AH BG OG OB==,AOH OGB ∠=∠,AHO BOG ∠=∠,∵O 为AB 的中点,∴AO BO =,∴OH AH OG AO=,又∵45A EOD ∠=∠=︒,∴HAO HOG ∽△△,AHO OHG ∠=∠,OGB OGH ∠=∠,∴过O 作OM AH ⊥交AH 于点M ,作OP HG ⊥交HG 于点P ,作ON GB ⊥交GB 于点N .∴OM OP ON ==.又∵OH OH =,OG OG =,∴OMH OPH △≌△,OPG ONG △≌△,∴HM PH =,PG NG =,∴HG MH GN =+.∵CHG △的周长CH CG GH CH CG MH GN CM CN =++=+++=+.又∵AO OB =,OM ON =,45A B ∠=∠=︒,∴AOM BON ≌,∴AM BN =,∵90C ∠=︒,90AMO ∠=︒,∴OM BC ∥,∵O 是AB 的中点,∴点M 是AC 的中点,同理点N 是BC 的中点.∴112CM CN BC ===,∴CHG △的周长2212CM CN CM =+==⨯=.方法三:解:CGH 的周长定值为2.理由如下:过O 作OM AH ⊥交AH 于点M ,作ON GB ⊥交GB 于点N ,在NB 上截取一点Q ,使NQ MH =,连接OC .∵ABC 是等腰直角三角形,O 为AB 的中点,∴OC 平分ACB ∠,∴OM ON =,∴OMH ONQ △≌△,∴OH OQ =,MOH NOQ ∠=∠.∵45HOG Ð=°,90ACB ∠=︒,∴90MON ∠=︒,45MOH GON ∠+∠=︒,∴45GOQ ∠=︒,∴HOG GOQ ∠=∠,∵OG OG =,∴OHG OQG △≌△,∴HG GQ GN MH ==+,∴CHG △的周长CH CG GH CH CG MH GN CM CN =++=+++=+.又∵AO OB =,OM ON =,45A B ∠=∠=︒,∴AOM BON ≌,∴AM BN =.∵90C ∠=︒,90AMO ∠=︒,∴OM BC ∥.∵O 是AB 的中点,∴点M 是AC 的中点,同理点N 是BC 的中点.∴112CM CN BC ===,∴CHG △的周长2212CM CN CM =+==⨯=.拓展延伸(3)2+或2①解:∵60AFE ∠=︒,45A ∠=︒,∴75AHF ∠=︒,过点F 作FN AC ⊥于点N ,作FH 的垂直平分线交FN 于点M ,连接MH ,∴FM MH =,∵90FNH ∠=︒,∴15NFH ∠=︒,∵FM MH =,∴15NFH MHF ∠=∠=︒,∴=30NMH ∠︒,在Rt MNH △中,设NH k =,∴2MH MF k ==,由勾股定理得,MN ==,∴(2FN MN MF k =+=+,∴在Rt FNH △中,(2tan tan 752k FN FHNNH k +∠=︒===+②解:∵60AFE ∠=︒,45A ∠=︒,∴15FGB ∠=︒,过点F 作FN BC ⊥于点N ,作FG 的垂直平分线交BG 于点M ,连接FM .∵GM MF =,∴15FGB GFM ∠=∠=︒,∴30FMB ∠=︒,在Rt FNM △中,设FN k =,∴2GM MF k ==,由勾股定理得,MN ==,∴(2GN GM MN k =+=+,∴在Rt FNG △中,tan tan152FN FGN GN ∠=︒===-.∴tan 2FHN ∠=+或tan 2FGN ∠=.【点睛】本题考查了相似三角形的性质与判定,全等三角形的性质与判定,解直角三角形,旋转的性质,函数解析式,熟练掌握相似三角形的性质与判定,解直角三角形是解题的关键.28.综合与探究如图,在平面直角坐标系中,已知抛物线2y x bx c =-++与直线相交于A ,B 两点,其中点()3,4A ,()0,1B .(1)求该抛物线的函数解析式.(2)过点B 作BC x ∥轴交抛物线于点C ,连接AC ,在抛物线上是否存在点P 使1tan tan 6BCP ACB ∠=∠.若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.(提示:依题意补全图形,并解答)(3)将该抛物线向左平移2个单位长度得到()2111110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点D ,点E 为原抛物线对称轴上的一点,F 是平面直角坐标系内的一点,当以点B 、D 、E 、F 为顶点的四边形是菱形时,请直接写出点F 的坐标.【答案】(1)241y x x =-++(2)存在,点P 坐标为1111,24P ⎛⎫ ⎪⎝⎭,215,24P ⎛⎫-- ⎪⎝⎭,补图见解析(3)()11,3F -、(23,4F -、(33,4F +、()41,2F -【解析】【分析】(1)待定系数法求解析式即可求解;(2)根据平行线的性质可得2141c y x x ==-++,求得()4,1C ,进而分别求得()3,4A ,()3,1Q ,根据1tan tan 6BCP ACB ∠=∠可得1tan 2BCP ∠=,设直线CP 交y 轴于点M ,则()10,3M ,()20,1M -.进而可得1C M ,2CM 的解析式为1132CM y x =-+,2112CM y x =-,连接1C M 交抛物线于1P ,连接2CM 交抛物线于2P ,进而联立抛物线与直线解析式,解方程,即可求解.(3)①以BD 为对角线,如图作BD 的垂直平分线1ME 交BD 于点M 交直线2x =于1E ,设()12,E y ,根据两点距离公式可得2y =,根据中点坐标公式可得()11,3F -,②以BD 为边,如图以B 为圆心,BD 为半径画圆交直线2x =于点2E ,3E ;连接2BE ,3BE ,根据勾股定理求得2,BD BE ,进而得出(22,1E ,(32,1E +,根据平移的性质得出(23,4F ,(33,4F +,③以BD 为边,如图以点D 为圆心,BD 长为半径画圆交直线2x =于点4E 和5E ,连接4DE ,5DE ,则45DE DE BD ===,过点D 作45DH E E ⊥于点H ,则1DH =,在4Rt DHE △和5Rt DHE △中,由勾股定理得453HE HE ==,则()42,1E 、()52,7E ,根据45tan tan 3DBE E DH ∠=∠=,可得45DBE E DH ∠=∠,过点B 作44BF DE ∥,过4E 作44E F BD ∥,4BF 和44E F 相交于点4F ,4BE 的中点()1,1G .根据中点坐标公式可得()41,2F -;【小问1详解】解:∵把点()3,4A ,()0,1B 代入2y x bx c =-++得9341b c c -++=⎧⎨=⎩,解得41b c =⎧⎨=⎩,∴241y x x =-++.【小问2详解】存在.理由:∵BC x ∥轴且()0,1B ,∴2141c y x x ==-++,∴10x =(舍去),24x =,∴()4,1C .过点A 作AQ BC ⊥于点Q ,在Rt ACQ 中,∵()3,4A ,∴()3,1Q ,∵1tan tan 6BCP ACB ∠=∠,∴111tan 3662AQ BCP CQ ∠=⨯=⨯=.设直线CP 交y 轴于点M ,4BC =,90CBM ∠=︒,∴()10,3M ,()20,1M -.连接1C M 交抛物线于1P ,连接2CM 交抛物线于2P ,∴1C M ,2CM 的解析式为1132CM y x =-+,2112CM y x =-,∴1213241CM y x y x x ⎧=-+⎪⎨⎪=-++⎩,解得()12124x x ⎧=⎪⎨⎪=⎩舍去,或2211241CM y x y x x ⎧=-⎪⎨⎪=-++⎩,解得()34124x x ⎧=-⎪⎨⎪=⎩舍去.∴把112x =,312x =-代入241y x x =-++得1114y =,354y =-,∴1111,24P ⎛⎫ ⎪⎝⎭,215,24P ⎛⎫-- ⎪⎝⎭.综上所述,满足条件的点P 坐标为1111,24P ⎛⎫⎪⎝⎭,215,24P ⎛⎫-- ⎪⎝⎭.【小问3详解】()11,3F -、(23,4F、(33,4F +、()41,2F -.方法一:①以BD 为对角线,如图作BD 的垂直平分线1ME 交BD 于点M 交直线2x =于1E ∵()0,1B ,()1,4D ,∴15,22M ⎛⎫ ⎪⎝⎭.设()12,E y ,∵11DE BE =,∴()()22221421y y +-=+-,∴2y =,∴()12,2E ,∵M 是11E F 的中点,∴()11,3F -.。

2024年黑龙江省绥化市中考数学试题(含答案)

2024年黑龙江省绥化市中考数学试题(含答案)

二〇二四年绥化市初中毕业学业考试数学试题考生注意:1.考试时间120分钟2.本试题共三道大题,28个小题,总分120分3.所有答案都必须写在答题卡上所对应的题号后的指定区域内一、单项选择题(本题共12个小题,每小题3分,共36分)请在答题卡上用2B 铅笔将你的选项所对应的方框涂黑1.实数12025-的相反数是()A.2025B.2025- C.12025-D.12025【答案】D 【解析】【分析】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.【详解】解:实数12025-的相反数是12025,故选:D .2.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【答案】D 【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A 、是轴对称图形,也是中心对称图形,故此选项错误;B 、是轴对称图形,也是中心对称图形,故此选项错误;C 、不是轴对称图形,是中心对称图形,故此选项错误;D 、是轴对称图形,不是中心对称图形,故此选项正确,故选D .【点睛】本题考查了中心对称图形与轴对称图形的概念.辨别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;.辨别中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.3.某几何体是由完全相同的小正方体组合而成,下图是这个几何体的三视图,那么构成这个几何体的小正方体的个数是()A.5个B.6个C.7个D.8个【答案】A 【解析】【分析】此题主考查了三视图,由主视图易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图和左视图可得第二层立方体的个数,相加即可.【详解】解:由三视图易得最底层有3个正方体,第二层有2个正方体,那么共有325+=个正方体组成.故选:A .4.23m -有意义,则m 的取值范围是()A.23m ≤B.32m ≥-C.32m ≥D.23m ≤-【答案】C 【解析】【分析】本题考查了二次根式有意义的条件,根据题意可得230m -≥,即可求解.23m -有意义,∴230m -≥,解得:32m ≥,故选:C .5.下列计算中,结果正确的是()A.()2139--=B.()222a b a b +=+C.93=± D.()3263x y x y -=【答案】A 【解析】【分析】本题考查了负整数指数幂,完全平方公式,算术平方根,积的乘方,据此逐项分析计算,即可求解.【详解】解:A.()2139--=,故该选项正确,符合题意;B.()2222a b a ab b +=++,故该选项不正确,不符合题意;C.3=,故该选项不正确,不符合题意;D.()3263x y x y -=-,故该选项不正确,不符合题意;故选:A .6.小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是2-和5-.则原来的方程是()A.2650x x ++=B.27100x x -+=C.2520x x -+=D.26100x x --=【答案】B 【解析】【分析】本题考查了一元二次方程根与系数的关系,根据题意得出原方程中127x x +=,1210x x =,逐项分析判断,即可求解.【详解】解:∵小影在化简过程中写错了常数项,得到方程的两个根是6和1;∴12617x x +=+=,又∵写错了一次项的系数,因而得到方程的两个根是2-和5-.∴1210x x =A.2650x x ++=中,126x x +=-,125x x =,故该选项不符合题意;B.27100x x -+=中,127x x +=,1210x x =,故该选项符合题意;C.2520x x -+=中,125x x +=,122x x =,故该选项不符合题意;D.26100x x --=中,126x x +=,1210x x =-,故该选项不符合题意;故选:B .7.某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:鞋码3637383940平均每天销售量/双1012201212如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的()A.平均数B.中位数C.众数D.方差【分析】此题主要考查统计的有关知识,了解平均数、中位数、众数、方差的意义;平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故老板最关注的销售数据的统计量是众数.故选:C .8.一艘货轮在静水中的航速为40km /h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为()A.5km /hB.6km /hC.7km /hD.8km /h【答案】D 【解析】【分析】此题主要考查了分式方程的应用,利用顺水速=静水速+水速,逆水速=静水速-水速,设未知数列出方程,解方程即可求出答案.【详解】解:设江水的流速为km/h x ,根据题意可得:120804040x x=+-,解得:8x =,经检验:8x =是原方程的根,答:江水的流速为8km/h .故选:D .9.如图,矩形OABC 各顶点的坐标分别为()0,0O ,()3,0A ,()3,2B ,()0,2C ,以原点O 为位似中心,将这个矩形按相似比13缩小,则顶点B 在第一象限对应点的坐标是()A.()9,4 B.()4,9 C.31,2⎛⎫⎪⎝⎭D.21,3⎛⎫⎪⎝⎭【分析】本题考查了位似图形的性质,根据题意B 的坐标乘以13,即可求解.【详解】解:依题意,()3,2B ,以原点O 为位似中心,将这个矩形按相似比13缩小,则顶点B 在第一象限对应点的坐标是21,3⎛⎫ ⎪⎝⎭故选:D .10.下列叙述正确的是()A.顺次连接平行四边形各边中点一定能得到一个矩形B.平分弦的直径垂直于弦C.物体在灯泡发出的光照射下形成的影子是中心投影D.相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等【答案】C 【解析】【分析】本题考查了矩形的判定,垂径定理,中心投影,弧、弦与圆心角的关系,根据相关定理逐项分析判断,即可求解.【详解】A.顺次连接平行四边形各边中点不一定能得到一个矩形,故该选项不正确,不符合题意;B.平分弦(非直径)的直径垂直于弦,故该选项不正确,不符合题意;C.物体在灯泡发出的光照射下形成的影子是中心投影,故该选项正确,符合题意;D.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等,故该选项不正确,不符合题意;故选:C .11.如图,四边形ABCD 是菱形,5CD =,8BD =,AE BC ⊥于点E ,则AE 的长是()A.245B.6C.485D.12【答案】A【分析】本题考查了勾股定理,菱形的性质,根据勾股定理求得OC ,进而得出6AC =,进而根据等面积法,即可求解.【详解】解:∵四边形ABCD 是菱形,5CD =,8BD =,∴142DO BD ==,AC BD ⊥,5BC CD ==,在Rt CDO △中,3CO ==,∴26AC OC ==,∵菱形ABCD 的面积为12AC BD BC AE ⨯=⨯,∴18624255AE ⨯⨯==,故选:A .12.二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线=1x -,则下列结论中:①0b c>②2am bm a b +≤-(m 为任意实数)③31a c +<④若()1,M x y 、()2,N x y 是抛物线上不同的两个点,则123x x +≤-.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】B 【解析】【分析】本题考查了二次函数的图象的性质,根据抛物线的开口方向,对称轴可得a<0,20b a =<即可判断①,=1x -时,函数值最大,即可判断②,根据1x =时,0y <,即可判断③,根据对称性可得122x x +=-即可判段④,即可求解.【详解】解:∵二次函数图象开口向下∴a<0∵对称轴为直线=1x -,∴12bx a=-=-∴20b a =<∵抛物线与y 轴交于正半轴,则0c >∴0bc<,故①错误,∵抛物线开口向下,对称轴为直线=1x -,∴当=1x -时,y 取得最大值,最大值为a b c -+∴2am bm c a b c ++≤-+(m 为任意实数)即2am bm a b +≤-,故②正确;∵1x =时,0y <即0a b c ++<∵2b a =∴20a a c ++<即30a c +<∴31a c +<,故③正确;∵()1,M x y 、()2,N x y 是抛物线上不同的两个点,∴,M N 关于=1x -对称,∴1212x x +=-即122x x +=-故④不正确正确的有②③故选:B二、填空题(本题共10个小题,每小题3分,共30分)请在答题卡上把你的答案写在所对应的题号后的指定区域内13.中国的领水面积约为370000km 2,将数370000用科学记数法表示为:__________.【答案】3.7×105【解析】【详解】科学记数法是指:a ×10n ,且1≤a <10,n 为原数的整数位数减一,370000=3.7×510.故答案为:3.7×105.14.分解因式:2228mx my -=______.【答案】()()222m x y x y +-【解析】【分析】本题考查了因式分解,先提公因式2m ,然后根据平方差公式因式分解,即可求解.【详解】解:2228mx my -=()2224m x y -=()()222m x y x y +-故答案为:()()222m x y x y +-.15.如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠=______︒.【答案】66【解析】【分析】本题考查了平行线的性质,等边对等角,三角形外角的性质,根据等边对等角可得33E C ∠=∠=︒,根据三角形的外角的性质可得66DOE ∠=︒,根据平行线的性质,即可求解.【详解】解:∵OC OE =,33C ∠=︒,∴33E C ∠=∠=︒,∴66DOE E C ∠=∠+∠=︒,∵AB CD ∥,∴66A DOE =∠=︒∠,故答案为:66.16.如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为______m (结果保留根号).【答案】(50+##()50+【解析】【分析】本题考查解直角三角形—仰角俯角问题.注意准确构造直角三角形是解答此题的关键.根据题意得456050m BAD CAD AD ∠=︒∠=︒=,,,然后利用三角函数求解即可.【详解】解:依题意,456050m BAD CAD AD ∠=︒∠=︒=,,.在Rt △ABD 中,tan 4550150m BD AD =⋅︒=⨯=,在Rt ACD △中,tan 6050CD AD =⋅︒==,∴(m 50BC BD CD =+=+.故答案为:(50+.17.计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭_________.【答案】1x y-【解析】【分析】本题考查了分式的混合运算.先算括号内的减法,把除法变成乘法,再根据分式的乘法法则进行计算即可.【详解】解:22x y xy y x x x ⎛⎫--÷- ⎪⎝⎭222x y x xy y x x--+=÷2()x y x x x y -=-1x y=-,故答案为:1x y-.18.用一个圆心角为126︒,半径为10cm 的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为______cm .【答案】72【解析】【分析】本题考查了弧长公式,根据圆锥的底面圆的周长等于侧面的弧长,代入数据计算,即可求解.【详解】解:设这个圆锥的底面圆的半径为cm R ,由题意得,12610π2π180R ⨯⨯=解得:7cm 2R =故答案为:72.19.如图,已知点()7,0A -,(),10B x ,()17,C y -,在平行四边形ABCO 中,它的对角线OB 与反比例函数()0ky k x=≠的图象相交于点D ,且:1:4OD OB =,则k =______.【答案】15-【解析】【分析】本题考查了反比例函数与平行四边形综合,相似三角形的性质与判定,分别过点,B D ,作x 的垂线,垂足分别为,F E ,根据平行四边形的性质得出()2410B -,,证明ODE OBF △∽△得出6OE =,2.5DE =,进而可得()6,2.5D -,即可求解.【详解】如图所示,分别过点,B D ,作x 的垂线,垂足分别为,F E ,∵四边形AOCB 是平行四边形,点()7,0A -,(),10B x ,()17,C y -,∴7OA BC ==,∴24x =-,即()2410B -,,则24OF =,10BF =∵DE x ⊥轴,BF x ⊥轴,∴DE BF∥∴ODE OBF △∽△∴14OE OD DE OF OB BF ===∴6OE =, 2.5DE =∴()6,2.5D -∴6 2.515k =-⨯=-故答案为:15-.20.如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA 、点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠=______.【答案】80︒##80度【解析】【分析】本题考查了轴对称-最短路线问题,等腰三角形的性质,三角形内角和定理的应用;作关于OA ,OB 的对称点12P P ,.连接12OP OP ,.则当M ,N 是12PP 与OA ,OB 的交点时,PMN 的周长最短,根据对称的性质可以证得:150OPM OPM ∠=∠=︒,12OP OP OP ==,根据等腰三角形的性质即可求解.【详解】解:作P 关于OA ,OB 的对称点12P P ,.连接12OP OP ,.则当M ,N 是12PP 与OA ,OB 的交点时,PMN 的周长最短,连接12PO P O 、,1PP 关于OA 对称,∴11112POP MOP OP OP PM PM OPM OPM ∠=∠==∠=∠,,,同理,222P OP NOP OP OP ∠=∠=,,12122(210)0POP POP P OP MOP NOP AOB ∴∠=∠+∠=∠+∠=∠=︒,12OP OP OP ==,∴12POP △是等腰三角形.∴2140OP N OPM ∠=∠=︒,∴2180MPN MPO NPO OP N OPM ∠=∠+∠=∠+∠=︒故答案为:80︒.21.如图,已知(11,A ,(23,A ,()34,0A ,()46,0A ,(5A ,(6A ,()710,0A ,(811,A …,依此规律,则点2024A 的坐标为______.【答案】(2891,【解析】【分析】本题考查了点坐标的规律探究.解题的关键在于根据题意推导出一般性规律.根据题意可知7个点坐标的纵坐标为一个循环,7n A 的坐标为()10,0n ,据此可求得2024A 的坐标.【详解】解:∵(11,A ,(23,A ,()34,0A ,()46,0A ,(5A ,(6A ,()710,0A ,(811,A …,,∴可知7个点坐标的纵坐标为一个循环,7n A 的坐标为()10,0n ,(71101,n A n ++∵202472891÷=⋅⋅⋅,∴2023A 的坐标为()2890,0.∴2024A 的坐标为(2891,故答案为:(2891,.22.在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是______cm .【答案】255或655或25【解析】【分析】本题考查了矩形的性质,解直角三角形,设,AC BD 交于点O ,点1E 在线段AD 上,2E 在AD 的延长线上,过点AC 作AC ,BD 的垂线,垂足分别为123,,F F F ,进而分别求得垂线段的长度,即可求解.【详解】解:∵四边形ABCD 是矩形,4AB =,8BC =,∴8AD BC ==,4CD AB ==,∴22224845AC AD CD =+=+=∴45sin 545CD CAD AC ∠===,825cos 545CAD ∠==,41tan 82CAD ∠==如图所示,设,AC BD 交于点O ,点1E 在线段AD 上,2E 在AD 的延长线上,过点AC 作AC ,BD 的垂线,垂足分别为123,,F F F ∵AO DO=∴OAD ODA∠=∠当E 在线段AD 上时,∴1826AE AD DE =-=-=在11Rt AE F 中个,111565sin 655E F AE CAD =⋅∠==∵OAD ODA∠=∠在12Rt E F D 中,12112525sin 255E F DE E DF =∠=⨯=;当E 在射线AD 上时,在2Rt DCE 中,221tan 42DCE ∠==∴CAD DCE∠=∠∴90DCE DCA ∠+∠=︒∴2E C AC⊥∴2E C ===在23Rt DE F中,232232sin 55E F DE E DF DE =⨯∠=⨯=综上所述,点E 到对角线所在直线的距离为:255或5或或655或三、解答题(本题共6个小题,共54分)请在答题卡上把你的答案写在所对应的题号后的指定区域内23.已知:ABC.(1)尺规作图:画出ABC 的重心G .(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG ,BG .已知ABG 的面积等于25cm ,则ABC 的面积是______2cm .【答案】(1)见解析(2)15【解析】【分析】本题考查了三角形重心的性质,画垂线;(1)分别作,BC AC 的中线,交点即为所求;(2)根据三角形重心的性质可得23ABG ABD S S = ,根据三角形中线的性质可得2215cm ABC ABD S S == 【小问1详解】解:作法:如图所示①作BC 的垂直平分线交BC 于点D②作AC 的垂直平分线交AC 于点F③连接AD 、BF 相交于点G④标出点G ,点G 即为所求【小问2详解】解:∵G 是ABC 的重心,∴23AG AD =∴23ABG ABD S S = ∵ABG 的面积等于25cm ,∴27.5cm ABD S = 又∵D 是BC 的中点,∴2215cmABC ABD S S == 故答案为:15.24.为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动.为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图.请根据统计图中的信息,解答下列问题:(1)参加本次问卷调查的学生共有______人.(2)在扇形统计图中,A组所占的百分比是______,并补全条形统计图.(3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示.请用树状图法或列表法,求选中的2个社团恰好是B和C的概率.【答案】(1)60(2)30%,作图见解析(3)1 6【解析】【分析】本题考查了条形统计图与扇形统计图信息关联,列表法或画树状图法求概率;(1)根据D组的人数除以占比得出总人数;(2)根据总人数求得A组的人数,进而求得占比,以及补全统计图;(3)根据列表法或画树状图法求概率,即可求解.【小问1详解】解:参加本次问卷调查的学生共有1220%60÷=(人);【小问2详解】解:A组人数为6020101218---=人A组所占的百分比为:18100%30% 60⨯=补全统计图如图所示,【小问3详解】画树状图法如下图列表法如下图A B C DA(),B A(),C A(),D AB(),A B(),C B(),D BC(),A C(),B C(),D CD(),A D(),B D(),C D由树状图法或列表法可以看出共有12种结果出现的可能性相等,选中的2个社团恰好是B和C的情况有两种.∴P(选中的2个社团恰好是B和C)21 126 ==.25.为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买A、B两种电动车.若购买A种电动车25辆、B种电动车80辆,需投入资金30.5万元;若购买A种电动车60辆、B种电动车120辆,需投入资金48万元.已知这两种电动车的单价不变.(1)求A、B两种电动车的单价分别是多少元?(2)为适应共享电动车出行市场需求,该公司计划购买A、B两种电动车200辆,其中A种电动车的数量不多于B种电动车数量的一半.当购买A种电动车多少辆时,所需的总费用最少,最少费用是多少元?(3)该公司将购买的A、B两种电动车投放到出行市场后,发现消费者支付费用y元与骑行时间minx之间的对应关系如图.其中A种电动车支付费用对应的函数为1y;B种电动车支付费用是10min之内,起步价6元,对应的函数为2y.请根据函数图象信息解决下列问题.①小刘每天早上需要骑行A 种电动车或B 种电动车去公司上班.已知两种电动车的平均行驶速度均为300m /min (每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的距离为8km ,那么小刘选择______种电动车更省钱(填写A 或B ).②直接写出两种电动车支付费用相差4元时,x 的值______.【答案】(1)A 、B 两种电动车的单价分别为1000元、3500元(2)当购买A 种电动车66辆时所需的总费用最少,最少费用为535000元(3)①B②5或40【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用;(1)设A 、B 两种电动车的单价分别为x 元、y 元,根据题意列二元一次方程组,解方程组,即可求解;(2)设购买A 种电动车m 辆,则购买B 种电动车()200m -辆,根据题意得出m 的范围,进而根据一次函数的性质,即可求解;(3)①根据函数图象,即可求解;②分别求得12,y y 的函数解析式,根据214y y -=,解方程,即可求解.【小问1详解】解:设A 、B 两种电动车的单价分别为x 元、y 元由题意得,258030500060120480000x y x y +=⎧⎨+=⎩解得10003500x y =⎧⎨=⎩答:A 、B 两种电动车的单价分别为1000元、3500元【小问2详解】设购买A 种电动车m 辆,则购买8种电动车()200m -辆,由题意得:()12002m m ≤-解得:2003m ≤设所需购买总费用为w 元,则()100035002002500700000w m m m =+-=-+25000-< ,w 随着m 的增大而减小,m 取正整数66m ∴=时,w 最少∴700000250066535000w =-⨯=最少(元)答:当购买A 种电动车66辆时所需的总费用最少,最少费用为535000元【小问3详解】解:①∵两种电动车的平均行驶速度均为300m /min ,小刘家到公司的距离为8km ,∴所用时间为80002263003=分钟,根据函数图象可得当20x >时,21y y <更省钱,∴小刘选择B 种电动车更省钱,故答案为:B .②设11y k x =,将()20,8代入得,1820k =解得:25k =∴125y x =;当010x <≤时,26y =,当10x >时,设222y k x b =+,将()10,6,()20,8代入得,2222610820k b k b =+⎧⎨=+⎩解得:22154k b ⎧=⎪⎨⎪=⎩∴2145y x =+依题意,当010x <<时,214y y -=即2645x -=解得:5x =当10x >时,214y y -=即124455x x +-=解得:0x =(舍去)或40x =故答案为:5或40.26.如图1,O 是正方形ABCD 对角线上一点,以O 为圆心,OC 长为半径的O 与AD 相切于点E ,与AC 相交于点F .(1)求证:AB 与O 相切.(2)若正方形ABCD 1,求O 的半径.(3)如图2,在(2)的条件下,若点M 是半径OC 上的一个动点,过点M 作MN OC ⊥交 CE 于点N .当:1:4CM FM =时,求CN 的长.【答案】(1)证明见解析(2(3)2105【解析】【分析】(1)方法一:连接OE ,过点O 作OG AB ⊥于点G ,四边形ABCD 是正方形,AC 是正方形的对角线,得出OE OG =,进而可得OG 为O 的半径,又OG AB ⊥,即可得证;方法二:连接OE ,过点O 作OG AB ⊥于点G ,根据正方形的性质证明()AAS AOE AOG ≌得出OE OG =,同方法一即可得证;方法三:过点O 作OG AB ⊥于点G ,连接OE .得出四边形AEOG 为正方形,则OE OG =,同方法一即可得证;(2)根据O 与AD 相切于点E ,得出90AEO ∠=︒,由(1)可知AE OE =,设AE OE OC OF R ====,在Rt AEO △中,勾股定理得出AO =,在Rt ADC 中,勾股定理求得AC ,进而根据OA OC AC +=建立方程,解方程,即可求解.(3)方法一:连接ON ,设CM k =,在Rt OMN △中,由勾股定理得:2MN k =,在Rt CMN 中,由勾股定理得:CN =,结合题意522FC k R ====得出225k =,即可得出CN =;方法二:连接FN ,证明CNM CFN ∽△△得出2CN CM CF =⋅,进而可得12255CM CF ==,同理可得CN方法三:连接FN ,证明CNM CFN ∽△△得出2NC MC FC =⋅,设CM k =,则5FC k =,进而可得NC =,进而同方法一,即可求解.【小问1详解】方法一:证明:连接OE ,过点O 作OG AB ⊥于点G ,O 与AD 相切于点E ,∴OE AD ⊥.四边形ABCD 是正方形,AC 是正方形的对角线,∴45BAC DAC ∠=∠=︒,∴OE OG =,OE 为O 的半径,OG ∴为O 的半径,OG AB ⊥,AB ∴与O 相切.方法二:证明:连接OE ,过点O 作OG AB ⊥于点G ,O 与AD 相切于点E ,∴OE AD ⊥,∴90AEO AGO ∠=∠=︒,四边形ABCD 是正方形,∴45BAC DAC ∠=∠=︒,又 AO AO =,∴()AAS AOE AOG ≌,∴OE OG =,OE 为O 的半径,OG ∴为O 的半径,OG AB ⊥,AB ∴与O 相切.方法三:证明:过点O 作OG AB ⊥于点G ,连接OE .AD 与O 相切,OE 为O 半径,∴OE AE ⊥,∴90AEO ∠=︒,OG AB ⊥,∴90AGO ∠=︒,又 四边形ABCD 为正方形,∴90BAD ∠=︒,∴四边形AEOG 为矩形,又AC 为正方形的对角线,∴45EAO GAO AOE ∠=∠=∠=︒,∴OE AE =,∴矩形AEOG 为正方形,∴OE OG =.又OE 为O 的半径,OG ∴为O 的半径,又 OG AB ⊥,AB ∴与O 相切.【小问2详解】解:AC 为正方形ABCD 的对角线,∴45DAC ∠=︒,O 与AD 相切于点E ,∴90AEO ∠=︒,∴由(1)可知AE OE =,设AE OE OC OF R ====,在Rt AEO △中,222AE EO AO +=,∴222AO R R =+,0R >,∴AO =,又 正方形ABCD 1.在Rt ADC 中,∴)1AC ==+,OA OC AC +=,∴)1R +=,∴R =.∴O 的半径为.【小问3详解】方法一:解:连接ON ,设CM k =,:1:4CM FM =,∴5CF k =,∴ 2.5OC ON k ==,∴ 1.5OM OC CM k =-=.在Rt OMN △中,由勾股定理得:2MN k =,在Rt CMN 中,由勾股定理得:CN =,又 522FC k R ====,∴225k =.∴55CN ==.方法二:解:连接FN ,CF 为O 的直径,∴90CNF ∠=︒,∴90FNM CNM ∠+∠=︒,MN AC ⊥,∴90NFM FNM ∠+∠=︒,∴NFM CNM ∠=∠,NCM FCN ∠=∠,∴CNM CFN ∽△△,∴2CN CM CF =⋅,:1:4CM FM =,5CF CM =,∴CN =, 22CF R ===∴12255CM CF ==,方法三:解:连接FN ,CF 为O 的直径,∴90CNF ∠=︒,∴90FNM CNM ∠+∠=︒,MN AC ⊥,∴90NFM FNM ∠+∠=︒,∴NFM CNM ∠=∠,NCM FCN ∠=∠,∴CNM CFN ∽△△,∴NCFCMC NC =,∴2NC MC FC =⋅,:1:4CM FM =,∴:1:5CM FC =,设CM k =,则5FC k =,∴25NC k k =⨯,∴NC =.又 522FC k R ====,∴225k =,【点睛】本题考查了切线的性质与判定,正方形的性质,全等三角形的性质与判定,勾股定理,垂径定理,相似三角形的性质与判定,正确的添加辅助线是解题的关键.27.综合与实践问题情境在一次综合与实践课上,老师让同学们以两个全等的等腰直角三角形纸片为操作对象.纸片ABC 和DEF 满足90ACB EDF ∠=∠=︒,2cm AC BC DF DE ====.下面是创新小组的探究过程.操作发现(1)如图1,取AB 的中点O ,将两张纸片放置在同一平面内,使点O 与点F 重合.当旋转DEF 纸片交AC 边于点H 、交BC 边于点G 时,设()12AH x x =<<,BG y =,请你探究出y 与x 的函数关系式,并写出解答过程.问题解决(2)如图2,在(1)的条件下连接GH ,发现CGH 的周长是一个定值.请你写出这个定值,并说明理由.拓展延伸(3)如图3,当点F 在AB 边上运动(不包括端点A 、B ),且始终保持60AFE ∠=︒.请你直接写出DEF 纸片的斜边EF 与ABC 纸片的直角边所夹锐角的正切值______(结果保留根号).【答案】(1)()212y x x=<<,见解析;(2)2,见解析;(3)2+或2【解析】【分析】(1)根据题意证明AFH BGF ∽△△,得出关系式AH BG AF BF ⋅=⋅,进而求得AB AF BC ===,代入比例式,即可求解;(2)方法一:勾股定理求得GH ,将将(1)中2xy =代入得2GH x y =+-,进而根据三角形的周长公式,即可求解;方法二:证明AOH BGO ∽△△,HAO HOG ∽△△,过O 作OM AH ⊥交AH 于点M ,作OP HG ⊥交HG 于点P ,作ON GB ⊥交GB 于点N .证明OMH OPH △≌△,OPG ONG △≌△,得出HG MH GN =+,得出112CM CN BC ===,进而根据三角形的周长公式可得CHG △的周长2212CM CN CM =+==⨯=.方法三:过O 作OM AH ⊥交AH 于点M ,作ON GB ⊥交GB 于点N ,在NB 上截取一点Q ,使NQ MH =,连接OC .得出OMH ONQ △≌△,OHG OQG △≌△,则HG GQ GN MH ==+,同方法二求得112CM CN BC ===,进而即可求解;(3)分两种情况讨论,EF 于,AC BC 的夹角;①过点F 作FN AC ⊥于点N ,作FH 的垂直平分线交FN于点M ,连接MH ,在Rt MNH △中,设NH k =,由勾股定理得,(2FN MN MF k =+=+,进而根据正确的定义,即可求解;②过点F 作FN BC ⊥于点N ,作FG 的垂直平分线交BG 于点M ,连接FM ,在Rt FNM △中,设FN k =,同①即可求解..【详解】操作发现解:(1)∵90ACB EDF ∠=∠=︒,且2cm AC BC DF DE ====.∴45A B DFE ∠=∠=∠=︒,∴135AFH BFG BFG FGB ∠+∠=∠+∠=︒,∴AFH FGB ∠=∠,∴AFH BGF ∽△△,∴AF AH BG BF=,∴AH BG AF BF ⋅=⋅.在Rt ACB △中,2AC BC ==,∴AB ===∵O 是AB 的中点,点O 与点F 重合,∴AF BF ==,∴xy =,∴()212y x x =<<.问题解决(2)方法一:解:CGH 的周长定值为2.理由如下:∵2AC BC ==,AH x =,BG y =,∴2CH x =-,2CG y =-,在Rt HCG 中,∴GH ===.将(1)中2xy =代入得:∴2GH x y ===+-.∵()22222244x y x y xy x y +=++=++≥,又∵12x <<,∴2x y +>,∴2GH x y =+-.∵CHG △的周长CH CG GH =++,∴CHG △的周长2222x y x y =-+-++-=.方法二:解:CGH 的周长定值为2.理由如下:∵ABC 和DEF 是等腰直角三角形,∴45A B E EOD ∠=∠=∠=∠=︒,∵180AOH BOG EOD ∠+∠+∠=︒,∴135AOH BOG ∠+∠=︒,在AOH △中,45A ∠=︒,∴135AOH AHO ∠+∠=︒,∴AHO BOG ∠=∠,∴AOH BGO ∽△△,∴AO OHAHBG OG OB ==,AOH OGB ∠=∠,AHO BOG ∠=∠,∵O 为AB 的中点,∴AO BO =,∴OH AHOG AO =,又∵45A EOD ∠=∠=︒,∴HAO HOG ∽△△,AHO OHG ∠=∠,OGB OGH ∠=∠,∴过O 作OM AH ⊥交AH 于点M ,作OP HG ⊥交HG 于点P ,作ON GB ⊥交GB 于点N .∴OM OP ON ==.又∵OH OH =,OG OG =,∴OMH OPH △≌△,OPG ONG △≌△,∴HM PH =,PG NG =,∴HG MH GN =+.∵CHG △的周长CH CG GH CH CG MH GN CM CN =++=+++=+.又∵AO OB =,OM ON =,45A B ∠=∠=︒,∴AOM BON ≌,∴AM BN =,∵90C ∠=︒,90AMO ∠=︒,∴OM BC ∥,∵O 是AB 的中点,∴点M 是AC 的中点,同理点N 是BC 的中点.∴112CM CN BC ===,∴CHG △的周长2212CM CN CM =+==⨯=.方法三:解:CGH 的周长定值为2.理由如下:过O 作OM AH ⊥交AH 于点M ,作ON GB ⊥交GB 于点N ,在NB 上截取一点Q ,使NQ MH =,连接OC .∵ABC 是等腰直角三角形,O 为AB 的中点,∴OC 平分ACB ∠,∴OM ON =,∴OMH ONQ △≌△,∴OH OQ =,MOH NOQ ∠=∠.∵45HOG Ð=°,90ACB ∠=︒,∴90MON ∠=︒,45MOH GON ∠+∠=︒,∴45GOQ ∠=︒,∴HOG GOQ ∠=∠,∵OG OG =,∴OHG OQG △≌△,∴HG GQ GN MH ==+,∴CHG △的周长CH CG GH CH CG MH GN CM CN =++=+++=+.又∵AO OB =,OM ON =,45A B ∠=∠=︒,∴AOM BON ≌,∴AM BN =.∵90C ∠=︒,90AMO ∠=︒,∴OM BC ∥.∵O 是AB 的中点,∴点M 是AC 的中点,同理点N 是BC 的中点.。

黑龙江省绥化市2021-2023三年中考数学真题分类汇编-03解答题知识点分类(含答案)

黑龙江省绥化市2021-2023三年中考数学真题分类汇编-03解答题知识点分类(含答案)

黑龙江省绥化市2021-2023三年中考数学真题分类汇编-03解答题知识点分类一.一次函数的应用(共2小题)1.(2023•绥化)某校组织师生参加夏令营活动,现准备租用A、B两型客车(每种型号的客车至少租用一辆).A型车每辆租金500元,B型车每辆租金600元.若5辆A型和2辆B型车坐满后共载客310人;3辆A型和4辆B型车坐满后共载客340人.(1)每辆A型车、B型车坐满后各载客多少人?(2)若该校计划租用A型和B型两种客车共10辆,总租金不高于5500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A、B两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5小时后,乙车才从学校出发,却比甲车早0.5小时到达目的地.如图是两车离开学校的路程s(千米)与甲车行驶的时间t(小时)之间的函数图象.根据图象信息,求甲乙两车第一次相遇后,t为何值时两车相距25千米.2.(2021•绥化)小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息.已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米/秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离S(米)与小亮出发时间t(秒)之间的函数图象,如图所示.根据所给信息解决以下问题.(1)m= ,n= ;(2)求CD和EF所在直线的解析式;(3)直接写出t为何值时,两人相距30米.二.反比例函数综合题(共1小题)3.(2022•绥化)在平面直角坐标系中,已知一次函数y1=k1x+b与坐标轴分别交于A(5,0),B(0,)两点,且与反比例函数y2=的图象在第一象限内交于P,K两点,连接OP,△OAP的面积为.(1)求一次函数与反比例函数的解析式.(2)当y2>y1时,求x的取值范围.(3)若C为线段OA上的一个动点,当PC+KC最小时,求△PKC的面积.三.二次函数综合题(共3小题)4.(2023•绥化)如图,抛物线y1=ax2+bx+c的图象经过A(﹣6,0),B(﹣2,0),C(0,6)三点,且一次函数y=kx+6的图象经过点B.(1)求抛物线和一次函数的解析式;(2)点E,F为平面内两点,若以E、F、B、C为顶点的四边形是正方形,且点E在点F的左侧.这样的E,F两点是否存在?如果存在,请直接写出所有满足条件的点E的坐标;如果不存在,请说明理由;(3)将抛物线y1=ax2+bx+c的图象向右平移8个单位长度得到抛物线y2,此抛物线的图象与x轴交于M,N两点(M点在N点左侧).点P是抛物线y2上的一个动点且在直线NC 下方.已知点P的横坐标为m.过点P作PD⊥NC于点D,求m为何值时,CD+PD 有最大值,最大值是多少?5.(2021•绥化)如图,已知抛物线y=ax2+bx+5(a≠0)与x轴交于点A(﹣5,0),点B (1,0)(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点,连接BD.直线y=经过点A,且与y轴交于点E.(1)求抛物线的解析式;(2)点N是抛物线上的一点,当△BDN是以DN为腰的等腰三角形时,求点N的坐标;(3)点F为线段AE上的一点,点G为线段OA上的一点,连接FG,并延长FG与线段BD交于点H(点H在第一象限),当∠EFG=3∠BAE且HG=2FG时,求出点F的坐标.6.(2022•绥化)如图,抛物线y=ax2+bx+c交y轴于点A(0,﹣4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒个单位长度的速度沿着射线AD 运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.(1)求抛物线的解析式;(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.四.四边形综合题(共2小题)7.(2023•绥化)已知:四边形ABCD为矩形,AB=4,AD=3,点F是BC延长线上的一个动点(点F不与点C重合).连接AF交CD于点G.(1)如图一,当点G为CD的中点时,求证:△ADG≌△FCG;(2)如图二,过点C作CE⊥AF,垂足为E.连接BE,设BF=x,CE=y.求y关于x 的函数关系式;(3)如图三,在(2)的条件下,过点B作BM⊥BE,交FA的延长线于点M.当CF=1时,求线段BM的长.8.(2021•绥化)如图所示,四边形ABCD为正方形,在△ECH中,∠ECH=90°,CE=CH,HE的延长线与CD的延长线交于点F,点D、B、H在同一条直线上.(1)求证:△CDE≌△CBH;(2)当时,求的值;(3)当HB=3,HG=4时,求sin∠CFE的值.五.圆的综合题(共3小题)9.(2023•绥化)如图,MN为⊙O的直径,且MN=15,MC与ND为圆内的一组平行弦,弦AB交MC于点H.点A在上,点B在上,∠OND+∠AHM=90°.(1)求证:MH•CH=AH•BH;(2)求证:=;(3)在⊙O中,沿弦ND所在的直线作劣弧的轴对称图形,使其交直径MN于点G.若sin∠CMN=,求NG的长.10.(2021•绥化)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,DE ⊥AC,垂足为E.(1)求证:DE是⊙O的切线;(2)若弦MN垂直于AB,垂足为G,,MN=,求⊙O的半径;(3)在(2)的条件下,当∠BAC=36°时,求线段CE的长.11.(2022•绥化)如图所示,在⊙O的内接△AMN中,∠MAN=90°,AM=2AN,作AB⊥MN于点P,交⊙O于另一点B,C是上的一个动点(不与A,M重合),射线MC交线段BA的延长线于点D,分别连接AC和BC,BC交MN于点E.(1)求证:△CMA∽△CBD.(2)若MN=10,=,求BC的长.(3)在点C运动过程中,当tan∠MDB=时,求的值.六.作图—复杂作图(共3小题)12.(2023•绥化)已知:点P是⊙O外一点.(1)尺规作图:如图,过点P作出⊙O的两条切线PE,PF,切点分别为点E、点F.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,若点D在⊙O上(点D不与E,F两点重合),且∠EPF=30°,求∠EDF的度数.13.(2022•绥化)已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.14.(2021•绥化)(1)如图,已知△ABC,P为边AB上一点,请用尺规作图的方法在边AC 上求作一点E,使AE+EP=AC.(保留作图痕迹,不写作法)(2)在图中,如果AC=6cm,AP=3cm,则△APE的周长是 cm.七.作图-位似变换(共1小题)15.(2021•绥化)如图所示,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做格点,O为平面直角坐标系的原点,矩形OABC的4个顶点均在格点上,连接对角线OB.(1)在平面直角坐标系内,以原点O为位似中心,把△OAB缩小,作出它的位似图形,并且使所作的位似图形与△OAB的相似比等于;(2)将△OAB以O为旋转中心,逆时针旋转90°,得到△OA1B1,作出△OA1B1,并求出线段OB旋转过程中所形成扇形的周长.八.相似形综合题(共1小题)16.(2022•绥化)我们可以通过面积运算的方法,得到等腰三角形底边上的任意一点到两腰的距离之和与一腰上的高之间的数量关系,并利用这个关系解决相关问题.(1)如图一,在等腰△ABC中,AB=AC,BC边上有一点D,过点D作DE⊥AB于E,DF⊥AC于F,过点C作CG⊥AB于G.利用面积证明:DE+DF=CG.(2)如图二,将矩形ABCD沿着EF折叠,使点A与点C重合,点B落在B'处,点G 为折痕EF上一点,过点G作GM⊥FC于M,GN⊥BC于N.若BC=8,BE=3,求GM+GN 的长.(3)如图三,在四边形ABCD中,E为线段BC上的一点,EA⊥AB,ED⊥CD,连接BD,且=,BC=,CD=3,BD=6,求ED+EA的长.九.解直角三角形的应用(共3小题)17.(2023•绥化)如图,直线MN和EF为河的两岸,且MN∥EF,为了测量河两岸之间的距离,某同学在河岸FE的B点测得∠CBE=30°,从B点沿河岸FE的方向走40米到达D点,测得∠CDE=45°.(1)求河两岸之间的距离是多少米?(结果保留根号)(2)若从D点继续沿DE的方向走(12+12)米到达P点.求tan∠CPE的值.18.(2022•绥化)如图所示,为了测量百货大楼CD顶部广告牌ED的高度,在距离百货大楼30m的A处用仪器测得∠DAC=30°;向百货大楼的方向走10m,到达B处时,测得∠EBC=48°,仪器高度忽略不计,求广告牌ED的高度.(结果保留小数点后一位)(参考数据:≈1.732,sin48°≈0.743,cos48°≈0.669,tan48°≈1.111)19.(2021•绥化)一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为△ABC,点B、C、D在同一条直线上,测得∠ACB=90°,∠ABC=60°,AB=32cm,∠BDE=75°,其中一段支撑杆CD=84cm,另一段支撑杆DE=70cm.求支撑杆上的点E到水平地面的距离EF是多少?(用四舍五入法对结果取整数,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.732)黑龙江省绥化市2021-2023三年中考数学真题分类汇编-03解答题知识点分类参考答案与试题解析一.一次函数的应用(共2小题)1.(2023•绥化)某校组织师生参加夏令营活动,现准备租用A、B两型客车(每种型号的客车至少租用一辆).A型车每辆租金500元,B型车每辆租金600元.若5辆A型和2辆B型车坐满后共载客310人;3辆A型和4辆B型车坐满后共载客340人.(1)每辆A型车、B型车坐满后各载客多少人?(2)若该校计划租用A型和B型两种客车共10辆,总租金不高于5500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A、B两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5小时后,乙车才从学校出发,却比甲车早0.5小时到达目的地.如图是两车离开学校的路程s(千米)与甲车行驶的时间t(小时)之间的函数图象.根据图象信息,求甲乙两车第一次相遇后,t为何值时两车相距25千米.【答案】(1)每辆A型车坐满后载客40人,每辆B型车坐满后载客55人;(2)共有4种方案,租用A型车8辆,租用B型车2辆最省钱;(3)在甲乙两车第一次相遇后,当t=3小时或小时时,两车相距25千米.【解答】解:(1)设每辆A型车坐满后载客x人,每辆B型车坐满后载客y人,根据题意得:,解得:,∴每辆A型车坐满后载客40人,每辆B型车坐满后载客55人;(2)设租用A型车m辆,则租用B型车(10﹣m)辆,由题意得:,解得:5≤m≤8,∵m是正整数,∴m可取5,6,7,8∴共有4种方案,设总租金为w元,根据题意得w=500m+600(10﹣m)=﹣100m+6000,∵﹣100<0,∴w随m的增大而减小,∴m=8时,w最小为﹣100×8+6000=5200(元);∴租用A型车8辆,租用B型车2辆最省钱;(3)设s甲=kt,把(4,300)代入得:300=4k,解得k=75,∴s甲=75t,设s乙=kt+b,把(0.5,0),(3.5,300)代入得:,解得,∴s乙=100t﹣50,∵两车第一次相遇后,相距25千米,∴100t﹣50﹣75t=25或300﹣75t=25,解得t=3或t=,∴在甲乙两车第一次相遇后,当t=3小时或小时时,两车相距25千米.2.(2021•绥化)小刚和小亮两人沿着直线跑道都从甲地出发,沿着同一方向到达乙地,甲乙两地之间的距离是720米,先到乙地的人原地休息.已知小刚先从甲地出发4秒后,小亮从甲地出发,两人均保持匀速前行第一次相遇后,保持原速跑一段时间,小刚突然加速,速度比原来增加了2米/秒,并保持这一速度跑到乙地(小刚加速过程忽略不计).小刚与小亮两人的距离S(米)与小亮出发时间t(秒)之间的函数图象,如图所示.根据所给信息解决以下问题.(1)m= 16 ,n= ;(2)求CD和EF所在直线的解析式;(3)直接写出t为何值时,两人相距30米.【答案】(1)16;;(2)S CD=﹣t+80(48≤t≤80),S EF=﹣5t+720();(3)t为46,50,110,138时,两人相距30米【解答】解:(1)∵小刚原来的速度=16÷4=4米/秒,小亮的速度=720÷144=5米/秒,B点小亮追上小刚,相遇,∴4m+16=5m,解得:m=16,∵E点是小刚到达乙地,∴n=[]×(6﹣5)=,故答案为:16;,(2)设C点横坐标为t,由题意可得:(t﹣16)×(5﹣4)=(80﹣t)×(6﹣5),解得:t=48,∵小刚原来的速度=16÷4=4米/秒,小亮的速度=720÷144=5米/秒,∴纵坐标为(5﹣4)×(48﹣16)=32,∴C(48,32),设S CD=k1t+b1,将C(48,32),D(80,0)代入,,解得:,∴S CD=﹣t+80(48≤t≤80),∴E点横坐标为,E点纵坐标为,∴E(,),设S EF=k2t+b2,将E,F两点坐标代入可得,,解得:,∴S EF=﹣5t+720(),(3)∵B(16,0),C(48,32),D(80,0),E(,),F(144,0),设S BC=k3t+b3,将B,C两点坐标代入可得,,解得:,∴S BC=t﹣16(16<t≤48),设S DE=k4t+b4,将D,E两点坐标代入可得,,解得:,∴S DE=t﹣80(80<t≤),当S=30时,S BC=t﹣16=30,解得t=46;S CD=﹣t+80=30,解得t=50;S DE=t﹣80=30,解得t=110;S EF=﹣5t+720=30,解得t=138;综上,t为46,50,110,138时,两人相距30米.二.反比例函数综合题(共1小题)3.(2022•绥化)在平面直角坐标系中,已知一次函数y1=k1x+b与坐标轴分别交于A(5,0),B(0,)两点,且与反比例函数y2=的图象在第一象限内交于P,K两点,连接OP,△OAP的面积为.(1)求一次函数与反比例函数的解析式.(2)当y2>y1时,求x的取值范围.(3)若C为线段OA上的一个动点,当PC+KC最小时,求△PKC的面积.【答案】(1)一次函数的解析式为:y1=﹣x+.反比例函数的解析式为:y2=;(2)0<x<1或x>4;(3)当PC+KC最小时,△PKC的面积为.【解答】解:(1)∵一次函数y1=k1x+b与坐标轴分别交于A(5,0),B(0,)两点,∴,解得.∴一次函数的解析式为:y1=﹣x+.∵△OAP的面积为,∴•OA•y P=,∴y P=,∵点P在一次函数图象上,∴令﹣x+=.解得x=4,∴P(4,).∵点P在反比例函数y2=的图象上,∴k2=4×=2.∴一次函数的解析式为:y1=﹣x+.反比例函数的解析式为:y2=.(2)令﹣x+=,解得x=1或x=4,∴K(1,2),由图象可知,当y2>y1时,x的取值范围为:0<x<1或x>4.(3)如图,作点P关于x轴的对称点P′,连接KP′,线段KP′与x轴的交点即为点C,∵P(4,).∴P′(4,﹣).∴PP′=1,∴直线KP′的解析式为:y=﹣x+.令y=0,解得x=.∴C(,0).∴S△PKC=•(x C﹣x K)•PP′=×(﹣1)×1=.∴当PC+KC最小时,△PKC的面积为.三.二次函数综合题(共3小题)4.(2023•绥化)如图,抛物线y1=ax2+bx+c的图象经过A(﹣6,0),B(﹣2,0),C(0,6)三点,且一次函数y=kx+6的图象经过点B.(1)求抛物线和一次函数的解析式;(2)点E,F为平面内两点,若以E、F、B、C为顶点的四边形是正方形,且点E在点F的左侧.这样的E,F两点是否存在?如果存在,请直接写出所有满足条件的点E的坐标;如果不存在,请说明理由;(3)将抛物线y1=ax2+bx+c的图象向右平移8个单位长度得到抛物线y2,此抛物线的图象与x轴交于M,N两点(M点在N点左侧).点P是抛物线y2上的一个动点且在直线NC下方.已知点P的横坐标为m.过点P作PD⊥NC于点D,求m为何值时,CD+PD 有最大值,最大值是多少?【答案】(1)抛物线的解析式为,一次函数的解析式为y=3x+6.(2)E1(﹣8,2),E2(4,﹣2),E3(﹣4,4).(3)当时,CD+的最大值为.【解答】解:(1)∵抛物线y1=ax2+bx+c的图象经过A(﹣6,0),B(﹣2,0),C(0,6)三点,∴,解得,∴,把B(﹣2,0)代入一次函数y=kx+6中,得k=3,∴y=3x+6.答:抛物线的解析式为,一次函数的解析式为y=3x+6.(2)①当BC为正方形的边长时,分别过B点,C点作E1E2⊥BC,F1F2⊥BC,使E1B=E2B=BC,CF1=CF2=BC,连接E1F1,E2F2,过点E1作E1H1⊥x轴于H1,∴△BE1H1≌△CBO(AAS),∴E1H1=OB=2,H1B=OC=6,∴E1(﹣8,2),同理可得,E2(4,﹣2).②以BC为正方形的对角线时,过BC的中点G作E3F3⊥BC,使E3F3与BC互相平分且相等,则四边形E3BF3C为正方形,过点E3作E3N⊥y轴于点N,过点B作BM⊥E3N于点M,∴△CE3N≌△E3BM(AAS),∴CN=E3M,BM=E3N,∵,∴,∴,在Rt△E3NC中,,∴,解得CN=2或4,当CN=4时,E3(2,2),此时点E在点F右侧,舍去;当CN=2时,E3(﹣4,4).综上,E1(﹣8,2),E2(4,﹣2),E3(﹣4,4).(3)∵抛物线向右平移8个单位长度得到抛物线y2,∴M(2,0),N(6,0),∵y2过M,N,C三点,∴,在直线CN下方的抛物线y2上任取一点P,作PH⊥x轴交NC于点H,过H作HG⊥y轴于G,∵N(6,0),C(0,6),∴ON=OC,∴△CON时等腰直角三角形,∵∠CHG=45°,∠GHP=90°,∴∠PHD=45°,∵PD⊥CN,∴△HPD是等腰直角三角形,∴,∵点P在抛物线y2上,且横坐标为m,∴CG=GH=m,∴,∵y CN=﹣x+6,∴H(m,﹣m+6),∴,∴,∴==,答:当时,CD+的最大值为.5.(2021•绥化)如图,已知抛物线y=ax2+bx+5(a≠0)与x轴交于点A(﹣5,0),点B (1,0)(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点,连接BD.直线y=经过点A,且与y轴交于点E.(1)求抛物线的解析式;(2)点N是抛物线上的一点,当△BDN是以DN为腰的等腰三角形时,求点N的坐标;(3)点F为线段AE上的一点,点G为线段OA上的一点,连接FG,并延长FG与线段BD交于点H(点H在第一象限),当∠EFG=3∠BAE且HG=2FG时,求出点F的坐标.【答案】(1)y=﹣x2﹣4x+5;(2)N1(﹣5,0),N2(,),N3(,);(3)F(﹣,﹣).【解答】解:(1)将A(﹣5,0),B(1,0)代入抛物线y=ax2+bx+5(a≠0)得:,解得:,∴抛物线的解析式为:y=﹣x2﹣4x+5;(2)∵D(﹣2,9),B(1,0),点N是抛物线上的一点且△BDN是以DN为腰的等腰三角形,∴此题有两种情形:①当DN=DB时,根据抛物线的对称性得:A与N重合,∴N1(﹣5,0),②方法一:当DN=BN时(如图1),N在BD的垂直平分线上,BD的垂直平分线交BD于I,交x轴于点Q,BD与y轴交点为K,∵∠KBO+∠OKB=90°,∠KBO+∠IQB=90°,∴∠OKB=∠IQB,在Rt△OKB中,sin∠OKB=,∴sin∠IQB==,∵I是BD的中点,BD=3,∴BI=,∴BQ=15,∴Q(﹣14,0),I(,)设y QI=kx+b,代入得:,解得:,∴y QI=,联立得:,解得:x=,∴y QI=,N2(,),N3(,),方法二:如图2,过点N作DS⊥NT交NT于点S,设N(a,﹣a2﹣4a+5),D(﹣2,9),∵DN=BN,∴DS2+SN2=NT2+TB2,∴(﹣2﹣a)2+(9+a2+4a﹣5)2=(﹣a2﹣4a+5)2+(1﹣a)2,(2+a)2﹣(1﹣a)2=(a2+4a﹣5)2﹣(9+a2+4a﹣5)2,(2+a+1﹣a)(2+a﹣1+a)=(a2+4a﹣5+a2+4a+4)(a2+4a﹣5﹣a2﹣4a﹣4),解得:a=,把a=代入﹣a2﹣4a+5=﹣()2﹣4()+5=,∴N2(,),N3(,),综上所述,N1(﹣5,0),N2(,),N3(,);(3)如图1,在AE上取一点F,作AF的垂直平分线交x轴于点M,连接MF,则AM=MF,在AO上M点的右侧作FG=MF,∴∠FGM=∠FMG,∴∠EFG=∠BAE+∠FGM=∠BAE+∠FMG=∠BAE+2∠BAE=3∠BAE,移动F点,当HG=2FG时,点F为所求.过点F作FP垂直于x轴于点P,过点H作HR垂直于x轴于点R,∴△FPG∽△HRG,∴===,GR=2PG,HR=2PF,设F(m,﹣﹣),则OP=﹣m,PF=m+,HR=2PF=m+5,∵AP=m+5,∴AP=2PF,∵AM=AP﹣MP=2PF﹣MP,MF=AM,∴在Rt△PMF中,PM2+PF2=MF2,PM2+PF2=(2PF﹣MP)2,∴PM=PF=×=m+,∴GP=m+,∴GR=2PG=m+,∴PR=3PG=3PM,∴AR=AP+PR=AP+3PM=2PF+3×PF==,∴OR=,∴H(,m+5),∵B(1,0),D(﹣2,9),∴BD解析式为:y BD=﹣3x+3,把H代入上式并解得:m=﹣,再把m=﹣代入y=﹣x﹣得:y=﹣,∴F(﹣,﹣).6.(2022•绥化)如图,抛物线y=ax2+bx+c交y轴于点A(0,﹣4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒个单位长度的速度沿着射线AD 运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.(1)求抛物线的解析式;(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为:y=x2﹣x﹣4;(2)G(,﹣);(3)点G的坐标为(,﹣)或(,﹣)或(3,﹣3)或(,﹣).【解答】解:(1)∵抛物线的对称轴为直线x=2,C(6,0),∴抛物线与x轴的另一个交点为(﹣2,0),∴抛物线的解析式为:y=a(x+2)(x﹣6),将点A(0,﹣4)代入解析式可得,﹣12a=﹣4,∴a=.∴抛物线的解析式为:y=(x+2)(x﹣6)=x2﹣x﹣4.(2)∵AB⊥y轴,A(0,﹣4),∴点B的坐标为(4,﹣4).∵D(4,0),∴AB=BD=4,且∠ABD=90°,∴△ABD是等腰直角三角形,∠BAD=45°.∵EF⊥AB,∴∠AFE=90°,∴△AEF是等腰直角三角形.∵AE=m,∴AF=EF=m,∴E(m,﹣4+m),F(m,﹣4).∵四边形EGFH是正方形,∴△EHF是等腰直角三角形,∴∠HEF=∠HFE=45°,∴FH是∠AFE的角平分线,点H是AE的中点.∴H(m,﹣4+m),G(m,﹣4+m).∵B(4,﹣4),C(6,0),∴直线BC的解析式为:y=2x﹣12.当点G随着E点运动到达BC上时,有2×m﹣12=﹣4+m.解得m=.∴G(,﹣).(3)存在,理由如下:∵B(4,﹣4),C(6,0),G(m,﹣4+m).∴BG2=(4﹣m)2+(m)2,BC2=(4﹣6)2+(﹣4)2=20,CG2=(6﹣m)2+(4﹣m)2.若以B,G,C和平面内的另一点为顶点的四边形是矩形,则△BGC是直角三角形,∴分以下三种情况:①当点B为直角顶点时,BG2+BC2=CG2,∴(4﹣m)2+(m)2+20=(6﹣m)2+(4﹣m)2,解得m=,∴G(,﹣);②当点C为直角顶点时,BC2+CG2=BG2,∴20+(6﹣m)2+(4﹣m)2=(4﹣m)2+(m)2,解得m=,∴G(,﹣);③当点G为直角顶点时,BG2+CG2=BC2,∴(4﹣m)2+(m)2+(6﹣m)2+(4﹣m)2=20,解得m=或2,∴G(3,﹣3)或(,﹣);综上,存在以B,G,C和平面内的另一点为顶点的四边形是矩形,点G的坐标为(,﹣)或(,﹣)或(3,﹣3)或(,﹣).四.四边形综合题(共2小题)7.(2023•绥化)已知:四边形ABCD为矩形,AB=4,AD=3,点F是BC延长线上的一个动点(点F不与点C重合).连接AF交CD于点G.(1)如图一,当点G为CD的中点时,求证:△ADG≌△FCG;(2)如图二,过点C作CE⊥AF,垂足为E.连接BE,设BF=x,CE=y.求y关于x 的函数关系式;(3)如图三,在(2)的条件下,过点B作BM⊥BE,交FA的延长线于点M.当CF=1时,求线段BM的长.【答案】(1)证明过程见解答;(2)y=(或者y=);(3)BM=.【解答】(1)证明:∵四边形ABCD为矩形,.∴AD∥BF,∴∠D=∠DCF,∵G为CD中点,∴DG=CG,∵∠AGD=∠FGC,∴△ADG≌△FCG(ASA);(2)解:∵四边形ABCD为矩形,∴∠ABC=90°,∵CE⊥AF,∴∠CEF=90°=∠ABC,∵∠F=∠F,∴△CEF∽△ABF,∴=,∵AB=4,BF=x,在Rt△ABF中,AF==,∵CE=y,∴=,∴y=(或者y=);(3)解:过点E作EN⊥BF于点N,∵四边形ABCD为矩形,AD=3,∴AD=BC=3,∵AB=4,CF=1,∴AB=BF,∴△ABF为等腰直角三角形,∴∠CFE=∠BAF=45°,∵CE⊥AF,∴△CEF为等腰直角三角形,∴∠ECF=45°,∵EN⊥CF,∴EN平分CF,∴CN=NF=NE=,在Rt△BNE中,根据勾股定理得:BE2=BN2+EN2,∴BE==,∵∠ECF=∠BAF=45°,∴∠BAM=∠BCE=135°,∵BM⊥BE,∴∠MBA+∠ABE=90°,∠ABE+∠EBC=90°,∴∠MBA=∠EBC,∴△BAM∽△BCE,∴==,∴=,∴BM=.8.(2021•绥化)如图所示,四边形ABCD为正方形,在△ECH中,∠ECH=90°,CE=CH,HE的延长线与CD的延长线交于点F,点D、B、H在同一条直线上.(1)求证:△CDE≌△CBH;(2)当时,求的值;(3)当HB=3,HG=4时,求sin∠CFE的值.【答案】(1)证明见解析;(2);(3).【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠DCB=90°,∵∠ECH=90°,∴∠DCB﹣∠BCE=∠ECH﹣∠BCE,即∠DCE=∠BCH,在△CDE和△CBH中,,∴△CDE≌△CBH(SAS);(2)解:由(1)得:△CDE≌△CBH,∴∠CDE=∠CBH,DE=BH,∵四边形ABCD是正方形,∴∠CDB=∠DBC=45°,∴∠CDE=∠CBH=180°﹣45°=135°,∴∠EDH=135°﹣45°=90°,∵BH:DH=1:5,∴设BH=a,则DH=5a,∴DE=BH=a,在Rt△HDE中,EH===a,过C作CM⊥EH于M,过D作DN⊥FH于N,如图1所示:则DN∥CM,∵△DEH的面积=DN×EH=DE×DH,∴DN×a=×a×5a,解得:DN=a,∵CE=CH,∠ECH=90°,∴CM=EH=a,∵DN∥CM,∴△FDN∽△FCM,∴===;(3)解:过点E作PE∥DH交CF于P,过点E作EQ⊥CF于Q,如图2所示:∵PE∥DH,∴∠BHG=∠PEF,∠FPE=∠FDH=135°,∵四边形ABCD是正方形,∴AB∥CD,∴∠HBG=∠FDH=135°,∴∠HBG=∠EPF=135°,∵∠CDE=135°,∴∠EDQ=45°,∠EPQ=45°,∴△PED为等腰直角三角形,∴DE=PE,由(1)得:△CDE≌△CBH,∴DE=BH,∴DE=BH=PE=3,在△BHG和△PEF中,,∴△BHG≌△PEF(ASA),∴HG=EF=4,∵△PED是等腰直角三角形,∴PD=DE=3,∵EQ⊥PD,∴QE=PD=,在Rt△FEQ中,sin∠CFE===.五.圆的综合题(共3小题)9.(2023•绥化)如图,MN为⊙O的直径,且MN=15,MC与ND为圆内的一组平行弦,弦AB交MC于点H.点A在上,点B在上,∠OND+∠AHM=90°.(1)求证:MH•CH=AH•BH;(2)求证:=;(3)在⊙O中,沿弦ND所在的直线作劣弧的轴对称图形,使其交直径MN于点G.若sin∠CMN=,求NG的长.【答案】(1)见解答;(2)见解答;(3).【解答】(1)证明:∵∠ABC和∠AMC是所对的圆周角,∴∠ABC=∠AMC,∵∠AHM=∠CHB,∴△AMH∽△CBH,∴,∴MH•CH=AH•BH.(2)证明:连接OC,交AB于点F,∵MC与ND为一组平行弦,即:MC∥ND,∴∠OND=∠OMC,∵OM=OC,∴∠OMC=∠OCM,∵∠OND+∠AHM=90°,∴∠OCM+∠AHM=∠OCM+∠CHB=90°,∴∠HFC=90°,∴OC⊥AB,∴OC是AB的垂直平分线,;(3)解:连接DM、DG,过点D作DE⊥MN,垂足为E,设点G的对称点G',连接G ′D、G′N,∵DG=DG',∠G′ND=∠GND,,DG'=DM,∴DG=DM,∴△DGM是等腰三角形,∵DE⊥MN,∴GE=ME,∵DN∥CM,∴∠CMN=∠DNM,∵MN为直径,∴∠MDN=90°,∴∠MDE+∠EDN=90°,∵DE⊥MN,∴∠DEN=90°,∴∠DNM+∠EDN=90°,∴,在Rt△MND中,MN=15,∴,∴MD=9,在Rt△MED中,,∴,∴,∴,∴,故答案为:.10.(2021•绥化)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,DE ⊥AC,垂足为E.(1)求证:DE是⊙O的切线;(2)若弦MN垂直于AB,垂足为G,,MN=,求⊙O的半径;(3)在(2)的条件下,当∠BAC=36°时,求线段CE的长.【答案】(1)证明见解答;(2)1;(3)CE=.【解答】(1)证明:如图1,连接OD,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,连接OM,∵AB⊥MN,且AB为⊙O的直径,MN=,∴MG=MN=,设⊙O的半径为r,则OM=r,AB=2r,∵,∴AG=AB=r,∴OG=OA﹣AG=r,在Rt△OGM中,根据勾股定理得,OG2+MG2=OM2,∴(r)2+()2=r2,∴r=1,即⊙O的半径为1;(3)如图3,作∠ABC的平分线交AC于F,在△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=(180°﹣∠BAC)=72°,∴∠ABF=∠CBF=∠ABC=36°=∠BAC,∴AF=BF,设AF=BF=x,在△BCF中,∠CBF=36°,∠C=72°,∴∠BFC=180°﹣36°﹣72°=72°=∠C,∴BC=BF=x,由(2)知,⊙O的半径为1,∴AB=AC=2,∴CF=AC﹣AF=2﹣x,∵∠CBF=∠CAB,∴∠C=∠C,∴△BCF∽△ACB,∴,∴,∴x=﹣1或x=﹣﹣1(舍),∴BC=﹣1,连接AD,∵AB为⊙O的直径,∴∠ADB=90°,∵AB=AC,∴CD=BC=,∵DE⊥AC,∴∠DEC=90°=∠ADC,∵∠C=∠C,∴△DEC∽△ADC,∴,∴,∴CE=.11.(2022•绥化)如图所示,在⊙O的内接△AMN中,∠MAN=90°,AM=2AN,作AB⊥MN于点P,交⊙O于另一点B,C是上的一个动点(不与A,M重合),射线MC交线段BA的延长线于点D,分别连接AC和BC,BC交MN于点E.(1)求证:△CMA∽△CBD.(2)若MN=10,=,求BC的长.(3)在点C运动过程中,当tan∠MDB=时,求的值.【答案】(1)证明见解答过程;(2)BC=3;(3)=.【解答】(1)证明:连接BM,如图:∵四边形ABMC是⊙O的内接四边形,∴∠DCA=∠ABM,∵∠MAN=90°,∴MN为⊙O的直径,∵AB⊥MN,∴=,∴∠ABM=∠BAM,∴∠DCA=∠BAM,∵=,∴∠BAM=∠BCM,∴∠DCA=∠BCM,∴∠DCB=∠ACM,∵=,∴∠DBC=∠AMC,∴△CMA∽△CBD;(2)解:连接OC,如图:由AM=2AN,设AN=x,则AM=2x,∵MN为直径,∴∠NAM=90°,∴x2+(2x)2=102,解得x=2,∴AN=2,AM=4,∵AB⊥MN,∴2S△AMN=AN•AM=MN•AP,∴AP=BP===4,∴PM==8,∵=,∴OC⊥MN,∵OC=OM,∴∠CMO=45°,∴△PDM是等腰直角三角形,CM=OM=5,∴PD=PM=8,∴BD=PD+BP=12,由(1)知△CMA∽△CBD,∴=,即=,∴BC=3;(3)解:连接CN交AM于K,连接KE,如图:∵MN是⊙O直径,∴∠MCN=90°=∠DPM,∴∠CNM=90°﹣∠CMP=∠D,∵tan∠MDB=,∴tan∠CNM=,∵AB⊥MN,∴=,∴∠KCE=∠KME,∴C、K、E、M四点共圆,∵∠NCM=90°,∴∠KEM=90°=∠KEN,而tan∠CNM=,∴=,设KE=3m,则NE=4m,∵tan∠KME===,∴EM=6m,∴==.方法2:过C作CH⊥MN于H,连接CN,如图:由(1)知△CMA∽△CBD,∴∠BDC=∠MAC,即∠MDB=∠MAC=∠MNC,∴tan∠MNC=,即=,设CM=3k,则CN=4k,MN=5k,由CM•CN=MN•CH可得CH==k,由勾股定理可得MH=k,NH=k,∵AM=2AN,MN=5k,∴AN=k,AM=2k,∴AP==2k=BP,∴NP==k,∴PH=MN﹣NP﹣MH=k,∵PB∥CH,∴=,即=,解得PE=k,∴EH=k﹣k=k,∴NE=PE+NP=2k,ME=MH+EH=k+k=3k,∴=.六.作图—复杂作图(共3小题)12.(2023•绥化)已知:点P是⊙O外一点.(1)尺规作图:如图,过点P作出⊙O的两条切线PE,PF,切点分别为点E、点F.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,若点D在⊙O上(点D不与E,F两点重合),且∠EPF=30°,求∠EDF的度数.【答案】(1)见解答;(2)75°或105°.【解答】解:(1)如图,PE、PF为所作;(2)连接OE、OF,如图,∵PE,PF为⊙O的两条切线,∴OE⊥PE,OF⊥PF,∴∠OEP=∠OFP=90°,∴∠EOF=180°﹣∠EPF=180°﹣30°=150°,当点D在优弧EF上时,∠EDF=∠EOF=75°,当点D′在弧EF上时,∠ED′F=180°﹣∠EDF=180°﹣75°=105°,综上所述,∠EDF的度数为75°或105°.13.(2022•绥化)已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.【答案】(1)作图见解析部分;(2)9.1cm2.【解答】解:(1)如图,点O即为所求;(2)由题意,△ABC的面积=×14×1.3=9.1(cm2).14.(2021•绥化)(1)如图,已知△ABC,P为边AB上一点,请用尺规作图的方法在边AC 上求作一点E,使AE+EP=AC.(保留作图痕迹,不写作法)(2)在图中,如果AC=6cm,AP=3cm,则△APE的周长是 9 cm.【答案】(1)作图见解析部分.(2)9.【解答】解:(1)如图,点E即为所求.(2)∵MN垂直平分线段PC,∴EP=EC,∴△APE的周长=AP+AE+EP=AP+AE+EC=AP+AC=3+6=9(cm),故答案为:9.七.作图-位似变换(共1小题)15.(2021•绥化)如图所示,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做格点,O为平面直角坐标系的原点,矩形OABC的4个顶点均在格点上,连接对角线OB.(1)在平面直角坐标系内,以原点O为位似中心,把△OAB缩小,作出它的位似图形,并且使所作的位似图形与△OAB的相似比等于;(2)将△OAB以O为旋转中心,逆时针旋转90°,得到△OA1B1,作出△OA1B1,并求出线段OB旋转过程中所形成扇形的周长.【答案】(1)作图见解析部分.(2)4+π.【解答】解:(1)如图,△OA′B′或△OA″B″即为所求.(2)如图,△OA1B1即为所求.OB==2,线段OB旋转过程中所形成扇形的周长=2×2+=4+π.八.相似形综合题(共1小题)16.(2022•绥化)我们可以通过面积运算的方法,得到等腰三角形底边上的任意一点到两腰的距离之和与一腰上的高之间的数量关系,并利用这个关系解决相关问题.(1)如图一,在等腰△ABC中,AB=AC,BC边上有一点D,过点D作DE⊥AB于E,DF ⊥AC于F,过点C作CG⊥AB于G.利用面积证明:DE+DF=CG.(2)如图二,将矩形ABCD沿着EF折叠,使点A与点C重合,点B落在B'处,点G 为折痕EF上一点,过点G作GM⊥FC于M,GN⊥BC于N.若BC=8,BE=3,求GM+GN 的长.(3)如图三,在四边形ABCD中,E为线段BC上的一点,EA⊥AB,ED⊥CD,连接BD,且=,BC=,CD=3,BD=6,求ED+EA的长.【答案】(1)见解析;(2)4;(3).【解答】(1)证明:连接AD,∵S△ABC=S△ABD+S△ACD,∴=,∵AB=AC,∴DE+DF=CG;(2)解:∵将矩形ABCD沿着EF折叠,使点A与点C重合,∴∠AFE=∠EFC,AE=CE,∵AD∥BC,∴∠AFE=∠CEF,∴∠CEF=∠CFE,∴CE=CF,∵BC=8,BE=3,∴CE=AE=5,在Rt△ABE中,由勾股定理得,AB=4,∴等腰△CEF中,CE边上的高为4,由(1)知,GM+GN=4;(3)解:延长BA、CD交于G,作BH⊥CD于H,∵=,∠BAE=∠EDC=90°,∴△BAE∽△CDE,∴∠ABE=∠C,∴BG=CG,∴ED+EA=BH,设DH=x,由勾股定理得,62﹣x2=()2﹣(x+3)2,解得x=1,∴DH=1,∴BH==,∴ED+EA=.九.解直角三角形的应用(共3小题)17.(2023•绥化)如图,直线MN和EF为河的两岸,且MN∥EF,为了测量河两岸之间的距离,某同学在河岸FE的B点测得∠CBE=30°,从B点沿河岸FE的方向走40米到达D点,测得∠CDE=45°.(1)求河两岸之间的距离是多少米?(结果保留根号)(2)若从D点继续沿DE的方向走(12+12)米到达P点.求tan∠CPE的值.【答案】(1)(20+20)米;(2).【解答】解:如图,过点C作CH⊥EF于点H,在Rt△CHB中,∵tan∠CBH==,∴HB=CH,在Rt△CHD中,∠CDH=45°,∴CH=DH,又∵BH﹣DH=BD=40,∴CH﹣CH=40,解得CH=20+20,即河两岸之间的距离是(20+20)米;(2)在Rt△CHP中,HP=HD=PD=20+20﹣(12+12)=8+8,∴tan∠CPE====.。

黑龙江绥化市中考数学试卷版及答案

黑龙江绥化市中考数学试卷版及答案

绥化市初中学业考试 数 学 试 卷一、单项选择题(每题3分,满分30分)1. 下列各式:①(-13 )—2=9;②(-2)0=1;③(a +b )2=a 2+b 2;④(-3ab 3)2=9a 2b 6;⑤3x 2-4x =-x ,其中计算正确的是( )A .①②③B .①②④C .③④⑤D .②④⑤ 解析: 答案:B 点评:2. 下列图形中不是轴对称图形的是( ) 解析: 答案:C 点评:3. 六月P 市连降大雨,某部队前往救援,乘车行进一段路程之后,由于道路受阻,汽车无法通行,部队短暂休整后决定步行前往,则能反映部队离开驻地的距离S (千米)与时间t (小时)之间的函数关系的大致图象是( ) 解析: 答案:A 点评:4. 方程(x -5)( x -6)=x -5的解是( )A .x =5B .x =5或x =6C .x =7D .x =5或x =7 解析: 答案:D 点评:5. “一方有难,八方支援”,当青海玉树发生地震后,全国人民积极开展捐款款物献爱A .15B .30C .50D .20 解析: 答案:B 点评:6. 已知函数y =1x的图象如图所示,当x ≥-1时,y 的取值范围是( )A .y <-1B .y ≤-1C .y ≤-1或y >0D .y <-1或y ≥0 解析: 答案:C点评:7.直角梯形ABCD中,AD∥BC,∠ABC=90o,∠C=60o,AD=DC=22,则BC的长为()A. 3 B.4 2 C.3 2 D.2 3解析:答案:C点评:8.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为6,sin B=13,则线段AC的长是()A.3 B.4 C.5 D.6解析:答案:B点评:9.现有球迷150人欲同时租用A、B、C三种型号客车去观看世界杯足球赛,其中A、B、C三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A型客车最多租两辆,则球迷们一次性到达赛场的租车方案有()A.3种 B.4种 C.5种 D.6种解析:答案:B点评:10.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论要:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确结论的个数()A.1个 B.2个 C.3个 D.4个解析:答案:D点评:二、填空题(每题3分,满分30分)11.上海世博会永久地标建筑世博轴获“全球生态建筑奖”,该建筑占地面积约为104500平方米,这个数用科学记数法表示为_______________平方米.解析:答案:1.01×105点评:12.函数y=x-1x+2中,自变量x的取值范围是_______________.解析:答案:x≥1点评:13.如图所示,E、F是矩形ABCD对角线AC上的两点,试添加一个条件:_______________,使得△ADF≌△CBE.解析:答案:AF=CE或AE=CF或DF∥BE或∠ABE=∠CDF等点评:14.一个不透明的口袋中,装有红球6个,白球9个,黑球3个,这些球除颜色不同外没有任何区别,丙从中任意摸出一个球,要使摸到黑的概率为14,需要往这个口袋再放入同种黑球_______________个.解析:答案:2点评:15.抛物线y=x2-4x+m2与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是_______________.解析:答案:(3,0)点评:16.代数式3x2-4x-5的值为7,则x2-43x-5的值为_______________.解析:答案:-1点评:17.由一些完全相同的小正方体的搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是_______________.解析:答案:4或5(答对一值得1分,多答不得分)点评:18.Rt△ABC中,∠BAC=90o,AB=AC=2,以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段B D的长为_______________.解析:答案:4或25或10(答对一值得1分,多答不得分)点评:19.已知关于x的分式方程a+2x+1=1的解是非正数,则a的取值范围是_______________.解析:答案:a≤-1且a≠-2点评:20.如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2 M1,对角线A1 M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3M2,对角线A1M2和A3B3交于点M3;……,依次类推,这样作的第n个正方形对角线交点的坐标为M n_______________.解析:答案:(1-12n ,12n )或另一书写形式(2n -12n ,12n )点评:三、解答题(满分60分)21.(本小题满分5分)先化简:(a - 2a —1a)÷ 1-a 2a 2+a,然后给a 选择一个你喜欢的数代入求值. 解析:答案:解:原式=a 2-2a +1a ÷ 1-a 2a 2+a…………………………1分=(a -1)2a×a (a +1) (1-a ) (a +1)……………………2分 =(1-a ) …………………………………………1分点评:(a 取—1,1,0以外的任何数,计算正确均可得分)……1分22.(本小题满分6分) 每个小方格都是边长为1个单位长度的小正方形,菱形OABC 在平面直角坐标系中的位置如图所示.(1)将菱形OABC 先向右平移4个单位,再向上平移2个单位,得到菱形OA 1B 1C 1,请画出菱形OA 1B 1C 1,并直接写出点B 1的坐标;(2)将菱形OABC 绕原点O 顺时针旋转90o ,得到菱形OA 2B 2C 2,请画出菱形OA 2B 2C 2,并求出点B 旋转到B 2的路径长.解析: 答案:(1)正确画出平移后图形…………………………1分B 1(8,6)………………………………………1分(2)正确画出旋转图形……………………………1分 OB =42+42=32=42……………………1分BB 2的弧长=90π×42180=22π…………………………2分点评:23.(本小题满分6分) .已知二次函数的图象经过点(0,3),(-3,0),(2, -5),且与x 轴交于A 、B 两点.(1)试确定此二次函数的解析式;(2)判断点P (-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB 的面积;如果不在,试说明理由.解析: 答案:解:(1)设二次函数的解析式为y =ax 2+bx +c ∵二次函数的图象经过点(0,3),(-3,0),(2, -5) c =3∴ 9a —3b +c =0…………………………………………………2分4a +2b +c =-5b =800 5 k +b =550a =-1,b =-2,c =3,y =-x 2-2x +3 …………………………1分 (2)∵-(-2)2-2×(-2)+3=-4+4+3∴点P (-2,3)在这个二次函数的图象上…………………………1分 ∵-x 2-2x +3=0∴x 1=-3,x 2=1 ∴与轴的交点为:(-3,0),(1,0)…………1分 S △PAB =12 ×4×3=6 …………………………………………………1分点评:24.(本小题满分7分) .某区对参加2010年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)在频数分布表中,a 的值为__________,b 的值为__________,并将频数分布直方图补充完整;(2)甲同学说“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是__________,并根据上述信息估计全区初中毕业生中视力正常的学生有多少人?解析: 答案:(1)a =60,b =0.05 …………………………………………………………………1分 补全直方图 ………………………………………………………………………1分(2)甲同学的视力情况范围:4.6≤x ≤4.9…………………………………………1分(3)视力正常的人数占被统计人数的百分比是:60+10200×100%=35% ………1分 全区初中毕业生中视力正常的学生约有:5000×35%=1750(人) …………1分 点评:25.(本小题满分8分)因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y (万米3)与时间x (天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:(1)甲水库每天的放水量是多少万立方米?(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?(3)求直线AD 的解析式. 解析:答案:解:(1)甲水库每天的放水量为(3000-1000)÷5=400(万米3/天)……………………1分(2)甲水库输出的水第10天时开始注入乙水库………………………………………1分设直线AB 的解析式为:y =kx +b ∵B (0,800),C (5,550)∴ ∴k =-50 b =800 ………………………………1分∴直线AB 的解析式为:y AB =-50x +800 ……………………………………1分当x =10时,y =300 ∴此时乙水库的蓄水量为300(万米3) ………………1分(3)∵甲水库单位时间的放水量与乙水库单位时间的进水量相同且损耗不计∴乙水库的进水时间为5天∵乙水库15天后的蓄水量为:300+(3000-1000) -50×5=2050(万米3) …1分设直线AB 的解析式为: y =k 1x +b 1 ∴k 1=350 b 1=-3200 1分∴直线AD 的解析式为:y AD =350x -3200 ……………………………………1分 点评:26.(本小题满分8分) .已知在Rt △ABC 中,∠ABC =90o ,∠A =30o ,点P 在AC 上,且∠MPN =90o .当点P 为线段AC 的中点,点M 、N 分别在线段AB 、BC 上时(如图1),过点P 作PE ⊥AB 于点E ,PF ⊥BC 于点F ,可证t △PME ∽t △PNF ,得出PN =3PM .(不需证明)当PC =2PA ,点M 、N 分别在线段AB 、BC 或其延长线上,如图2、图3这两种情况时,请写出线段PN 、PM 之间的数量关系,并任选取一给予证明. 解析:答案:解:如图2,如图3中都有结论:PN =6PM ……………………………2分 选如图2: 在Rt △ABC 中,过点P 作PE ⊥AB 于E ,PF ⊥BC 于点F∴四边形BFPE 是矩形 ∴∠EPF =90o , ∵∠EPM +∠MPF =∠FPN +∠MPF =90o可知∠EPM =∠FPN ∴△PFN ∽△PEM ……………………2分∴PF PE =PNPM…………………………………………………………1分 又∵Rt △AEP 和Rt △PFC 中:∠A =30o ,∠C =60o ∴PF =32 PC ,PE =12PA ……………………………………………1分 ∴PN PM =PF PE =3PC PA……………………………………………1分 ∵PC =2PA ∴PNPM= 6 即:PN =6PM ………………1分10000 若选如图3,其证明过程同上(其他方法如果正确,可参照给分) 点评:27.(本小题满分10分) .为了抓住世博会商机,某商店决定购进A 、B 两种世博会纪念品.若购进A 种纪念品10件,B 种纪念品5件,需要1000元;若购进A 种纪念品5件,B 种纪念品3件,需要550元.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A 种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B 种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?解析: 答案:解:(1种纪念品需要a 元,购进一件B 种纪念品需要b 元 0 1分………1分 50元,购进一件B 种纪念品需要100元 ………………1分(2x 个,购进B 种纪念品y 个………………………………2分 1分∵y 为正整数 ∴共有6种进货方案…………………………1分 (3)设总利润为W 元W =20x +30y =20(200-2 y )+30y=-10 y +4000 (20≤y ≤25) (2)分∵-10<0∴W 随y 的增大而减小∴当y =20时,W 有最大值 ……………………………………1分 W 最大=-10×20+4000=3800(元)∴当购进A 种纪念品160件,B 种纪念品20件时,可获最大利润,最大利润是3800元………………………………1分点评:28.(本小题满分10分) .如图,在平面直角坐标系中,函数y =2x +12的图象分别交x轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.△ABP △AOB(1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.解析:答案:解:(1)函数的解析式为y =2x +12 ∴A (-6,0),B (0,12) ………………1分∵点M 为线段OB 的中点 ∴M (0,6) ……………………………1分 设直线AM 的解析式为:y =kx +b......................................................2分 ∴k =1 b =6 ...............................................................1分 ∴直线AM 的解析式为:y =x +6 .............................................1分 (2)P 1(-18,-12),P 2(6,12) (2)分(3)H 1(-6,18),H 2(-12,0),H 3(-65 ,185)………………………………3分点评:。

2022年黑龙江省绥化市中考数学试卷(解析版)

2022年黑龙江省绥化市中考数学试卷(解析版)

2022年黑龙江省绥化市中考数学试卷一、单项选择题(本题共12个小题,每小题3分,共36分)请在答题卡上用28铅笔将你的选项所对应的大写字母涂黑1.(3分)化简|﹣|,下列结果中,正确的是()A.B.﹣C.2D.﹣22.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列计算中,结果正确的是()A.2x2+x2=3x4B.(x2)3=x5C.=﹣2D.=±2 4.(3分)下列图形中,正方体展开图错误的是()A.B.C.D.5.(3分)若式子+x﹣2在实数范围内有意义,则x的取值范围是()A.x>﹣1B.x≥﹣1C.x≥﹣1且x≠0D.x≤﹣1且x≠0 6.(3分)下列命题中是假命题的是()A.三角形的中位线平行于三角形的第三边,并且等于第三边的一半B.如果两个角互为邻补角,那么这两个角一定相等C.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角D.直角三角形斜边上的中线等于斜边的一半7.(3分)如图,线段OA在平面直角坐标系内,A点坐标为(2,5),线段OA绕原点O逆时针旋转90°,得到线段OA',则点A'的坐标为()A.(﹣5,2)B.(5,2)C.(2,﹣5)D.(5,﹣2)8.(3分)学校组织学生进行知识竞赛,5名参赛选手的得分分别为:96,97,98,96,98.下列说法中正确的是()A.该组数据的中位数为98B.该组数据的方差为0.7C.该组数据的平均数为98D.该组数据的众数为96和989.(3分)有一个容积为24m3的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟.设细油管的注油速度为每分钟xm3,由题意列方程,正确的是()A.+=30B.+=24C.+=24D.+=3010.(3分)已知二次函数y=ax2+bx+c的部分函数图象如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.11.(3分)小王同学从家出发,步行到离家a米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y(单位:米)与出发时间x(单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为()A.2.7分钟B.2.8分钟C.3分钟D.3.2分钟12.(3分)如图,在矩形ABCD中,P是边AD上的一个动点,连接BP,CP,过点B作射线,交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y,其中2<x≤5.则下列结论中,正确的个数为()(1)y与x的关系式为y=x﹣;(2)当AP=4时,△ABP∽△DPC;(3)当AP=4时,tan∠EBP=.A.0个B.1个C.2个D.3个二、填空题(本题共10个小题,每小题3分,共30分)请在答题卡上把你的答案写在相对应的题号后的指定区域内13.(3分)一个不透明的箱子中有5个红球和若干个黄球,除颜色外无其它差别.若任意摸出一个球,摸出红球的概率为,则这个箱子中黄球的个数为个.14.(3分)因式分解:(m+n)2﹣6(m+n)+9=.15.(3分)不等式组的解集为x>2,则m的取值范围为.16.(3分)已知圆锥的高为8cm,母线长为10cm,则其侧面展开图的面积为.17.(3分)设x1与x2为一元二次方程x2+3x+2=0的两根,则(x1﹣x2)2的值为.18.(3分)定义一种运算:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ.例如:当α=45°,β=30°时,sin(45°+30°)=×+×=,则sin15°的值为.19.(3分)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.20.(3分)某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元.则有种购买方案.21.(3分)如图,∠AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1⊥OA 交射线OB于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2⊥OA交射线OB于K2,在射线OA上截取P2P3,使P2P3=P2K2…按照此规律,线段P2023K2023的长为.22.(3分)在长为2,宽为x(1<x<2)的矩形纸片上,从它的一侧,剪去一个以矩形纸片宽为边长的正方形(第一次操作);从剩下的矩形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x的值为.三、解答题(本题共6个小题,共54分)请在答题卡上把你的答案写在相对应的题号后的指定区域内23.(7分)已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.24.(8分)如图所示,为了测量百货大楼CD顶部广告牌ED的高度,在距离百货大楼30m 的A处用仪器测得∠DAC=30°;向百货大楼的方向走10m,到达B处时,测得∠EBC =48°,仪器高度忽略不计,求广告牌ED的高度.(结果保留小数点后一位)(参考数据:≈1.732,sin48°≈0.743,cos48°≈0.669,tan48°≈1.111)25.(9分)在平面直角坐标系中,已知一次函数y1=k1x+b与坐标轴分别交于A(5,0),B (0,)两点,且与反比例函数y2=的图象在第一象限内交于P,K两点,连接OP,△OAP的面积为.(1)求一次函数与反比例函数的解析式.(2)当y2>y1时,求x的取值范围.(3)若C为线段OA上的一个动点,当PC+KC最小时,求△PKC的面积.26.(9分)我们可以通过面积运算的方法,得到等腰三角形底边上的任意一点到两腰的距离之和与一腰上的高之间的数量关系,并利用这个关系解决相关问题.(1)如图一,在等腰△ABC中,AB=AC,BC边上有一点D,过点D作DE⊥AB于E,DF⊥AC于F,过点C作CG⊥AB于G.利用面积证明:DE+DF=CG.(2)如图二,将矩形ABCD沿着EF折叠,使点A与点C重合,点B落在B'处,点G 为折痕EF上一点,过点G作GM⊥FC于M,GN⊥BC于N.若BC=8,BE=3,求GM+GN 的长.(3)如图三,在四边形ABCD中,E为线段BC上的一点,EA⊥AB,ED⊥CD,连接BD,且=,BC=,CD=3,BD=6,求ED+EA的长.27.(10分)如图所示,在⊙O的内接△AMN中,∠MAN=90°,AM=2AN,作AB⊥MN 于点P,交⊙O于另一点B,C是上的一个动点(不与A,M重合),射线MC交线段BA的延长线于点D,分别连接AC和BC,BC交MN于点E.(1)求证:△CMA∽△CBD.(2)若MN=10,=,求BC的长.(3)在点C运动过程中,当tan∠MDB=时,求的值.28.(11分)如图,抛物线y=ax2+bx+c交y轴于点A(0,﹣4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.(1)求抛物线的解析式;(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.2022年黑龙江省绥化市中考数学试卷参考答案与试题解析一、单项选择题(本题共12个小题,每小题3分,共36分)请在答题卡上用28铅笔将你的选项所对应的大写字母涂黑1.(3分)化简|﹣|,下列结果中,正确的是()A.B.﹣C.2D.﹣2【分析】利用绝对值的意义解答即可.【解答】解:|﹣|的绝对值是,故选:A.【点评】本题主要考查了绝对值的意义,正确利用绝对值的意义是解题的关键.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.(3分)下列计算中,结果正确的是()A.2x2+x2=3x4B.(x2)3=x5C.=﹣2D.=±2【分析】利用合并同类项法则,幂的乘方的法则,立方根的意义,算术平方根的意义对每个选项进行分析,即可得出答案.【解答】解:∵2x2+x2=3x2≠3x4,∴选项A不符合题意,∵(x2)3=x6≠x5,∴选项B不符合题意,∵=﹣2,∴选项C符合题意,∵=2≠±2,∴选项D不符合题意,故选:C.【点评】本题考查了合并同类项,幂的乘方,立方根,算术平方根,掌握合并同类项法则,幂的乘方的法则,立方根的意义,算术平方根的意义是解决问题的关键.4.(3分)下列图形中,正方体展开图错误的是()A.B.C.D.【分析】根据正方体的展开图得出结论即可.【解答】解:由展开图的知识可知,四个小正方形绝对不可能展开成田字形,故D选项都不符合题意.故选:D.【点评】本题主要考查正方体展开图的知识,熟练掌握正方体的侧面展开图是解题的关键.5.(3分)若式子+x﹣2在实数范围内有意义,则x的取值范围是()A.x>﹣1B.x≥﹣1C.x≥﹣1且x≠0D.x≤﹣1且x≠0【分析】根据二次根式的被开方数是非负数,a﹣p=(a≠0)即可得出答案.【解答】解:∵x+1≥0,x≠0,∴x≥﹣1且x≠0,故选:C.【点评】本题考查了二次根式有意义的条件,负整数指数幂,掌握二次根式的被开方数是非负数,a﹣p=(a≠0)是解题的关键.6.(3分)下列命题中是假命题的是()A.三角形的中位线平行于三角形的第三边,并且等于第三边的一半B.如果两个角互为邻补角,那么这两个角一定相等C.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角D.直角三角形斜边上的中线等于斜边的一半【分析】由三角形中位线定理,邻补角定义,切线长定理,直角三角形性质逐项判断即可.【解答】解:三角形的中位线平行于三角形的第三边,并且等于第三边的一半,故A是真命题,不符合题意;如果两个角互为邻补角,那么这两个角一定互补,故B是假命题,符合题意;从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角,故C是真命题,不符合题意;直角三角形斜边上的中线等于斜边的一半,故D是真命题,不符合题意;故选:B.【点评】本题考查命题与定理,解题的关键是掌握教材上相关的概念和定理.7.(3分)如图,线段OA在平面直角坐标系内,A点坐标为(2,5),线段OA绕原点O逆时针旋转90°,得到线段OA',则点A'的坐标为()A.(﹣5,2)B.(5,2)C.(2,﹣5)D.(5,﹣2)【分析】过点A作AB⊥x轴于点B,过点A′作A′C⊥x轴于点C,利用旋转的性质和全等三角形的判定与性质解答即可.【解答】解:过点A作AB⊥x轴于点B,过点A′作A′C⊥x轴于点C,如图,∵A点坐标为(2,5),∴OB=2,AB=5.由题意:∠AOA′=90°,OA=OA′.∴∠AOB+∠A′OC=90°.∵∠A′OC+∠A′=90°,∴∠A′=∠AOB.在△A′OC和△OAB中,,∴△A′OC≌△OAB(AAS).∴A′C=OB=2,OC=AB=5,∴A′(﹣5,2).故选:A.【点评】本题主要考查了图形的旋转与坐标的变化,点的坐标的特征,旋转的性质,全等三角形的判定与性质,利用点的坐标表示出相应线段的长度是解题的关键.8.(3分)学校组织学生进行知识竞赛,5名参赛选手的得分分别为:96,97,98,96,98.下列说法中正确的是()A.该组数据的中位数为98B.该组数据的方差为0.7C.该组数据的平均数为98D.该组数据的众数为96和98【分析】根据中位数的定义判断A选项;根据算术平均数的计算方法判断C选项;根据方差的计算方法判断B选项;根据众数的定义判断D选项.【解答】解:A、将这组数据从小到大排列为:96,96,97,98,98,中位数为97,故A 选项不符合题意;C、平均数==97,故C选项不符合题意;B、方差=×[(96﹣97)2×2+(97﹣97)2+(98﹣97)2×2]=0.8,故B选项不符合题意;D、该组数据的众数为96和98,故D选项符合题意;故选:D.【点评】本题考查了方差,算术平均数,中位数,众数,掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据是解题的关键.9.(3分)有一个容积为24m3的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟.设细油管的注油速度为每分钟xm3,由题意列方程,正确的是()A.+=30B.+=24C.+=24D.+=30【分析】设细油管的注油速度为每分钟xm3,则粗油管的注油速度为每分钟4xm3,利用注油所需时间=注油总量÷注油速度,即可得出关于x的分式方程,此题得解.【解答】解:24÷2=12(m3).设细油管的注油速度为每分钟xm3,则粗油管的注油速度为每分钟4xm3,依题意得:+=30.故选:A.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.10.(3分)已知二次函数y=ax2+bx+c的部分函数图象如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【分析】由二次函数y=ax2+bx+c的部分函数图象判断a,b2﹣4ac及4a+2b+c的符号,即可得到答案.【解答】解:∵二次函数y=ax2+bx+c的部分函数图象开口向上,∴a>0,∵二次函数y=ax2+bx+c的部分函数图象顶点在x轴下方,开口向上,∴二次函数y=ax2+bx+c的图象与x轴有两个交点,b2﹣4ac>0,∴一次函数y=ax+b2﹣4ac的图象位于第一,二,三象限,由二次函数y=ax2+bx+c的部分函数图象可知,点(2,4a+2b+c)在x轴上方,∴4a+2b+c>0,∴y=的图象位于第一,三象限,据此可知,符合题意的是B,故选:B.【点评】本题考查一次函数,二次函数,反比例函数的图象,解题的关键是掌握三种图象的性质.11.(3分)小王同学从家出发,步行到离家a米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y(单位:米)与出发时间x(单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为()A.2.7分钟B.2.8分钟C.3分钟D.3.2分钟【分析】根据题意和函数图象中的数据,可以先表示出两人的速度,然后即可计算出两人第一次和第二次相遇的时间,然后作差即可.【解答】解:由图象可得,小王的速度为米/分钟,爸爸的速度为:=(米/分钟),设小王出发m分钟两人第一次相遇,出发n分钟两人第二次相遇,m=(m﹣4)•,n+[n﹣4﹣(12﹣4)÷2]=a,解得m=6,n=9,n﹣m=9﹣6=3,故选:C.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,求出两人相遇的时间.12.(3分)如图,在矩形ABCD中,P是边AD上的一个动点,连接BP,CP,过点B作射线,交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y,其中2<x≤5.则下列结论中,正确的个数为()(1)y与x的关系式为y=x﹣;(2)当AP=4时,△ABP∽△DPC;(3)当AP=4时,tan∠EBP=.A.0个B.1个C.2个D.3个【分析】利用矩形的性质,相似三角形的判定与性质,直角三角形的边角关系定理,勾股定理,平行线分线段成比例定理对每个选项的结论进行判断即可:(1)过点P作PF ⊥BC于点F,利用矩形的判定与性质和相似三角形的判定与性质解答即可;(2)利用相似三角形的判定定理解答即可;(3)利用(1),(2)的结论利用勾股定理和平行线分线段成比例定理求得PB,PE,再利用直角三角形的边角关系定理即可求得结论.【解答】解:(1)过点P作PF⊥BC于点F,如图,∵四边形ABCD是矩形,PF⊥BC,∴四边形ABFP是矩形,∴PF=AB=2,BF=AP=x,∴AM=AP=PM=x﹣y.∵∠ABE=∠CBP,∠A=∠PFB=90°,∴△ABM∽△FBP,∴,∴.∴x2﹣xy=4.∴y=x﹣.∴(1)的结论正确;(2)当AP=4时,DP=AD﹣AP=5﹣4=1,∵,,∴.∵∠A=∠D=90°,∴△ABP△DPC.∴(2)的结论正确;(3)由(2)知:当AP=4时,△ABP∽△DPC,∴∠ABP=∠DPC.∵∠BP A+∠ABP=90°,∴∠APB+∠DPC=90°.∴∠CPB=90°.∴∠BPE=90°.∴tan∠EBP=.由(1)知:PM=AP﹣=3,BP==2,CP==.∵AD∥BC,∴.∴,解得:PE=,∴tan∠EBP===,∴(3)的结论错误,综上,正确的结论为:(1)(2),故选:C.【点评】本题主要考查了矩形的性质,相似三角形的判定与性质,直角三角形的边角关系定理,勾股定理,平行线分线段成比例定理,灵活应用相似三角形的判定与性质是解题的关键.二、填空题(本题共10个小题,每小题3分,共30分)请在答题卡上把你的答案写在相对应的题号后的指定区域内13.(3分)一个不透明的箱子中有5个红球和若干个黄球,除颜色外无其它差别.若任意摸出一个球,摸出红球的概率为,则这个箱子中黄球的个数为15个.【分析】直接利用概率公式得出=,进而得出答案.【解答】解:设箱子中黄球的个数为x个,根据题意可得:=,解得:x=15,经检验得:x=15是原方程的根.故答案为:15.【点评】此题主要考查了概率公式,正确掌握概率求法是解题关键.14.(3分)因式分解:(m+n)2﹣6(m+n)+9=(m+n﹣3)2.【分析】将m+n看作整体,利用完全平方公式即可得出答案.【解答】解:原式=(m+n)2﹣2•(m+n)•3+32=(m+n﹣3)2.故答案为:(m+n﹣3)2.【点评】本题考查了因式分解﹣运用公式法,考查整体思想,掌握a2±2ab+b2=(a±b)2是解题的关键.15.(3分)不等式组的解集为x>2,则m的取值范围为m≤2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大,结合不等式组的解集可得答案.【解答】解:由3x﹣6>0,得:x>2,∵不等式组的解集为x>2,∴m≤2,故答案为:m≤2.【点评】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.16.(3分)已知圆锥的高为8cm,母线长为10cm,则其侧面展开图的面积为60πcm2.【分析】利用勾股定理易得圆锥的底面半径,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:圆锥的高为8cm,母线长为10cm,由勾股定理得,底面半径=6cm,侧面展开图的面积=πrl=π×6×10=60πcm2.故答案为:60πcm2.【点评】本题利用了勾股定理和圆锥的计算,圆锥的侧面积就是展开后扇形的面积,即S=πrl.侧17.(3分)设x1与x2为一元二次方程x2+3x+2=0的两根,则(x1﹣x2)2的值为20.【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:x1+x2=﹣6,x1x2=4,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=(﹣6)2﹣4×4=36﹣16=20,故答案为:20.【点评】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系.18.(3分)定义一种运算:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ.例如:当α=45°,β=30°时,sin(45°+30°)=×+×=,则sin15°的值为.【分析】把15°看成是45°与30°的差,再代入公式计算得结论.【解答】解:sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=×﹣×=﹣=.故答案为:.【点评】本题考查了解直角三角形,掌握特殊角的三角函数值是解决本题的关键.19.(3分)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为12度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.【点评】本题主要考查正多边形与圆,会求正多边形的中心角是解题关键.20.(3分)某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元.则有3种购买方案.【分析】设购买x件甲种奖品,y件乙种奖品,利用总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出共有3种购买方案.【解答】解:设购买x件甲种奖品,y件乙种奖品,依题意得:4x+3y=48,∴x=12﹣y.又∵x,y均为正整数,∴或或,∴共有3种购买方案.故答案为:3.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.21.(3分)如图,∠AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1⊥OA 交射线OB于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2⊥OA交射线OB于K2,在射线OA上截取P2P3,使P2P3=P2K2…按照此规律,线段P2023K2023的长为(1+)2022.【分析】根据题意和题目中的数据,可以写出前几项,然后即可得到P n K n的式子,从而可以写出线段P2023K2023的长.【解答】解:由题意可得,P1K1=OP1•tan60°=1×=,P2K2=OP2•tan60°=(1+)×=(1+),P3K3=OP3•tan60°=(1+++3)×=(1+)2,P4K4=OP4•tan60°=[(1+++3)+(1+)2]×=(1+)3,…,P n K n=(1+)n﹣1,∴当n=2023时,P2023K2023=(1+)2022,故答案为:(1+)2022.【点评】本题考查图形的变化类,解答本题的关键是发现P n K n的变化特点.22.(3分)在长为2,宽为x(1<x<2)的矩形纸片上,从它的一侧,剪去一个以矩形纸片宽为边长的正方形(第一次操作);从剩下的矩形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x的值为 1.2或者1.5.【分析】本题中的x与(2﹣x)不知那个大,因此需要分类讨论,从而列方程求解.【解答】解:第一次操作后的两边长分别是x和(2﹣x),第二次操作后的两边长分别是(2x﹣2)和(2﹣x).当2x﹣2>2﹣x时,有2x﹣2=2(2﹣x),解得x=1.5,当2x﹣2<2﹣x时,有2(2x﹣2)=2﹣x,解得x=1.2.故答案为:1.2或者1.5.【点评】主要考查了含有字母的代数式的比较,关键是第二次操作后的边长,不知哪个是长,哪个是宽,所以分两种情况,不要丢掉任何一种.三、解答题(本题共6个小题,共54分)请在答题卡上把你的答案写在相对应的题号后的指定区域内23.(7分)已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.【分析】(1)作∠ABC,∠ACB的角平分线交于点O,点O即为所求;(2)△ABC的面积=(a+b+c)•r计算即可.【解答】解:(1)如图,点O即为所求;(2)由题意,△ABC的面积=×14×1.3=9.1(cm2).【点评】本题考查作图﹣复杂作图,三角形的内切圆与内心等知识,解题的关键掌握三角形的内心是角平分线的交点,属于中考常考题型.24.(8分)如图所示,为了测量百货大楼CD顶部广告牌ED的高度,在距离百货大楼30m 的A处用仪器测得∠DAC=30°;向百货大楼的方向走10m,到达B处时,测得∠EBC =48°,仪器高度忽略不计,求广告牌ED的高度.(结果保留小数点后一位)(参考数据:≈1.732,sin48°≈0.743,cos48°≈0.669,tan48°≈1.111)【分析】在Rt△ADC中,利用锐角三角函数的定义求出CD的长,再利用已知求出BC 的长,然后再在Rt△BCE中,利用锐角三角函数的定义求出EC的长,进行计算即可解答.【解答】解:在Rt△ADC中,∠DAC=30°,AC=30米,∴CD=AC•tan30°=30×=10(米),∵AB=10米,∴BC=AC﹣AB=20(米),在Rt△BCE中,∠EBC=48°,∴EC=BC•tan48°≈20×1.111=22.22(米),∴DE=EC﹣DC=22.22﹣10≈4.9(米),∴广告牌ED的高度约为4.9米.【点评】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.25.(9分)在平面直角坐标系中,已知一次函数y1=k1x+b与坐标轴分别交于A(5,0),B (0,)两点,且与反比例函数y2=的图象在第一象限内交于P,K两点,连接OP,△OAP的面积为.(1)求一次函数与反比例函数的解析式.(2)当y2>y1时,求x的取值范围.(3)若C为线段OA上的一个动点,当PC+KC最小时,求△PKC的面积.【分析】(1)根据待定系数法可求出直线AB的解析式,根据△OAP的面积可得出点P 的坐标,代入反比例函数解析式可得出反比例函数的解析式;(2)联立一次函数和反比例函数的解析式,可得出点K的坐标,结合图象可直接得出x 的取值范围;(3)作点P关于x轴的对称点P′,连接KP′,线段KP′与x轴的交点即为点C,求出直线KP′的解析式,令y=0,可得出点C的坐标,再根据三角形的面积公式可得出结论.【解答】解:(1)∵一次函数y1=k1x+b与坐标轴分别交于A(5,0),B(0,)两点,∴,解得.∴一次函数的解析式为:y1=﹣x+.∵△OAP的面积为,∴•OA•y P=,∴y P=,∵点P在一次函数图象上,∴令﹣x+=.解得x=4,∴P(4,).∵点P在反比例函数y2=的图象上,∴k2=4×=2.∴一次函数的解析式为:y1=﹣x+.反比例函数的解析式为:y2=.(2)令﹣x+=,解得x=1或x=4,∴K(1,2),由图象可知,当y2>y1时,x的取值范围为:0<x<1或x>4.(3)如图,作点P关于x轴的对称点P′,连接KP′,线段KP′与x轴的交点即为点C,∵P(4,).∴P′(4,﹣).∴PP′=1,∴直线KP′的解析式为:y=﹣x+.令y=0,解得x=.∴C(,0).∴S△PKC=•(x C﹣x K)•PP′=×(﹣1)×1=.∴当PC+KC最小时,△PKC的面积为.【点评】本题属于反比例函数与一次函数综合题,主要考查待定系数法求函数解析式,数形结合思想,轴对称最值问题,三角形的面积问题等知识,关键是求出一次函数和反比例函数的解析式.26.(9分)我们可以通过面积运算的方法,得到等腰三角形底边上的任意一点到两腰的距离之和与一腰上的高之间的数量关系,并利用这个关系解决相关问题.(1)如图一,在等腰△ABC中,AB=AC,BC边上有一点D,过点D作DE⊥AB于E,DF⊥AC于F,过点C作CG⊥AB于G.利用面积证明:DE+DF=CG.(2)如图二,将矩形ABCD沿着EF折叠,使点A与点C重合,点B落在B'处,点G 为折痕EF上一点,过点G作GM⊥FC于M,GN⊥BC于N.若BC=8,BE=3,求GM+GN 的长.(3)如图三,在四边形ABCD中,E为线段BC上的一点,EA⊥AB,ED⊥CD,连接BD,且=,BC=,CD=3,BD=6,求ED+EA的长.【分析】(1)连接AD,根据S△ABC=S△ABD+S△ACD,可得结论;(2)利用翻折的性质得,CE=CF,由勾股定理得,AB=4,则等腰△CEF中,CE边上的高为4,由(1)知,GM+GN=4;(3)延长BA、CD交于G,作BH⊥CD于H,利用△BAE∽△CDE,得∠ABE=∠C,则BG=CG,设DH=x,利用勾股定理列方程可得DH的长,从而得出BH,利用(1)中结论可得答案.【解答】(1)证明:连接AD,∵S△ABC=S△ABD+S△ACD,∴=,∵AB=AC,∴DE+DF=CG;(2)解:∵将矩形ABCD沿着EF折叠,使点A与点C重合,∴∠AFE=∠EFC,AE=CE,∵AD∥BC,∴∠AFE=∠CEF,∴∠CEF=∠CFE,∴CE=CF,∵BC=8,BE=3,∴CE=AE=5,在Rt△ABE中,由勾股定理得,AB=4,∴等腰△CEF中,CE边上的高为4,由(1)知,GM+GN=4;(3)解:延长BA、CD交于G,作BH⊥CD于H,∵=,∠BAE=∠EDC=90°,∴△BAE∽△CDE,∴∠ABE=∠C,∴BG=CG,∴ED+EA=BH,设DH=x,由勾股定理得,62﹣x2=()2﹣(x+3)2,解得x=1,∴DH=1,∴BH==,∴ED+EA=.【点评】本题是相似形综合题,主要考查了等腰三角形的判定与性质,翻折的性质,勾股定理,相似三角形的判定与性质,证明等腰三角形,利用(1)中结论是解决问题(2)、(3)的关键.27.(10分)如图所示,在⊙O的内接△AMN中,∠MAN=90°,AM=2AN,作AB⊥MN 于点P,交⊙O于另一点B,C是上的一个动点(不与A,M重合),射线MC交线段BA的延长线于点D,分别连接AC和BC,BC交MN于点E.(1)求证:△CMA∽△CBD.(2)若MN=10,=,求BC的长.(3)在点C运动过程中,当tan∠MDB=时,求的值.【分析】(1)连接BM,由四边形ABMC是⊙O的内接四边形,得∠DCA=∠ABM,由。

黑龙江省绥化市2021-2023三年中考数学真题分类汇编-01选择题知识点分类(含答案)

黑龙江省绥化市2021-2023三年中考数学真题分类汇编-01选择题知识点分类(含答案)

黑龙江省绥化市2021-2023三年中考数学真题分类汇编-01选择题知识点分类一.绝对值(共1小题)1.(2022•绥化)化简|﹣|,下列结果中,正确的是( )A.B.﹣C.2D.﹣2二.科学记数法—表示较大的数(共1小题)2.(2021•绥化)据国家卫健委统计,截至6月2日,我国接种新冠疫苗已超过704000000剂次,把704000000这个数用科学记数法表示为( )A.7.04×107B.7.04×109C.0.704×109D.7.04×108三.科学记数法—表示较小的数(共1小题)3.(2023•绥化)纳米是非常小的长度单位,1nm=0.000000001m,把0.000000001用科学记数法表示为( )A.1×10﹣9B.1×10﹣8C.1×108D.1×109四.幂的乘方与积的乘方(共3小题)4.(2023•绥化)下列计算中,结果正确的是( )A.(﹣pq)3=p3q3B.x•x3+x2•x2=x8C.=±5D.(a2)3=a65.(2022•绥化)下列计算中,结果正确的是( )A.2x2+x2=3x4B.(x2)3=x5C.=﹣2D.=±2 6.(2021•绥化)下列运算正确的是( )A.(a5)2=a7B.x4•x4=x8C.=±3D.五.零指数幂(共1小题)7.(2023•绥化)计算|﹣5|+20的结果是( )A.﹣3B.7C.﹣4D.6六.负整数指数幂(共1小题)8.(2021•绥化)定义一种新的运算:如果a≠0,则有a▲b=a﹣2+ab+|﹣b|,那么(﹣)▲2的值是( )A.﹣3B.5C.﹣D.七.二次根式有意义的条件(共2小题)9.(2022•绥化)若式子+x﹣2在实数范围内有意义,则x的取值范围是( )A.x>﹣1B.x≥﹣1C.x≥﹣1且x≠0D.x≤﹣1且x≠010.(2021•绥化)若式子在实数范围内有意义,则x的取值范围是( )A.x>﹣1B.x≥﹣1且x≠0C.x>﹣1且x≠0D.x≠0八.由实际问题抽象出分式方程(共3小题)11.(2023•绥化)某运输公司,运送一批货物,甲车每天运送货物总量的.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x天,由题意列方程,正确的是( )A.+=1B.+(+)=1C.(1+)+=1D.+(+)=112.(2022•绥化)有一个容积为24m3的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟.设细油管的注油速度为每分钟xm3,由题意列方程,正确的是( )A.+=30B.+=24C.+=24D.+=3013.(2021•绥化)根据市场需求,某药厂要加速生产一批药品,现在平均每天生产药品比原计划平均每天多生产500箱,现在生产6000箱药品所需时间与原计划生产4500箱药品所需时间相同,那么原计划平均每天生产多少箱药品?设原计划平均每天可生产x箱药品,则下面所列方程正确的是( )A.B.C.D.九.动点问题的函数图象(共1小题)14.(2023•绥化)如图,在菱形ABCD中,∠A=60°,AB=4,动点M,N同时从A点出发,点M以每秒2个单位长度沿折线A﹣B﹣C向终点C运动;点N以每秒1个单位长度沿线段AD向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,△AMN的面积为y个平方单位,则下列正确表示y与x函数关系的图象是( )A.B.C.D.一十.一次函数的应用(共1小题)15.(2022•绥化)小王同学从家出发,步行到离家a米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y(单位:米)与出发时间x(单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为( )A.2.7分钟B.2.8分钟C.3分钟D.3.2分钟一十一.反比例函数的图象(共1小题)16.(2022•绥化)已知二次函数y=ax2+bx+c的部分函数图象如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=在同一平面直角坐标系中的图象大致是( )C.D.一十二.反比例函数图象上点的坐标特征(共1小题)17.(2023•绥化)在平面直角坐标系中,点A在y轴的正半轴上,AC平行于x轴,点B,C的横坐标都是3,BC=2,点D在AC上,且其横坐标为1,若反比例函数y=(x>0)的图象经过点B,D,则k的值是( )A.1B.2C.3D.一十三.几何体的展开图(共1小题)18.(2022•绥化)下列图形中,正方体展开图错误的是( )A.B.C.D.一十四.平行线的性质(共1小题)19.(2023•绥化)将一副三角板按如图所示摆放在一组平行线内,∠1=25°,∠2=30°,则∠3的度数为( )A.55°B.65°C.70°D.75°一十五.三角形三边关系(共1小题)20.(2021•绥化)下列命题是假命题的是( )A.任意一个三角形中,三角形两边的差小于第三边B.三角形的中位线平行于三角形的第三边,并且等于第三边的一半C.如果一个角的两边分别平行于另一个角的两边,那么这两个角一定相等D.一组对边平行且相等的四边形是平行四边形一十六.多边形内角与外角(共1小题)21.(2021•绥化)一个多边形的内角和是外角和的4倍,则这个多边形是( )A.八边形B.九边形C.十边形D.十二边形一十七.命题与定理(共2小题)22.(2023•绥化)下列命题中叙述正确的是( )A.若方差s甲2>s乙2,则甲组数据的波动较小B.直线外一点到这条直线的垂线段,叫做点到直线的距离C.三角形三条中线的交点叫做三角形的内心D.角的内部到角的两边的距离相等的点在角的平分线上23.(2022•绥化)下列命题中是假命题的是( )A.三角形的中位线平行于三角形的第三边,并且等于第三边的一半B.如果两个角互为邻补角,那么这两个角一定相等C.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角D.直角三角形斜边上的中线等于斜边的一半一十八.轴对称图形(共1小题)24.(2021•绥化)现实世界中,对称无处不在,在美术字中,有些汉字也具有对称性.下列汉字是轴对称图形的是( )A.B.C.D.一十九.轴对称-最短路线问题(共1小题)25.(2021•绥化)已知在Rt△ACB中,∠C=90°,∠ABC=75°,AB=5,点E为边AC 上的动点,点F为边AB上的动点,则线段FE+EB的最小值是( )A.B.C.D.二十.翻折变换(折叠问题)(共1小题)26.(2021•绥化)如图所示,在矩形纸片ABCD中,AB=3,BC=6,点E、F分别是矩形的边AD、BC上的动点,将该纸片沿直线EF折叠.使点B落在矩形边AD上,对应点记为点G,点A落在M处,连接EF、BG、BE,EF与BG交于点N.则下列结论成立的是( )①BN=AB;②当点G与点D重合时,EF=;③△GNF的面积S的取值范围是≤S≤;④当CF=时,S△MEG=.A.①③B.③④C.②③D.②④二十一.中心对称图形(共2小题)27.(2023•绥化)下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.28.(2022•绥化)下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.二十二.坐标与图形变化-旋转(共1小题)29.(2022•绥化)如图,线段OA在平面直角坐标系内,A点坐标为(2,5),线段OA绕原点O逆时针旋转90°,得到线段OA',则点A'的坐标为( )A.(﹣5,2)B.(5,2)C.(2,﹣5)D.(5,﹣2)二十三.相似三角形的判定(共1小题)30.(2022•绥化)如图,在矩形ABCD中,P是边AD上的一个动点,连接BP,CP,过点B作射线,交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB =2,BC=5,AP=x,PM=y,其中2<x≤5.则下列结论中,正确的个数为( )(1)y与x的关系式为y=x﹣;(2)当AP=4时,△ABP∽△DPC;(3)当AP=4时,tan∠EBP=.A.0个B.1个C.2个D.3个二十四.相似三角形的判定与性质(共1小题)31.(2023•绥化)如图,在正方形ABCD中,点E为边CD的中点,连接AE,过点B作BF ⊥AE于点F,连接BD交AE于点G,FH平分∠BFG交BD于点H.则下列结论中,正确的个数为( )①AB2=BF•AE②S△BGF:S△BAF=2:3③当AB=a时,BD2﹣BD•HD=a2A.0个B.1个C.2个D.3个二十五.简单组合体的三视图(共2小题)32.(2023•绥化)如图是一个正方体,被切去一角,则其左视图是( )A.B.C.D.33.(2021•绥化)如图所示,图中由7个完全相同小正方体组合而成的几何体,则这个几何体的左视图是( )A.B.C.D.二十六.频数(率)分布直方图(共1小题)34.(2023•绥化)绥化市举办了2023年半程马拉松比赛,赛后随机抽取了部分参赛者的成绩(单位:分钟),并制作了如下的参赛者成绩组别表、扇形统计图和频数分布直方图.则下列说法正确的是( )组别参赛者成绩A70≤x<80B80≤x<90C90≤x<100D100≤x<110E110≤x<120A.该组数据的样本容量是50人B.该组数据的中位数落在90~100这一组C.90~100这组数据的组中值是96D.110~120这组数据对应的扇形统计图的圆心角度数为51°二十七.众数(共1小题)35.(2021•绥化)近些年来,移动支付已成为人们的主要支付方式之一.某企业为了解员工某月A,B两种移动支付方式的使用情况,从企业2000名员工中随机抽取了200人,发现样本中A,B两种支付方式都不使用的有10人,样本中仅使用A种支付方式和仅使用B种支付方式的员工支付金额a(元)分布情况如表:支付金额a(元)0<a≤10001000<a≤2000a>2000仅使用A36人18人6人仅使用B20人28人2人下面有四个推断:①根据样本数据估计,企业2000名员工中,同时使用A,B两种支付方式的为800人;②本次调查抽取的样本容量为200人;③样本中仅使用A种支付方式的员工,该月支付金额的中位数一定不超过1000元;④样本中仅使用B种支付方式的员工,该月支付金额的众数一定为1500元.其中正确的是( )A.①③B.③④C.①②D.②④二十八.方差(共1小题)36.(2022•绥化)学校组织学生进行知识竞赛,5名参赛选手的得分分别为:96,97,98,96,98.下列说法中正确的是( )A.该组数据的中位数为98B.该组数据的方差为0.7C.该组数据的平均数为98D.该组数据的众数为96和98黑龙江省绥化市2021-2023三年中考数学真题分类汇编-01选择题知识点分类参考答案与试题解析一.绝对值(共1小题)1.(2022•绥化)化简|﹣|,下列结果中,正确的是( )A.B.﹣C.2D.﹣2【答案】A【解答】解:|﹣|的绝对值是,故选:A.二.科学记数法—表示较大的数(共1小题)2.(2021•绥化)据国家卫健委统计,截至6月2日,我国接种新冠疫苗已超过704000000剂次,把704000000这个数用科学记数法表示为( )A.7.04×107B.7.04×109C.0.704×109D.7.04×108【答案】D【解答】解:704000000=7.04×108,故选:D.三.科学记数法—表示较小的数(共1小题)3.(2023•绥化)纳米是非常小的长度单位,1nm=0.000000001m,把0.000000001用科学记数法表示为( )A.1×10﹣9B.1×10﹣8C.1×108D.1×109【答案】A【解答】解:0.000000001=1×10﹣9故选:A.四.幂的乘方与积的乘方(共3小题)4.(2023•绥化)下列计算中,结果正确的是( )A.(﹣pq)3=p3q3B.x•x3+x2•x2=x8C.=±5D.(a2)3=a6【答案】D【解答】解:A:(﹣pq)3=(﹣p)3q3=﹣p3q3,故选项A错误,B:x•x3+x2•x2=x4+x4=2x4,故选项B错误,C:=5,故选项C错误,D:(a2)3=a2×3=a6.故答案为:D.5.(2022•绥化)下列计算中,结果正确的是( )A.2x2+x2=3x4B.(x2)3=x5C.=﹣2D.=±2【答案】C【解答】解:∵2x2+x2=3x2≠3x4,∴选项A不符合题意,∵(x2)3=x6≠x5,∴选项B不符合题意,∵=﹣2,∴选项C符合题意,∵=2≠±2,∴选项D不符合题意,故选:C.6.(2021•绥化)下列运算正确的是( )A.(a5)2=a7B.x4•x4=x8C.=±3D.【答案】B【解答】解:A.(a5)2=a10,故本选项不合题意;B.x4•x4=x8,故本选项符合题意;C.=3,故本选项不符合题意;D.=﹣3﹣,故本选项不合题意;故选:B.五.零指数幂(共1小题)7.(2023•绥化)计算|﹣5|+20的结果是( )A.﹣3B.7C.﹣4D.6【答案】D【解答】解:|﹣5|+20=5+1=6.故答案为:D.六.负整数指数幂(共1小题)8.(2021•绥化)定义一种新的运算:如果a≠0,则有a▲b=a﹣2+ab+|﹣b|,那么(﹣)▲2的值是( )A.﹣3B.5C.﹣D.【答案】B【解答】解:根据题中的新定义得:(﹣)▲2=|﹣2|=4﹣1+2=5.故选:B.七.二次根式有意义的条件(共2小题)9.(2022•绥化)若式子+x﹣2在实数范围内有意义,则x的取值范围是( )A.x>﹣1B.x≥﹣1C.x≥﹣1且x≠0D.x≤﹣1且x≠0【答案】C【解答】解:∵x+1≥0,x≠0,∴x≥﹣1且x≠0,故选:C.10.(2021•绥化)若式子在实数范围内有意义,则x的取值范围是( )A.x>﹣1B.x≥﹣1且x≠0C.x>﹣1且x≠0D.x≠0【答案】C【解答】解:根据题意得:x+1>0且x≠0,解得:x>﹣1且x≠0,故选:C.八.由实际问题抽象出分式方程(共3小题)11.(2023•绥化)某运输公司,运送一批货物,甲车每天运送货物总量的.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x天,由题意列方程,正确的是( )A.+=1B.+(+)=1C.(1+)+=1D.+(+)=1【答案】B【解答】解:由题意可得,+(+)=1,故选:B.12.(2022•绥化)有一个容积为24m3的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟.设细油管的注油速度为每分钟xm3,由题意列方程,正确的是( )A.+=30B.+=24C.+=24D.+=30【答案】A【解答】解:24÷2=12(m3).设细油管的注油速度为每分钟xm3,则粗油管的注油速度为每分钟4xm3,依题意得:+=30.故选:A.13.(2021•绥化)根据市场需求,某药厂要加速生产一批药品,现在平均每天生产药品比原计划平均每天多生产500箱,现在生产6000箱药品所需时间与原计划生产4500箱药品所需时间相同,那么原计划平均每天生产多少箱药品?设原计划平均每天可生产x箱药品,则下面所列方程正确的是( )A.B.C.D.【答案】D【解答】解:设原计划平均每天可生产x箱药品,则现在平均每天可生产(x+500)箱药品,依题意得:=.故选:D.九.动点问题的函数图象(共1小题)14.(2023•绥化)如图,在菱形ABCD中,∠A=60°,AB=4,动点M,N同时从A点出发,点M以每秒2个单位长度沿折线A﹣B﹣C向终点C运动;点N以每秒1个单位长度沿线段AD向终点D运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x秒,△AMN的面积为y个平方单位,则下列正确表示y与x函数关系的图象是( )A.B.C.D.【答案】A【解答】解:连接BD,过B作BE⊥AD于E,当0<t<4时,点M在AB上,在菱形ABCD中,∠A=60°,AB=4,∴AB=AD,∴△ABD是等边三角形,∴AE=ED=AD=2,BE=AE=2,∵AM=2x,AN=x,∴,∵∠A=∠A,∴△AMN∽△ABN,∴∠ANM=∠AEB=90°,∴=x,∴y=x×x=x2,当4≤t<8时,点M在BC上,y=,综上所述,当0<x<4时的函数图象是开口向上的抛物线的一部分,当4≤t<8时,函数图象是直线的一部分,故选:A.一十.一次函数的应用(共1小题)15.(2022•绥化)小王同学从家出发,步行到离家a米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y(单位:米)与出发时间x(单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为( )A.2.7分钟B.2.8分钟C.3分钟D.3.2分钟【答案】C【解答】解:由图象可得,小王的速度为米/分钟,爸爸的速度为:=(米/分钟),设小王出发m分钟两人第一次相遇,出发n分钟两人第二次相遇,m=(m﹣4)•,n+[n﹣4﹣(12﹣4)÷2]=a,解得m=6,n=9,n﹣m=9﹣6=3,故选:C.一十一.反比例函数的图象(共1小题)16.(2022•绥化)已知二次函数y=ax2+bx+c的部分函数图象如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=在同一平面直角坐标系中的图象大致是( )A.B.C.D.【答案】B【解答】解:∵二次函数y=ax2+bx+c的部分函数图象开口向上,∴a>0,∵二次函数y=ax2+bx+c的部分函数图象顶点在x轴下方,开口向上,∴二次函数y=ax2+bx+c的图象与x轴有两个交点,b2﹣4ac>0,∴一次函数y=ax+b2﹣4ac的图象位于第一,二,三象限,由二次函数y=ax2+bx+c的部分函数图象可知,点(2,4a+2b+c)在x轴上方,∴4a+2b+c>0,∴y=的图象位于第一,三象限,据此可知,符合题意的是B,故选:B.一十二.反比例函数图象上点的坐标特征(共1小题)17.(2023•绥化)在平面直角坐标系中,点A在y轴的正半轴上,AC平行于x轴,点B,C的横坐标都是3,BC=2,点D在AC上,且其横坐标为1,若反比例函数y=(x>0)的图象经过点B,D,则k的值是( )A.1B.2C.3D.【答案】C【解答】解:∵点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,∴设B(3,a),则D(1,a+2),∵反比例函数y=(x>0)的图象经过点B,D,∴3a=a+2,解得a=1,∴B(3,1),∴k=3×1=3.故选:C.一十三.几何体的展开图(共1小题)18.(2022•绥化)下列图形中,正方体展开图错误的是( )A.B.C.D.【答案】D【解答】解:由展开图的知识可知,四个小正方形绝对不可能展开成田字形,故D选项都不符合题意.故选:D.一十四.平行线的性质(共1小题)19.(2023•绥化)将一副三角板按如图所示摆放在一组平行线内,∠1=25°,∠2=30°,则∠3的度数为( )A.55°B.65°C.70°D.75°【答案】C【解答】解:如图,由题意可得:∠CAE=90°,∠ACF=45°,∵∠1=25°,∴∠BAC=∠1+∠CAE=115°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠ACD=180°﹣∠BAC=65°,∴∠3=180°﹣∠ACD﹣∠ACF=70°.故选:C.一十五.三角形三边关系(共1小题)20.(2021•绥化)下列命题是假命题的是( )A.任意一个三角形中,三角形两边的差小于第三边B.三角形的中位线平行于三角形的第三边,并且等于第三边的一半C.如果一个角的两边分别平行于另一个角的两边,那么这两个角一定相等D.一组对边平行且相等的四边形是平行四边形【答案】C【解答】解:A、任意一个三角形中,三角形两边的差小于第三边,正确,是真命题,不符合题意;B、三角形的中位线平行于三角形的第三边,并且等于第三边的一半,正确,是真命题,不符合题意;C、如果一个角的两边分别平行于另一个角的两边,那么这两个角一定相等或互补,故原命题错误,是假命题,符合题意;D、一组对边平行且相等的四边形是平行四边形,正确,是真命题,不符合题意,故选:C.一十六.多边形内角与外角(共1小题)21.(2021•绥化)一个多边形的内角和是外角和的4倍,则这个多边形是( )A.八边形B.九边形C.十边形D.十二边形【答案】C【解答】解:设这个多边形的边数为n,则该多边形的内角和为(n﹣2)×180°,依题意得(n﹣2)×180°=360°×4,解得n=10,∴这个多边形是十边形.故选:C.一十七.命题与定理(共2小题)22.(2023•绥化)下列命题中叙述正确的是( )A.若方差s甲2>s乙2,则甲组数据的波动较小B.直线外一点到这条直线的垂线段,叫做点到直线的距离C.三角形三条中线的交点叫做三角形的内心D.角的内部到角的两边的距离相等的点在角的平分线上【答案】D【解答】解:A.若方差s甲2>s乙2,则乙组数据的波动较小,故此选项不合题意;B.直线外一点到这条直线的垂线段长度,叫做点到直线的距离,故此选项不合题意;C.三角形三条中线的交点叫做三角形的重心,故此选项不合题意;D.角的内部到角的两边的距离相等的点在角的平分线上,故此选项符合题意.故选:D.23.(2022•绥化)下列命题中是假命题的是( )A.三角形的中位线平行于三角形的第三边,并且等于第三边的一半B.如果两个角互为邻补角,那么这两个角一定相等C.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角D.直角三角形斜边上的中线等于斜边的一半【答案】B【解答】解:三角形的中位线平行于三角形的第三边,并且等于第三边的一半,故A是真命题,不符合题意;如果两个角互为邻补角,那么这两个角一定互补,故B是假命题,符合题意;从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角,故C是真命题,不符合题意;直角三角形斜边上的中线等于斜边的一半,故D是真命题,不符合题意;故选:B.一十八.轴对称图形(共1小题)24.(2021•绥化)现实世界中,对称无处不在,在美术字中,有些汉字也具有对称性.下列汉字是轴对称图形的是( )A.B.C.D.【答案】A【解答】解:A.是轴对称图形,故本选项符合题意;B.不是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项不合题意;故选:A.一十九.轴对称-最短路线问题(共1小题)25.(2021•绥化)已知在Rt△ACB中,∠C=90°,∠ABC=75°,AB=5,点E为边AC 上的动点,点F为边AB上的动点,则线段FE+EB的最小值是( )A.B.C.D.【答案】B【解答】解:作F关于AC的对称点F',延长AF'、BC交于点B',∴∠BAB'=30°,EF=EF',∴FE+EB=BE+EF',∴当B、E、F'共线且与AB'垂直时,BE+EF'长度最小,即求BD的长,即作BD⊥AB'于D,在△ABD中,BD=,故选:B.二十.翻折变换(折叠问题)(共1小题)26.(2021•绥化)如图所示,在矩形纸片ABCD中,AB=3,BC=6,点E、F分别是矩形的边AD、BC上的动点,将该纸片沿直线EF折叠.使点B落在矩形边AD上,对应点记为点G,点A落在M处,连接EF、BG、BE,EF与BG交于点N.则下列结论成立的是( )①BN=AB;②当点G与点D重合时,EF=;③△GNF的面积S的取值范围是≤S≤;④当CF=时,S△MEG=.A.①③B.③④C.②③D.②④【答案】D【解答】解:∵AB=3是定值,BN=BG,BG的长是变化的,∴BN的值也是变化的,∴BN与AB不一定相等,故①错误.∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠EFB,由翻折的性质可知FB=FG,∠EFB=∠EFG,∴∠GEF=∠EFG,∴GE=GF=BF,∵GE∥BF,∴四边形BEGF是平行四边形,∵FB=FG,∴四边形BEGF是菱形,∴BE=EG,当D,G重合时,设BE=DE=x,则有x2=32+(6﹣x)2,∴x=,∵∠A=90°,AB=3,AD=6,∴BD===3,∴S菱形BEDF=DE•AB=•BD•EF,∴EF==,故②正确,当D,G重合时,△GNF的面积最大,最大值=××3=,∴S△GNF≤,故③错误,如图2中,当CF=时,BF=BE=EG=FG=BC﹣CF=6﹣=,∴AE=EM===,∴S△MEG=•ME•GM=××3=,故④正确.故选:D.二十一.中心对称图形(共2小题)27.(2023•绥化)下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.【答案】C【解答】解:A、是轴对称图形,但不是中心对称图形,故A不符合题意;B、是轴对称图形,但不是中心对称图形,故B不符合题意;C、既是中心对称图形,又是轴对称图形,故C符合题意;D、是中心对称图形,但不是轴对称图形,故D不符合题意;故选:C.28.(2022•绥化)下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.【答案】D【解答】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.二十二.坐标与图形变化-旋转(共1小题)29.(2022•绥化)如图,线段OA在平面直角坐标系内,A点坐标为(2,5),线段OA绕原点O逆时针旋转90°,得到线段OA',则点A'的坐标为( )A.(﹣5,2)B.(5,2)C.(2,﹣5)D.(5,﹣2)【答案】A【解答】解:过点A作AB⊥x轴于点B,过点A′作A′C⊥x轴于点C,如图,∵A点坐标为(2,5),∴OB=2,AB=5.由题意:∠AOA′=90°,OA=OA′.∴∠AOB+∠A′OC=90°.∵∠A′OC+∠A′=90°,∴∠A′=∠AOB.在△A′OC和△OAB中,,∴△A′OC≌△OAB(AAS).∴A′C=OB=2,OC=AB=5,∴A′(﹣5,2).故选:A.二十三.相似三角形的判定(共1小题)30.(2022•绥化)如图,在矩形ABCD中,P是边AD上的一个动点,连接BP,CP,过点B作射线,交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB =2,BC=5,AP=x,PM=y,其中2<x≤5.则下列结论中,正确的个数为( )(1)y与x的关系式为y=x﹣;(2)当AP=4时,△ABP∽△DPC;(3)当AP=4时,tan∠EBP=.A.0个B.1个C.2个D.3个【答案】C【解答】解:(1)过点P作PF⊥BC于点F,如图,∵四边形ABCD是矩形,PF⊥BC,∴四边形ABFP是矩形,∴PF=AB=2,BF=AP=x,∴AM=AP﹣PM=x﹣y.∵∠ABE=∠CBP,∠A=∠PFB=90°,∴△ABM∽△FBP,∴,∴.∴x2﹣xy=4.∴y=x﹣.∴(1)的结论正确;(2)当AP=4时,DP=AD﹣AP=5﹣4=1,∵,=,∴.∵∠A=∠D=90°,∴△ABP∽△DPC.∴(2)的结论正确;(3)由(2)知:当AP=4时,△ABP∽△DPC,∴∠ABP=∠DPC.∵∠BPA+∠ABP=90°,∴∠APB+∠DPC=90°.∴∠CPB=90°.∴∠BPE=90°.∴tan∠EBP=.由(1)知:PM=AP﹣=3,BP==2,CP==.∵AD∥BC,∴.∴,解得:PE=,∴tan∠EBP===,∴(3)的结论错误,综上,正确的结论为:(1)(2),故选:C.二十四.相似三角形的判定与性质(共1小题)31.(2023•绥化)如图,在正方形ABCD中,点E为边CD的中点,连接AE,过点B作BF ⊥AE于点F,连接BD交AE于点G,FH平分∠BFG交BD于点H.则下列结论中,正确的个数为( )①AB2=BF•AE②S△BGF:S△BAF=2:3③当AB=a时,BD2﹣BD•HD=a2A.0个B.1个C.2个D.3个【答案】D【解答】解:∵四边形ABCD是正方形,∴∠BAD=∠ADE=90°,AB=AD,∵BF⊥AE,∴∠ABF=90°﹣∠BAF=∠DAE,∴cos∠ABF=cos∠EAD,即,又AB=AD,∴AB2=BF•AE.故①正确;设正方形的边长为a,∵点E为边CD的中点,∴,∴.在Rt△ABE中,,∴.在Rt△ADE中,,∴.∵AB∥DE,∴△GAB∽△GED,∴=2,∴,∴,∴,∴S△BGF:S△ABF=2:3.故②正确;∵AB=a,∴AD=AB=a,∴BD2=AB2+AD2=2a2,如图所示,过点H分别作BF,AE的垂线,垂足分别为M,N,如图,又∵BF⊥AE,HM⊥BF,HN⊥AE,∴四边形FMHN是矩形,∵FH是∠BFG的角平分线,∴HM=HN,∴四边形FMHN是正方形,∴FN=HM=HN,∴,,∴.设MH=b,则BF=BM+FM=BM+MH=3b+b=4b,在Rt△BMH中,.∵,∴,解得:.∴,∴BD2﹣BD•HD=2a2﹣a×a=a2.故③正确.故选:D.二十五.简单组合体的三视图(共2小题)32.(2023•绥化)如图是一个正方体,被切去一角,则其左视图是( )A.B.C.D.【答案】B【解答】解:该几何体的左视图是:故选:B.33.(2021•绥化)如图所示,图中由7个完全相同小正方体组合而成的几何体,则这个几何体的左视图是( )A.B.C.D.【答案】C【解答】解:从几何体的左面看,共有三列,从左到右每列小正方形的个数分别为3、1、1.故选:C.二十六.频数(率)分布直方图(共1小题)34.(2023•绥化)绥化市举办了2023年半程马拉松比赛,赛后随机抽取了部分参赛者的成绩(单位:分钟),并制作了如下的参赛者成绩组别表、扇形统计图和频数分布直方图.则下列说法正确的是( )组别参赛者成绩A70≤x<80B80≤x<90C90≤x<100D100≤x<110E110≤x<120A.该组数据的样本容量是50人B.该组数据的中位数落在90~100这一组C.90~100这组数据的组中值是96D.110~120这组数据对应的扇形统计图的圆心角度数为51°【答案】B【解答】解:A.该组数据的样本容量是:12÷24%=50,样本容量没有单位,原说法错误,故本选项不符合题意;B.80~90这一组数据有:50﹣4﹣7﹣12×2=15(人),所以该组数据的中位数落在90~100这一组,原说法正确,故本选项符合题意;C.90~100这组数据的组中值是95,原说法错误,故本选项不符合题意;D.110~120这组数据对应的扇形统计图的圆心角度数为:360°×=50.4°,原说法错误,故本选项不符合题意.故选:B.二十七.众数(共1小题)35.(2021•绥化)近些年来,移动支付已成为人们的主要支付方式之一.某企业为了解员工某月A,B两种移动支付方式的使用情况,从企业2000名员工中随机抽取了200人,发现样本中A,B两种支付方式都不使用的有10人,样本中仅使用A种支付方式和仅使用B种支付方式的员工支付金额a(元)分布情况如表:支付金额a(元)0<a≤10001000<a≤2000a>2000仅使用A36人18人6人仅使用B20人28人2人下面有四个推断:①根据样本数据估计,企业2000名员工中,同时使用A,B两种支付方式的为800人;②本次调查抽取的样本容量为200人;③样本中仅使用A种支付方式的员工,该月支付金额的中位数一定不超过1000元;④样本中仅使用B种支付方式的员工,该月支付金额的众数一定为1500元.其中正确的是( )A.①③B.③④C.①②D.②④【答案】A【解答】解:①根据样本数据估计,企业2000名员工中,同时使用A,B两种支付方式的大约有2000×=800(人),此推断合理,符合题意;②本次调查抽取的样本容量为200,故原说法错误,不符合题意;③样本中仅使用A种支付方式的员工,第30、31个数据均落在0<a≤1000,所以上个月的支付金额的中位数一定不超过1000元,此推断合理,符合题意;④样本中仅使用B种支付方式的员工,上个月的支付金额的众数无法估计,此推断不正确,不符合题意.故推断正确的有①③,故选:A.二十八.方差(共1小题)36.(2022•绥化)学校组织学生进行知识竞赛,5名参赛选手的得分分别为:96,97,98,96,98.下列说法中正确的是( )A.该组数据的中位数为98B.该组数据的方差为0.7C.该组数据的平均数为98D.该组数据的众数为96和98。

2024年黑龙江省绥化市中考数学试题(含答案解析)

2024年黑龙江省绥化市中考数学试题(含答案解析)

二。

二四年绥化市初中毕业学业考试数学试题考生注意:考试时间120分钟,总分120分一、单项选择题(本题共12个小题,每小题3分,共36分)请在答题卡上用2B 铅笔将你的选项所对应的方框涂黑1.实数-一的相反数是()2025A. 2025B. -20251C.---------2025D.120252.下列所述图形中,是轴对称图形但不是中心对称图形的是( )A.圆B.菱形C.平行四边形D.等腰三角形3.某几何体是由完全相同的小正方体组合而成,下图是这个几何体的三视图,那么构成这个几何体的小正方体的个数是()任主视图左视图俯视图A. 5个 B.6个 C.7个D. 8个4.若式子J2m-3有意义,则沮的取值范围是2 3A. m<— B. m > ——3 25.下列计算中,结果正确的是()3C. m> —2C. ^/9 = +3 D.(一尤2,)3 =尤6,36.小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是-2和-5.则原来的方程是()A. %2 + 6jv + 5 = 0B. x 2-7x + 10 = 0C. 5工 + 2 = 0D. x 2-6x -10 = 07.某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:鞋码3637383940A ) D. M 3B. (• + /?) = + Z?2平均每天销售量/双1012201212如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的()A.平均数B.中位数C.众数D.方差8. 一艘货轮在静水中的航速为40km/h,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆 流航行80km 所用时间相等,则江水的流速为()A. 5km/hB. 6km/hC. 7km/hD. 8km/h 9. 如图,矩形Q4BC 各顶点的坐标分别为0(0,0), A (3,0), B (3,2), C (0,2),以原点O 为位似中 心,将这个矩形按相似比!缩小,则顶点3在第一象限对应点的坐标是()A.(9,4)B.(4,9) C D ・10. 下列叙述正确的是()A. 顺次连接平行四边形各边中点一定能得到一个矩形B. 平分弦的直径垂直于弦C. 物体在灯泡发出的光照射下形成的影子是中心投影D. 相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等11. 如图,四边形A8C 。

2023年黑龙江省绥化市(初三学业水平考试)数学中考真题试卷含详解

2023年黑龙江省绥化市(初三学业水平考试)数学中考真题试卷含详解

二〇二三年绥化市初中毕业学业考试数学试卷考生注意:1.考试时间120分钟2.本试卷共三道大题,28个小题3.所有答案都必须写在答题卡上所对应的题号后的指定区域内一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2.计算052-+的结果是()A.3- B.7C.4- D.63.如图是一个正方体,被切去一角,则其左视图是()A. B. C. D.4.纳米是非常小的长度单位,1nm 0.000000001m =,把0.000000001用科学记数法表示为()A.9110-⨯ B.8110-⨯ C.8110⨯ D.9110⨯5.下列计算中,结果正确的是()A.333()pq p q -= B.3228x x x x x ⋅+⋅= C.5=± D.()326a a =6.将一副三角板按下图所示摆放在一组平行线内,125∠=︒,230∠=︒,则3∠的度数为()A.55︒B.65︒C.70︒D.75︒7.下列命题中叙述正确的是()A.若方差22s s >乙甲,则甲组数据的波动较小B.直线外一点到这条直线的垂线段,叫做点到直线的距离C.三角形三条中线的交点叫做三角形的内心D.角的内部到角的两边的距离相等的点在角的平分线上8.绥化市举办了2023年半程马拉松比赛,赛后随机抽取了部分参赛者的成绩(单位:分钟),并制作了如下的参赛者成绩组别表、扇形统计图和频数分布直方图.则下列说法正确的是()组别参赛者成绩A7080x≤<B8090x≤<C90100x≤<D100110x≤<E110120x≤<A.该组数据的样本容量是50人B.该组数据的中位数落在90~100这一组C.90~100这组数据的组中值是96D.110~120这组数据对应的扇形统计图的圆心角度数为51︒9.在平面直角坐标系中,点A在y轴的正半轴上,AC平行于x轴,点B,C的横坐标都是3,2BC=,点D在AC上,且其横坐标为1,若反比例函数kyx=(0x>)的图像经过点B,D,则k的值是()A.1B.2C.3D.3210.某运输公司,运送一批货物,甲车每天运送货物总量的14.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物12天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x 天,由题意列方程,正确的是()A.11142x += B.11111424x ⎛⎫++= ⎪⎝⎭C.1111142x⎛⎫++= ⎪⎝⎭ D.11111442x⎛⎫++= ⎪⎝⎭11.如图,在菱形ABCD 中,60A ∠=︒,4AB =,动点M ,N 同时从A 点出发,点M 以每秒2个单位长度沿折线A B C --向终点C 运动;点N 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,AMN 的面积为y 个平方单位,则下列正确表示y 与x 函数关系的图象是()A. B. C. D.12.如图,在正方形ABCD 中,点E 为边CD 的中点,连接AE ,过点B 作BF AE ⊥于点F ,连接BD 交AE 于点G ,FH 平分BFG ∠交BD 于点H .则下列结论中,正确的个数为()①2AB BF AE =⋅;②:2:3BGF BAF S S =△△;③当AB a =时,22BD BD HD a -⋅=A.0个B.1个C.2个D.3个二、填空题13.因式分解:2x xy xz yz +--=_______.14.若式子5x x有意义,则x 的取值范围是_______.15.在4张完全相同的卡片上,分别标出1,2,3,4,从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是_________.16.已知一元二次方程256x x x +=+的两根为1x 与2x ,则1211+x x 的值为_______.17.化简:2222142442x x x x x x x x x +--⎛⎫-÷=⎪--+-⎝⎭_______.18.如图,O 的半径为2cm ,AB 为O 的弦,点C 为 AB 上的一点,将 AB 沿弦AB 翻折,使点C 与圆心O 重合,则阴影部分的面积为_______.(结果保留π与根号)19.如图,在平面直角坐标系中,ABC 与AB C ''△的相似比为12∶,点A 是位似中心,已知点(2,0)A ,点(,)C a b ,90C ∠=︒.则点C '的坐标为_______.(结果用含a ,b的式子表示)20.如图,ABC 是边长为6的等边三角形,点E 为高BD 上的动点.连接CE ,将CE 绕点C 顺时针旋转60︒得到CF .连接AF,EF ,DF ,则CDF 周长的最小值是______.21.在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= _______.(结果用含n 的代数式表示)22.已知等腰ABC ,120A ∠=︒,2AB =.现将ABC 以点B 为旋转中心旋转45︒,得到A BC ''△,延长C A ''交直线BC 于点D .则A D '的长度为_______.三、解答题23.已知:点P 是O 外一点.(1)尺规作图:如图,过点P 作出O 的两条切线PE ,PF ,切点分别为点E 、点F .(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,若点D 在O 上(点D 不与E ,F 两点重合),且30EPF ∠=︒.求EDF ∠的度数.24.如图,直线MN 和EF 为河的两岸,且MN EF ∥,为了测量河两岸之间的距离,某同学在河岸FE 的B 点测得30CBE ∠=︒,从B 点沿河岸FE 的方向走40米到达D 点,测得45CDE ∠=︒.(1)求河两岸之间的距离是多少米?(结果保留根号)(2)若从D 点继续沿DE 的方向走12)+米到达P 点.求tan CPE ∠的值.25.某校组织师生参加夏令营活动,现准备租用A 、B 两型客车(每种型号的客车至少租用一辆).A 型车每辆租金500元,B 型车每辆租金600元.若5辆A 型和2辆B 型车坐满后共载客310人;3辆A 型和4辆B 型车坐满后共载客340人.(1)每辆A 型车、B 型车坐满后各载客多少人?(2)若该校计划租用A 型和B 型两种客车共10辆,总租金不高于5500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A 、B 两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5小时后,乙车才从学校出发,却比甲车早0.5小时到达目的地.下图是两车离开学校的路程s (千米)与甲车行驶的时间t (小时)之间的函数图象.根据图象信息,求甲乙两车第一次相遇后,t 为何值时两车相距25千米.26.已知:四边形ABCD 为矩形,4AB =,3AD =,点F 是BC 延长线上的一个动点(点F 不与点C 重合).连接AF 交CD 于点G .(1)如图一,当点G 为CD 的中点时,求证:ADG FCG ≅△△.(2)如图二,过点C 作CE AF ⊥,垂足为E .连接BE ,设BF x =,CE y =.求y 关于x 的函数关系式.(3)如图三,在(2)的条件下,过点B 作BM BE ⊥,交FA 的延长线于点M .当1CF =时,求线段BM 的长.27.如图,MN 为⊙O 的直径,且15MN =,MC 与ND 为圆内的一组平行弦,弦AB 交MC 于点H .点A 在¼MC上,点B 在»NC上,90OND AHM ∠+∠=︒.(1)求证:MH CH AH BH ⋅=⋅.(2)求证: AC BC=.(3)在⊙O 中,沿弦ND 所在的直线作劣弧 ND 的轴对称图形,使其交直径MN 于点G .若3sin 5CMN ∠=,求NG 的长.28.如图,抛物线21y ax bx c =++的图象经过(6,0)A -,(2,0)B -,(0,6)C 三点,且一次函数6y kx =+的图象经过点B .(1)求抛物线和一次函数的解析式.(2)点E ,F 为平面内两点,若以E 、F 、B 、C 为顶点的四边形是正方形,且点E 在点F 的左侧.这样的E ,F 两点是否存在?如果存在,请直接写出所有满足条件的点E 的坐标:如果不存在,请说明理由.(3)将抛物线21y ax bx c =++的图象向右平移8个单位长度得到抛物线2y ,此抛物线的图象与x 轴交于M ,N两点(M 点在N 点左侧).点P 是抛物线2y 上的一个动点且在直线NC 下方.已知点P 的横坐标为m .过点P 作PD NC ⊥于点D .求m 为何值时,12CD PD +有最大值,最大值是多少?二〇二三年绥化市初中毕业学业考试数学试卷一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A、是轴对称图形,不是中心对称图形,故A选项不合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形又是中心对称图形,故C选项合题意;D、不是轴对称图形,是中心对称图形,故D选项不合题意.故选:C.【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.2.计算052-+的结果是()A.3-B.7C.4-D.6【答案】D【分析】根据求一个数的绝对值,零指数幂进行计算即可求解.【详解】解:052-+516=+=,故选:D.【点睛】本题考查了求一个数的绝对值,零指数幂,熟练掌握求一个数的绝对值,零指数幂是解题的关键.3.如图是一个正方体,被切去一角,则其左视图是()A. B. C. D.【答案】B【分析】根据左视图的意义判断即可.【详解】根据题意,该几何体的左视图为:,故选B .【点睛】本题考查了三视图的画法,熟练掌握三视图的空间意义是解题的关键.4.纳米是非常小的长度单位,1nm 0.000000001m =,把0.000000001用科学记数法表示为()A.9110-⨯B.8110-⨯ C.8110⨯ D.9110⨯【答案】A【分析】用科学记数法表示绝对值较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为整数.【详解】解:90.000000001110-=⨯.故选:A .【点睛】此题主要考查了用科学记数法表示绝对值较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a 与n 的值是解题的关键.5.下列计算中,结果正确的是()A.333()pq p q -=B.3228x x x x x ⋅+⋅=C.5=± D.()326a a =【答案】D【分析】根据积的乘方与幂的乘方运算,同底数幂的乘法、合并同类项,算术平方根,进行计算即可求解.【详解】解:A.333()pq p q =--,故该选项不正确,不符合题意;B.43222x x x x x ⋅+⋅=,故该选项不正确,不符合题意;C.5=,故该选项不正确,不符合题意;D.()326a a =,故该选项正确,符合题意;故选:D .【点睛】本题考查了积的乘方与幂的乘方运算,同底数幂的乘法、合并同类项,算术平方根,熟练掌握以上运算法则是解题的关键.6.将一副三角板按下图所示摆放在一组平行线内,125∠=︒,230∠=︒,则3∠的度数为()A.55︒B.65︒C.70︒D.75︒【答案】C【分析】根据两直线平行内错角相等即可求解.【详解】解:依题意,190345∠+︒=∠+︒,∵125∠=︒,∴370∠=︒,故选:C .【点睛】本题考查了平行线的性质,熟练掌握两直线平行内错角相等是解题的关键.7.下列命题中叙述正确的是()A.若方差22s s >乙甲,则甲组数据的波动较小B.直线外一点到这条直线的垂线段,叫做点到直线的距离C.三角形三条中线的交点叫做三角形的内心D.角的内部到角的两边的距离相等的点在角的平分线上【答案】D【分析】根据方差的意义,点到直线的距离,三角形的重心的定义,角平分线的性质,逐项分析判断即可求解.【详解】解:A.若方差22s s >乙甲,则乙组数据的波动较小,故该选项不正确,不符合题意;B.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故该选项不正确,不符合题意;C.三角形三条中线的交点叫做三角形的重心,故该选项不正确,不符合题意;D.角的内部到角的两边的距离相等的点在角的平分线上,故该选项正确,符合题意;故选:D .【点睛】本题考查了方差的意义,点到直线的距离,三角形的重心的定义,角平分线的性质,熟练掌握以上知识是解题的关键.8.绥化市举办了2023年半程马拉松比赛,赛后随机抽取了部分参赛者的成绩(单位:分钟),并制作了如下的参赛者成绩组别表、扇形统计图和频数分布直方图.则下列说法正确的是()组别参赛者成绩A 7080x ≤<B 8090x ≤<C 90100x ≤<D 100110x ≤<E110120x ≤<A.该组数据的样本容量是50人B.该组数据的中位数落在90~100这一组C.90~100这组数据的组中值是96D.110~120这组数据对应的扇形统计图的圆心角度数为51︒【答案】B【分析】根据C 组的人数除以占比求得样本的容量,结合统计图求得8090x ≤<的人数为15,进而根据中位数的定义,即可判断B 选项,根据组中值为901002+=95,即可判断C 选项,根据110~120的占比乘以360︒,即可判断D 选项.【详解】解:A 、该组数据的样本容量是1224%50÷=,故该选项不正确,不符合题意;B 、8090x ≤<的人数为:5041212715----=,41525+<,4151225++>,该组数据的中位数落在90~100这一组,故该选项正确,符合题意;C 、90~100这组数据的组中值是95,故该选项不正确,不符合题意;D 、110~120这组数据对应的扇形统计图的圆心角度数为736050.450⨯︒=︒,故该选项不正确,不符合题意;故选:B .【点睛】本题考查了样本的容量,条形统计图与扇形统计图信息关联,中位数的定义,求扇形统计图的圆心角的度数,求频数分布直方图组中值,从统计图表中获取信息是解题的关键.9.在平面直角坐标系中,点A 在y 轴的正半轴上,AC 平行于x 轴,点B ,C 的横坐标都是3,2BC =,点D 在AC上,且其横坐标为1,若反比例函数ky x=(0x >)的图像经过点B ,D ,则k 的值是()A.1B.2C.3D.32【答案】C【分析】设()3,B m ,则()()3,2,1,2C m D m ++根据反比例函数的性质,列出等式计算即可.【详解】设()3,B m ,∵点B ,C 的横坐标都是3,2BC =,AC 平行于x 轴,点D 在AC 上,且其横坐标为1,∴()()3,2,1,2C m D m ++,∴32m m =+,解得1m =,∴()3,1B ,∴313k =⨯=,故选C .【点睛】本题考查了反比例函数解析式的确定,熟练掌握k的意义,反比例函数的性质是解题的关键.10.某运输公司,运送一批货物,甲车每天运送货物总量的14.在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物12天,运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x 天,由题意列方程,正确的是()A.11142x += B.11111424x ⎛⎫++= ⎪⎝⎭C.1111142x⎛⎫++= ⎪⎝⎭ D.11111442x⎛⎫++= ⎪⎝⎭【答案】B【分析】设乙车单独运送这批货物需x 天,由题意列出分式方程即可求解.【详解】解:设乙车单独运送这批货物需x 天,由题意列方程11111424x ⎛⎫++= ⎪⎝⎭,故选:B .【点睛】本题考查了列分式方程,根据题意找到等量关系列出方程是解题的关键.11.如图,在菱形ABCD 中,60A ∠=︒,4AB =,动点M ,N 同时从A 点出发,点M 以每秒2个单位长度沿折线A B C --向终点C 运动;点N 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,AMN 的面积为y 个平方单位,则下列正确表示y 与x 函数关系的图象是()A. B. C. D.【答案】A【分析】连接BD ,过点B 作BE AD ⊥于点E ,根据已知条件得出ABD △是等边三角形,进而证明AMN ABE ∽得出90ANM AEB ∠=∠=︒,当04t <<时,M 在AB 上,当48t ≤<时,M 在BC 上,根据三角形的面积公式得到函数关系式,【详解】解:如图所示,连接BD ,过点B 作BE AD ⊥于点E ,当04t <<时,M 在AB 上,菱形ABCD 中,60A ∠=︒,4AB =,∴AB AD =,则ABD △是等边三角形,∴122AE ED AD ===,BE ==∵2,AM x AN x ==,∴2AM ABAN AE==,又A A ∠=∠∴AMN ABE ∽∴90ANM AEB ∠=∠=︒∴MN ==,∴2122y x x ==当48t ≤<时,M 在BC 上,∴1122y AN BE x =⨯=⨯=,综上所述,04t <<时的函数图象是开口向上的抛物线的一部分,当48t ≤<时,函数图象是直线的一部分,故选:A .【点睛】本题考查了动点问题的函数图象,二次函数图象的性质,一次函数图象的性质,菱形的性质,勾股定理,等边三角形的性质与判定,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.12.如图,在正方形ABCD 中,点E 为边CD 的中点,连接AE ,过点B 作BF AE ⊥于点F ,连接BD 交AE 于点G ,FH 平分BFG ∠交BD 于点H .则下列结论中,正确的个数为()①2AB BF AE =⋅;②:2:3BGF BAF S S =△△;③当AB a =时,22BD BD HD a -⋅=A.0个 B.1个C.2个D.3个【答案】D【分析】①根据题意可得90ABF BAF DAE ∠=︒-∠=∠,则cos cos ABF EAD ∠=∠,即BF ADAB AE=,又AB AD =,即可判断①;②设正方形的边长为a ,根据勾股定理求得AF ,证明GAB GED ∽,根据相似三角形的性质求得GE ,进而求得FG ,即可判断②;过点H 分别作,BF AE 的垂线,垂足分别为,M N ,根据②的结论求得BH ,勾股定理求得BD ,即可判断③.【详解】∵四边形ABCD 是正方形,∴90BAD ADE ∠=∠=︒,AB AD =∵BF AE⊥∴90ABF BAF DAE ∠=︒-∠=∠∴cos cos ABF EAD ∠=∠即BF ADAB AE=,又AB AD =,∴2AB BF AE =⋅,故①正确;设正方形的边长为a ,∵点E 为边CD 的中点,∴2a DE =,∴1tan tans 2ABF EAD ∠=∠=,在Rt ABE △中,AB a ===,∴5AF a =在Rt ADE △中,2AE ==∴55352510EF AE AF a =-=-=,∵AB DE ∥∴GAB GED ∽∴2AG ABGE DE==∴136GE AE a ==∴25615FG AE AF GE a a a a =--=--=∴322515AF FG ==∴:2:3BGF BAF S S =△△,故②正确;∵AB a =,∴22222BD AB AD a =+=,如图所示,过点H 分别作,BF AE 的垂线,垂足分别为,M N,又∵BF AE ⊥,∴四边形FMHN 是矩形,∵FH 是BFG ∠的角平分线,∴HM HN =,∴四边形FMHN 是正方形,∴FN HM HN ==∵25252,515BF AF a FG a ===∴13MH FG BM BF ==设MH b =,则34BF BM FM BM MH b b b =+=+=+=在Rt BMH中,BH ==,∵5BF a =∴45a b =解得:10b a =∴52102BH a a ==,∴222222B a D BD HD a a =--⋅⨯=,故④正确.故选:D .【点睛】本题考查了解直角三角形,相似三角形的性质与判定,正方形的性质,熟练掌握相似三角形的性质与判定是解题的关键.二、填空题13.因式分解:2x xy xz yz +--=_______.【答案】()()x y x z +-【分析】先分组,然后根据提公因式法,因式分解即可求解.【详解】解:2x xy xz yz +--=()()()()x x y z x y x y x z +-+=+-,故答案为:()()x y x z +-.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题的关键.14.若式子5x x有意义,则x 的取值范围是_______.【答案】5x ≥-且0x ≠##0x ≠且5x ≥-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵式子5x x有意义,∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.15.在4张完全相同的卡片上,分别标出1,2,3,4,从中随机抽取1张后,放回再混合在一起.再随机抽取一张,那么第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是_________.【答案】12##0.5【分析】根据题意列表法求概率即可求解.【详解】解:列表如下,1234111 1=1213142221=212=232142=333 1=3 2313=344441=42 2=43414=共有16种等可能结果,符合题意的有8种,∴第二次抽取卡片上的数字能够整除第一次抽取卡片上的数字的概率是81162=,故答案为:12.【点睛】本题考查了列表法求概率,整除,熟练掌握列表法求概率是解题的关键.16.已知一元二次方程256x x x +=+的两根为1x 与2x ,则1211+x x 的值为_______.【答案】23-【分析】根据一元二次方程根与系数的关系得出121246x x x x +==-,,将分式通分,代入即可求解.【详解】解:∵一元二次方程256x x x +=+,即2460x x --=,的两根为1x 与2x ,∴121246x x x x +==-,,∴1211+x x 12124263x x x x +===--,故答案为:23-.【点睛】本题考查了分式的化简求值,一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.17.化简:2222142442x x x x x x x x x +--⎛⎫-÷= ⎪--+-⎝⎭_______.【答案】12x -##12x-+【分析】先根据分式的加减计算括号内的,同时将除法转化为乘法,再根据分式的性质化简即可求解.【详解】解:2222142442x x x x x x x x x+--⎛⎫-÷⎪--+-⎝⎭()()()()()2221242x x x x x x x x x +----=⨯--()()2222442x x x x x x x x ---+=⨯--12x =-;故答案为:12x -.【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解题的关键.18.如图,O 的半径为2cm ,AB 为O 的弦,点C 为 AB 上的一点,将 AB 沿弦AB 翻折,使点C 与圆心O 重合,则阴影部分的面积为_______.(结果保留π与根号)【答案】22π3cm 3⎛⎫-⎪⎝⎭【分析】根据折叠的性质得出AOC 是等边三角形,则60AOC ∠=︒,1OD CD ==,根据阴影部分面积AOC AOC S S =- 扇形即可求解.【详解】解:如图所示,连接,OA OC ,设,AB CO 交于点D∵将 AB 沿弦AB 翻折,使点C 与圆心O 重合,∴AC AO =,OC AB ⊥又OA OC =∴OA OC AC ==,∴AOC 是等边三角形,∴60AOC ∠=︒,1OD CD ==,∴AD ==,∴阴影部分面积)226012π22πcm 36023AOC AOC S S =-=⨯-⨯= 扇形故答案为:22πcm 3⎛-⎝.19.如图,在平面直角坐标系中,ABC 与AB C ''△的相似比为12∶,点A 是位似中心,已知点(2,0)A ,点(,)C a b ,90C ∠=︒.则点C '的坐标为_______.(结果用含a ,b 的式子表示)【答案】(62,2)a b --【分析】过点,C C '分别作x 轴的垂线,CD C D ''垂足分别为,D D ',根据题意得出2AD AD '=,则2,AD a CD b =-=,得出()224,0D a '-+,即可求解.【详解】解:如图所示,过点,C C '分别作x 轴的垂线,CD C D ''垂足分别为,D D ',∵ABC 与AB C ''△的相似比为12∶,点A 是位似中心,(2,0)A ∴2AD AD '=∵(,)C a b ,∴2,AD a CD b =-=,∴24,2A D a C D b '''=-=,∴()224,0D a '-+∴C '(62,2)a b --故答案为:(62,2)a b --.【点睛】本题考查了求位似图形的坐标,熟练掌握位似图形的性质是解题的关键.20.如图,ABC 是边长为6的等边三角形,点E 为高BD 上的动点.连接CE ,将CE 绕点C 顺时针旋转60︒得到CF .连接AF ,EF ,DF ,则CDF 周长的最小值是______.【答案】3+3+【分析】根据题意,证明CBE CAF ≌,进而得出F 点在射线AF 上运动,作点C 关于AF 的对称点C ',连接DC ',设CC '交AF 于点O ,则=90AOC ∠︒,则当,,D F C '三点共线时,FC FD +取得最小值,即FC FD F C F D CD ''''+=+=,进而求得C D ',即可求解.【详解】解:∵E 为高BD 上的动点.∴1302CBE ABC ∠=∠=︒∵将CE 绕点C 顺时针旋转60︒得到CF .ABC 是边长为6的等边三角形,∴,60,CE CF ECF BCA BC AC=∠=∠=︒=∴CBE CAF≌∴30CAF CBE ∠=∠=︒,∴F 点在射线AF 上运动,如图所示,作点C 关于AF 的对称点C ',连接DC ',设CC '交AF 于点O ,则=90AOC ∠︒在Rt AOC 中,30CAO ∠=︒,则132CO AC ==,则当,,D F C '三点共线时,FC FD +取得最小值,即FC FD F C F D CD ''''+=+=∵6CC AC '==,ACO C CD '∠=∠,CO CD=∴ACO C CD' ≌∴90C DC AOC '∠=∠=︒在C DC ' 中,C D '==,∴CDF 周长的最小值为3CD FC CD CD DC '++=+=+故答案为:3+【点睛】本题考查了轴对称求线段和的最值问题,等边三角形的性质与判定,全等三角形的性质与判定,勾股定理,熟练掌握等边三角形的性质与判定以及轴对称的性质是解题的关键.21.在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= _______.(结果用含n 的代数式表示)【答案】22n n -##22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.22.已知等腰ABC ,120A ∠=︒,2AB =.现将ABC 以点B 为旋转中心旋转45︒,得到A BC ''△,延长C A ''交直线BC 于点D .则A D '的长度为_______.【答案】44+-【分析】根据题意,先求得BC =,当ABC 以点B 为旋转中心逆时针旋转45︒,过点B 作BE A B '⊥交A D '于点E ,当ABC 以点B 为旋转中心顺时针旋转45︒,过点D 作DF BC '⊥交BC '于点F ,分别画出图形,根据勾股定理以及旋转的性质即可求解.【详解】解:如图所示,过点A 作AM BC ⊥于点M ,∵等腰ABC ,120BAC ∠=︒,2AB =.∴30ABC ACB ∠=∠=︒,∴112AM AB ==,BM CM ===∴BC =,如图所示,当ABC 以点B 为旋转中心逆时针旋转45︒,过点B 作BE A B '⊥交A D '于点E ,∵120BAC ∠=︒,∴60DA B '∠=︒,30A EB '∠=︒,在Rt A BE ' 中,24A E A B ''==,BE ==∵等腰ABC ,120BAC ∠=︒,2AB =.∴30ABC ACB ∠=∠=︒,∵ABC 以点B 为旋转中心逆时针旋转45︒,∴45ABA '∠=︒,∴180********DBE ∠=︒-︒-︒-︒=︒,1804530105A BD '∠=︒-︒-︒=︒在A BD ' 中,1801806010515D DA B A BD ∠=︒-∠-∠=︒-︒-︒=''︒,∴D EBD ∠=∠,∴EB ED ==∴4A D A E DE ''=+=+如图所示,当ABC 以点B 为旋转中心顺时针旋转45︒,过点D 作DF BC '⊥交BC '于点F ,在BFD △中,45BDF CBC ∠'=∠=︒,∴DF BF=在Rt DC F ' 中,30C '∠=︒∴3'3DF FC =∴33BC BF BF =+=∴33DF BF ==∴2623DC DF '==-∴63243A D C D A C ''''=-=-=-,综上所述,A D '的长度为423-或43+,故答案为:423-或43+.【点睛】本题考查了旋转的性质,勾股定理,含30度角的直角三角形的性质,熟练掌握旋转的性质,分类讨论是解题的关键.三、解答题23.已知:点P 是O 外一点.(1)尺规作图:如图,过点P 作出O 的两条切线PE ,PF ,切点分别为点E 、点F .(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,若点D 在O 上(点D 不与E ,F 两点重合),且30EPF ∠=︒.求EDF ∠的度数.【答案】(1)见解析(2)75EDF ∠=︒或105︒【分析】(1)①连接PO ,分别以点,P O 为圆心,大于12PO 的长为半径画圆,两圆交于点,M N 两点,作直线MN交OP 于点A ,②以点A 为圆心,OA 为半径画圆,与O 交于,E F 两点,作直线,PE PF ,(2)根据切线的性质得出90PEO PFO ∠=∠=︒,根据四边形内角和得出150EOF ∠=︒,进而根据圆周角定理以及圆内接四边形对角互补即可求解.【小问1详解】解:如图所示,①连接PO ,分别以点,P O 为圆心,大于12PO 的长为半径画弧,两弧交于点,M N 两点,作直线MN 交OP 于点A ,②以点A 为圆心,OA 为半径画圆,与O 交于,E F 两点,作直线,PE PF ,则直线,PE PF 即为所求;【小问2详解】如图所示,点D 在O 上(点D 不与E ,F 两点重合),且30EPF ∠=︒,∵,PE PF 是O 的切线,∴90PEO PFO ∠=∠=︒,∴360909030150EOF ∠=︒-︒-︒-︒=︒,当点D 在优弧 EF 上时,1752EDF EOF ∠=∠=︒,当点D 在劣弧 EF上时,18075105EDF ∠=︒-︒=︒,∴75EDF ∠=︒或105︒.【点睛】本题考查了切线的性质与判定,直径所对的圆周角是直角,圆内接四边形对角互补,圆周角定理,熟练掌握以上知识是解题的关键.24.如图,直线MN 和EF 为河的两岸,且MN EF ∥,为了测量河两岸之间的距离,某同学在河岸FE 的B 点测得30CBE ∠=︒,从B 点沿河岸FE 的方向走40米到达D 点,测得45CDE ∠=︒.(1)求河两岸之间的距离是多少米?(结果保留根号)(2)若从D 点继续沿DE 的方向走312)+米到达P 点.求tan CPE ∠的值.【答案】(1)河两岸之间的距离是20320米(2)5tan 2CPE ∠=【分析】(1)过点C 作CM EF ⊥于点M ,设CM a =米,在Rt MCB △中,3MB a =,在Rt MCD △中,MD MC a ==,根据40BD =,建立方程,解方程即可求解;(2)根据题意求得MP 的长,进而根据正切的定义,即可求解.【小问1详解】解:如图所示,过点C 作CM EF ⊥于点M ,设CM a =米,∵30CBE ∠=︒∴3tan tan 303CM CBM PB ∠==︒=,∴3MB a =,在Rt MCD △中,tan tan 451CM CDM MD∠==︒=,∴MD MC a ==∴340BD MB MD a a =-=-=解得:320a =答:河两岸之间的距离是20320米;【小问2详解】解:如图所示,依题意,40(12312)523PB BD DP =+=+=+,∴((32035212383MP MB PB =-=++=+在Rt CMP △中,2035tan 2883CM CPM MP ∠===+,∴5tan 2CPE ∠=.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数关系是解题的关键.25.某校组织师生参加夏令营活动,现准备租用A 、B 两型客车(每种型号的客车至少租用一辆).A 型车每辆租金500元,B 型车每辆租金600元.若5辆A 型和2辆B 型车坐满后共载客310人;3辆A 型和4辆B 型车坐满后共载客340人.(1)每辆A 型车、B 型车坐满后各载客多少人?(2)若该校计划租用A 型和B 型两种客车共10辆,总租金不高于5500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A 、B 两型客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300千米,甲车从学校出发0.5小时后,乙车才从学校出发,却比甲车早0.5小时到达目的地.下图是两车离开学校的路程s (千米)与甲车行驶的时间t (小时)之间的函数图象.根据图象信息,求甲乙两车第一次相遇后,t 为何值时两车相距25千米.【答案】(1)每辆A 型车、B 型车坐满后各载客40人、55人(2)共有4种租车方案,租8辆A 型车,2辆B 型车最省钱(3)在甲乙两车第一次相遇后,当3t =小时或113小时时,两车相距25千米【分析】(1)设每辆A 型车、B 型车坐满后各载客x 人、y 人,由题意列出二元一次方程组,解方程组即可求解;(2)设租用A 型车m 辆,则租用B 型车(10)m -辆,由题意列出一元一次不等式组,解不等式组,求整数解即可得出m 的值,设总租金为w 元,根据一次函数的性质即可求解;(3)设s kt =甲,1s k t b =+乙,由题意可知,甲车的函数图像经过(4,300);乙车的函数图像经过(0.5,0),(3.5,300)两点.求出函数解析式,进而即可求解.【小问1详解】解:设每辆A 型车、B 型车坐满后各载客x 人、y 人,由题意得5231034340x y x y +=⎧⎨+=⎩解得4055x y =⎧⎨=⎩答:每辆A 型车、B 型车坐满后各载客40人、55人.【小问2详解】设租用A 型车m 辆,则租用B 型车(10)m -辆,由题意得()()500600105500405510420m m m m ⎧+-≤⎪⎨+-≥⎪⎩解得:2583m ≤≤m 取正整数,∴5m =,6,7,8∴共有4种租车方案设总租金为w 元,则500600(10)1006000w m m m =+-=-+ 1000-<w ∴随着m 的增大而减小∴8m =时,w 最小∴租8辆A 型车,2辆B 型车最省钱.【小问3详解】设s kt =甲,1s k t b =+乙.由题意可知,甲车的函数图象经过(4,300);乙车的函数图象经过(0.5,0),(3.5,300)两点.∴75s t =甲,10050s t =-乙25s s -=乙甲,即100507525t t --=解得3t =。

2022年黑龙江省绥化市中考数学试题及答案解析

2022年黑龙江省绥化市中考数学试题及答案解析

2022年黑龙江省绥化市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.化简|−12|,下列结果中,正确的是( )A. 12B. −12C. 2D. −22.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.3.下列计算中,结果正确的是( )A. 2x2+x2=3x4B. (x2)3=x5C. √−233=−2 D. √4=±24.下列图形中,正方体展开图错误的是( )A.B.C.D.5.若式子√x+1+x−2在实数范围内有意义,则x的取值范围是( )A. x>−1B. x≥−1C. x≥−1且x≠0D. x≤−1且x≠06.下列命题中是假命题的是( )A. 三角形的中位线平行于三角形的第三边,并且等于第三边的一半B. 如果两个角互为邻补角,那么这两个角一定相等C. 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角D. 直角三角形斜边上的中线等于斜边的一半7.如图,线段OA在平面直角坐标系内,A点坐标为(2,5),线段OA绕原点O逆时针旋转90°,得到线段OA′,则点A′的坐标为( )A. (−5,2)B. (5,2)C. (2,−5)D. (5,−2)8.学校组织学生进行知识竞赛,5名参赛选手的得分分别为:96,97,98,96,98.下列说法中正确的是( )A. 该组数据的中位数为98B. 该组数据的方差为0.7C. 该组数据的平均数为98D. 该组数据的众数为96和989.有一个容积为24m3的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟.设细油管的注油速度为每分钟xm3,由题意列方程,正确的是( )A. 12x +124x=30 B. 15x+154x=24 C. 30x+302x=24 D. 12x+122x=3010.已知二次函数y=ax2+bx+c的部分函数图象如图所示,则一次函数y=ax+b2−4ac与反比例函数y=4a+2b+cx在同一平面直角坐标系中的图象大致是( )A.B.C.D.11.小王同学从家出发,步行到离家a米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y(单位:米)与出发时间x(单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为( )A. 2.7分钟B. 2.8分钟C. 3分钟D. 3.2分钟12.如图,在矩形ABCD中,P是边AD上的一个动点,连接BP,CP,过点B作射线,交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC= 5,AP=x,PM=y,其中2<x≤5.则下列结论中,正确的个数为( )(1)y与x的关系式为y=x−4x;(2)当AP=4时,△ABP∽△DPC;(3)当AP=4时,tan∠EBP=35.A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共10小题,共30.0分)13.一个不透明的箱子中有5个红球和若干个黄球,除颜色外无其它差别.若任意摸出一个球,摸出红球的概率为14,则这个箱子中黄球的个数为______个.14.因式分解:(m+n)2−6(m+n)+9=______.15.不等式组{3x−6>0x>m的解集为x>2,则m的取值范围为______.16.已知圆锥的高为8cm,母线长为10cm,则其侧面展开图的面积为______.17.设x1与x2为一元二次方程12x2+3x+2=0的两根,则(x1−x2)2的值为______.18.定义一种运算:sin(α+β)=sinαcosβ+cosαsinβ,sin(α−β)=sinαcosβ−cosαsinβ.例如:当α=45°,β=30°时,sin(45°+30°)=√22×√32+√22×12=√6+√24,则sin15°的值为______.19.如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为______度.20.某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元.则有______种购买方案.21.如图,∠AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1⊥OA交射线OB于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2⊥OA交射线OB于K2,在射线OA上截取P2P3,使P2P3=P2K2…按照此规律,线段P2023K2023的长为______.22.在长为2,宽为x(1<x<2)的矩形纸片上,从它的一侧,剪去一个以矩形纸片宽为边长的正方形(第一次操作);从剩下的矩形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x的值为______.三、解答题(本大题共6小题,共54.0分)23.已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.24.如图所示,为了测量百货大楼CD顶部广告牌ED的高度,在距离百货大楼30m的A处用仪器测得∠DAC=30°;向百货大楼的方向走10m,到达B处时,测得∠EBC=48°,仪器高度忽略不计,求广告牌ED的高度.(结果保留小数点后一位)(参考数据:√3≈1.732,sin48°≈0.743,cos48°≈0.669,tan48°≈1.111)) 25.在平面直角坐标系中,已知一次函数y1=k1x+b与坐标轴分别交于A(5,0),B(0,52两点,且与反比例函数y2=k2的图象在第一象限内交于P,K两点,连接OP,△OAPx的面积为5.4(1)求一次函数与反比例函数的解析式.(2)当y2>y1时,求x的取值范围.(3)若C为线段OA上的一个动点,当PC+KC最小时,求△PKC的面积.26.我们可以通过面积运算的方法,得到等腰三角形底边上的任意一点到两腰的距离之和与一腰上的高之间的数量关系,并利用这个关系解决相关问题.(1)如图一,在等腰△ABC中,AB=AC,BC边上有一点D,过点D作DE⊥AB于E,DF⊥AC于F,过点C作CG⊥AB于G.利用面积证明:DE+DF=CG.(2)如图二,将矩形ABCD沿着EF折叠,使点A与点C重合,点B落在B′处,点G为折痕EF上一点,过点G作GM⊥FC于M,GN⊥BC于N.若BC=8,BE=3,求GM+GN 的长.(3)如图三,在四边形ABCD中,E为线段BC上的一点,EA⊥AB,ED⊥CD,连接BD,且ABCD =AEDE,BC=√51,CD=3,BD=6,求ED+EA的长.27.如图所示,在⊙O的内接△AMN中,∠MAN=90°,AM=2AN,作AB⊥MN于点P,交⊙O于另一点B,C是AM⏜上的一个动点(不与A,M重合),射线MC交线段BA的延长线于点D,分别连接AC和BC,BC交MN于点E.(1)求证:△CMA∽△CBD.(2)若MN=10,MC⏜=NC⏜,求BC的长.(3)在点C运动过程中,当tan∠MDB=34时,求MENE的值.28.如图,抛物线y=ax2+bx+c交y轴于点A(0,−4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒√2个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.(1)求抛物线的解析式;(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.答案解析1.【答案】A【解析】解:|−12|的绝对值是12,故选:A.利用绝对值的意义解答即可.本题主要考查了绝对值的意义,正确利用绝对值的意义是解题的关键.2.【答案】D【解析】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.是轴对称图形,不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.根据中心对称图形与轴对称图形的概念进行判断即可.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.【答案】C【解析】解:∵2x2+x2=3x2≠3x4,∴选项A不符合题意,∵(x2)3=x6≠x5,∴选项B不符合题意,∵√−233=−2,∴选项C符合题意,∵√4=2≠±2,∴选项D不符合题意,故选:C.利用合并同类项法则,幂的乘方的法则,立方根的意义,算术平方根的意义对每个选项进行分析,即可得出答案.本题考查了合并同类项,幂的乘方,立方根,算术平方根,掌握合并同类项法则,幂的乘方的法则,立方根的意义,算术平方根的意义是解决问题的关键.4.【答案】D【解析】解:由展开图的知识可知,四个小正方形绝对不可能展开成田字形,故D选项都不符合题意.故选:D.根据正方形的展开图得出结论即可.本题主要考查正方体展开图的知识,熟练掌握正方体的侧面展开图是解题的关键.5.【答案】C【解析】解:∵x+1≥0,x≠0,∴x≥−1且x≠0,故选:C.(a≠0)即可得出答案.根据二次根式的被开方数是非负数,a−p=1a p本题考查了二次根式有意义的条件,负整数指数幂,掌握二次根式的被开方数是非负数,a−p=1(a≠0)是解题的关键.a p6.【答案】B【解析】解:三角形的中位线平行于三角形的第三边,并且等于第三边的一半,故A是真命题,不符合题意;如果两个角互为邻补角,那么这两个角一定互补,故B是假命题,符合题意;从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角,故C是真命题,不符合题意;直角三角形斜边上的中线等于斜边的一半,故D是真命题,不符合题意;故选:B.由三角形中位线定理,邻补角定义,切线长定理,直角三角形性质逐项判断即可.本题考查命题与定理,解题的关键是掌握教材上相关的概念和定理.7.【答案】A【解析】解:过点A作AB⊥x轴于点B,过点A′作A′C⊥x轴于点C,如图,∵A点坐标为(2,5),∴OB−2,AB=5.由题意:∠AOA′=90°,OA=OA′.∴∠AOB+∠A′OC=90°.∵∠A′OC+∠A′=90°,∴∠A′=∠AOB.在△A′OC和△OAB中,{∠A′=∠AOB∠A′CO=∠OBA=90°OA′=AO,∴△A′OC≌△OAB(AAS).∴A′C=OB=2,OC=AB=5,∴A′(−5,2).故选:A.过点A作AB⊥x轴于点B,过点A′作A′C⊥x轴于点C,利用旋转的性质和全等三角形的判定与性质解答即可.本题主要考查了图形的旋转与坐标的变化,点的坐标的特征,旋转的性质,全等三角形的判定与性质,利用点的坐标表示出相应线段的长度是解题的关键.8.【答案】D【解析】解:A、将这组数据从小到大排列为:96,96,97,98,98,中位数为97,故A选项不符合题意;C、平均数=96+96+97+98+985=97,故C选项不符合题意;B、方差=15×[(96−96)2×2+(97−96)2+(98−96)2×2]=1.8,故B选项不符合题意;D、该组数据的众数为96和98,故D选项符合题意;故选:D.根据中位数的定义判断A选项;根据算术平均数的计算方法判断C选项;根据方差的计算方法判断B选项;根据众数的定义判断D选项.本题考查了方差,算术平均数,中位数,众数,掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据是解题的关键.9.【答案】A【解析】解:24÷2=12(m3).设细油管的注油速度为每分钟xm3,则粗油管的注油速度为每分钟4xm3,依题意得:12x +124x=30.故选:A.设细油管的注油速度为每分钟xm3,则粗油管的注油速度为每分钟4xm3,利用注油所需时间=注油总量÷注油速度,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.10.【答案】B【解析】解:∵二次函数y=ax2+bx+c的部分函数图象开口向上,∴a>0,∵二次函数y=ax2+bx+c的部分函数图象顶点在x轴下方,开口向上,∴二次函数y=ax2+bx+c的图象与x轴有两个交点,b2−4ac>0,∴一次函数y=ax+b2−4ac的图象经过第一,二,三象限,由二次函数y=ax2+bx+c的部分函数图象可知,点(2,4a+2b+c)在x轴上方,∴4a+2b+c>0,∴y=4a+2b+cx的图象经过第一,三象限,据此可知,符合题意的是B,故选:B.由二次函数y=ax2+bx+c的部分函数图象判断a,b2−4ac及4a+2b+c的符号,即可得到答案.本题考查一次函数,二次函数,反比例函数的图象,解题的关键是掌握三种图象的性质.11.【答案】C【解析】解:由图象可得,小明的速度为a12米/分钟,爸爸的速度为:a(12−4)÷2=a4(米/分钟),设小明出发m分钟两人第一次相遇,出发n分钟两人第二次相遇,a 12m=(m−4)⋅a4,a12n+a4[n−4−(12−4)÷2]=a,解得m=6,n=9,n−m=9−6=3,故选:C.根据题意和函数图象中的数据,可以先表示出两人的速度,然后即可计算出两人第一次和第二次相遇的时间,然后作差即可.本题考查一次函数的应用,解答本题的关键是明确题意,求出两人相遇的时间.12.【答案】C【解析】解:(1)过点P作PF⊥BC于点F,如图,∵四边形ABCD是矩形,PF⊥BC,∴四边形ABFP是矩形,∴PF=AB=2,BF=AP=x,∴AM=AP=PM=x−y.∵∠ABE=∠CBP,∠A=∠PFB=90°,∴△ABM∽△FBP,∴AMPF =ABBF,∴x−y2=2x.∴x2−xy=4.∴y=x−4x.∴(1)的结论正确;(2)当AP=4时,DP=AD−AP=5−4=1,∵ABAP =24=12,DBCD=12,∴ABAP =DPDC.∵∠A=∠D=90°,∴△ABP△DPC.∴(2)的结论正确;(3)由(2)知:当AP=4时,△ABP∽△DPC,∴∠ABP=∠DPC.∵∠BPA+∠ABP=90°,∴∠APB+∠DPC=90°.∴∠CPB=90°.∴∠BPE=90°.∴tan∠EBP=PEPB.由(1)知:PM=AP−4AP=3,BP=√AP2+AB2=2√5,CP=√CD2+DP2=√5.∵AD//BC,∴PMBC =PEEC.∴35=PE+√5,解得:PE=3√52,∴tan∠EBP=PEPB =3√522√5=34,∴(3)的结论错误,综上,正确的结论为:(1)(2),故选:C.利用矩形的性质,相似三角形的判定与性质,直角三角形的边角关系定理,勾股定理,平行线分线段成比例定理对每个选项的结论进行判断即可:(1)过点P作PF⊥BC于点F,利用矩形的判定与性质和相似三角形的判定与性质解答即可;(2)利用相似三角形的判定定理解答即可;(3)利用(1),(2)的结论利用勾股定理和平行线分线段成比例定理求得PB,PE,再利用直角三角形的边角关系定理即可求得结论.本题主要考查了矩形的性质,相似三角形的判定与性质,直角三角形的边角关系定理,勾股定理,平行线分线段成比例定理,灵活应用相似三角形的判定与性质是解题的关键.13.【答案】15【解析】解:设箱子中黄球的个数为x个,根据题意可得:5 5+x =14,解得:x=15,故答案为:15.直接利用概率公式得出红球个数小球总个数=14,进而得出答案.此题主要考查了概率公式,正确掌握概率求法是解题关键.14.【答案】(m+n−3)2【解析】解:原式=(m+n)2−2⋅(m+n)⋅3+32=(m+n−3)2.故答案为:(m+n−3)2.将m+n看作整体,利用完全平方公式即可得出答案.本题考查了因式分解−运用公式法,考查整体思想,掌握a2±2ab+b2=(a±b)2是解题的关键.15.【答案】m≤2【解析】解:由3x−6>0,得:x>2,∵不等式组的解集为x>2,∴m≤2,故答案为:m≤2.分别求出每一个不等式的解集,根据口诀:同大取大,结合不等式组的解集可得答案.本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.16.【答案】60πcm2【解析】解:圆锥的高为8cm,母线长为10cm,由勾股定理得,底面半径=6cm,侧面展开图的面积=πrl=π×6×10=60πcm2.故答案为:60πcm2.利用勾股定理易得圆锥的底面半径,那么圆锥的侧面积=底面周长×母线长÷2.本题利用了勾股定理和圆锥的计算,圆锥的侧面积就是展开后扇形的面积,即S侧=πrl.17.【答案】20【解析】解:由题意可知:x1+x2=−6,x1x2=4,∴(x1−x2)2=(x1+x2)2−4x1x2=(−6)2−4×4=36−16=20,故答案为:20.根据根与系数的关系即可求出答案.本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系.18.【答案】√6−√24【解析】解:sin15°=sin(45°−30°)=sin45°cos30°−cos45°sin30°=√22×√32−√22×12=√64−√24=√6−√24.故答案为:√6−√24.把15°看成是45°与30°的差,再代入公式计算得结论.本题考查了解直角三角形,掌握特殊角的三角函数值是解决本题的关键.19.【答案】12【解析】解:如图,连接OA ,正六边形的中心角为∠AOB =360°÷6=60°,正五边形的中心角为∠AOH =360°÷5=72°,∴∠BOH =∠AOH −∠AOB =72°−60°=12°.故答案为:12.求出正六边形的中心角∠AOB 和正五边形的中心角∠AOH ,即可得出∠BOH 的度数. 本题主要考查正多边形与圆,会求正多边形的中心角是解题关键.20.【答案】3【解析】解:设购买x 件甲种奖品,y 件乙种奖品,依题意得:4x +3y =48,∴x =12−34y. 又∵x ,y 均为正整数,∴{x =9y =4或{x =6y =8或{x =9y =12, ∴共有3种购买方案.故答案为:3.设购买x 件甲种奖品,y 件乙种奖品,利用总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出共有3种购买方案.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.21.【答案】√3(1+√3)2022【解析】解:由题意可得,P1K1=OP1⋅tan60°=1×√3=√3,P2K2=OP2⋅tan60°=(1+√3)×√3=√3(1+√3),P3K3=OP3⋅tan60°=(1+√3+√3+3)×√3=√3(1+√3)2,P4K4=OP4⋅tan60°=[(1+√3+√3+3)+√3(1+√3)2]×√3=√3(1+√3)3,…,P n K n=√3(1+√3)n−1,∴当n=2023时,P2023K2023=√3(1+√3)2022,故答案为:√3(1+√3)2022.根据题意和题目中的数据,可以写出前几项,然后即可得到P n K n的式子,从而可以写出线段P2023K2023的长.本题考查图象的变化类,解答本题的关键是发现P n K n的变化特点.22.【答案】1.2或者1.5【解析】解:第一次操作后的两边长分别是x和(2−x),第二次操作后的两边长分别是(2x−2)和(2−x).当2x−2>2−x时,有2x−2=2(2−x),解得x=1.5,当2x−2<2−x时,有2(2x−2)=2−x,解得x=1.2.故答案为:1.2或者1.5.本题中的x与(2−x)不知那个大,因此需要分类讨论,从而列方程求解.主要考查了含有字母的代数式的比较,关键是第二次操作后的边长,不知哪个是长,哪个是宽,所以分两种情况,不要丢掉任何一种.23.【答案】解:(1)如图,点O即为所求;(2)由题意,△ABC的面积=12×14×1.3=9.1(cm2).【解析】(1)作∠ABC,∠ACB的角平分线交于点O,点O即为所求;(2)△ABC的面积=12(a+b+c)⋅r计算即可.本题考查作图−复杂作图,三角形的内切圆与内心等知识,解题的关键掌握三角形的内心是角平分线的交点,属于中考常考题型.24.【答案】解:在Rt△ADC中,∠DAC=30°,AC=30米,∴CD=AC⋅tan30°=30×√33=10√3(米),∵AB=10米,∴BC=AC−AB=20(米),在Rt△BCE中,∠EBC=48°,∴EC=BC⋅tan48°≈20×1.111=22.22(米),∴DE=EC−DC=22.22−10√3≈4.9(米),∴广告牌ED的高度约为4.9米.【解析】在Rt△ADC中,利用锐角三角函数的定义求出CD的长,再利用已知求出BC的长,然后在在Rt△BCE中,利用锐角三角函数的定义求出EC的长,进行计算即可解答.本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.25.【答案】解:(1)∵一次函数y1=k1x+b与坐标轴分别交于A(5,0),B(0,52)两点,∴{5k1+b=0b=52,解得{k1=−12b=52.∴一次函数的解析式为:y1=−12x+52.∵△OAP的面积为54,∴12⋅OA⋅y P=54,∴y P=12,∵点P在一次函数图象上,∴令−12x+52=12.解得x=4,∴P(4,12).∵点P在反比例函数y2=k2x的图象上,∴k2=4×12=2.∴一次函数的解析式为:y1=−12x+52.反比例函数的解析式为:y2=2x.(2)令−12x+52=2x,解得x=1或x=4,∴K(1,2),由图象可知,当y2>y1时,x的取值范围为:0<x<1或x>4.(3)如图,作点P关于x轴的对称点P′,连接KP′,线段KP′与x轴的交点即为点C,∵P(4,12).∴P′(4,−12).∴PP′=1,∴直线KP′的解析式为:y=−56x+176.令y=0,解得x=175.∴C(175,0).∴S△PKC=12⋅(x C−x K)⋅PP′=12×(175−1)×1=65.∴当PC+KC最小时,△PKC的面积为65.【解析】(1)根据待定系数法可求出直线AB的解析式,根据△OAP的面积可得出点P的坐标,代入反比例函数解析式可得出反比例函数的解析式;(2)联立一次函数和反比例函数的解析式,可得出点K的坐标,结合图象可直接得出x的取值范围;(3)作点P关于x轴的对称点P′,连接KP′,线段KP′与x轴的交点即为点C,求出直线KP′的解析式,令y=0,可得出点C的坐标,再根据三角形的面积公式可得出结论.本题属于反比例函数与一次函数综合题,主要考查待定系数法求函数解析式,数形结合思想,轴对称最值问题,三角形的面积问题等知识,关键是求出一次函数和反比例函数的解析式.26.【答案】(1)证明:连接AD,∵S△ABC=S△ABD+S△ACD,∴12×AB×CG=12×AB×DE+12×AC×DF,∵AB=AC,∴DE+DF=CG;(2)解:∵将矩形ABCD沿着EF折叠,使点A与点C重合,∴∠AFE=∠EFC,AE=CE,∵AD//BC,∴∠AFE=∠CEF,∴∠CEF=∠CFE,∴CE=CF,∵BC=8,BE=3,∴CE=AE=5,在Rt△ABE中,由勾股定理得,AB=4,∴等腰△CEF中,CE边上的高为4,由(1)知,GM+GN=4;(3)解:延长BA、CD交于G,作BH⊥CD于H,∵ABCD =AEDE,∠BAE=∠EDC=90°,∴△BAE∽△CDE,∴∠ABE=∠C,∴BG=CG,∴ED+EA=BH,设DH=x,由勾股定理得,62−x2=(√51)2−(x+3)2,解得x=1,∴DH=1,∴BH=√BD2−DH2=√62−12=√35,∴ED+EA=√35.【解析】(1)连接AD,根据S△ABC=S△ABD+S△ACD,可得结论;(2)利用翻折的性质得,CE=CF,由勾股定理得,AB=4,则等腰△CEF中,CE边上的高为4,由(1)知,GM+GN=4;(3)延长BA、CD交于G,作BH⊥CD于H,利用△BAE∽△CDE,得∠ABE=∠C,则BG=CG,设DH=x,利用勾股定理列方程可得DH的长,从而得出BH,利用(1)中结论可得答案.本题是相似形综合题,主要考查了等腰三角形的判定与性质,翻折的性质,勾股定理,相似三角形的判定与性质,证明等腰三角形,利用(1)中结论是解决问题(2)、(3)的关键.27.【答案】(1)证明:连接BM ,如图:∵四边形ABMC 是⊙O 的内接四边形,∴∠DCA =∠ABM ,∵∠MAN =90°,∴MN 为⊙O 的直径,∵AB ⊥MN ,∴AM⏜=BM ⏜, ∴∠ABM =∠BAM ,∴∠DCA =∠BAM ,∵BM⏜=BM ⏜, ∴∠BAM =∠BCM ,∴∠DCA =∠BCM ,∴∠DCB =∠ACM ,∵AC⏜=AC ⏜, ∴∠DBC =∠AMC ,∴△CMA∽△CBD ;(2)解:连接OC ,如图:由AM=2MN,设AN=x,则AM=2x,∵MN为直径,∴∠NAM=90°,∴x2+(2x)2=102,解得x=2√5,∴AN=2√5,AM=4√5,∵AB⊥MN,∴2S△AMN=AN⋅AM=MN⋅AP,∴AP=BP=AN⋅AMMN =2√5×4√510=4,∴PM=√AM2−AP2=8,∵MC⏜=NC⏜,∴OC⊥MN,∵OC=OM,∴∠CMO=45°,∴△PDM是等腰直角三角形,CM=√2OM=5√2,∴PD=PM=8,∴BD=PD+BP=12,由(1)知△CMA∽△CBD,∴BCCM =BDAM,即5√2=4√5,∴BC=3√10;(3)解:连接CN交AM于K,连接KE,如图:∵MN 是⊙O 直径,∴∠MCN =90°=∠DPM ,∴∠CNM =90°−∠CMP =∠D ,∵tan∠MDB =34,∴tan∠CNM =34,∵AB ⊥MN ,∴AN⏜=BN ⏜, ∴∠KCE =∠KME ,∴C 、K 、E 、M 四点共圆,∵∠NCM =90°,∴∠KEM =90°=∠KEN ,而tan∠CNM =34,∴KE NE =34, 设KE =3m ,则NE =4m ,∵tan∠KME =KE EM =AN AM =12, ∴EM =6m ,∴ME NE =6m 4m =32. 【解析】(1)连接BM ,由四边形ABMC 是⊙O 的内接四边形,得∠DCA =∠ABM ,由∠MAN =90°,AB ⊥MN ,可得∠ABM =∠BAM ,即可得∠DCA =∠BCM ,从而∠DCB =∠ACM ,可证△CMA∽△CBD ;(2)连接OC ,由AM =2MN ,MN =10可得AN =2√5,AM =4√5,由面积法得AP =BP =AN⋅AM MN =2√5×4√510=4,即得PM =√AM 2−AP 2=8,根据MC⏜=NC ⏜,可得△PDM 是等腰直角三角形,CM =√2OM =5√2,即得PD =PM =8,BD =PD +BP =12,又△CMA∽△CBD ,可得BC =3√10;(3)连接CN 交AM 于K ,连接KE ,由tan∠MDB =34,可得tan∠CNM =34,根据AB ⊥MN ,得AN ⏜=BN ⏜,有∠KCE =∠KME ,即知C 、K 、E 、M 四点共圆,可得∠KEM =90°=∠KEN ,从而KE NE =34,设KE =3m ,则NE =4m ,而tan∠KME =KE EM =AN AM =12,得EM =6m ,故ME NE =6m 4m =32. 本题考查圆的综合应用,涉及相似三角形判定与性质,等腰直角三角形,锐角三角函数等知识,解题的关键是作辅助线,构造相似三角形.28.【答案】解:(1)∵抛物线的对称轴为直线x =2,D 点的坐标为(4,0),∴抛物线与x 轴的另一个交点为(−2,0),∴抛物线的解析式为:y =a(x +2)(x −6),将点A(0,−4)解析式可得,−12a =−4,∴a =13.∴抛物线的解析式为:y =13(x +2)(x −6)=13x 2−43x −4.(2)∵AB ⊥y 轴,A(0,−4),∴点B 的坐标为(4,−4).∵D(4,0),∴AB =BD =4,且∠ABD =90°,∴△ABD 是等腰直角三角形,∠BAD =45°.∵EF ⊥AB ,∴∠AFE =90°,∴△AEF 是等腰直角三角形.∵AE =2m ,∴AF =EF =√2m ,∴E(√2m,−4+√2m),F(√2m,−4).∵四边形EGFH 是正方形,∴△EHF 是等腰直角三角形,∴∠HEF =∠HFE =45°,∴FH是∠AFE的角平分线,点H是AE的中点.∴H(√22m,−4+√22m),G(3√22m,−4+√22m).∵B(4,−4),C(6,0),∴直线BC的解析式为:y=2x−12.当点G随着E点运动到达BC上时,有2×3√22m−12=−4+√22m.解得m=8√25.∴G(245,−125).(3)存在,理由如下:∵B(4,−4),C(6,0),G(3√22m,−4+√22m).∴BG2=(4−3√22m)2+(√22m)2,BC2=(4−6)2+(−4)2=20,CG2=(6−3√22m)2+(−4+√22m)2.若以B,G,C和平面内的另一点为顶点的四边形是矩形,则△BGC是直角三角形,∴分以下三种情况:①当点B为直角顶点时,BG2+BC2=CG2,∴(6−3√22m)2+(−4+√22m)2+20=(4−3√22m)2+(√22m)2,解得m=4√25,∴G(125,−165);②当点C为直角顶点时,BC2+CG2=BG2,∴20+(6−3√22m)2+(−4+√22m)2=(4−3√22m)2+(√22m)2,解得m=14√25,∴G(425,65 );③当点G为直角顶点时,BG2+CG2=BC2,∴(4−3√22m)2+(√22m)2+(6−3√22m)2+(−4+√22m)2=20,解得m=12√25或√2,∴G(3,−3)或(365,145);综上,存在以B,G,C和平面内的另一点为顶点的四边形是矩形,点G的坐标为(125,−165)或(425,65)或(3,−3)或(365,145).【解析】(1)根据抛物线的对称轴为直线x=2,可得出抛物线与x轴的另一个交点的坐标为(−2,0),列出交点式,再将点A(0,−4)可得出抛物线的解析式;(2)根据可得出△ABD是等腰直角三角形,再根据点E的运动和正方形的性质可得出点H,F,G的坐标,根据点B,C的坐标可得出直线BC的解析式,将点G代入直线BC的解析式即可;(3)若存在,则△BGC是直角三角形,则需要分类讨论,当点B为直角顶点,当点G为直角顶点,当点C为直角顶点,分别求解即可.本题属于二次函数综合题,主要考查待定系数法求函数解析式,正方形的性质与判定,矩形的性质与判定,等腰直角三角形的性质与判定,分类讨论等知识,解题关键是由点E的坐标得出点H,F,G的坐标.本题第(3)问当点B和点C为直角顶点时,也可通过一次函数和几何结合求解.。

黑龙江省2023年中考数学模拟试卷及答案汇总六

黑龙江省2023年中考数学模拟试卷及答案汇总六

交抛物线于点 、
6
(1)求抛物线的解析式; (2)当点 位于 마 的中点时,求点 的坐标; (3)点 是抛物线上一点,点 在整个运动过程中,满足以点 မ、 、 、 为顶点的四边形是平行四 边形时,直接写出 的值.
7
答案解析部分
1.【答案】D 【解析】【解答】A、不是轴对称图形,故 A 不符合题意; B、不是轴对称图形,故 B 不符合题意; C、不是轴对称图形,故 C 不符合题意; D、是轴对称图形,故 D 符合题意. 故答案为:D. 【分析】轴对称图形:一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;据此逐一判断即 可. 2.【答案】B 【解析】【解答】解:2▲(-4)=2+2×(-4)+|-4|=2-8+4=-2. 故答案为:B 【分析】利用定义新运算的法则,列式计算,可求出结果. 3.【答案】D 【解析】【解答】解:将正方形 A 移走后,俯视图中有两列三行,第 1 列有 4 个小正方形,第二列有 1 个小 正方形,第一行有 1 个小正方形,第二、三行各有 1 个小正方形. 故 A、B、C 不符合题意;D 符合题意; 故答案为:D 【分析】观察图形可知,将正方形 A 移走后,新的几何体的俯视图中有两列三行,第 1 列有 4 个小正方形, 第二列有 1 个小正方形,第一行有 1 个小正方形,第二、三行各有 1 个小正方形,据此可求解. 4.【答案】D
图象相交于点
,.
4
(1)求直线 마 的解析式;
(2)将直线 마 向下平移 ꀀ 个单位后与反比例函数的图象交于点 မ 和点 ,与 轴交于点 ,求 မ 的面积;
(3)设直线 မ 的解析式为 ൌ 䁠 ‫ ݔ‬မ,根据图象直接写出不等式 䁠 ‫ ݔ‬မ
的解集.
26.如图, 마မ 为 的内接三角形, 为 마မ 延长线上一点,
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.2R B.32R C.22R D.3R2.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O43.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC 与△BDA相似,可以添加一个条件.下列添加的条件中错误的是( )A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD4.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )A.30°B.36°C.54°D.72°5.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )A.1000(1+x)2=1000+500B.1000(1+x)2=500C.500(1+x)2=1000D.1000(1+2x)=1000+5006.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A.12B.23C.25D.7107.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×102 8.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=9.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则CFCD的值是()A.1 B.12C.13D.1410.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣5二、填空题(本题包括8个小题)11.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=_____度.12.关于x的一元二次方程(k-1)x2+6x+k2-k=0的一个根是0,则k的值是______.13.如图,△ABC三边的中线AD,BE,CF的公共点G,若12ABCS=,则图中阴影部分面积是.14.已知二次函数y =ax 2+bx +c(a≠0)中,函数值y 与自变量x 的部分对应值如下表: x … -5 -4 -3 -2 -1 … y…3-2-5-6-5…则关于x 的一元二次方程ax 2+bx +c =-2的根是______. 15.一个凸多边形的内角和与外角和相等,它是______边形.16.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_____个.17.如图,在平面直角坐标系中,已知点A (1,1),以点O 为旋转中心,将点A 逆时针旋转到点B 的位置,则AB 的长为_____.18.若一个圆锥的底面圆的周长是5πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角度数是_____. 三、解答题(本题包括8个小题)19.(6分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02t ≤≤ ),B 类(24t <≤),C 类(46t <≤),D 类(68t <≤),E 类(8t >),绘制成尚不完整的条形统计图如图11.根据以上信息,解答下列问题:E 类学生有 人,补全条形统计图;D 类学生人数占被调查总人数的 %;从该班做义工时间在04t ≤≤的学生中任选2人,求这2人做义工时间都在24t <≤ 中的概率.20.(6分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:成绩频数频率优秀45 b良好 a 0.3合格105 0.35不合格60 c(1)该校初三学生共有多少人?求表中a,b,c的值,并补全条形统计图.初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.21.(6分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.1()求甲、乙两种商品的每件进价;()该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88 2元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销.要使两种商品全部售完后共获利不少于2460元,问甲种售单价的七折销售;乙种商品销售单价保持不变商品按原销售单价至少销售多少件?22.(8分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m=.半圆D与数轴有两个公共点,设另一个公共点是C.①直接写出m的取值范围是.②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.23.(8分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店每天的利润.若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由.24.(10分)4件同型号的产品中,有1件不合格品和3件合格品.从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?25.(10分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.26.(12分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈35,tan37°≈34)参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=3R. 【详解】解:延长BO交⊙O于D,连接CD,则∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴3,故选D.【点睛】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.2.A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B 来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.3.D【解析】【详解】解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A选项正确;∵AD=DE,∴AD DE,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B选项正确;∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C选项正确;∵CD•AB=AC•BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是对应夹角,故D选项错误,故选:D.考点:1.圆周角定理2.相似三角形的判定4.B【解析】【分析】在等腰三角形△ABE中,求出∠A的度数即可解决问题.【详解】解:在正五边形ABCDE中,∠A=15×(5-2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=1(180°-108°)=36°.2故选B.【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.5.A【解析】【分析】设该公司第5、6个月投放科研经费的月平均增长率为x,5月份投放科研经费为1000(1+x),6月份投放科研经费为1000(1+x)(1+x),即可得答案.【详解】设该公司第5、6个月投放科研经费的月平均增长率为x,则6月份投放科研经费1000(1+x)2=1000+500,故选A.【点睛】考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.6.D【解析】【分析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:7 10.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.7.B【解析】试题分析:“960万”用科学记数法表示为9.6×106,故选B.考点:科学记数法—表示较大的数.8.A【解析】【分析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴AD BCDF CE=.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.9.C【解析】由题意知:AB=BE=6,BD=AD﹣AB=2(图2中),AD=AB﹣BD=4(图3中);∵CE∥AB,∴△ECF∽△ADF,得12 CE CFAD DF==,即DF=2CF,所以CF:CD=1:3,故选C.【点睛】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键. 10.B【解析】【分析】根据关于x 的方程x 2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决. 【详解】∵关于x 的方程x 2+3x+a=0有一个根为-2,设另一个根为m , ∴-2+m=−31, 解得,m=-1, 故选B .二、填空题(本题包括8个小题) 11.30° 【解析】 【分析】根据旋转的性质得到∠BOD=45°,再用∠BOD 减去∠AOB 即可. 【详解】∵将△AOB 绕点O 按逆时针方向旋转45°后,得到△COD , ∴∠BOD=45°, 又∵∠AOB=15°,∴∠AOD=∠BOD -∠AOB=45°-15°=30°. 故答案为30°. 12.2. 【解析】试题解析:由于关于x 的一元二次方程()22160k x x k k -++-=的一个根是2,把x=2代入方程,得20k k -= ,解得,k 2=2,k 2=2当k=2时,由于二次项系数k ﹣2=2,方程()22160k x x k k -++-=不是关于x 的二次方程,故k≠2.所以k 的值是2.故答案为2. 13.4 【解析】试题分析:由中线性质,可得AG=2GD ,则11212111222232326BGFCGEABGABDABCSSS S S ===⨯=⨯⨯=⨯=,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的. 考点:中线的性质. 14.x 1=-4,x 1=2【解析】解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣1.∵x=﹣4时,y=﹣1,∴x=2时,y=﹣1,∴方程ax1+bx+c=3的解是x1=﹣4,x1=2.故答案为x1=﹣4,x1=2.点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.15.四【解析】【分析】任何多边形的外角和是360度,因而这个多边形的内角和是360度.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:设边数为n,根据题意,得(n-2)•180=360,解得n=4,则它是四边形.故填:四.【点睛】此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决.16.1.【解析】【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=1,故白球的个数为1个.故答案为:1.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.17.4. 【解析】【分析】由点A(1,1),可得OA 的长,点A 在第一象限的角平分线上,可得∠AOB=45°,,再根据弧长公式计算即可.【详解】∵A(1,1),∴=A 在第一象限的角平分线上,∵以点O 为旋转中心,将点A 逆时针旋转到点B 的位置,∴∠AOB=45°,∴AB 的长为45180π=4,故答案为:4. 【点睛】本题考查坐标与图形变化——旋转,弧长公式,熟练掌握旋转的性质以及弧长公式是解题的关键.本题中求出∠AOB=45°也是解题的关键.18.150【解析】【分析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可【详解】∵圆锥的底面圆的周长是45cm ,∴圆锥的侧面扇形的弧长为5π cm ,65180n ππ⨯∴=, 解得:150n =故答案为150.【点睛】此题考查弧长的计算,解题关键在于求得圆锥的侧面积三、解答题(本题包括8个小题)19.(1)5;(2)36%;(3)310. 【解析】 试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;(2)根据:小组频数=该组频数数据总数,进行求解即可; (3)利用列举法求概率即可.试题解析:(1)E 类:50-2-3-22-18=5(人),故答案为:5;补图如下:(2)D 类:18÷50×100%=36%,故答案为:36%;(3)设这5人为12123A A B B B ,,,,有以下10种情况:12111213212223121323(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)A A A B A B A B A B A B A B B B B B B B 其中,两人都在24t <≤ 的概率是:310P =. 20.(1)300人(2)b=0.15,c=0.2;(3)16 【解析】分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率. 详解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15, c==0.2;如图所示:(3)画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P (抽到甲和乙)==.点睛:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.21.()1 甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲种商品按原销售单价至少销售20件.【解析】【分析】()1设甲种商品的每件进价为x 元,乙种商品的每件进价为(x+8))元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程进行求解即可;()2设甲种商品按原销售单价销售a 件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】()1设甲种商品的每件进价为x 元,则乙种商品的每件进价为()x 8+元, 根据题意得,20002400x x 8=+, 解得x 40=,经检验,x 40=是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲乙两种商品的销售量为20005040=, 设甲种商品按原销售单价销售a 件,则()()()()6040a 600.74050a 8848502460-+⨯--+-⨯≥,解得a 20≥,答:甲种商品按原销售单价至少销售20件.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.22.(1)33;(2)①3311m<<;②△AOB与半圆D的公共部分的面积为4+33π;(3)tan∠AOB的值为157或12541.【解析】【分析】(1)根据题意由勾股定理即可解答(2)①根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可②如图,连接DC,得出△BCD为等边三角形,可求出扇形ADC的面积,即可解答(3)根据题意如图1,当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH =x,列出方程求解即可解答如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答【详解】(1)当半圆与数轴相切时,AB⊥OB,由勾股定理得m=22227433OA AB-=-=,故答案为33.(2)①∵半圆D与数轴相切时,只有一个公共点,此时m=33,当O、A、B三点在数轴上时,m=7+4=11,∴半圆D与数轴有两个公共点时,m的取值范围为3311m<<.故答案为3311m<<.②如图,连接DC,当BC=2时,∵BC=CD=BD=2,∴△BCD为等边三角形,∴∠BDC=60°,∴∠ADC=120°,∴扇形ADC 的面积为212024=3603ADCS ⨯⨯=扇形ππ , 12332BDC S =⨯⨯=△ , ∴△AOB 与半圆D 的公共部分的面积为4+33π ; (3)如图1,当OB =AB 时,内心、外心与顶点B 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,则72﹣(4+x )2=42﹣x 2,解得x =178 ,OH =498,AH =715 , ∴tan ∠AOB =157, 如图2,当OB =OA 时,内心、外心与顶点O 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,则72﹣(4﹣x )2=42﹣x 2,解得x =87 ,OH =417,AH 125, ∴tan ∠AOB 125. 综合以上,可得tan ∠AOB 的值为157或541. 【点睛】此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线23.(1)①y=400x ﹣1.(5<x≤10);②9元或10元;(2)能, 11元.【解析】【分析】(1)、根据利润=(售价-进价)×数量-固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x 的值得出答案.【详解】 解:(1)①y=400(x ﹣5)﹣2.(5<x≤10),②依题意得:400(x ﹣5)﹣2≥800, 解得:x≥8.5,∵5<x≤10,且每份套餐的售价x (元)取整数, ∴每份套餐的售价应不低于9元.(2)依题意可知:每份套餐售价提高到10元以上时,y=(x ﹣5)[400﹣40(x ﹣10)]﹣2,当y=1560时, (x ﹣5)[400﹣40(x ﹣10)]﹣2=1560,解得:x 1=11,x 2=14,为了保证净收入又能吸引顾客,应取x 1=11,即x 2=14不符合题意.故该套餐售价应定为11元.【点睛】本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型.理解题意,列出关系式是解决这个问题的关键.24.(1)14;(2)12;(3)x=1. 【解析】【分析】(1)用不合格品的数量除以总量即可求得抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x 的值.【详解】解:(1)∵4件同型号的产品中,有1件不合格品,∴P (不合格品)=14; (2)共有12种情况,抽到的都是合格品的情况有6种,P (抽到的都是合格品)=612=12; (3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,∴抽到合格品的概率等于0.95,∴34x x ++ =0.95, 解得:x=1.【点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法.25.证明见解析.【解析】试题分析:根据等腰三角形的性质可证∠DBM=∠ECM ,可证△BDM ≌△CEM ,可得MD=ME ,即可解题.试题解析:证明:△ABC 中,∵AB=AC ,∴∠DBM=∠ECM.∵M 是BC 的中点,∴BM=CM.在△BDM 和△CEM 中,∵{BD CEDBM ECM BM CM=∠=∠=,∴△BDM ≌△CEM (SAS ).∴MD=ME .考点:1.等腰三角形的性质;2.全等三角形的判定与性质.26.不满足安全要求,理由见解析.【解析】【分析】在Rt △ABC 中,由∠ACB=90°,AC=15m ,∠ABC=45°可求得BC=15m ;在Rt △EGD 中,由∠EGD=90°,EG=15m ,∠EFG=37°,可解得GF=20m ;通过已知条件可证得四边形EACG 是矩形,从而可得GC=AE=2m ;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“设计方案不满足安全要求”.【详解】解:施工方提供的设计方案不满足安全要求,理由如下:在Rt △ABC 中,AC=15m ,∠ABC=45°,∴BC=0tan45AC =15m . 在Rt △EFG 中,EG=15m ,∠EFG=37°,∴GF=0tan37EG ≈1534=20m . ∵EG=AC=15m ,AC ⊥BC ,EG ⊥BC ,∴EG ∥AC ,∴四边形EGCA 是矩形,∴GC=EA=2m ,∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.∴施工方提供的设计方案不满足安全要求.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若分式11xx-+的值为零,则x的值是( )A.1 B.1-C.1±D.22.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确3.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)4.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为()A.15 m B.53m C.103m D.123m5.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055 B.6056 C.6057 D.60586.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.25B.35C.5 D.68.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()A.B.C.D.9.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°10.下列四个多项式,能因式分解的是()A.a-1 B.a2+1C.x2-4y D.x2-6x+9二、填空题(本题包括8个小题)11.已知21xy=⎧⎨=⎩是方程组ax5{1bybx ay+=+=的解,则a﹣b的值是___________12.如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC 上的任意一点,那么a+b-2c= ______ .13.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x …-5 -4 -3 -2 -1 …y … 3 -2 -5 -6 -5 …则关于x的一元二次方程ax2+bx+c=-2的根是______.14.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.15.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.16.如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.17.一元二次方程2x2﹣3x﹣4=0根的判别式的值等于_____.18.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是三、解答题(本题包括8个小题)19.(6分)若关于x的方程311x ax x--=-无解,求a的值.20.(6分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:125,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).21.(6分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?22.(8分)如图,AB =AD ,AC =AE ,BC =DE ,点E 在BC 上.求证:△ABC ≌△ADE ;(2)求证:∠EAC =∠DEB .23.(8分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12.求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;24.(10分)如图所示,已知CFE BDC 180,DEF B ︒∠+∠=∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.25.(10分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:()1这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______; ()2将条形统计图补充完整;()3该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.26.(12分)如图,在四边形ABCD 中,AD ∥BC ,BA =BC ,BD 平分∠ABC .求证:四边形ABCD 是菱形;过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.2.A【解析】【分析】过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB【详解】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.3.A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案为a(x﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.4.A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×32=1532,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=153×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.5.D【解析】【分析】设第n个图形有a n个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a n=1+3n(n为正整数)",再代入a=2019即可得出结论【详解】设第n个图形有a n个〇(n为正整数),观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴a n=1+3n(n为正整数),∴a2019=1+3×2019=1.故选:D.【点睛】此题考查规律型:图形的变化,解题关键在于找到规律6.B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.7.C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=45,且tan∠BAC=12BCAB=;在Rt△AME中,AM=12AC=25,tan∠BAC=12EMAM=可得EM=5;在Rt△AME中,由勾股定理求得AE=2.故答案选C.考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.。

相关文档
最新文档