课程岩石力学

合集下载

精品课程《岩石力学》ppt课件(全)

精品课程《岩石力学》ppt课件(全)

具体而言,研究岩石在荷载作用下的应力、变形和破坏 规律以及工程稳定性等问题。
上述定义是把“岩石”看成固体力学中的一种材料,然而
岩石材料不同于一般的人工制造的固体材料,它是
一种典型的“连续介质”,具有复杂的地质构造和赋
存条件的天然地质体。
.
11
三、岩石力学理论的发展简史
1. 初始阶段(19世纪末~20世纪初)
.
8
(2)60年代初意大利Vajont大坝水库高边坡的崩溃 意大利Vajont拱坝,坝高262m,
于1959年建成,是当时世界上 最高的拱坝。1963年10月9日 夜,由于大坝上游山体突然滑 坡,约2.5亿立方的山体瞬时涌 入水库,涌浪摧毁上游及下游 一个小镇与邻近几个村庄,造 成约2500人死亡,整个灾害的 持续时间仅仅5分钟。
.
3
一、引言
1. 人类活动与岩石工程(Rock Engineering)
岩石圈是人类赖以生存的主要载体,人类的大部分活动都 是在岩石圈上进行的:
远古
约4700年前 公元1600年
19世纪
石器,穴居 金字塔(146.5m) 火药采矿 铁路隧道技术
20世纪 大型水电工程
岩基、边坡,地下 洞室,隧道工程等
普罗托吉雅柯诺夫提出的自然平衡拱学说,即普氏理论.
围岩开挖后自然塌落成抛物线拱形,作用在支架上的压力等于 冒落拱内岩石的重量,仅是上覆岩石重量的一部分.
太沙基(K.Terzahi)理论 围岩塌落成矩形,而不是抛物线型.
优点与缺点
上述理论在一定历史时期和一定条件下还是发挥了一定作用的, 但是围岩的塌落并不是形成围岩压力的惟一来源,也不是所有 的地下空间都存在塌落拱.围岩和支护之间并不完全是荷载和 结构的关系问题,在很多情况下围岩和支护形成一个共同承载 系统,而且维持岩石工程的稳定最根本的还是要发挥围岩的作 用.

《岩石力学》课件(完整版)-第三章岩石动力学基础

《岩石力学》课件(完整版)-第三章岩石动力学基础

能量吸收是指岩石在冲 击或振动载荷作用下吸 收能量的能力,与岩石 的破碎和变形有关。
疲劳是指岩石在循环载 荷作用下发生损伤和破 坏的现象,对地下工程 和边坡工程的稳定性有 重要影响。
03
岩石动力学的基本理论
弹性力学基础
01
弹性力学基本概念
弹性力学是研究弹性物体在外力作用下的应力、应变和位移的学科。它
理论分析方法。这些方法可用于求解各种复杂弹性力学问题。
塑性力学基础
塑性力学基本概念
塑性力学是研究塑性物体在外力作用下的应力、应变和位移的学科。塑性物体在达到屈服 点后会发生不可逆的变形,其应力-应变关系不再满足胡克定律。
塑性力学的基本方程
包括屈服准则、流动法则、增量理论和边界条件等。这些方程描述了塑性物体内部的应力 、应变和位移之间的关系,以及物体与周围介质之间的相互作用。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
离散元法
离散元法是一种将连续介质离散化为一系列刚性或弹性 单元体的方法。
数据分析
对实验获取的大量数据进行处理和分 析,提取岩石的动力学特性,如阻尼 比、质量放大系数等。
结果解释
根据实验结果,解释岩石在动态载荷 作用下的破坏机制和演化过程,为工 程设计和安全评估提供依据。
实验研究的挑战与展望
挑战
岩石动力学实验技术难度大,需要克服实验条件苛刻、测量精度要求高等问题。 同时,岩石材料的非线性、各向异性等特性也给实验结果分析带来困难。

岩石力学课程设计

岩石力学课程设计

岩石力学课程设计1. 前言岩石力学课程是岩土工程专业中不可或缺的一部分,它涵盖了岩石的物理力学、应力应变学、破裂力学等方面的内容。

本课程设计旨在通过理论学习和实验模拟两个方面的探究,深入了解岩石材料的力学性质,为同学们进一步学习岩土工程专业奠定坚实的基础。

2. 理论学习在理论学习部分,我们将学习岩石的基本力学性质和实际工程中的应用。

具体包括以下内容:2.1 岩石的力学性质•岩石力学的基本概念与分类•岩石的物理性质•岩石的弹性力学性质和截面本构关系•岩石的应力应变关系和破裂形式•岩体的稳定性问题2.2 岩石工程中的应用•岩石材料的力学性质对岩土工程的影响•岩石工程中的压力传递原理•岩石的稳定性分析及岩体破裂形式的预测与控制•岩体固化处理方法的研究3. 实验模拟实验模拟部分分为两个环节:物理实验与计算模拟。

3.1 物理实验•实验一:测定岩石样品的物理性质,包括密度、孔隙率、吸湿率等内容;•实验二:利用岩石试件,测定岩石材料的力学性质,包括抗压强度、抗压模量、抗拉强度等;•实验三:通过破裂试验,观察岩石材料的破裂形式。

3.2 计算模拟为了更好地探究岩石材料的力学性质,我们在课程中引入了计算模拟的环节,包括:•岩石材料的数值模拟分析;•岩石受力性能的有限元分析;•岩体的稳定性分析以及破裂形式的预测。

4. 研究成果最后,通过对理论学习和实验模拟的内容进行总结和分析,我们希望能够得到实用的研究成果和结论,包括:•岩石材料的力学性质与实际工程中的应用;•岩土工程中岩体固化工艺的优化改进。

5. 结束语通过本课程对岩石力学的研究,我们可以更深入地了解岩石材料在岩土工程中的应用,为日后的工作提供了科学依据。

同时也让我们认识到实验与理论相互促进,共同推动科学技术的进步。

希望同学们在学习中能够认真思考、勤奋学习,掌握这门重要的课程。

精品课程《岩石力学》PPT课件

精品课程《岩石力学》PPT课件
模拟分析:光弹应力分析、相似材料模型试验、离 心模型试验
(4) 整体综合分析方法
将实验、理论和工程监测以及经验相结合,利用信 息、系统科学理论进行计算机科学决策
七、岩石力学的应用范围
(1) 水利水电工程
坝基及坝肩稳定性、防渗加固理论和技术 有压和无压引水隧道设计、施工及加固理论技术 大跨度高边墙地下厂房的围岩稳定及加固技术 高速水流冲刷的岩石力学问题 水库诱发地震的预报问题 库岸稳定及加固方法
1956年4月,在美国的科罗拉多矿业学院举行的一次专业会议上, 开始使用“岩石力学”这一名词,并由该学院汇编了“岩石 力学论文集”。在论文集的序言中说:“它是与过去作为一 门学科而发展起来的土力学,有着相似的概念的一门学科, 对这种有关岩石的力学方面的学科,现取名为岩石力学”。
1957年在巴黎出版的塔洛布尔(J. Talobre)的专著“岩石力学”是 这方面较早的一本较系统的著作。其后,开始形成了不同的 岩石力学学派(如法国学派,偏重于从弹塑性理论方面来研 究;奥地利学派,偏重于地质构造方面来研究)。
(2) 采矿工程
露天采矿边坡设计及稳定加固技术 井下开采中巷道和采场围岩稳定性问题,特
别是软岩巷道和深部开采地压控制问题 矿柱稳定性及开采优化设计问题(采场结构、
开采顺序、开挖步骤等)设计问题 矿井突水预测、预报及预处理理论和技术 岩爆、煤与瓦斯突出及预处理理论和技术 采空区处理及地面沉降问题 岩石破碎问题
(5) 石油工程 岩石应力与渗透性及采油技术 钻探技术与井壁稳定性 岩石力学与地球物理勘探综合研究 石油、天然气运输与储存工程对环境的影响
(6) 海洋勘探与开发工程 (7) 核电站建设中核废料处理技术 (8) 地层热能资源开发技术问题 (9) 地震预报中的岩石力学问题 (10) 地下军事工程及防护问题

《岩石力学》课程标准

《岩石力学》课程标准

《岩石力学》课程标准一、课程性质与任务《岩石力学》是工程地质专业一门重要的专业基础课,主要研究岩石和岩体的力学行为及其与工程实践的关系。

通过本课程的学习,学生将掌握岩石力学的基本原理、方法和技术,为今后从事与岩石工程相关的设计、施工、监测和科研工作打下基础。

二、课程目标1. 知识目标:掌握岩石力学的基本概念、原理和方法,了解岩石和岩体的基本性质及其与工程实践的关系。

2. 能力目标:培养学生运用岩石力学知识解决实际问题的能力,包括岩石工程设计、施工、监测等方面的技能。

3. 素质目标:培养学生良好的工程素养,提高学生的创新意识、实践能力和团队协作精神。

三、课程教学内容与要求1. 岩石力学基本概念与原理(8学时)岩石力学定义、研究内容及发展概况岩石和岩体的基本性质:物理性质、水理性、热学性质、变形与强度特性等岩石力学中的基本概念:应力、应变、强度准则等岩石力学中的基本原理:静力学原理、动力学原理等2. 岩石的应力状态与变形(12学时)岩石的应力状态分析:应力测量、应力分布规律等岩石的变形分析:弹性变形、塑性变形、流变等岩石的强度准则:库仑-莫尔强度准则、格里菲斯强度准则等3. 岩体的应力场与位移场(10学时)岩体的应力场分析:岩体中的应力分布规律、岩体中的应力集中与松弛等岩体的位移场分析:岩体中的位移规律、岩体中的位移变化等4. 岩石工程设计与施工(16学时)岩石工程的类型与特点岩石工程设计:结构设计、稳定性分析等岩石工程施工:施工方法与技术、施工监测等5. 岩石工程监测与加固(8学时)岩石工程监测:监测方法与技术、监测数据处理与分析等岩石工程加固:加固方法与技术、加固效果评价等四、课程实施与评价1. 教学组织形式:采用课堂教学与实验教学相结合的方式,注重培养学生的实践能力和创新精神。

2. 教学方法:采用讲授法、讨论法、案例分析法等多种教学方法,引导学生主动参与教学过程,提高教学效果。

3. 教学评价:采用平时成绩与期末考试成绩相结合的方式进行评价,平时成绩占40%,期末考试成绩占60%。

《岩石力学》课程综合练习题-知识归纳整理

《岩石力学》课程综合练习题-知识归纳整理

知识归纳整理《岩石力学》课程综合练习题绪论一、名词解释1.岩石力学岩石力学是研究岩石和岩体力学性能的理论和应用的科学,它是力学的一具分支,是探讨岩石和岩体对其身边物理环境中力场的反应。

2.静岩压力地球内部在不同深度处单位面积地球内部岩石压力基本上保持平衡,类似于静水压力;其数值与该处上覆岩石的总分量相等,称为静岩压力,其大小可用P=ρgh来表达,即静岩压力(P)等于某一深度(h)、该处上覆物质平均密度(ρ)与平均重力加速度(g)的乘积。

二、简答题1 岩石具有哪三种特性?①非均质性;②不延续性。

岩体不但有微观的裂隙,而且有层理、片理、节理以至于断层等不延续面;③各向异性。

2 怎样明白岩石的多相体?岩石是由岩石骨架和孔隙组成。

岩石骨架是固体,孔隙里面充满了流体,流体包括油气水。

所以,岩石是由固体和流体组成的,是固液两相或固液气三相,所以岩石是多相体。

3. 岩石力学的复杂性体如今什么地方?岩石力学的复杂性表如今:⑴岩石具有局部破坏特性;⑵尺寸效应;⑶抗拉强度比较小;⑷地下水的影响;⑸风化;⑹岩体外载的不确定。

4. 钻井中有哪些问题与岩石力学有关?①井壁稳定问题,包括井眼缩径、井壁坍塌、井漏等;②岩石破碎问题,包括岩石的剪切破坏与抗压破坏等。

第一章应力与应变一、挑选题1、在地下,岩石所受到的应力普通为( B )。

A、拉应力B、压应力C、剪应力二、名词解释1、什么是面力?什么是体力?所谓面力指的是作用在物体表面上的力,如压力、摩擦力等。

体力指弥漫在物体内部各质点上的力,如重力、惯性力、电磁力等。

2、什么是正应力?什么是剪应力?作用力与受力面的关系可以呈任意方向,如果作用力是沿着受力面的法线方向,作用力就称为法向力,除以受力面的面积得到的值算是正应力值。

如果作用力与受力面的法线方向垂直,即与受力面平行,作用力就称为剪切力,除以受力面的面积得到的值算是剪应力值。

3、什么是第一正应力不变量?第一正应力不变量用I1表示,它不随坐标挑选的不同而变化。

岩石力学-全部课件

岩石力学-全部课件

12
1.4 岩石力学发展简况
国际方面: ●岩石力学形成背景 ●两大著名工程灾害 ●两个里程碑事件
●萨茨堡学派
1.绪论
国内方面: ●发展的四个阶段及其主要标志
13
1.4 岩石力学发展简况
一般认为,岩石力学作为一门
1.绪论ห้องสมุดไป่ตู้
岩石力学形成背景
独立的学科存在, 大概在 上世纪50年代。
岩石力学是在这样的背景
就岩石工程而言,整体综合分析方法又必须以不确定性分
析方法为指导。
●因为在岩石工程问题中,存在着多方面的不确定性因素,只有采用
不确定性研究方法,才能摆脱传统的确定性分析方法的影响,使研 究和分析结果更符合实际,更可靠和实用。 ●现代非线性科学理论、信息科学理论、系统科学理论、模糊数学、 人工智能、灰色理论和计算机科学技术的发展为不确定性分析方法 奠定了必要的技术基础。
3
坏。
1.1 岩石力学的定义和特点 岩石力学的特点
1.绪论
岩石力学是一门应用性和实践性很强的应用基础学科。
●其任务是为解决岩石工程疑难问题提供理论指导和
实用方法。 ●岩石工程复杂程度的增加不断提出新问题,推动岩石 力学发展。
岩石力学是一门多学科交叉的边缘学科。 ●研究对象的复杂性,导致其涉及的理论领域相当广泛。 ●主要涉及的学科:固体力学、流体力学、计算数学、 结构力学、弹塑性理论、工程地质和地球物理学等。
(在边坡稳定性 分析中常用)
▲块体力学
▲反演分析法等
11
1.3 岩石力学的研究方法
1.绪论
整体综合分析方法
就整个工程进行多种方法并以系统工程为基础的综合分析。
●由于岩石力学与岩石工程研究中每一环节都是多因素的,且信息量

《岩石力学》课程教学大纲

《岩石力学》课程教学大纲
This course is one of civil engineering professional basic courses. The main purpose of this course are: to enable students to master the basic mechanical properties of rock and rock mass, to understand the dynamics property of rock, to master the strength theory, the basic classification method of rock mass, initial stress state and its laws of rock mass, to understand the method of measuring the initial stress state. On this basis, to master the application of rock mechanics in the cavern engineering, slope engineering and rock foundation engineering.
负责人
大纲执笔人
审核人
二、课程目标
序号
代号
课程目标
OBE
毕业要求指标点
任务
自选
1
M1
目标1:了解并认识岩体工程相关的专业知识

1.4
1.4
2
M2
目标2:分析岩石力学的基本问题

3.1
3.1
3
M3
目标3:具备岩体工程设计与计算的能力

岩石力学 课程简介

岩石力学 课程简介

岩石力学课程简介
岩石力学是地质工程和地质学中的重要学科,它研究岩石在外力作用下的力学性质和行为规律。

岩石力学课程通常涵盖了岩石的力学参数、岩石的变形与破裂、岩石的应力分布、岩石的稳定性分析以及岩石工程中的应用等内容。

首先,岩石力学课程会介绍岩石的基本力学参数,如岩石的弹性模量、泊松比、抗压强度、抗拉强度等,这些参数对于岩石的力学特性和稳定性具有重要意义。

其次,课程会讨论岩石的变形与破裂规律,包括岩石的塑性变形、蠕变、破裂模式以及岩石的破裂韧度等内容。

这些知识对于理解岩石在地下工程中的行为至关重要。

另外,岩石力学课程也会涉及岩石的应力分布规律,包括岩体内部的应力状态、应力集中区域的形成原因以及应力分布对岩石稳定性的影响等内容。

了解岩石的应力分布有助于预测岩体的破坏和变形情况。

此外,岩石力学课程还会介绍岩石的稳定性分析方法,包括岩
体的稳定性评价、岩体失稳机制分析以及岩体支护设计等内容。

这些知识对于地下工程和岩土工程的设计和施工具有指导意义。

最后,岩石力学课程还会探讨岩石力学在岩土工程中的应用,包括岩石边坡稳定分析、隧道和地下室的支护设计、岩石基础的承载特性等内容。

这些知识对于工程实践具有重要的指导作用。

总的来说,岩石力学课程涵盖了岩石力学的基本理论和应用,对于地质工程、岩土工程以及地质灾害防治等领域具有重要的理论和实践意义。

希望这些信息能够对你有所帮助。

岩石力学-全部课件

岩石力学-全部课件
22
1.5 岩石和岩体的基本概念
1.绪论
岩石和岩体是岩石力学的直接研究对象,因此学习和研究岩石
力学,首先要建立岩石(或岩块)和岩体的基本概念。
几个基本概念
●岩石(Rock):矿物、岩屑的集合体。 ●结构面(Structural
Plane): 指地质历史发展过程中,在岩体内形成的 具有一定的延伸方向和长度,厚度相对较小的地质界面或带。 ●岩块(Rock block 或 Rock):指不含显著结构面的岩石块体,是构成岩 体的最小岩石单元体。 ●岩体(Rockmass):指地质历史过程中形成的,由岩块和结构面网络组 成的,具有一定的结构并赋存于一定的天然应力状态和地下水等地质环 境中的地质体。 ●岩体结构(Rockmass Structure):指岩体中结构面与结构体的排列组合 关系。其包括两个基本要素,即结构面和结构体。
沉积岩
1.绪论
沉积岩是由母岩(岩浆岩、变质岩或早已形成的沉积岩)在地表
经风化剥蚀而产生的物质,通过搬运、沉积和固结作用而形成的 岩石。
●颗粒包括各种不同形状和大小的岩屑及不同矿物。 ●胶结物常见的有钙质、硅质、铁质、泥质等。
沉积岩由颗粒和胶结物组成,各有不同的成分。
沉积岩的物理力学性质不仅与颗粒有关,还与胶结物有很大
23
1.5.1岩石和岩体
1.绪论 岩石
岩石是组成地壳的基本物质,它是由矿物或岩屑在
地质作用下按一定规律凝聚而成的自然地质体。
岩石可由单种矿物组成。 ●如:纯洁的大理石由方解石组成。 多数的岩石则是由两种以上的矿物组成。 ●如:花岗岩主要由石英、长石、云母三种矿物组成。 按照成因,岩石可分为三大类:岩浆岩、沉积岩和
14
1.4 岩石力学发展简况

岩石力学教学大纲

岩石力学教学大纲

《岩石力学》课程教学大纲Rock Mechanics课程名称:岩石力学学分:2.0总学时数:30先修课程:土力学,材料力学,弹性力学,微分方程,数理方程课程性质:选修课适用专业:土木工程课程简介:本课程主要从岩石与岩体的基本结构、物理力学性质和力学特性等方面介绍了岩石与岩体的基本特性,从岩石地下工程、边坡稳定和地基工程等方面阐明了岩石力学在实际工程中的应用,同时还介绍了岩体地应力及其测量方法。

一、课程目的本课程是高等院校工科土木工程类专业的一门专业选修课,是帮助学生认识岩石与岩体力学行为和工程功能的一门科学。

通过对岩石力学的基本理论和方法的系统阐述,学生将深入了解岩石各方面的力学性质,掌握利用岩石力学解决岩体工程(包括:地下工程、边坡工程及地基工程)实际问题的基本理论、方法和途径,熟悉岩石力学常用的实验测量方法和仪器,并了解当今岩石力学学科发展前沿和动态。

二、课程的教学内容基本要求第一章:绪论1、教学内容(1)岩石与岩体的基本概念;(2)岩石力学的应用范围;(3)岩石力学的基本内容与研究方法。

2、基本要求了解岩石与岩体的界定,岩石力学研究的主要问题,岩石力学的研究方法,熟悉岩石力学的发展史。

第二章:岩石的物理力学性质1、教学内容(1)岩石的结构和构造;(2)岩石的基本物理性质:密度、孔隙率、孔隙比等;(3)岩石的强度:抗压、抗剪、抗拉和强度准则;(4)岩石的变形;(5)岩石的流变:蠕变、松弛和长期强度。

2、基本要求掌握岩石的强度理论、变形特征和流变性,能够运用相关理论进行基本的理论推导和分析,掌握岩石的物理特性、强度及其测量方法,理解岩石的成分及结构与其力学性质的关系。

第三章:岩石的力学特性1、教学内容(1)岩体中的结构面:类型、自然特征和力学性质;(2)工程岩体的分类;(3)岩体的强度:节理岩体强度分析,结构面对岩体强度的影响分析;(4)岩体的变形:岩体变形实验、参数估算、曲线和变形特性;(5)岩体的水力学性质。

《岩石力学教案》课件

《岩石力学教案》课件

《岩石力学教案》PPT课件第一章:岩石力学概述1.1 岩石力学的定义岩石力学的定义和研究对象岩石力学的应用领域1.2 岩石的物理和力学性质岩石的物理性质岩石的力学性质1.3 岩石力学的研究方法实验研究理论分析和数值模拟第二章:岩石的力学行为2.1 岩石的弹性行为弹性模量和泊松比弹性应变和应力2.2 岩石的塑性行为塑性应变和应力岩石的屈服和破坏2.3 岩石的断裂行为断裂韧性和断裂强度断裂准则第三章:岩石的变形和强度3.1 岩石的变形线应变和切应变弹性变形和塑性变形3.2 岩石的强度压缩强度和拉伸强度剪切强度和抗弯强度3.3 岩石的流变行为粘弹性理论和流变模型岩石的长期强度和蠕变特性第四章:岩石力学实验4.1 岩石力学实验方法实验设备和原理实验步骤和数据采集4.2 岩石力学实验案例压缩实验剪切实验弯曲实验4.3 实验结果分析和讨论实验数据的处理和分析实验结果的可靠性和精度第五章:岩石力学在工程中的应用5.1 岩石工程中的岩石力学问题岩体支护和加固设计5.2 岩土工程中的岩石力学应用岩土工程的稳定性分析岩土工程的支护和加固技术5.3 采矿工程中的岩石力学应用矿山压力和岩层控制矿山支护和通风技术第六章:岩石力学数值模拟6.1 数值模拟方法概述有限元方法离散元方法有限差分方法6.2 岩石力学数值模型连续介质模型离散介质模型6.3 数值模拟案例分析岩体稳定性分析岩石破裂过程模拟第七章:岩石力学在地质工程中的应用7.1 地质工程中的岩石力学问题地质灾害防治7.2 地质工程中的岩石力学应用隧道工程基坑工程7.3 地球物理勘探中的岩石力学地震勘探地球物理测井第八章:岩石力学在土木工程中的应用8.1 土木工程中的岩石力学问题大坝和水库岩体稳定性道路和桥梁基础稳定性8.2 土木工程中的岩石力学应用岩体支护和加固岩体锚固技术8.3 地质灾害防治中的岩石力学滑坡防治岩体崩塌防治第九章:岩石力学在采矿工程中的应用9.1 采矿工程中的岩石力学问题矿山压力和岩层控制矿山支护和通风技术9.2 采矿工程中的岩石力学应用地下开采技术露天开采技术9.3 矿山安全与环境保护矿山安全评价矿山环境保护措施第十章:岩石力学的未来发展趋势10.1 岩石力学研究的新理论连续介质力学的发展非连续介质力学的研究10.2 岩石力学研究的新技术先进的测试技术数字图像分析技术10.3 岩石力学在可持续发展中的作用绿色岩石力学可持续岩石工程设计重点和难点解析重点环节1:岩石的物理和力学性质岩石的物理性质包括密度、孔隙度、渗透率等,这些性质对岩石的力学行为有重要影响。

《岩石力学》(完整版)ppt课件

《岩石力学》(完整版)ppt课件


(a)纵波(又称:初至波、
Primary波)
• 质点振动的方向和传播方向一致的波
• 它产生压缩或拉伸变形。
• (b)横波(又称次到波、Second波)
• 质点振动方向和传播方向垂直的波
• 产生剪切变形。
• (2)面波:仅在岩石表面传播。
• 质点运动的轨迹.为一椭圆,其长轴垂
• 按波面形状,应力波又区分为平面波、球面波和和柱面波。 • 波面上介质的质点具有相同的速度、加速度、位移、应力
和变形。 • 最前方的波面称为波前、波头和波阵面。
二、弹性波在固体中的传播
(
G
d
)
x
G 2u
u 2 t 2
拉梅运动方程 (不计体力)
(
Gd ) y
G 2v
u 2 t 2
(
G
d
)
z
G 2w
u 2
t 2
.
由上方程导出纵波在各向同性岩体中的传播速度:
CVp
(2Gd
1
)2
横波在各向同性岩体中的传播速度:
试验前的试件烘干质量 m r ;残留在筒内的试件烘

干质量 m s
.
(三)岩石的膨胀性
评价膨胀性岩体工程的稳定。
1、自由膨胀率:无约束条件下,浸水后胀 变形与原尺寸 之比
轴向自由膨胀 VHH/H (%)
H——试件高度
径向自由膨胀 VDD/D (%)
D——直径
返回
.
第三章 岩石动力学基础
第一节 岩石的波动特性 一、固体中应力波的种类
质 试
初始应力 岩体赋存条件分析
结构面几
何特征
介质的模型化 物理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不足:解析方法仅适合平面的圆形巷道,不能模拟开 挖过程;由于岩体中节理、裂隙的存在,围岩力学性 质参数和准确的本构关系难以确定。
地ห้องสมุดไป่ตู้力学理论
特点:,强调对岩体节理、裂隙的研究,重视岩体
结构面对岩石工程稳定性的影响和控制作用。
20年代,由德国人 H. Cloos 创立 51年,J. Stini 和 L. Müller 创立了“奥地利学派”: 在理论方面,指出工程围岩稳定性与原岩应力和开挖后岩体 的力学强度变化密切相关,重视岩石工程施工过程中应力、 位移和稳定性状态的监测,重视支护与围岩的共同作用,特 别重视利用围岩自身的强度维持岩石工程的稳定性 在施工方面,提出了“新奥法”,符合现代岩石力学理论
从“材料”概念到“不连续介质概念”是现代岩石力 学的第一步突破; 进入计算力学阶段是第二步突破;
有限元、边界元、离散元、位移非连续法(DDA)和流行法
非线性理论、不确定性理论和系统科学理论进入实用 阶段,则是岩石力学理论研究及工程应用的第三步意 义更为重大的突破.
耗散结构论、协同学、分叉和混沌理论,模糊数学、人工智能、 灰色理论
不足:过分强调节理、裂隙的作用,过分依赖经验,
而忽视理论的指导作用
4. 现代发展阶段(20世纪60年代-现在)
特点:用更为复杂多样的力学模型分析岩石力学问题;把物
理学、力学、系统工程、现代数理科学、现代信息技术等最新 成果引入了岩石力学; 电子计算机的广泛应用为流变学、断裂 力学、非连续介质力学、数值方法、灰色理论、人工智能、非 线性理论等在岩石力学与工程中的应用提供了可能.
精品课程
岩石力学
二、岩石力学学科的形成及定义
1951年,J. Stini 和 L. Müller等在 Salzburg发起和举行了以岩体力 学为主题的第一次国际岩石力学讨论会,为把工程地质与力 学相结合、为建立岩石力学这门边缘学科跨出了重要的一步, 并创办了《Geologie und Bauwesen》,1962年改名为《Rock Mechanics & Rock Engineering》
3. 经典理论阶段(20世纪30年代~20世纪60年
代)
岩石力学学科形成的重要阶段
弹性、塑性力学被引入,提出一些经典的解析计算公式 重视结构面对岩体力学性质的影响 形成围岩与支护共同作用理论 实验方法的完善 一系列岩石力学文献和专著的出版
岩体工程问题的解决形成了“连续介质理论” 和“地质力学理论”两大学派
37年,首部岩石力学专著 (秦巴列维奇)《岩石力学》
岩石力学的定义(Rock Mechanics)
1964年5月美国地质学会岩石力学专业委员会所下的定 义为:“岩石力学是研究岩石的力学性状(behavior) 的一门理论和应用的科学,它是固体力学的一个分支, 是探讨岩石对其周围物理环境中力场反应的学科。”
实验室通常用的岩石试件是由钻孔获取岩芯或在工程 范围内用爆破或其他方法获得的岩石碎块加工而成。
岩石试件通常是不包含有显著弱面的、较均质的岩石 块体,可看作连续介质及均质体。
3. 岩体 (Rock Mass)
岩体是指在一定地质条件下,含有诸如节理、断层、裂 隙、层理、劈理等不连续结构面的复杂地质体。
岩石力学的萌芽时期
A. Heim(1912)提出了静水压力的理论
W. J. M. Rankine(朗肯)和A.H.ДИННИΚ(金尼 克)地层压力的修正理论,即
v h
H H
tg2( )
42
或 1-
2. 经验理论阶段(20世纪初~20世纪30年代)
该阶段根据生产经验提出了经典的地压理论,具有代表性的理论有:
普罗托吉雅柯诺夫提出的自然平衡拱学说,即普氏理论. 围岩开挖后自然塌落成抛物线拱形,作用在支架上的压力等于
冒落拱内岩石的重量,仅是上覆岩石重量的一部分. 太沙基(K.Terzahi)理论 围岩塌落成矩形,而不是抛物线型. 优点与缺点 上述理论在一定历史时期和一定条件下还是发挥了一定作用的, 但是围岩的塌落并不是形成围岩压力的惟一来源,也不是所有 的地下空间都存在塌落拱.围岩和支护之间并不完全是荷载和 结构的关系问题,在很多情况下围岩和支护形成一个共同承载 系统,而且维持岩石工程的稳定最根本的还是要发挥围岩的作 用.
四、岩石力学中的几个基本概念
1. 岩石 (Rock)
定义:岩石是组成地壳的基本物质,它是由矿物 或岩屑在地质作用下按一定规律凝聚而成的天然 地质体。
岩石按照其成因可分为三类:岩浆岩,沉积岩和 变质岩,不同成因类型的岩石具有不同的物理力 学性质(自学、了解)。
2. 岩块
自然地质体的小块岩石称为岩块。我们平时所称的岩 石,在一定程度上都是指岩块。
1956年4月,在美国的科罗拉多矿业学院举行的一次专业会议上, 开始使用“岩石力学”这一名词,并由该学院汇编了“岩石 力学论文集”。在论文集的序言中说:“它是与过去作为一 门学科而发展起来的土力学,有着相似的概念的一门学科, 对这种有关岩石的力学方面的学科,现取名为岩石力学”。
1957年在巴黎出版的塔洛布尔(J. Talobre)的专著“岩石力学”是 这方面较早的一本较系统的著作。其后,开始形成了不同的 岩石力学学派(如法国学派,偏重于从弹塑性理论方面来研 究;奥地利学派,偏重于地质构造方面来研究)。
连续介质理论
特点:以固体力学作为基础,从材料的基本力学性质 出发来认识岩石工程的稳定问题。
30年代,萨文(P. H. Савин)采用无限大板孔应力集中的弹性解分析围岩 的应力分布; 50年代,弹塑性理论应用于围岩稳定性研究; R. Fenner-J. Talobre公式和 H. Kastner 公式; 应用流变理论对隧洞围岩的进行粘弹性分析; S. Serta公式
具体而言,研究岩石在荷载作用下的应力、变形和破坏 规律以及工程稳定性等问题。
上述定义是把“岩石”看成固体力学中的一种材料,然 而岩石材料不同于一般的人工制造的固体材料,它 是一种典型的“连续介质”,具有复杂的地质构造 和赋存条件的天然地质体。
三、岩石力学理论的发展简史
1. 初始阶段(19世纪末~20世纪初)
相关文档
最新文档