自动仪表检测温度控制系统的设计

合集下载

过程控制与自动化仪表课程设计

过程控制与自动化仪表课程设计

过程控制与自动化仪表课程设计前言过程控制与自动化仪表课程是工程领域中非常重要的基础课程之一,它涉及到工程研发、生产运营以及企业管理等多个方面。

本文将介绍一种基于实践的课程设计方法,旨在让学生深入掌握过程控制与自动化仪表的基础知识。

设计目标•确定学生对过程控制与自动化仪表的基本概念和技术掌握程度。

•培养学生的设计和实验能力,让他们能够运用所学知识分别设计并完成过程控制实验和自动化仪表实验。

•提高学生的团队合作和沟通能力,通过设计项目的过程,激发学生的创新潜力。

设计内容过程控制实验设计实验一:温度控制系统设计在该实验中,学生需要设计一个基于PID控制算法的温度控制系统。

通过调整控制器的参数,让温度快速稳定在设定值附近,并且能够在温度变化时快速响应和自适应调整。

实验二:流量控制系统设计在该实验中,学生需要设计一个基于比例控制算法的流量控制系统。

通过调整控制器的参数,让流量在设定值附近稳定,并且能够在流量变化时快速响应和自适应调整。

自动化仪表实验设计实验三:温度传感器的实现在该实验中,学生需要实现一个基于热电偶的温度传感器。

通过校准测试,让学生了解测量误差来源和校准方法。

实验四:流量计的实现在该实验中,学生需要实现一个流量计,通过实验测试让学生了解其特性和测量误差来源。

设计方法阶段一:学习基础概念和技术在本阶段,学生需要学习过程控制和自动化仪表的基础概念和技术,包括控制系统、PID控制器、量程、精度等方面的知识。

阶段二:组建设计小组在本阶段,每个小组需要选择一个相对复杂的课程设计内容,进行深入的研究和讨论,拟定初步设计方案。

阶段三:设计与实现在本阶段,学生需要分成小组,负责具体的实验设计与实现。

在设计的过程中,需要充分考虑过程控制和自动化仪表的基本原理和设计要求。

在实现的过程中,需要用到软件工具和实验平台。

阶段四:实验测试与评价在本阶段,学生需要对实验设计进行测试,并记录数据处理结果。

测试过程中需要考虑实验中的各种随机与不确定因素。

基于自动化仪表的智能控制系统设计与实现

基于自动化仪表的智能控制系统设计与实现

基于自动化仪表的智能控制系统设计与实现摘要:该系统能够实现生产过程的精确控制,提高生产效率,降低能源消耗。

通过实时监测生产过程中的各种参数,自动调节控制参数,实现生产过程的自动化和智能化。

该系统的设计和实现为企业带来了显著的经济效益,为相关领域的研究和实践提供了有价值的参考。

关键字:自动化仪表;智能控制系统;设计思路;技术实现一、自动化仪表概述自动化仪表是一种用于自动检测、显示、控制或执行各种操作的设备。

它广泛应用于工业、电力、交通、医疗等领域。

根据其功能和应用范围,自动化仪表可分为多种类型,如压力仪表、温度仪表、流量仪表、物位仪表等。

利用传感器将各种物理量(如压力、温度、流量等)转换为电信号,然后通过电路处理和转换,将电信号转换为人们易于理解的数值或图形。

传感器是自动化仪表的核心部件,它负责将各种物理量转换为电信号。

常见的传感器有电阻式、电容式、电感式等。

在选择自动化仪表时,需要根据实际需求和工况进行选择。

同时,还需要考虑仪表的精度、稳定性、可靠性等因素。

而在使用自动化仪表时,首先,要确保仪表的安装和使用符合相关规范和标准;其次,要定期对仪表进行维护和保养,确保其正常运行;最后,要正确使用仪表,避免误操作或不当操作导致损坏或测量误差。

二、智能控制系统概述智能控制系统是一种通过计算机技术、人工智能和自动化技术相结合,实现设备或系统自主决策、自我管理和自我完善的控制系统。

它是一种以数据驱动的控制系统,能够根据输入的数据和信息,通过算法和模型,自主地做出决策并控制系统的运行。

此外,根据控制方式,智能控制系统可以分为开环控制和闭环控制;根据控制对象,智能控制系统可以分为过程控制和运动控制;根据应用领域,智能控制系统可以分为工业控制、农业控制、交通控制、医疗控制等。

主要涉及的技术包括人工智能技术、计算机技术、自动化技术、数据分析和处理等。

人工智能技术是智能控制系统的核心,包括机器学习、深度学习、自然语言处理等技术。

毕业论文自动检测仪表的设计与实施

毕业论文自动检测仪表的设计与实施

摘要现代工业控制系统中,自动化仪表检测技术和仪表控制系统是实现自动控制的基础。

在过程自动化中要通过检测元件获取生产工艺变量,最常见变量是温度、压力、流量、物位(四大参数)。

检测元件又称为敏感元件、传感器,它直接响应工艺变量,并转化成一个与之成对应关系的输出信号。

这些输出信号包括位移、电压、电流、电阻、频率、气压等。

随着新技术的不断涌现,特别是先进检测技术、现代传感器技术、计算机技术、网络技术和多媒体技术的出现,给传统的自动控制系统带来了新的挑战,并由此引出许多新的发展,如虚拟仪器、软测量技术、数据融合理论与方法以及最新发展的传感器网络技术等。

全文以典型工业过程控制系统的构成为基础,以应用自动控制理论设计过程控制系统为主线,重点介绍了自动化检测仪表、全刻度指示 PID 连续调节仪表、数字控制仪表、执行器和防爆栅、智能仪表与虚拟仪器以及自动化仪表应用实例。

关键词:仪表、DCS组态、安装第一章序言 (3)1-1设计背景 (3)1-2设计内容及规划 (3)1-3设计意义 (3)第二章自动化检测技术及部分检测仪表原理介绍 (3)2-1自动化检测技术简介 (3)2-2 PID调节规律及方法 (3)第三章仪表选型及一些仪表介绍 (3)3-1转子流量计 (3)3-2 FIELDVUE DVC2000系列数字式阀门控制器 (3)3-2 SITRANS压力变送器 (3)第四章DCS系统简介 (3)4-1 霍尼韦尔DCS系统简介 (3)4-2 霍尼韦尔DCS软、硬件简介 (3)4-3 DCS系统软硬件的组态与连接 (3)4-4 DCS在压缩机上的应用 (3)结论 (3)参考文献 (3)第一章序言1-1设计背景半个多世纪以来,自动化仪表经历了从气动液动仪表、电动仪表、电子式模拟仪表、数字智能仪表,到计算机集散控制系统(DCS)等发展阶段,为各行各业的现代化大规模生产提供了强大的支持。

近年来,随着网络通信等相关技术的快速发展,自动化仪表正处于一场意义重大的变革中,以仪表的全数字化、开放化、网络化为特征的现场总线控制系统(FCS)正在迅猛发展。

温度控制系统的设计与实现

温度控制系统的设计与实现

温度控制系统的设计与实现汇报人:2023-12-26•引言•温度控制系统基础知识•温度控制系统设计目录•温度控制系统实现•温度控制系统应用与优化01引言目的和背景研究温度控制系统的设计和实现方法,以满足特定应用场景的需求。

随着工业自动化和智能制造的快速发展,温度控制系统的性能和稳定性对于产品质量、生产效率和能源消耗等方面具有重要影响。

03高效、节能的温度控制系统有助于降低生产成本、减少能源浪费,并提高企业的竞争力。

01温度是工业生产过程中最常见的参数之一,对产品的质量和性能具有关键作用。

02温度控制系统的稳定性、准确性和可靠性直接关系到生产过程的稳定性和产品质量。

温度控制系统的重要性02温度控制系统基础知识温度控制系统的性能指标包括控制精度、响应速度、稳定性和可靠性等,这些指标直接影响着系统的性能和效果。

温度控制原理是利用温度传感器检测当前温度,并将该信号传输到控制器。

控制器根据预设的温度值与实际温度值的差异,通过调节加热元件的功率来控制温度。

温度控制系统通常由温度传感器、控制器和加热元件组成,其中温度传感器负责检测温度,控制器负责控制加热元件的开关和功率,加热元件则是实现温度升高的设备。

温度控制原理温度传感器是温度控制系统中非常重要的组成部分,其工作原理是将温度信号转换为电信号或数字信号,以便控制器能够接收和处理。

常见的温度传感器有热敏电阻、热电偶、集成温度传感器等,它们具有不同的特点和适用范围。

选择合适的温度传感器对于温度控制系统的性能和稳定性至关重要。

温度传感器的工作原理加热元件的工作原理加热元件是温度控制系统中实现温度升高的设备,其工作原理是通过电流或电阻加热产生热量,从而升高环境温度。

常见的加热元件有电热丝、红外线灯等,它们具有不同的特点和适用范围。

选择合适的加热元件对于温度控制系统的性能和安全性至关重要。

控制算法是温度控制系统的核心部分,其作用是根据预设的温度值和实际温度值的差异,计算出加热元件的功率调节量,以实现温度的精确控制。

智能温度表设计原理

智能温度表设计原理

智能温度表是一种可以测量环境温度并提供智能化功能的设备。

其设计原理通常包括以下几个关键部分:
1. 温度传感器
智能温度表的核心部件是温度传感器,用于检测环境的温度。

常用的温度传感器包括热敏电阻(PTC、NTC)、热电偶和数字温度传感器等。

传感器将温度信号转换为电信号,并输出给控制系统进行处理。

2. 控制系统
智能温度表的控制系统通常由微处理器或微控制器组成,负责接收和处理来自温度传感器的信号。

控制系统根据预设的算法对温度数据进行处理,并可以实现各种功能,如温度显示、报警功能、数据存储和通信等。

3. 显示模块
智能温度表通常配备有显示模块,用于显示当前环境温度和其他相关信息。

显示模块可以采用液晶显示屏、LED显示等,以直观方式展示温度数据给用户。

4. 电源管理
智能温度表需要稳定的电源供应以正常工作。

电源管理部分通常包括电池或外部电源接口,以及相关的电源管理电路,确保设备的正常运
行和节能管理。

5. 智能功能
除了基本的温度检测和显示功能,智能温度表还可能具备一些智能化功能,如温度数据记录、远程监控、温度趋势分析、报警提示等。

这些功能通过控制系统的智能算法实现,提升了设备的实用性和便捷性。

综上所述,智能温度表的设计原理主要包括温度传感器、控制系统、显示模块、电源管理和智能功能等关键部分,通过这些组成部分的协同工作,实现了智能温度表的准确测量和智能化功能。

温度控制系统设计

温度控制系统设计

温度控制系统摘要 : 随着微机测量和控制技术的迅速开展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。

本设计论述了一种以STC89C52单片机为主控制单元,以 DS18B20为温度传感器的温度控制系统。

该控制系统可以实时存储相关的温度数据并记录当前的时间。

系统设计了相关的硬件电路和相关应用程序。

硬件电路主要包括STC89C52单片机最小系统,测温电路、实时时钟电路、 LCD 液晶显示电路以及通讯模块电路等。

系统程序主要包括主程序,读出温度子程序,计算温度子程序、 LCD 显示程序以及数据存储程序等。

关键词:STC89C52, DS18B20,LCDAbstract:Along with the computer measurement and control technology of the rapid development and wide application,based on singlechip temperature gathering and control system development and application greatly improve the production of temperature in life level of control. This design STC89C52 describes a kind ofmainly by MCU control unit, for temperature sensor DS18B20 temperature control system. The control system can real-time storage temperature data and recordrelated to the current time. System design related hardware circuit and related applications. STC89C52 microcontroller hardware circuit include temperaturedetection circuit smallest system, and real-time clock circuit, LCD displaycircuit, communication module circuit, etc. System programming mainly includemain program,read temperature subroutine,the calculation of temperature subroutines, LCD display procedures and data storage procedures, etc.Keywords: STC89C52, DS18B20,LCD目录1前言 (1)2总体方案设计 (2)方案设计 (2)方案论证 (3)方案选择 (3)3单元模块的设计 (4)单片机模块 . (4)18B20 温度模块 (5)显示器模块 . (6)4软件设计 (7)系统总框图 (7)温度采集子程序 (8)5系统功能与调试方法介绍 (9)系统功能 (9)系统指标 (9)系统调试 (9)6参考文献 (10)附录 1:相关设计图 (11)附录 2:元器件清单 (13)附录 3:源程序 (14)1前言工业控制是计算机的一个重要应用领域,计算机控制系统正是为了适应这一领域的需要而开展起来的一门专业技术,它主要研究如何将计算机技术、通过信息技术和自动控制理论应用于工业生产过程,并设计出所需要的计算机控制系统。

温度控制系统设计

温度控制系统设计

温度控制系统设计一、引言温度控制系统是一种常见的自动化控制系统,用于监测和调节环境或设备的温度。

它在工业、农业、医疗等领域中广泛应用,可以提高生产效率、保障产品质量和人员安全。

本文将介绍温度控制系统的设计原理、组成部分以及相关技术。

二、设计原理温度控制系统的设计原理基于温度传感器和执行器的反馈控制。

首先,通过温度传感器实时检测环境或设备的温度,并将检测结果转化为电信号。

然后,将电信号输入到控制器中进行处理。

控制器根据设定的目标温度和实际温度之间的差异,计算出相应的控制信号。

最后,控制信号通过执行器,如加热器或冷却器,调节环境或设备的温度,使其逐渐接近目标温度。

三、组成部分1. 温度传感器温度传感器是温度控制系统的核心部件之一,用于测量环境或设备的温度。

常见的温度传感器包括热电阻和热电偶。

热电阻基于温度对电阻值的影响进行测量,而热电偶则利用两种不同金属的热电效应来测量温度。

2. 控制器控制器是温度控制系统的决策中心,它接收温度传感器的信号,并根据预设的控制算法计算出相应的控制信号。

根据控制算法的不同,控制器可以分为比例控制器、比例积分控制器和比例积分微分控制器等。

控制器还可以具备调节参数、报警功能等。

3. 执行器执行器是温度控制系统的执行部件,负责根据控制信号调节环境或设备的温度。

常见的执行器包括加热器和冷却器。

当温度低于目标温度时,加热器会被激活,向环境或设备中释放热能;当温度高于目标温度时,冷却器则会被激活,帮助环境或设备散热。

四、相关技术1. PID控制PID控制是一种常用的温度控制算法,通过比例、积分和微分三个控制参数对温度进行调节。

比例控制用于根据温度误差大小调整执行器的输出;积分控制则用于消除稳态误差;微分控制则用于抑制过冲和振荡。

PID控制可以根据实际应用需求进行参数调整,以达到更好的控制效果。

2. 信号处理温度传感器的信号需要进行处理和转换,以便控制器能够正确计算出控制信号。

信号处理技术包括滤波、放大、线性化等。

温度检测系统的设计【文献综述】

温度检测系统的设计【文献综述】

毕业论文文献综述机械设计制造及其自动化温度检测系统的设计温度检测与控制在国外研究较早,始于20世纪70年代。

先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。

80年代末出现了分布式控制系统。

目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。

现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。

在国内,我国对于温度测控技术的研究较晚,始于20世纪80年代。

我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。

我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。

在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。

我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享和可靠性差等缺点。

近些年来,一些科学家通过对温度检测研究发现太阳辐射或许是气温变暖主要因素温度检测的设计中,单片机是这个系统的核心部分。

单片微型计算机简称单片机,典型的嵌入式微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。

单片机由芯片内仅有CPU的专用处理器发展而来。

早期的单片机都是8位或4位的。

其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。

此后在8031上发展出了MCS51系列单片机系统。

基于这一系统的单片机系统直到现在还在广泛使用。

随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。

90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。

随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。

基于PLC的温湿度自动控制系统的设计

基于PLC的温湿度自动控制系统的设计

基于PLC的温湿度自动控制系统的设计空调系统的耗能量大,通常一栋建筑物总耗能量约有60%为空调系统所消耗。

当前建筑空调系统缺乏规范化管理,导致室内温度湿度缺乏合理的控制,从而导致资源的浪费。

本着节能减排的原则,本文从PLC自动控制技术作为切入点,探讨了基于PLC的温湿度自动控制系统的设计,在有效保证合理温湿度的基础上,达到温度湿度自动调节的目的,从而有效降低能源消耗,高效利用能源,希望能为相关人士提供些许参考。

标签:PLC;温湿度;自动控制;系统;设计基于PLC温湿度自动控制系统的设计,是从传统人工控制模式存在的弊端出发,以日本三菱公司生产的Fx2n系列的PLC自动控制器为核心,同时加入温度、湿度传感器作为检测装置,共同构建出一套室内温湿度自动调控系统,具体设计思路如下。

1 PLC技术的内涵概述PLC即可编程逻辑控制器,最初是应用在机械加工等工业领域的智能技术,能够通过预先的程序设定,来根据程序指令实现自动控制的功能[1]。

随着该技术的不断发展,以及各行业对自动控制的需求,现如今PLC技术已经延伸至多个行业,并均取得了较为理想的开展效果。

出于对节能减排的考量,笔者就尝试从PLC技术入手,构建基于PLC的温湿度自动控制系统,以满足节能减排的新时期要求。

2 系统的设计基于PLC的温湿度自动调节系统共包括PLC控制器、现场采集装置、信号传送装置、温湿度调节装置等几个模块。

首先在PLC模块中编辑程序,它通过信号传输装置和现场的采集装置、温度湿度调节装置相连,根据现场采集装置收集的温湿度结果,发出温度调节指令,并将指令传送至温度湿度调节装置上,实现自动调节温湿度的目的。

2.1 PLC控制器PLC是自动控制系统的核心模块,结合机型、容量、通信联网、功能扩展等,选择最佳性价比的三菱Fx2n-48mr型PLC自動控制器作为系统的核心控制模块。

2.2 温度传感器温度传感器是系统中负责采集实时温度的装置,本系统采用PTL00铂电阻作为温度采集装置,具有精度高、稳定的特点[2]。

自动检测技术及仪表控制系统课程设计

自动检测技术及仪表控制系统课程设计

摘要本课程设计实验采用的是计算机和三菱Q系列PLC和三菱FR-F740系列变频器来实现控制,实验的目标是通过控泵的出油量来把油罐中的液位控制在设定的高度。

本课程设计实验报告首先对此次试验的主要任务和实现方式做了简要的阐述,之后针对实验要求提出了可行的设计方案并进行了讨论和比较。

我们利用PLC,变频器和电机在实验室构成了单回路的闭环控制系统,并采用了PI算法对PLC编程。

经过了一段时间的学习,通过多次校正和对参数的修改调试,最终实现了稳定运行和液位(转速)控制的在设定值的实验目标。

并将整个过程反映在了本次试验报告中。

程设计是以我们自己的专业课程(过程控制系统)为依托,针对一个特定的设计内容对我们进行完整的控制系统设计训练的教学环节。

使我们通过整个课程设计的过程了解和掌握过程控制系统设计的内容、步骤、规范和方法等。

为将教材中的理论和上课时学习的知识与实际自动化工程提供结合的机会,加深我们对过程控制系统这门课程的理论知识和应用实践的认识。

我们的设计内容包括:控制系统可行性分析,控制原理分析与设计,控制设备选型、系统接线图纸设计,控制系统编程实现以及实验验证等。

我们可以根据个人情况进行各自特色的控制系统设计。

关键词:PLC,变频器,自动化,液位控制目录摘要 (Ⅰ)1. 概述 (1)2. 课程设计任务及要求 (2)2.1 设计任务 (2)2.2 设计要求 (2)3. 理论设计 (3)3.1 方案论证 (3)3.2 系统设计 (7)3.2.1 结构框图及说明 (7)3.2.2 系统原理图及工作原理 (10)3.3 单元电路设计 (10)3.3.1 单元电路工作原理 (10)3.3.2 PID参数选择 (13)4. 系统设计 (15)4.1 软件设计 (15)4.2 编程过程 (17)4.3 编程结果 (18)5. 安装调试 (22)5.1安装调试过程 (22)5.2 故障分析 (23)6. 结论 (27)7. 使用仪器设备清单 (28)8. 收获、体会和建议 (29)9. 参考文献 (30)1概述○1过程控制系统过程控制系统是以表征生产过程的参量为被控制量使之接近给定值或保持在给定范围内的自动控制系统。

基于单片机的智能温度监测系统设计(电路图+程序)

基于单片机的智能温度监测系统设计(电路图+程序)

基于单⽚机的智能温度监测系统设计(电路图+程序)博主福利:100G+电⼦设计学习资源包!智能温度检测系统是通过硬件电路设计和软件编程驱动的结合⽅式,实现0℃~99℃范围内的温度智能监测。

可通过LCD实时显⽰实际温度和预设温度,当温度超出预设范围时及时报警,⽽且报警声⽤电⼦乐曲或⾳乐⾳符实现。

前⾔本次设计的主要思路是利⽤51系列单⽚机,数字温度传感器DS18B20和1602LCD液晶显⽰,构成实现温度检测与显⽰的单⽚机控制系统,即数字温度计。

通过对单⽚机编写相应的程序,达到能够实时检测周围温度的⽬的。

通过对本课题的设计能够熟悉数字温度计的⼯作原理及过程,了解各功能器件(单⽚机、DS18B20、LCD)的基本原理与应⽤,掌握各部分电路的硬件连线与程序编写,最终完成对数字温度计的总体设计。

其具体的要求如下: 1、根据设计要求,选⽤AT89C51单⽚机为核⼼器件; 2、温度检测器件采⽤DS18B20数字式温度传感器,利⽤单总线式连接⽅式与单⽚机的串⾏接⼝P3.3引脚相连; 3、显⽰电路采⽤1602LCD液晶显⽰温度值,此类液晶模块不仅可以显⽰数字、字符,还可以显⽰各种图形符号以及少量⾃定义符号,⼈机界⾯友好,使⽤操作也更加灵活、⽅便,使其⽇益成为各种仪器仪表等设备的⾸选。

系统的开发过程本设计主要介绍了⽤单⽚机和数字温度传感器DS18B20相结合的⽅法来实现温度的采集,以单⽚机AT89C51芯⽚为核⼼,温度传感器DS18B20和1602LCD液晶显⽰,构成了⼀个多功能单⽚机数字温度计。

其主要研究内容包括两⽅⾯,⼀是对系统硬件部分的设计,包括温度采集电路和显⽰电路;⼆是对系统软件部分的设计,应⽤C语⾔实现温度的采集与显⽰。

通过利⽤数字温度传感器DS18B20进⾏设计,能够满⾜实时检测温度的要求,同时通过1602LCD的显⽰功能,可以实现不间断的温度显⽰。

其总体设计框图⼀如下:图⼀:总体设计框图第⼀节AT89C51简介AT89C51是美国ATMEL公司⽣产的低功耗,⾼性能CMOS8位单⽚机,⽚内含4kbytes的可编程的Flash只读程序存储器,兼容标准8051指令系统及引脚,并集成了 Flash 程序存储器,既可在线编程(ISP),也可⽤传统⽅法进⾏编程,因此,低价位AT89C51单⽚机可应⽤于许多⾼性价⽐的场合,可灵活应⽤于各种控制领域,对于简单的测温系统已经⾜够。

基于PLC的温度控制系统设计

基于PLC的温度控制系统设计

基于PLC的温度控制系统设计基于PLC的温度控制系统设计摘要:可编程控制器(plc)作为传统继电器控制装置的替代产品已⼴泛应⽤⼯业控制的各个领域,由于它可通过软件来改变控制过程,⽽且具有体积⼩,组装灵活,编程简单抗⼲扰能⼒强及可靠性⾼等特点,⾮常适合于在恶劣的⼯业环境下使⽤。

本⽂所涉及到的温度监控系统能够监控现场的温度,并且能够通过现场和计算机控制,其软件控制主要是编程语⾔,对PLC⽽⾔是梯形语⾔,梯形语⾔是PLC⽬前⽤的最多的编程语⾔。

关键词:西门⼦S7-200PLC;编程语⾔;温度1.⼯艺过程在⼯业⽣产⾃动控制中,为了⽣产安全或为了保证产品质量,对于温度,压⼒,流量,成分,速度等⼀些重要的被控参数,通常需要进⾏⾃动监测,并根据监测结果进⾏相应的控制,以反复提醒操作⼈员注意,必要时采取紧急措施。

温度是⼯业⽣产对象中主要的被控参数之⼀。

本设计以⼀个温度监测与控制系统为例,来说明PLC在模拟量信号监测与控制中的应⽤问题。

2.系统控制要求PLC在温度监测与控制系统中的逻辑流程图如图所⽰:具体控制要求如下:将被控系统的温度控制在50度-60度之间,当温度低于50度或⾼于60度时,应能⾃动进⾏调整,当调整3分钟后仍不能脱离不正常状态,则应采⽤声光报警,以提醒操作⼈员注意排除故障。

系统设置⼀个启动按纽-启动控制程序,设置绿,红,黄3个指⽰灯来指⽰温度状态。

被控温度在要求范围内,绿灯亮,表⽰系统运⾏正常。

当被控温度超过上限或低于下限时,经调整3分钟后仍不能回到正常范围,则红灯或黄灯亮,并有声⾳报警,表⽰温度超过上限或低于下限。

在被控系统中设置4个温度测量点,温度信号经变送器变成0~5V的电信号(对应温度0~100度),送⼊4个模拟量输⼊通道。

PLC读⼊四路温度值后,再取其平均值作为被控系统的实际值。

若被测温度超过允许范围,按控制算法运算后,通过模拟两输出通道,向被控系统送出0~10V的模拟量温度控制信号。

PLC通过输⼊端⼝连接启动按钮,通过输出端⼝控制绿灯的亮灭,通过输出端⼝控制红灯的亮灭,通过输出端⼝控制黄灯的亮灭。

单片机温度控制系统的设计毕业设计论文

单片机温度控制系统的设计毕业设计论文

单片机温度控制系统的设计毕业设计论文摘要:本文设计了一种基于单片机的温度控制系统,旨在实现对温度的准确测量和控制。

系统采用温度传感器作为温度检测元件,通过单片机对温度进行采样和处理,然后根据预设的温度范围,控制风扇的启停,以达到调节室内温度的目的。

实验结果表明,该系统能够准确地测量温度并进行有效的控制。

关键词:单片机;温度控制系统;温度传感器;风扇1.引言温度控制是一种常见的自动化控制方法,广泛应用于工业、农业、医疗等领域。

温度控制系统通过对温度的测量和调节,实现了对环境温度的精确控制。

单片机作为一种微型计算机,具有体积小、功耗低、可编程性强等优点,被广泛应用于温度控制系统中。

2.系统设计系统由温度传感器、单片机和风扇组成。

温度传感器将实时温度传递给单片机,单片机根据设定的温度范围进行判断,并控制风扇的启停。

3.硬件设计(1)温度传感器选型采用数字温度传感器DS18B20,该传感器具有精度高、体积小、抗干扰能力强等特点。

(2)单片机选型采用AT89C52单片机,该单片机具有较高的性能和稳定性,适合于温度控制应用。

(3)风扇选型根据室内温度控制要求,选用功率适中的风扇,并设计驱动电路。

4.软件设计(1)温度测量通过单片机与温度传感器进行通信,实时获取温度数据,并进行精确测量。

(2)温度控制根据设定的温度范围,单片机判断当前温度是否在合理范围内,如果超出范围,则控制风扇启停,达到温度调节的目的。

5.实验结果通过实验,温度控制系统能够准确地测量室内温度,并根据设定的温度范围进行有效的控制。

系统响应速度快,温度波动范围小,能够满足实际应用需求。

6.结论本文设计了一种基于单片机的温度控制系统,并进行了实验验证。

实验结果表明,该系统能够准确地测量温度并进行有效的控制,具有一定的实用性和应用价值。

未来可以进一步优化系统性能,提高温度控制的精确度和稳定性。

[1]张三.基于单片机的温度控制系统设计[D].大学。

[2]李四.单片机在温度控制中的应用[J].仪器仪表学报。

温度控制系统

温度控制系统

水温自动控制系统水温自动控制系统摘要:本文介绍了以AT89C51单片机为核心的水温自动控制系统。

介绍了AT89C51单片机水温控制的硬件电路的设计及软件的编写、调试整个过程。

介绍了本水温控制系统的组成结构,着重介绍了系统中单片机AT89C51的显示控制电路以及受控升温电路的硬件组成。

本文采用分块的模式,对整个系统的硬件设计进行分析,分别给出了系统的总体框图、温度检测电路、显示单元的电路,并对相应电路进行相关的阐述。

调试结果表明以上提到的功能都可以实现。

关键词:水温控制;单片机;显示控制;远程控制1 引言随着计算机技术、测量仪器和控制技术的高速发展, 现代冶金、石油、化工及电力生产过程中,应用了越来越多的先进测量控制技术、设备和方法.在这些众多的先进测量控制技术中,如何对水温进行控制成为焦点课题之一,为越来越多的科研机构所重视。

温度是极为重要而又普遍的热工参数之一,在环境恶劣或温度较高等场下,为了保证生产过程正常安全的进行,提高产品的质量和数量,以及减轻工人的劳动强度和节约能源,及时准确地得到温度信息并对其进行适时的控制,在许多工业场合中都是重要的环节。

由于本设计是一个典型的检测、控制型应用系统,它要求系统完成从水温检测、信号处理、输入、运算到输出控制电炉加热功率以实现水温控制的全过程,因此,应以单片微型计算机为核心组成一个专用计算机应用系统,以满足检测、控制应用类型的功能要求。

另外,单片机的使用也为实现水温的智能化控制提供了可能,例如实现自动切断电源,语音提示,自动加热,远程控制等。

1.1 温度控制的现状目前市场上经销的温度控制系统大多是采用模拟电路及继电器控制,存在电路繁琐,可调节性差,受温度影响大,响应速度慢,有噪音等缺点,针对这些缺点我们对它进行了再次设计。

实现满足题目要求的水温自动控制系统需要解决以下两个方面的问题:一是高精度的水温测量电路及其数据处理的实现,另一个是控制方法及其控制电路实现的研究。

温度控制系统的设计

温度控制系统的设计
R,= (+At t +C 。 -R。1 +B 。 t ) (. 21 )
图3可控硅调功控温 电路 可控硅 驱动器 MO 3 4 集光 电隔离 、 C01 过零检测 功能于 一身 , 有 具 体积小 、 功耗低 、 干扰能力强 , 噪声 等优点 R 、 抗 无 , c为吸收 电路 , 起 保护作用 。经验公式如下 :
1系 统 设 计 .
效 时便启动 A D / 转换 , D T 经 A A口送人 单片机 , 再采集第 二个 模拟量进 行转换 。
24D A转 换 电路 . /
本 系统是 对电炉炉温进行控制 的微机 控制 系统。控制方式是单 闭 环控制形式 。温度控制系统是 以S C 9 5 单 片机 为控制核心 , T 8C 2 其系统 结构框 图如 图 1 所示 。
+1 2V
图 1系统结构框图 键盘将 温度设 定值和温度 反馈值送 人单 片机 , 后经过运 算得到 然 输出控制量 , m控制量控制控温输 出电路得 到控 制电压 , 输 施加到驱动 器上 , 从而控制 电加热炉 内温度 。
2系 统硬 件 设 计 .
硬件 系统 由单 片机 电路 , 温度 检测放 大电路 , / DA转换 电路 , AD、 / 控温输 出电路等组成 。下面分别给予介绍 : 21 .单片机电路 S C 9 5 是 一个 低功耗 、 性能 的 5 内核 的 C S 位 单片 机 , T 8C 2 高 1 MO 8 具 有在线编程 功能 , 不再需要启动像 S C 9 5 那样的 1V的VP T 8C l 2 P编程 高压… 使 用简单且 价格非 常低廉 。故 本文使用 S C 9 5 为系统 的主 , T 8C 2 控制器 。单片机发送 温度设定值和采集温度反馈值 , 并据此调节 I 的 / O 输出来控制温度的值 。 22 .温度检测放大 电路 温度检测 电路 承担着检测电阻炉温度并将温 度数 据传输 到单片机 的任务 。铂 电阻最 常应用于 中低 温区 , 精度 高 , 稳定性 好 , 具有 一定 的 非线性 , 温度越 高电阻变化 率越小 , 测量范 围一般为一 0 ~80C 目 20 5 o 。 前 应用最广泛的是 P10 i0 铂热 电阻 与温度 的关 系如下 : i0 。Pl0

温度测量与控制系统的设计

温度测量与控制系统的设计
维普资讯
期( 总第 2 2 ) 2期 №l ei o2 ) lS rl 22 ( aN
福 建 轻 纺 。 .h &Tx i ,B( 8r,o Fj I l Lgt I  ̄e I 1 Le — ul ' i 饺 e l B U P s rJ h g x . e SI 8 u眦 a 一 e一 t etl du ti l i h
较器 、 定时比较器和 R 触发器构成的单稳定时器 、 s 基准电源电路 、 精密电流源 、 电流开关及集电极 开路输 出管等几部分组成。2 R 定时电路 , 个 C 一个由 R 、t t 组成, C 它与单稳定时器相连 ; 另一个由
R 、 1 组成 , c 靠精密的电流源充电, 电流源输出电流 i由内部基准电压源供给的 1 V参考电压和外 . 9
可知 :
f. : 一 一 :
i t
RI
19R .RC。 ./ ×11
20 R。。 .9 CRL
() 2
式 中 :t .k , t .1F R-0 k , 1.1 Q。 R= 8 Q C= 0p , L10  ̄ R= 42 6 O - k
K R /2 9 t t L : 0 0 = s . R C R ) 10 。 (O


图 1 M3 1引脚 图 L 3
收 稿 日期 : 07 0— 4 . 20—90
作者简 介: 洪宝康(1 5 一 )男, 2 , 工程师 。 9
维普资讯

1・ 2
福 建 2 K— l 0 _M
体管和开关 电源 , 定时器的定时周期 t1 R =. 。, 1 C 在这个周期 中电流 i 向电容充电, V 上升 , c 使 当 V 上升到 V> 时, V 电流 i 关断, 定时器 自行复位 , 同时 , c 逐渐通过 R 放电直到 V< 。 L V 为止, 然

温度控制系统课程设计

温度控制系统课程设计

一.概述温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。

对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。

本设计的控制对象为一电加热炉,输入为加在电阻丝两断的电压,输出为电加热炉内的温度。

输入和输出的传递函数为:G(s)=2/(s(s+1))。

控温范围为100~500℃,利用PID控制算法进行温度控制。

二.温度控制系统的组成框图采用典型的反馈式温度控制系统,组成部分见下图。

其中数字控制器的功能由单片机控制实现。

图1..1温度控制系统的组成框图三.温度控制系统结构图及总述图1.2温度控制系统结构图图中由4~20mA变送器,I/V,A/D转换器构成输入通道,用于采集炉内的温度信号。

其中,变送器选用XTR101,它将热电偶信号(温度信号)变为4~20mA 电流输出,再由高精密电流/电压变换器RCV420将4~20mA电流信号变为0~5V 标准电压信号,以供A/D转换用。

转换后的数字信号送入AT89C51单片机中与与炉温的给定值进行比较,即可得到实际炉温和给定炉温的偏差,其偏差被PID 程序计算出输出控制量。

由AT89C51输出电信号送至SCR触发电路,触发晶闸管并改变其导通角大小,从而控制电加热炉的加热电压,起到调温的作用。

四.温度控制系统硬件与其详细功能介绍1. AT89C51介绍AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS 8位微处理器,俗称单片机。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89S51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

基于DSl8820的温度自动控制系统的设计

基于DSl8820的温度自动控制系统的设计

愿 更 换 居 室 装 饰 环 境 的 智 能 图形 投 影 系 很 好 的 可 视 化 效 果 ,容 易在 学 生 群 体 中
统 。 在 智 能 选 取 或 输 出 可 选 列 表 时 , 就 产 生 感 性反 响 。 ” 可 以 随 时 像 更 换 手 机 壁 纸 一 样 更 换 房 间 内 的 装 饰 背 景 和 图案 , 这 套 系 统 的 娱 乐 性 和 实用 性 又将 增 色不 少 。 台 实 现 超 大 容 量 随 时 随地 装 载 能 改 善 心
实 用 性 体 现 在 可 以借 助 虚 拟 数 据 平 数 和加 权 环 境心 情 参数 ;
情 的 装 饰 方 案 , 摒 弃 了 费 财 费 力 的实 体 室 环 境 改变 方案 组 ; 另 一 方 面 , 这 个 系 统 可 以基 本 应 用 装 修 ,几 乎 实现 几 乎 零 成 本 , 零 周 期 和 ( )处 理 上 级指 令 并 调 用影 音 数 据 4 于 小 型 家 庭 的装 饰 变 换 , 这 样 不 仅 可 以 零 污 染 。而 且 , 改 善 心 情 对 于 人 的意 义 库 ,输 出配 置方 案 ; 给 很 多 家 庭 节 省 下来 大 量 的装 修 费 用 , 更 是 无 法 简 单 估 量 的 ,这 更 将 大 幅 改 善 ( )执 行 配置 方 案 , 投 影 图像 并 播 5
( ) 入 “ . E ”文 件 ; 4加 HX ( ) 动软 件 仿真 演 示 ; 5启 4 2 仿真 结果 .
通 过 调 节 来 进 行 加 热 或 降 温 ,实 现 温 度 的 精 确 控 制 。 通 过 仿 真验 证 ,整 个 系 统 电路 简 单 , 性 能 稳 定 ,在 测 温 范 围 内 测
【 关键词l调节心情 ;人脸表情识别 ;环境心理 学;环境 监测
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动检测技术及仪表控制系统项目设计学生姓名:王芬学号:**********学院:信息与通信工程学院专业:自动化检测系统名称:温度检测系统的设计大作业运用已经学过的温度、压力、流量、物位、机械量等检测原理和检测方法,查阅有关的文献资料,自行设计一个检测系统。

要求:1、测试参数的检测原理和方法。

2、设计整个系统的结构。

3、传感器选型及参数说明。

4、检测和转换电路的设计方案。

5、每人独立完成,严禁同学之间相互抄袭,否则平时成绩记为零。

6、统一使用A4纸手写或打印,4月30号前以班为单位送到11号楼1312室,过时不候。

一:设计目的1.1温度控制广泛应用于人们的生产和生活中,人们使用温度计来采集温度,通过人工操作加热、通风和降温设备来控制温度,这样不但控制精度低、实时性差,而且操作人员的劳动强度大。

即使有些用户采用半导体二极管作温度传感器,但由于其互换性差,效果也不理想。

在某些行业中对温度的要求较高,由于工作环境温度不合理而引发的事故时有发生。

对工业生产可靠进行造成影响,甚至操作人员的安全。

为了避免这些缺点,需要在某些特定的环境里安装数字温度测量及控制设备。

本设计由于采用了新型单片机对温度进行控制,以其测量精度高,操作简单。

可运行性强,价格低廉等优点,特别适用于生活,医疗,工业生产等方面的温度测量及控制。

本设计是一个数字温度测量及控制系统,能测柜内的温度,并能在超限的情况下进行控制、调整,并报警。

保证环境保持在限定的温度中。

1.2 电路的总体工作原理温度控制系统采用AT89S51八位机作为微处理单元进行控制。

采用4X4键盘把设定温度的最高值和最低值存入单片机的数据存储器,还可以通过键盘完成温度检测功能的转换。

温度传感器把采集的信号与单片机里的数据相比较来控制温度控制器。

系统框图如图1.1:图1.1 系统框图根据系统的设计要求,选择DS18B20作为本系统的温度传感器,选择单片机AT89S51为测控系统的核心来完成数据采集、处理、显示、报警等功能。

选用数字温度传感器DS18B20,省却了采样/保持电路、运放、数/模转换电路以及进行长距离传输时的串/并转换电路,简化了电路,缩短了系统的工作时间,降低了系统的硬件成本。

该系统的总体设计思路如下:温度传感器DS18B20把所测得的温度发送到AT89S51单片机上,经过51单片机处理,将把温度在显示电路上显示,本系统显示器为点阵字符LCD,1602液晶模块。

检测范围5摄氏度到60摄氏度。

本系统除了显示温度以外还可以设置一个温度值,对所测温度进行监控,当温度高于或低于设定温度时,开始报警并启动相应程序(温度高于设定温度时,风扇开;当温度低于设定温度时,加热器开)。

中央微处理器AT89S51:AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80S51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。

AT89S51具有如下特点:40个引脚,4k Bytes Flash片内程序存储器,128 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。

此外,AT89S51设计和配置了振荡频率,并可通过软件设置省电模式。

空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。

同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式。

AT89S51单片机综合了微型处理器的基本功能。

按照实际需要,同时也考虑到设计成本与整个系统的精巧性,所以在本系统中就选用价格较低、工作稳定的AT89S51单片机作为整个系统的控制器。

二、器件选择及电路设计本设计是一个数字温度控制系统,能测量温度,并能在超限的情况下进行控制、调整,并报警。

2.1.1 具体指标正常工作温度范围: 5℃~60℃温度误差:<1℃2.1.2 具体控制要求根据设计的要求,要利用温度传感器实时温度。

当温度高于设定的温度时(60℃),打开降温装置进行调整使温度在设定的范围内。

当温度低于设定的温度时(5℃),打开升温装置进行调整使温度在设定的范围内。

同时要求能设定温度。

毕业设计的主要任务是能对温度进行自动的检测和控制。

设计中采用单片机来控制温度,因此要有温度的采集电路,键盘显示电路,温控电路,报警电路等几个部分。

要实现系统的设计要用到的知识点有单片机的原理及其应用,温度传感器的原理和应用,及键盘和显示电路的设计等。

2.2 温度传感器的选择2.2.1 采用模拟集成温度传感器集成传感器是采用硅半导体集成工艺而制成的,因此亦称硅传感器或单片集成温度传感器,它是将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出功能的专用IC。

模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温、控温,不需要进行非线性校准,外围电路简单。

图2-1是AD590用于测量热力学温度的基本应用电路。

因为流过AD590的电流与热力学温度成正比,当电阻R1和电位器R2的电阻之和为1kΩ时,输出V随温度的变化为1mV/K。

但由于AD590的增益有偏差,电阻也有误差,因此应对电压OV=273.2mV。

电路进行调整。

调整的方法为:把AD590放于冰水混合物中,调整电位器R2,使0V=273.2+25=298.2(mV)。

但这样调整只可保证或在室温下(25℃)条件下调整电位器,使0在0℃或25℃附近有较高精度。

AD590把被测温度转换为电流再通过放大器和A/D转换器,输出数字量送给单片机进行温度控制。

图2.1 基于AD590测温基本应用电路2.2.2 采用数字单片智能温度传感器智能温度传感器(亦称数字温度传感器)是微电子技术、计算机技术和自动测试技术(ATE)的结晶。

目前,已开发出多种智能温度传感器系列产品。

智能温度传感器内部都包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路。

有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。

智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU). 智能温度传感器的总线技术也实现了标准化、规范化,所采用的总线主要有单线(1-WIRE)总线、I2C总线、SMBUS总线和SPI总线。

温度传感器作为从机可通过专用总线接口与主机进行通信。

智能温度控制器是在智能温度传感器的基础上发展而成的。

典型产品有DS18B20,智能温度控制器适配各种微控制器,构成智能化温控系统;它们还可以脱离微控制器单独工作,自行构成一个温控仪。

DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出,其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。

同DS1820一样,DS18B20也支持“一线总线”接口,测量温度范围为 -55℃~+125℃,在-10℃~+85℃范围内,精度为0.5℃。

DS18B20的精度较差为±0.2℃。

现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。

适合于恶劣环境的现场温度测量。

如:环境控制、设备或过程控制、测温类消费电子产品等。

与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。

而且新一代产品更便宜,体积更小。

DALLAS半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。

一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。

现在,新一代的“DS1820”体积更小、更经济、更灵活。

使您可以充分发挥“一线总线”的长处。

DS18B20、DS1822“一线总线”数字化温度传感器。

由于DS18B20将温度传感器、信号放大调理、A/D转换、接口全部集成于一芯片,与单片机连接简单、方便,与AD590相比是更新一代的温度传感器,所以温度传感器采用DS18B20。

2.3 显示器的选择2.3.1 LED显示器采用传统的七段数码LED显示器。

LED虽然价格便宜,但在现代的许多仪表、各种电子产品中逐渐被LCD所取代。

2.3.2 LCD液晶屏采用LCD液晶屏进行显示。

LCD液晶显示器是一种低压、微功耗的显示器件,只要2~3伏就可以工作,工作电流仅为几微安,是任何显示器无法比拟的,同时可以显示大量信息,除数字外,还可以显示文字、曲线,比传统的数码LED显示器显示的界面有了质的提高。

在仪表和低功耗应用系统中得到了广泛的应用。

优点为:1 显示质量高,由于液晶显示器的每一个点收到信号后就一直保持那种色彩和亮度恒定发光,因此液晶显示器的画质高而且不会闪烁。

2 数字式接口,液晶显示器都是数字式的,和单片机的接口简单操作也很方便。

3 功率消耗小,相比而言液晶显示器的主要功耗在内部电极和驱动IC上,因而耗电量比其他器件要小很多。

虽然LCD显示器的价格比数码管要贵,但它的显示效果好,是当今显示器的主流,所以采用LCD 作为显示器。

2.4 单片机的选择2.4.1 采用AT89S51单片机由于单片机技术在各个领域正得到越来越广泛的应用,世界上许多集成电路生产厂家相继推出了各种类型的单片机,在单片机家族的众多成员中,MCS-51系列单片机以其优越的性能、成熟的技术及高可靠性和高性能价格比,迅速占领了工业测控和自动化工程应用的主要市场,成为国内单片机应用领域中的主流。

单片机的诞生标志着计算机正式形成了通用计算机系统和嵌入式计算机系统两个分支。

通用计算机系统主要用于海量高速数值运算,不必兼顾控制功能,其数据总线的宽度不断更新,从8位、16位迅速过渡到32位、64位,并且不断提高运算速度和完善通用操作系统,以突出其高速海量数值运算的能力,在数据处理、模拟仿真、人工智能、图像处理、多媒体、网络通信中得到了广泛应用;单片机作为最典型的嵌入式系统,由于其微小的体积和极低的成本,广泛应用于家用电器、机器人、仪器仪表、工业控制单元、办公自动化设备以及通信产品中,成为现代电子系统中最重要的智能化工具。

相关文档
最新文档