三年级数学思维训练:乘除巧算

合集下载

三年级数学思维训练[1]1

三年级数学思维训练[1]1
50-三年级期末复习与检测4
整数计算综合
还原问题
数阵图初步
竖式问题
几何图形简拼
路程、时间、速度
01-整数计算综合(1)
02-整数计算综合(2)
03-还原问题(1)
04-还原问题(2)
05-数阵图初步(1)
06-数阵图初步(2)
07-竖式问题(1)
08-竖式问题(2)
09-竖式问题(3)
10-竖式问题(4)
37-长度计算1
38-长度计算2
39-长度计算3
40-角度的计算1
41-角度的计算2
42-角度的计算3
43-找位置1
44-找位置2
火柴棍算式与生活趣题
三年级期末复习与检测
45-火柴棍算式与生活趣题1
46-火柴棍算式与生活趣题2
47-三年级期末复习与检测1
48-三年级期末复习与检测2
49-三年级期末复习与检测3
11-几何图形简拼(1)
12-几何图形简拼(2)
13-几何图形简拼(3)
14-几何图形简拼(4)
15-路程、时间、速度(1)
16-路程、时间、速度(2)
17-路程、时间、速度(3)
18-路程、时间、速度(4)
行程中的线段图
简单抽屉原理
基本直线形面积公式
底、高的选取与组合
变倍问题
和差倍中的分组比较
19-行程中的线段图(1)
复杂数阵图
有特殊要求的挑选
捆绑法与插空法
最值问题一
40-多次往返相遇与追与1
41-多次往返相遇与追与2
42-多次往返相遇与追与3
43-多次往返相遇与追与4
44-从洛书到幻方1
45-从洛书到幻方2

小学三年级数学:乘、除法速算巧算精要+专项练习!孩子练题需要它

小学三年级数学:乘、除法速算巧算精要+专项练习!孩子练题需要它

小学三年级数学:乘、除法速算巧算精要+专项练习一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。

理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变。

⑵在连除时,可以交换除数的位置,商不变。

⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家)。

⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变。

②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”。

添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”。

竖式计算25×38= 98×87= 52×39= 92×68=46×59= 17×75= 19×53= 75×18=99×45= 93×39= 65×19= 93×35=33×16= 69×42= 26×76= 68×88=42×59= 84×93= 44×64= 15×95=68×69= 83×29= 32×75 76×92=39×69= 74×64= 73×76= 48×54=35×74= 29×29= 24×18= 96×18=22×56= 55×57= 32×95= 68×19=66×43= 74×38= 98×48= 98×32=29×57= 33×94= 14×49= 83×29=53×93= 85×74= 96×22= 98×26=竖式计算,有☆的验算。

三年级奥数-乘除法的巧算及练习

三年级奥数-乘除法的巧算及练习

乘除法的巧算之相礼和热创作用简便方法计算上面各题1、25×8×22、37×9×103、25×64×125×54、125×125×645、32×25×1256、56×1257、16×25×5例3:计算: 1200÷25÷4用简便方法计算上面的标题6000÷125÷8 5200÷4÷25 6300÷4÷75 4200÷8÷25巧算:333÷37÷3 1000000÷8÷125÷25÷8÷5例4:计算:12÷5+13÷5 32÷3-20÷3用简便方法计算上面的标题63÷8+9÷8 52÷5-7÷59÷13+6÷13+11÷13 37÷9-11÷9-8÷9 1000000÷8÷125÷25÷8÷5例5:计算: 120×80÷60技巧:四则元算中,如果同级运算,可以“带着符号搬场”(符号在前,数字在后).用简便方法计算上面的标题28×25÷7 32×125÷4120×260÷12045×37÷1563÷8×64÷79÷13+6÷13+11÷13 37÷9-11÷9-8÷9例6:计算: 25÷10×4技巧:四则运算中,如果同级运算,可以“带着符号搬场”(符号在前,数字在后).用简便方法计算上面的标题6÷10×5 8÷20×1255÷6×6125÷4×89÷10×100÷945×25÷5÷9 45×37÷15 63÷8×64÷7特殊的两位的乘法1、十几乘十几.口诀:头乘头,尾加尾,尾乘尾.注:个位相乘,不敷两位数要用0占位.例:12×14=?解: 1×1=1 2+4=6 2×4=8 12×14=168练习:15×13= 14×12= 12×15= 19×17= 16×14=2、头同,尾合十.口诀:一个头加1后头乘头,尾乘尾,个位相乘不敷两位数用0占位.例:23×27=?解:2+1=3 2×3=6 3×7=21 23×27=621练习:34×36= 82×88= 51×59= 24×26= 74×76=3、尾同,头合十.口诀:十位相乘加个位放百位,个位相乘不敷两位数用0占位.例:34×74=?解: 3×7+4=25 4×4=16 34×74=2516练习:54×54= 83×23= 71×31= 44×64= 16×96=4、第一个乘数互补,另一个乘数数字相反.口诀:一个头加1后,头乘头,尾乘尾例:37×44=?解:3+1=4 4×4=16 7×4=28 37×44=1628练习:37×22= 64×33= 19×88= 82×77= 73×55=5、几十一乘几十一.口诀:头乘头,头加头,尾乘尾.例:21×41=?解:2×4=8 2+4=6 1×1=1 21×41=861练习:31×41= 61×21= 41×51= 51×71= 81×91=作业:加减法的巧算.(靠整法、凑整法、分组法、基准数法)799999+79999+7999+799+79+7 526-73-27-26 4253-(253-158)乘除法的巧算.(整数乘积、乘法分配律、合理拆数、商不变性子)练习1:2532125 1251348255 2 456212525548 2510412588 67×101 219+229+239+249 练习2:15×12= 18×12= 13×16= 18×15= 11×19=练习3:32×38= 81×89= 53×57= 22×28= 73×77=练习4:34×74= 82×22= 61×41= 44×64= 76×36=练习5:37×33= 64×22= 19×55= 82×66= 73×44=练习6:41×51= 71×81= 31×61= 21×71= 51×31=。

三年级数学奥数思维乘除巧算

三年级数学奥数思维乘除巧算

课题乘除巧算年级三授课对象编写人时间学习目标利用乘法交换律、乘法结合律、乘法分配律等提高巧算能力。

学习重点、难点乘法交换律、乘法结合律、乘法分配律的应用教学过程T (测试)1,计算:(1)25×23×4 (2)125×27×82,计算:(1)5×25×2×4 (2)125×4×8×25(3)2×125×8×5 3,想一想,怎样算比较简便? 125×164,(1)25×12 (2)125×32 (3)48×1255,(1)125×16×5 (2)25×8×56,(1)125×64×25 (2)32×25×25S (归纳)提高计算能力,除了加、减、乘、除基本运算要熟练之外,还要掌握一定的运算技巧。

巧算中,经常要用到一些运算定律,例如乘法交换律、乘法结合律、乘法分配律等等,善于运用运算定律,是提高巧算能力的关键。

E (典例)例题1 你有好办法算出下面各题的结果吗?(1)25×17×4 (2)8×18×125(3)8×25×4×125 (4)125×2×8×5思路导航:(1)我们知道25×4=100,因而我们要尽量把25与4放在一块计算,这样比较简便。

所以我们先算25×4=100,再与17相乘即100×17=1700;(2)因为8×125=1000,因而我们先把8与125放在一块计算,8×125=1000,再乘18:1000×18=18000;(3)已知25×4=100、125×8=1000,因此这道题我们要通过移位的方法把25与4相乘,125与8相乘,然后再把1000与100相乘,1000×100=100000;(4)因为125×8=1000,2×5=10,因而这道题也要移一移,先计算125×8=1000和2×5=10,再计算1000×10=10000。

(完整)三年级乘除法速算巧算

(完整)三年级乘除法速算巧算

一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。

例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。

例3计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4计算①123×101②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。

三年级乘除法速算巧算

三年级乘除法速算巧算

第2讲;乘除法速算巧算一、乘法中的巧算1•两数的乘积是整十、整百、整千的,要先乘•为此,要牢记下面这三个特殊的等式:5X 2=10 25X 4=100 125 X 8=1000例1计算①123X 4 X 25②125 X 2X 8X 25 X 5X 4解:①式=123 X( 4 X 25) =123X 100 = 12300②式=(125X 8)X( 25 X 4)X( 5X 2) =1000X 100 X 10=10000002•分解因数,凑整先乘。

例2计算①24 X 25②56X125③125 X 5X 32 X 5解:①式=6X( 4X25) =6X 100=600②式=7X 8 X 125=7 X( 8X 125) =7 X 1000=7000③式=125X 5 X 4X 8X 5= (125 X 8)X( 5X 5 X 4) =1000 X 100=1000003. 应用乘法分配律。

例3计算①175 X 34 + 175 X 66②67 X 12+67 X 35 + 67 X 52+6解:①式=175 X( 34+66) =175X 100=17500②式=67 X ( 12+ 35 + 52 + 1) = 67 X 100 = 6700 (原式中最后一项67 可看成67 X 1)例4计算①123X101②123X 99解:①式=123 X( 100 + 1) =123 X 100 + 123 = 12300 + 123=12423②式=123X( 100-1) =12300-123=121774•几种特殊因数的巧算。

例5 一个数X 10,数后添0;—个数X 100,数后添00;—个数X 1000,数后添000 ;以此类推。

女口:15X 10=150 15 X 100=1500 15X 1000= 15000例6一个数x 9,数后添0,再减此数; 一个数X 99,数后添00,再减此数; 一个数X 999,数后添000,再减此数;,以此类推。

小学三年级奥数乘除巧算

小学三年级奥数乘除巧算

2.清朝黄遵宪曾作诗曰:“钟声一及时,顷刻不少留。虽
有万钧柁,动如绕指柔。”这是在描写
()
A.电话
B.汽车
C.电报
D.火车
解析:从“万钧柁”“动如绕指柔”可推断为火车。
答案:D
[典题例析]
[例1] 上海世博会曾吸引了大批海内外人士利用各种
交通工具前往参观。然而在19世纪七十年代,江苏沿江
居民到上海,最有可能乘坐的交通工具是
解析:从图片中可以了解到各国举的灯笼是火车形状, 20世纪初的这一幅漫画正反映了帝国主义掠夺中国铁路 权益。B项说法错误,C项不能反映漫画的主题,D项时 间上不一致。 答案:A
[典题例析] [例2] (2010·福建高考)上海是近代中国茶叶的一个外销
中心。1884年,福建茶叶市场出现了茶叶收购价格与上海
和除数同时扩大或缩小相同的倍数(0除外),商不 变,因而: (1)130÷5可将130和5同时乘2.使除除变为10,然 后再用260÷10=26; (2)4200÷25可以将4200和25同时乘4,使除数变为 100,然后再用16800÷100=168; (3)34000÷125可以将34000和125同时乘8,使除数 变为1000,然后再用272000÷1000=272。
(2)特点:进程曲折,发展缓慢,直到20世纪30年代情况才发生变 化。
3.交通通讯变化的影响 (1)新式交通促进了经济发展,改变了人们的通讯手段和 ,出行 方式转变了人们的思想观念。
(2)交通近代化使中国同世界的联系大大增强,使异地传输更为便 捷。
(3)促进了中国的经济与社会发展,也使人们的生活 多。姿多彩
之外,还要掌握一定的运算技巧。巧算中,经常要用 到一些运算定律,例如乘法交换律、乘法结合律、乘 法分配律等等,善于运用运算定律,是提高巧算能力 的关键。

三年级奥数-乘除巧算

三年级奥数-乘除巧算
乘除巧算
专题简析
前面我们已给小朋友们介绍了加减中的巧算, 大家学会了运用“凑整”的方法进行巧算,实际 上这种;凑整“的方法也同样可以运用在乘、除计 算中。为了更好地凑整,为了更好地“凑整”, 同学们要牢记以下几个计算结果: 25×4=100 125×8=1000.
巧算中,经常要用到一些运算定律,例如乘 法交换律、乘法结合律、乘法分配律等,善于运 用运算定律,是提高巧算能力的关键。
(3)2340÷5
2、计算。 (1)7200÷25
(2)3600÷25
(3)5600÷25
3、你能很快计算下面各题吗? (1)32000÷125
(2)78000÷125
(3)43000÷125
【例题5】
计算 (1)49×55+55×51
(2)79×85+35×79-20×79
【练习5】
1、(1)26×49+49×74 (2)82×173-73×82
2、(1)68×99+68 (2)614×14+88×614-614×2
3、1750÷14-350÷14 7175÷35-700÷35+525÷35
精讲精练
【例题1】
你有好办法算出下面各题的结果吗?
(1)25×17×4
(2) 8×18×125
(3)8×25×4×125
(4) 125×2×8×5
【练习1】
1、计算: 25×23×4
125×27×8
2、计算。 (1)5×25×2×4
(2)125×4×8×25
(3)2×125×8×5
【例题2】
你有好办法计算下面各题吗? (1)25×8 (2) 16×125 (3)16×25×25 (4) 125×32×25

三年级乘除法速算巧算

三年级乘除法速算巧算

第2讲:乘除法速算巧算一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=10 25×4=100 125×8=1000例1 计算①123×4×25② 125×2×8×25×5×4解:①式=123×(4×25) =123×100=12300②式=(125×8)×(25×4)×(5×2) =1000×100×10=10000002.分解因数,凑整先乘。

例 2计算① 24×25② 56×125③ 125×5×32×5解:①式=6×(4×25) =6×100=600②式=7×8×125=7×(8×125) =7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4) =1000×100=1000003.应用乘法分配律。

例3 计算① 175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66) =175×100=17500②式=67×(12+35+52+1)= 67×100=6700 (原式中最后一项67可看成 67×1)例4 计算① 123×101② 123×99解:①式=123×(100+1)=123×100+123 =12300+123=12423②式=123×(100-1) =12300-123=121774.几种特殊因数的巧算。

三年级数学思维训练:乘除巧算

三年级数学思维训练:乘除巧算

三年级数学思维训练:乘除巧算以下是###为大家整理的【三年级数学思维训练:乘除巧算】,供大家参考!专题分析:前面我们已介绍了相关加、减法中的巧算,其中“凑整”是巧算中的一种方法,这种方法同样能够使用在乘除计算中。

要提升计算水平,除了加、减、乘、除基本运算要熟练之外,还要掌握一定的运算技巧。

巧算中,经常要用到一些运算定律,例如乘法交换律,乘法结合律,乘法分配律等,灵活使用运算定律,是提升巧算水平的关键。

例1:巧算下面各题。

(1)、25×8 (2)、16×125 (3)、16×25×25 (4)、125×32×25【思路点拨】(1)25×8 (2)16×125=25×(4×2)=(2×8)×125=25×4×2 =2×(8×125)=100×2 =2×1000=200 =2000(3)16×25×25 (4)125×32×25=(4×4)×25×25 =125×(8×4)×25=(4×25)×(25×4) =(125×8)×(4×25)=100×100 =1000×100=10000 =100000例2:简便运算。

(1)130÷5 (2)4200÷25【思路点拨】这里能够使用商不变的性质,即被除数和除数同时扩大或缩小相同的倍数(0除外),商不变,因而:(1)130÷5 (2)4200÷25=(130×2)÷(5×2) =(4200×4)÷(25×4)=260÷10 =16800÷100=26 =168例3:计算31×25【思路点拨】题中31不能被4整除,但31可拆成4×7+3,这样就得到(4×7+3)×25,或者把25看做100÷4也可求出得数。

三年级思维训练 第2讲:乘除法巧算2

三年级思维训练 第2讲:乘除法巧算2

第2讲乘除法巧算知识梳理【乘除法的巧算】我们在第1讲中介绍了加、减法的运算律和性质,利用它们可以简化一些加、减法算式的计算。

本讲将介绍在巧算中常用的一些乘、除法的运算律和性质,其目的也是使一些乘、除法计算得到简化。

【乘法交换律】两个数相乘,交换两个数的位置,其积不变。

即a×b=b×a。

【乘法结合律】三个数相乘,可以先把前两个数相乘后,再与后一个数相乘,或先把后两个数相乘后,再与前一个数相乘,积不变。

即a×b×c=(a×b)×c=a×(b×c)。

【除法的性质】连除等于除以它们的积a÷b÷c=a÷(b×c)【带符号搬家】乘除同级运算,先乘后除,可连同符号改为先除后乘。

a×b÷c=a÷c×b a÷b×c=a×c÷b【乘法分配律】乘法分配律:两个数之和(或差)与一数相乘,可用此数先分别乘和(或差)中的各数,然后再把这两个积相加(或减)。

即(a+b)×c=a×c+b×c,或(a-b)×c=a×c-b×c。

【商不变性质】被除数和除数乘(或除)以同一个非零数,其商不变。

即a÷b=(a×n)÷(b×n)(n≠0)=(a÷m)÷(b÷m)(m≠0)【例题一】乘法交换律与结合律(1)4×17×25(2)125×19×8(3)25×125×4×8【例题二】连除等于除以它们的积:a÷b÷c=a÷(b×c)450÷9÷5240÷12÷2【例题三】乘除法混合运算(带符号搬家)a×b÷c=a÷c×b或a÷b×c=a×c÷b (1)160×5÷8(2)250÷9×45(3)320×7÷8【例题四】乘法分配律(a+b)×c=a×c+b×c,或(a-b)×c=a×c-b×c。

三年级数学思维能力提升--乘除法巧算

三年级数学思维能力提升--乘除法巧算

三年级数学思维能力提升乘除法巧算知识与方法归纳基本特点:乘法巧算中几个常用凑整数:2×5 = 10 4×25 = 100 8×125 = 1000基本方法:(1)去括号和添括号法则在只有乘除运算的算式里,如果括号的前面是“÷”,那么不论是去掉括号或添上括号,括号里面运算符号都要改变,即“×”号变“÷”,“÷”变“×”;如果括号的前面是“×”,那么不论是去掉括号或添上括号,括号里面运算符号都不改变。

例如:① a×(b÷c)= a×b÷c ②a÷(b÷c)= a÷b×c(2)带符号“搬家”在只有乘除运算的算式里,每个数前面的运算符号是这个数的符号。

不论数移动到哪个位置,它前面的运算符号不变。

(3)利用乘法的意义巧算乘法是求几个相同加数的和的简便运算;可以利用乘法的意义,先计算出相同加数的个数,再计算结果,使计算简便。

(4)抵消思想同级运算能抵消的先抵消,就能使计算简便。

典型题讲解例1、用简便方法计算下列各题。

(1)19×25×4 (2)125×27×8 (3)5×25×4×2例2、用简便方法计算下列各题。

(1)125×32 (2)28×25 (3)25×6×64×125练习1、简便计算下列各题。

(1)36×4×25 (2)125×16×5 (3)125×48 ×5例3、简便计算下列各题。

(1)170÷5 (2)2100÷25 (3)35000÷125例4、简便计算下列各题。

(1)3100÷4÷25 (2)12000÷125÷8练习2、简便计算下列各题。

三年级乘除法速算巧算

三年级乘除法速算巧算

一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。

例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。

例3计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4计算①123×101②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。

三年级奥数-乘除法中的巧算

三年级奥数-乘除法中的巧算

第二讲速算与巧算(二)一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25 ② 125×2×8×25×5×4解:=123×(4×25) =(125×8)×(25×4)×(5×2)=123×100=12300 =1000×100×10=10000002.分解因数,凑整先乘。

例2计算①24×25②56×125③ 125×5×32×5=6×(4×25) =7×8×125=7×(8×125) =125×5×4×8×5=6×100 =7×1000 =(125×8)×(5×5×4)=600 =7000 =1000×100=1000003.应用乘法分配律。

例3计算① 175×34+175×66 ②67×12+67×35+67×52+6解: =175×(34+66) =67×(12+35+52+1)=175×100 = 67×100=17500 =6700例4计算① 123×101 ② 123×99解: =123×(100+1)=123×100+123 =123×(100-1)=12300+123 =12300-123 =12423 =121774.几种特殊因数的巧算。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三年级数学思维训练:乘除巧算
以下是曲#为大家整理的【三年级数学思维训练:乘除巧算】,供大家参考!
专题分析:
前而我们己介绍了相关加、减法中的巧算,其中“凑整”是巧算中的一种方法,这种方法同样能够使用在乘除计算中。

要提升计算水平,除了加、减、乘、除基本运算要熟练之外,还要掌握一定的运算技巧。

巧算中,经常要用到一些运算定律,例如乘法交换律,乘法结合律,乘法分配律等,灵活使用运算定律,是提升巧算水平的关键。

例1:巧算下面各题。

(1)、25X8 (2)、16X125 (3)、16X25X25 (4)、
125X32X25
【思路点拨】(1)25X8 (2)16X125
=25X (4X2)二(2X8)X125
二25X4X2 二2X (8X125)
=100X2 =2X1000
=200 =2000
(3)16X25X25 (4) 125X32X25
二(4X4)X25X25 =125X(8X4)X25
= (4X25) X (25X4) =(125X8) X (4X25)
=100X100 =1000X100
=10000 =100000
例2:简便运算。

(1) 1304-5 (2) 4200宁25
【思路点拨】这里能够使用商不变的性质,即被除数和除数同时扩大或缩小相同的倍数(0除外),商不变,因而:
(1) 1304-5 (2) 42004-25
=(130X2) 4- (5X2) = (4200X4) 4- (25X4)
=2604-10 =168004-100
=26 =168
例3:计算31X25
【思路点拨】题中31不能被4整除,但31可拆成4X7+3,这样就得到(4X7+3) X25,或者把25看做100F4也可求出得数。

31X25 或31X25
=(4X7+3) X25 =31X (1004-4)
二4X7X25+3X25 =31X1004-4
=700+75 =31004-4
=775 =775
拓展训练:
1、计算
(1) 125X27X8 (2) 125X4X8X25
2、速算
1、(1)25X12 (2)48X125
2、仃)125X16X5 (2) 25X8X5 (3) 32X25X25
3、简便运算
72004-25 36004-25 56004-25 320004-125 4、巧算
29X25 17X25 221 X25 322 X25
5、速算
78000 4-125 430004-125
2561X25 3753X25。

相关文档
最新文档