高三函数复习专题

合集下载

高三复习题型专题训练《函数的解析式》(含答案)

高三复习题型专题训练《函数的解析式》(含答案)

高三复习题型专题训练《函数的解析式》(含答案)考查内容:主要涉及求函数的解析式(换元法,待定系数法,配凑法,方程组法等)一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知()2145f x x x -=+-,则()f x 的表达式是( )A .223x x +-B .2610x x +-C .26x x +D .287x x ++2.已知函数)12fx =+,则A .()221f x x x =++ B .()()2231f x x x x =-+≥C .()221f x x x =-+D .()()2231f x x x x =++≥3.已知1)3f x =+,则(1)f x +的解析式为( ) A .4(0)x x +≥ B .23(0)x x +≥C .224(1)x x x -+≥D .23(1)x x +≥4.已知()1f x +=()21f x -的定义域为( ) A .1,12⎛⎤⎥⎝⎦B .13,22⎡⎫⎪⎢⎣⎭C .1,12⎡⎤⎢⎥⎣⎦D .13,22⎡⎤⎢⎥⎣⎦5.设函数()(0)f x kx b k =+>,满足(())165f f x x =+,则()f x =( )A .543x --B .543x -C .41xD .41x +6.已知()f x 满足()12()3f x f x x+=,则()f x 等于( )A .12x x --B .12x x -+C .12x x +D .12x x-7.设()()2log 20xf x x =>,则()3f 的值是( )A .128B .256C .512D .10248.若(cos )cos2f x x =,则(sin 60)f ︒等于( )A .BC .12D .12-9.已知定义在R 上函数()f x 为单调函数,且对任意的实数x ,都有()21213x f f x ⎛⎫+= ⎪+⎝⎭,则()2log 3f = ( )A .0B .12C .23D .110.若函数()()3af x m x =-是幂函数,且图象过点()2,4,则函数()()2log a g x m x =-的单调增区间为( )A .()2,0-B .(),0-∞C .()0,∞+D .()0,211.已知函数()y f x =对任意x ∈R ,都有2()3()5sin 2cos2f x f x x x --=+,将曲线()y f x =向左平移4π个单位长度后得到曲线()y g x =,则曲线()y g x =的一条对称轴方程为( ) A .8x π=-B .4πx =-C .8x π=D .4x π=12.设函数:f R R →满足(0)1,f =且对任意,x y R ∈都有(1)()()()2,f xy f x f y f y x +=--+则(2019)f =( )A .0B .1C .2019D .2020二.填空题13.已知二次函数()()20f x ax bx c a =++≠,其图象过点()1,1-,且满足()()244f x f x x +=++,则()f x 的解析式为______.14.已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()21x f x g x e x +=++,则()g x =______.15.已知2()(1)()2f x f x f x +=+,(1)1f =,(x N +∈),()f x =__________.16.()f x 是R 上的函数,且满足(0)1f =,并且对任意的实数x y ,都有()()(21)f x y f x y x y -=--+,则()f x 的解析式_______三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.(1)已知3311f x x x x⎛⎫+=+ ⎪⎝⎭,求()f x ; (2)如果11x f x x ⎛⎫=⎪-⎝⎭,则当0x ≠且1x ≠时,求()f x ; (3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知函数()f x 的定义域为(0,)+∞,且1()21f x f x ⎛= ⎝,求()f x .18.已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式;(2)求()f x 在区间[]1,2-上的最大值;(3)若函数()f x 在区间[],1a a +上单调,求实数a 的取值范围.19.一次函数()f x 是R 上的增函数,[()]43f f x x =+,41()()() (0)2m g x f x x m -=+>. (1)求()f x ;(2)对任意12[1,3]x x ∈,,恒有12()()24g x g x -≤,求实数m 的取值范围.20.已知函数()f x 对一切实数x ,y 都有()()()21f x y f y x x y +-=++成立,且()10f =.(1)求()0f 的值; (2)求()f x 的解析式;(3)已知a R ∈,设P :当01x <<时,不等式()42f x x a +<+恒成立;Q :当[]2,2x ∈-时,()()g x f x ax =-是单调函数.如果满足P 成立的a 的集合记为A ,满足Q 成立的a 的集合记为B ,求R A C B ⋂(R 为全集).21.已知函数()21ax bf x x +=+定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)判断函数()f x 的单调性,并证明; (3)解关于x 的不等式()()210f x f x -+<.22.已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log 2(1−x). (1)求f(x)及g(x)的解析式及定义域;(2)如函数F(x)=2g(x)+(k +2)x 在区间(−1,1)上为单调函数,求实数k 的范围. (3)若关于x 的方程f(2x )−m =0有解,求实数m 的取值范围.《函数的解析式》解析1.【解析】由于()()()22145161f x x x x x -=+-=-+-,所以()26f x x x =+.故选:C 2.【解析】设1t =,则1t ≥且()21x t =-()()221223f t t t t ∴=-+=-+ ()()2231f x x x x ∴=-+≥,本题正确选项:B3.【解析】()11t t =≥,反解得:()21x t =-回代得:()()213f t t =-+,即:()()()2131f x x x =-+≥, 故:()()2130f x x x +=+≥.故选:B.4.【解析】由题意可知,令1x t ,则1x t =-,()f t ∴==220t t -+≥,解得02t ≤≤,令0212x ≤-≤,解得1322x ≤≤∴函数()21f x -的定义域为13,22⎡⎤⎢⎥⎣⎦,故选:D5.【解析】由题意可知()()2165f f x k kx b b k x kb b x =++=++=+⎡⎤⎣⎦所以21650k kb b k ⎧=⎪+=⎨⎪>⎩,解得:4,1k b ==,所以()41f x x =+.故选:D6.【解析】把()12()3f x f x x+=①中的x 换成1x,得()132()f f x x x +=②由①2⨯-②得()()31362f x x f x x x x=-⇒=-.故选:D7.【解析】设log 2x =t ,则x =2t ,所以f (t )=22t ,即f (x )=22x, 则f (3)=32822256==.故选:B 8.【解析】(cos )cos2f x x =,化简变形可得2(cos )2cos 1f x x =-,令[]cos ,1,1t x t =∈-,所以2()21f t t =-,[]1,1t ∈-,所以()21sin 6021222f f ⎛⎛︒==⨯-= ⎝⎭⎝⎭,故选:C.9.【解析】根据题意,()f x 是定义域为R 的单调函数,且对任意实数x 都有()21213x f f x ⎛⎫+= ⎪+⎝⎭,则()221xf x ++为常数, 设2()21x f x t +=+,则2()21xf x t =-++, 又由()21213x f f x ⎛⎫+= ⎪+⎝⎭,即21()321t f t t =-+=+, 解可得1t =,则2()121xf x =-++,则()22lo 3g 13122log 12f +=-+=,故选:B . 10.【解析】因为函数()()3af x m x =-是幂函数,且图象过点()2,4所以3124a m -=⎧⎨=⎩解得42m a =⎧⎨=⎩,所以()()()222log log 4a g x m x x =-=-则240x ->解得22x -<<,令()24t x x =-,()2log g t t =因为()t x 在()2,0-上单调递增,()0,2上单调递减,且()2log g t t =在定义域上单调递增,故()()()222log log 4a g x m x x =-=-在()2,0-上单调递增,()0,2上单调递减,故选:A 11.【解析】由2()3()5sin 2cos 22()3()5sin 2cos 2f x f x x x f x f x x x --=+⎧⎨--=-+⎩①②,①×2+②×3,得5()5sin 25cos2f x x x -=-+,即()sin 2cos 224f x x x x π⎛⎫=-=- ⎪⎝⎭,则()22444g x x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令242x k πππ+=+,k Z ∈,则对称轴方程为82k x ππ=+,k Z ∈,故选:C 12.【解析】(1)()()()2f xy f x f y f y x +=--+,(0)1,f = 取0x = 得到(1)(0)()()22f f f y f y =-+=取0y = 得到(1)()(0)(0)22f f x f f x =--+=得到()1f x x =+(2019)2020f =,故答案选D13.【解析】根据题意可知1a b c ++=-,又()()222244a x b x c ax bx c x ++++=++++恒相等,化简得到()()44244a b x a b c b x c ++++=+++恒相等,所以444241a b b a b c c a b c +=+⎧⎪++=+⎨⎪++=-⎩,故1a =,0b =,2c =-,所以()f x 的解析式为22f xx .故答案为:22f x x .14.【解析】∵()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()21x f x g x e x +=++,∴()()()21x f x g x e x --+-=+-+,即()()21xf xg x ex --=++,两式相减可得()2xxg x e e -=-,即()()12x x g x e e -=-.故答案为:()12x x e e --. 15.【解析】()()()212f x f x f x +=+11111111(1)1(1)(1)()2()(1)222x x x f x f x f x f +⇒=+⇒=+-⨯=+-⨯=⇒+()2 1f x x =+16.【解析】令0x =,代入()()(21)f x y f x y x y -=--+得()(0)(1)f y f y y -=--+,又(0)1f =,则22()1(1)1()()1f y y y y y y y -=--+=-+=-+-+,∴2()1f x x x =++,故答案为:2()1f x x x =++.17.【解析】(1) 33311113f x x x x x x x x ⎛⎫⎛⎫⎛⎫+=+=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当0x >时,12x x +≥=, 当0x <时,12x x +≤-=-, ∴3()3f x x x =-(2x -或2x ≥).(2)∵11111x f x x x⎛⎫==⎪-⎝⎭-,∴1()(10)1且f x x x x =≠≠-. (3)设()(0)f x ax b a =+≠则3(1)2(1)3[(1)]2[(1)]217f x f x a x b a x b x +--=++--+=+,5217ax a b x ++=+,故2517a ab =⎧⎨+=⎩,∴2a =,7b =,∴()27f x x =+.(4)∵1()21f x f x ⎛=⎝ ①用1x替换①式中的x 得12(1f f x x ⎛⎫= ⎪⎝⎭②把②代入①式可得()2(2(1)1f x f x =,即1()(0)3f x x =>. 18.【解析】(1)由()02f =,得2c =,由()()121f x f x x +-=-,得221ax a b x ++=-,故221a a b =⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩,所以()222f x x x =-+.(2)由(1)得:()()222211f x x x x =-+=-+, 则()f x 的图象的对称轴方程为1x =, 又()15f -=,()22f =,所以当1x =-时()f x 在区间[]1,2-上取最大值为5. (3)由于函数()f x 在区间[],1a a +上单调, 因为()f x 的图象的对称轴方程为1x =, 所以1a ≥或11a +≤,解得:0a ≤或1a ≥, 因此a 的取值范围为:(][),01,-∞⋃+∞.19.【解析】(1)∵一次函数()f x 是R 上的增函数,∴设() (0)f x ax b a =+>,2([()]43)a ax b b a x ab b f f x x =++=+++=,∴243a ab b ⎧=⎨+=⎩,解得21a b =⎧⎨=⎩, ∴()21f x x =+.(2)对任意12[1,3]x x ∈,,恒有12()()24g x g x -≤等价于()g x 在[1,3]上的最大值与最小值之差24M ≤,由(1)知24141()()()2422m m g x f x x x mx --=+=++, ()g x 的对称轴为0x m =-<且开口向上,()g x ∴在[1,3]上单调递增,max 41()(3)12182m g x g m -∴==++,min 41()(1)422m g x g m -∴==++, (3)(1)81624M g g m =-=+≤,解得1m ≤,综上可知,(0,1]m ∈.20.【解析】(1)令1x =-,1y =,则由已知得,()()()011121f f -=-⨯-++,()10f =,()02f ∴=-(2)令0y =,则()()()01f x f x x -=+,又()02f =-,()22f x x x ∴=+-;(3)不等式()42f x x a +<+,即2242x x x a +-+<+,即22x x a -+<,当01x <<时,222x x -+<.又22a x x >-+恒成立,{}|2A a a =≥.()()22212g x x x ax x a x =+--=+--,又()g x 在[]22-,上是单调函数,故有122a -≤-,或122a -≥, {}|35B a a a ∴=≤-≥或,{}|25R A C B a a ∴=≤<.21.【解析】(1)函数()21ax bf x x +=+是定义在()1,1-上的奇函数,()00f ∴=, 又1225f ⎛⎫= ⎪⎝⎭.0b ∴=,1a =,()21x f x x ∴=+. (2)()f x 在()1,1-上为增函数,理由如下.设1211x x -<<<,则1210x x -⋅>,120x x ->,2110x +>,2210x +>,()()()()()()1212121222221212101111x x x x x x f x f x x x x x --∴-=-=<++++()()12f x f x ∴<()f x ∴在在()1,1-上为增函数,(3)()()210f x f x -+<,()()()21f x f x f x ∴-<-=-,又()f x 在在()1,1-上为递增的奇函数,1211x x ∴-<-<-<,103x ∴<<,∴不等式()()210f x f x -+<的解集为10,3⎛⎫⎪⎝⎭.22.【解析】(1)因为f(x)是奇函数,g(x)是是是是是 所以f(−x)=−f(x),g(−x)=g(x)是 ∵f(x)+g(x)=2log 2(1−x)是①∴令x 取−x 代入上式得f(−x)+g(−x)=2log 2(1+x)是 即−f(x)+g(x)=2log 2(1+x)是②联立①②可得,f(x)=log(1−x)−log 2(1+x)=log 21−x1+x (−1<x <1)是 g(x)=log(1−x)+log 2(1+x)=log 2(1−x 2)(−1<x <1). (2)因为g(x)=log 2(1−x 2),所以F(x)=−x 2+(k −2)x +1, 因为函数F(x)是是是(−1,1)是是是是是是,是是k−22≤−1是k−22≥1,所以所求实数k 的取值范围为:k ≤0或k ≥4.(3)因为f(x)=log 21−x1+x ,所以f(2x )=log 21−2x1+2x ,设t =1−2x1+2x 是 则t =1−2x 1+2x=−1+21+2x,因为f(x)是是是是是(−1,1)是2x >0 ,是是0<2x <1是1<1+2x <2,12<11+2x <1,0<−1+21+2x <1,即0<t <1是是log 2t <0 ,因为关于x 的方程f(2x )−m =0有解,则m <0, 故m 是是是是是是 (−∞,0) .。

高三数学函数、三角函数、不等式综合复习

高三数学函数、三角函数、不等式综合复习

函数、三角函数、不等式综合复习教学目标:掌握函数定义域、值域、极值和最值的求解方法。

会证明函数的奇偶性,周期性和单调性。

会利用三角变形公式将三角式化为一个三角函数的形式研究其性质,会利用正、余弦定理解三角形问题,掌握和函数相关的不等式解法及证明。

教学重点:综合应用函数知识和分析问题及解决问题的能力。

教学例题:1.已知函数(1)若的定义域为R,求实数a的取值范围;(2)若的值域为R,求实数a的取值范围。

解析:(1)的定义域为R∴(a2-1)x2+(a+1)x+1>0对x∈R恒成立或a=-1或a<-1或a≤-1或∴实数a的取值范围是(2)的值域是R,即(a2-1)x2+(a+1)x+1的值域是(0,+∞)或a=1或∴实数a的取值范围是。

2.已知函数的反函数为,。

(1)若,求x的取值集合D;(2)设函数,当x∈D时,求的值域。

解析:(1)∵值域为(-1,+∞)∴由∴D=[0,1](2)由∴的值域为。

3.已知函数是奇函数,当时有最小值2,且。

(1)求的解析式;(2)函数的图象上是否存在关于点(1,0)对称的两点。

若存在,求出这两点的坐标,若不存在说明理由。

解析:(1)由是奇函数,∴∴,即∴c=0,∵a>0,b∈N*,当x>0时(当且仅当时等号成立)由x>0时最小值是2∴,∴a=b2由,则,将a=b2代入∴∴,解出。

∵b∈N*,∴b=1,∴a=b2=1∴(2)设存在一点(x0,y0)在的图象上,并且关于(1,0)的对称点(2-x0,-y0)也在图象上∴∴当时,∴图象上存在两点,关于点(1,0)对称。

4.设函数的定义域为R,对任意实数x1,x2恒有,且,。

(1)求的值;(2)求证是偶函数,且;(3)若时,,求证在[0,π]上是减函数。

解析:(1)令x1=x2=π,由则有∴∴(2)由∴,即是偶函数。

由,∴,即(3)设,则∵且在上∴,,即时恒有。

设0≤x1<x2≤π,则,∴,∴∴故在上是单减函数。

5.已知函数,x∈R。

高三数学函数专题经典复习题

高三数学函数专题经典复习题

1.已知函数f (x )=x 2-1x 2+1,则f (2)f ⎝⎛⎭⎫12=________.2.已知f 满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,则f (72)=------------.一、选择题1.函数f (x )=3x 21-x +lg(3x +1)的定义域是( )A.⎝⎛⎭⎫-13,+∞B.⎝⎛⎭⎫-13,1 C.⎝⎛⎭⎫-13,13 D.⎝⎛⎭⎫-∞,-13 2.已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,则f (x )的解析式可取为( ) A.x 1+x 2 B .-2x 1+x 2 C.2x 1+x 2 D .-x 1+x 23.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )4.设函数f (x )=⎩⎪⎨⎪⎧1-x 2, x ≤1,x 2+x -2, x >1,则f ⎝⎛⎭⎫1f (2)的值为( )A.1516 B .-2716 C.89D .18 5.若函数f (x )=⎩⎨⎧1x,x <0⎝⎛⎭⎫13x,x ≥0则不等式|f (x )|≥13的解集为( )A .(-3,1)B .[-1,3]C .(-1,3]D .[-3,1] 二、填空题6.已知函数f (x )=x 2-2ax +a 2-1的定义域为A,2∉A ,则a 的取值范围是____________. 7.如果f [f (x )]=2x -1,则一次函数f (x )=_____________. 三、解答题9.如右图所示,在边长为4的正方形ABCD 上有一点P ,沿着折线BCDA 由B 点(起点)向A 点(终点)移动,设P 点移动的路程为x ,△ABP 的面积为y =f (x ).(1)求△ABP 的面积与P 移动的路程间的函数关系式; (2)作出函数的图象,并根据图象求y 的最大值.10.已知二次函数f (x )=ax 2+bx +c ,(a <0)不等式f (x )>-2x 的解集为(1,3). (1)若方程f (x )+6a =0有两个相等的实根,求f (x )的解析式; (2)若f (x )的最大值为正数,求实数a 的取值范围.第三部分 函数的值域与最值一、选择题1.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3} D .{y |0≤y ≤3} 2.函数y =log 2x +log x (2x )的值域是( ) A .(-∞,-1] B .[3,+∞)C .[-1,3]D .(-∞,-1]∪[3,+∞)3.设f (x )=⎩⎨⎧x 2, ||x ≥1x , ||x <1,g (x )是二次函数,若f (g (x ))的值域是[)0,+∞,则g (x )的值域是( )A.(]-∞,-1∪[)1,+∞B.(]-∞,-1∪[)0,+∞ C .[0,+∞) D.[)1,+∞4.设函数f (x )=⎩⎪⎨⎪⎧-1,x >01,x <0,则(a +b )-(a -b )f (a -b )2(a ≠b )的值是( )A .aB .bC .a ,b 中较小的数D .a ,b 中较大的数 5.函数y =a x 在[0,1]上的最大值与最小值的和为3,则a =________.6.若f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2对任意的非负实数x 成立,则f ⎝⎛⎭⎫12010+f ⎝⎛⎭⎫22010+f ⎝⎛⎭⎫32010+…+f ⎝⎛⎭⎫20092010=________. 7.对a ,b ∈R ,记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,函数f (x )=max{|x +1|,|x -2|}(x ∈R )的最小值是________.8.若函数y =f (x )=12x 2-2x +4的定义域、值域都是闭区间[2,2b ],求b 的值.函数的单调性一、选择题1.已知f (x )=⎩⎪⎨⎪⎧(3-a )x -4a ,x <1,log ax , x ≥1,是(-∞,+∞)上的增函数,那么a 的取值范围是( ) A .(1,+∞) B .(-∞,3) C.⎣⎡⎭⎫35,3 D .(1,3)3.设f (x )是连续的偶函数,且当x >0时f (x )是单调函数,则满足f (x )=f ⎝ ⎛⎭⎪⎫x +3x +4的所有x 之和为( )A .-3B .3C .-8D .84.若不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,则a 的取值范围是( ) A .(0,+∞) B .[-2,+∞) C.⎣⎡⎭⎫-52,+∞ D .(-3,+∞) 5.若函数f (x )=x 2+ax(a ∈R ),则下列结论正确的是( )A .∀a ∈R ,f (x )在(0,+∞)上是增函数B .∀a ∈R ,f (x )在(0,+∞)上是减函数C .∃a ∈R ,f (x )是偶函数D .∃a ∈R ,f (x )是奇函数 二、填空题6.函数y =x 2+2x -3的递减区间是________.7.如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),则f ⎝⎛⎭⎫13,f ⎝⎛⎭⎫23,f (1)从小到大的排列是________.8.已知函数f (x )=3-axa -1(a ≠1). (1)若a >0,则f (x )的定义域是________;(2)若f (x )在区间(]0,1上是减函数,则实数a 的取值范围是________. 三、解答题9.已知函数f (x )在(-1,1)上有定义,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy ,试证明:(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减.一、选择题1.f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则“f (x ),g (x )均为偶函数”是“h (x )为偶函数”的( ) A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件2.若函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有( ) A .f (2)<f (3)<g (0) B .g (0)<f (3)<f (2) C .f (2)<g (0)<f (3) D .g (0)<f (2)<f (3)4.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥04x -x 2,x <0,若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞) 二、填空题5.函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为________.6设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时,f (x )的图象如右图所示,则不等式f (x )<0的解是________.7.若f (x )=12x -1+a 是奇函数,则a =____________.三、解答题8.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x .求函数g (x )的解析式;10.设f (x )是定义在R 上的奇函数,且对任意实数x 恒满足f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2. (1)求证:f (x )是周期函数. (2)当x ∈[2,4]时,求f (x )的解析式. (3)计算f (0)+f (1)+f (2)+…+f (2013).函数的图象一、选择题1.函数y =f (x )的图象与函数g (x )=log 2x (x >0)的图象关于原点对称,则f (x )的表达式为( ) A .f (x )=1log 2x(x >0) B .f (x )=log 2(-x )(x <0) C .f (x )=-log 2x (x >0) D .f (x )=-log 2(-x )(x <0) 2.函数y =e |ln x |-|x -1|的图象大致是( )3.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如下图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是( )A .h 2>h 1>h 4B .h 1>h 2>h 3C .h 3>h 2>h 4D .h 2>h 4>h 1 4.函数f (x )=2|log 2x |-⎪⎪⎪⎪x -1x 的图象为( )二、填空题6. f (x )是定义域为R 的偶函数,其图象关于直线x =2对称,当x ∈(-2,2)时,f (x )=-x 2+1,则x ∈(-4,-2)时,f (x )的表达式为________.7.已知定义在区间[0,1]上的函数y =f (x )的图象如右图所示,对于满足0<x 1<x 2<1的任意x 1、x 2,给出下列结论: ①f (x 2)-f (x 1)>x 2-x 1;②x 2f (x 1)>x 1f (x 2); ③f (x 1)+f (x 2)2<f⎝⎛⎭⎫x 1+x 22.其中正确结论的序号是________.(把所有正确结论的序号都填上)8.定义在R 上的函数f (x )满足f ⎝⎛⎭⎫x +52+f (x )=0,且函数f ⎝⎛⎭⎫x +54为奇函数,给出下列结论:①函数f (x )的最小正周期是52;②函数f (x )的图象关于点⎝⎛⎭⎫54,0对称; ③函数f (x )的图象关于直线x =52对称;④函数f (x )的最大值为f ⎝⎛⎭⎫52.其中正确结论的序号是________.(写出所有你认为正确的结论的符号)第九部分 一次函数与二次函数一、选择题1.一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根的充分不必要条件是( ) A .a <0 B .a >0 C .a <-1 D .a >12.设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列之一,则a 的值为( )A .1B .-1 C.-1-52 D.-1+523.已知函数f (x )=ax 2-2ax +1(a >1),若x 1<x 2,且x 1+x 2=1+a ,则( ) A .f (x 1)>f (x 2) B .f (x 1)<f (x 2) C .f (x 1)=f (x 2)D .f (x 1)与f (x 2)的大小不能确定4. 右图所示为二次函数y =ax 2+bx +c 的图象,则|OA |·|OB |等于( ) A.c a B .-c a C .±caD .无法确定5.关于x 的方程()x 2-12-||x 2-1+k =0,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根. 其中假命题的个数是( )A .0B .1C .2D .3 二、填空题6.若方程4()x 2-3x +k -3=0,x ∈[]0,1没有实数根,求k 的取值范围________.7.如果方程x 2+2ax +a +1=0的两个根中,一个比2大,另一个比2小,则实数a 的取值范围是________. 8.已知f (x )=x 2, g (x )是一次函数且为增函数, 若f [g (x )]=4x 2-20x +25, 则g (x )=____________. 三、解答题9.设二次函数f (x )=x 2+ax +a ,方程f (x )-x =0的两根x 1和x 2满足0<x 1<x 2<1. (1)求实数a 的取值范围; (2)试比较f (0)·f (1)-f (0)与116的大小,并说明理由.10.设函数f (x )=x 2+|x -2|-1,x ∈R . (1)判断函数f (x )的奇偶性; (2)求函数f (x )的最小值.单元测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合A 和集合B 都是实数集R ,映射f :A →B 是把集合A 中的元素x 对应到集合B 中的元素x 3-x +1,则在映射f 下象1的原象所组成的集合是( )A .{1}B .{0}C .{0,-1,1}D .{0,1,2}2.若不等式x 2-x ≤0的解集为M ,函数f (x )=ln(1-|x |)的定义域为N ,则M ∩N 为( ) A .[0,1) B .(0,1) C .[0,1] D .(-1,0] 3.函数y =log a (|x |+1)(a >1)的大致图象是( )4.已知函数f (x )=log a x ,其反函数为f -1(x ),若f -1(2)=9,则f (12)+f (6)的值为( )A .2B .1 C.12D.135.函数f (x )=(12)x 与函数g (x )=log 12|x |在区间(-∞,0)上的单调性为( )A .都是增函数B .都是减函数C .f (x )是增函数,g (x )是减函数D .f (x )是减函数,g (x )是增函数6.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0.若f (a )=12,则a =( )A .-1 B. 2C .-1或 2D .1或- 27.设函数f (x )=-x 2+4x 在[m ,n ]上的值域是[-5,4],则m +n 的取值所组成的集合为( )A .[0,6]B .[-1,1]C .[1,5]D .[1,7]8.方程(12)|x |-m =0有解,则m 的取值范围为( )A .0<m ≤1B .m ≥1C .m ≤-1D .0≤m <19.定义在R 上的偶函数f (x )的部分图象如右图所示,则在(-2,0)上,下列函数中与f (x )的单调性不同的是( )A .y =x 2+1 B .y =|x |+1C .y =⎩⎪⎨⎪⎧2x +1,x ≥0,x 3+1,x <0, D .y =⎩⎪⎨⎪⎧e x ,x ≥0,e -x ,x <010.设a =log 0.70.8,b =log 1.10.9,c =1.10.9,那么( )A .a <b <cB .a <c <bC .b <a <cD .c <a <b11.中国政府正式加入世贸组织后,从2000年开始,汽车进口关税将大幅度下降.若进口一辆汽车20XX 年售价为30万元,五年后(20XX 年)售价为y 万元,每年下调率平均为x %,那么y 和x 的函数关系式为( )A .y =30(1-x %)6B .y =30(1+x %)6C .y =30(1-x %)5D .y =30(1+x %)512.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0](x 1≠x 2),有(x 2-x 1)(f (x 2)-f (x 1))>0,则当n ∈N *时,有( )A .f (-n )<f (n -1)<f (n +1)B .f (n -1)<f (-n )<f (n +1)C .f (n +1)<f (-n )<f (n -1)D .f (n +1)<f (n -1)<f (-n )二、填空题(13.函数f (x )=11-ex 的定义域是________.14.若x ≥0,则函数y =x 2+2x +3的值域是________. 15.设函数y =f (x )是最小正周期为2的偶函数,它在区间[0,1]上的图象为如图所示的线段AB ,则在区间[1,2]上f (x )=______.16.设函数f (x )=⎩⎪⎨⎪⎧1,x >00,x =0-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设f (x )=a ·2x -12x +1是R 上的奇函数.(1)求a 的值;(2)求f (x )的反函数f -1(x ).18.(本小题满分12分)已知函数f (x )=2x -x m ,且f (4)=-72.(1)求m 的值;(2)判断f (x )在(0,+∞)上的单调性,并给予证明.19.(本小题满分12分)已知函数f (x )=3x ,且f (a +2)=18,g (x )=3ax -4x 的定义域为区间[-1,1]. (1)求g (x )的解析式; (2)判断g (x )的单调性.21.(本小题满分12分)设函数f (x )=x 2+x -14.(1)若函数的定义域为[0,3],求f (x )的值域;(2)若定义域为[a ,a +1]时,f (x )的值域是[-12,116],求a 的值.22.(本小题满分12分)已知函数f (x )=(13)x ,函数y =f -1(x )是函数y =f (x )的反函数.(1)若函数y =f -1(mx 2+mx +1)的定义域为R ,求实数m 的取值范围; (2)当x ∈[-1,1]时,求函数y =[f (x )]2-2af (x )+3的最小值g (a ).。

3.2函数的单调性与奇偶性课件-2024届高三数学一轮复习

3.2函数的单调性与奇偶性课件-2024届高三数学一轮复习

即练即清
1.判断正误(对的打“√”,错的打“✕”)
(1)函数y= 1 的单调递减区间是(-∞,0)∪(0,+∞). ( × )
x
(2)若定义在R上的函数f(x)有f(-1)<f(3),则函数f(x)在R上为增函数. ( × )
(3)偶函数图象不一定过原点,奇函数的图象一定过原点. ( × )
1
2.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是 3 .
因此f(1)≠f(-1), f(-1)≠-f(1),
故f(x)为非奇非偶函数.
(3)由1 x2 0, 得函数的定义域为(-1,0)∪(0,1),关于原点对称,
| x 2 | 2,
∴x-2<0,∴|x-2|-2=-x,∴f(x)= lg(1 x2) .
x
又∵f(-x)= lg[1 (x)2]=- lg(1 x2) =-f(x),
1 0
1
+b=ln +b=0,
2 (1 0)
2
∴b=-ln 1 =ln 2,此时f(x)=ln 1 1 +ln 2=ln 1 x ,满足题意.
2
2 1 x
1 x
综上可知,a=-1 ,b=ln 2.
2
答案 -1 ;ln 2
2
即练即清
3.判断下列函数的奇偶性:
(1)f(x)=
1
3x x2
;(2)f(x)=|x|+x;
2.(2024届江苏淮安期中,7)若函数f(x)=(3aax, x1)x1 4a, x 1,是定义在R上的减函数,则a的 取值范围为 ( A )
A. 18
,
1 3

(完整版)高三一轮复习三角函数专题及答案解析

(完整版)高三一轮复习三角函数专题及答案解析

三角函数典型习题1 •设锐角ABC的内角A B, C的对边分别为a, b, c,a 2bsi nA.(I )求B的大小;(n)求cosA sin C的取值范围• A B C 厂2 •在ABC中角A,B,C所对的边分别为a, b, c,sin sin— 2 .2 2(1)试判断△ ABC的形状;(II)若厶ABC的周长为16,求面积的最大值•23 •已知在ABC中,A B,且tan A与tan B是方程x 5x 6 0的两个根•(I )求tan (A B)的值;(n )若AB 5 ,求BC的长•2 2 2 14. 在ABC中,角A. B. C所对的边分别是a,b,c,且a c b ac.22A C(1) 求sin cos2B 的值;2(2) 若b=2,求厶ABC面积的最大值.5. 已知函数f(x) 2s in2 n x 3cos2x, xn,-n•4 4 2(1 )求f (x)的最大值和最小值;(2)f(x) m 2在x n,n上恒成立,求实数m的取值范围.4 26. 在锐角△ ABC 中,角A. B. C 的对边分别为a、b、c,已知(b2 c2 a2)ta nA 3bc.(I) 求角A;(II) 若a=2,求厶ABC面积S的最大值?7. 已知函数f (x) (sin x cosx) +cos2 x .(I )求函数f x的最小正周期;(n )当x o,?时,求函数f x的最大值拼写出x相应的取值•8 .在ABC中,已知内角A . B . C所对的边分别为a、b、c,向量r r 2 B r r m 2sin B, 、3 ,n cos2B, 2cos 1,且m//n?2(I) 求锐角B的大小;(II) 如果b 2,求ABC的面积S ABC的最大值?答案解析11【解析】:(I )由a 2bsi nA ,根据正弦定理得si nA 2si n Bsin A ,所以sin B -,2 由ABC 为锐角三角形得B n .6(n )cosA sin C cos A sinAcos A sin -A61 3cos A cos Asin A22、、3sinA -.32【解析】 :I. sinC . sin CC cos .C sin2sin('—222 224C C 即C,所以此三角形为直角三角形2 422••• tanA 3, A 为三角形的内角,二sin A由正弦定理得:-A 艮 -BCsin C sin A-2 2b a b 2 abII.16 号,此时面积的最大值为 32 6 42 .-2ab ,—2ab 64(2 -.2)当且仅当a b 时取等3【解析】:(I )由所给条件 方程x 2 5x 6 ••• tan (A B) tan A tan B1 tan Atan BB C 180 ,• C180 (A 0 的两根 tan A 3, tan B 2 . 1B).由(I )知,tanCtan(A B)1,•/ C 为三角形的内角,• sinC_2 23 10弘知教育内部资料 中小学课外辅导专家2 3••• BC 1 —汇 3.5. 近 y/10 2r r 2B 厂8【解析】:(1) m//n2sinB(2cos ;-1)=-,3cos2B 2sinBcosB=- 3cos2Btan2B=- 32兀 心宀 n••• 0<2B< n,2B=y,A 锐角 B=3① 当B=n^,已知b=2,由余弦定理,得: 4=a 2+c ?-ac > 2aac=ac(当且仅当a=c=2时等号成立)■/ △ ABC 的面积 S ABC =3acsinBh^ac w 3ABC 的面积最大值为.3② 当B=6n 时,已知b=2,由余弦定理,得:4=a 2+c 2+ 3ac 县ac+ . 3ac=(2+ 3)ac(当且仅当 a=c= , 6- . 2时等号成立) •,ac < 4(23)1 1•••△ ABC 的面积 S AABC =2 acsinB^ac <2- , 3 ,△ ABC 的面积最大值为 2- 314【解析】:(1)由余弦定理:cosB=4sid +cos2B=1 24⑵由cos B4 得sinB.15 •/ b=2,4n1 2sin 2x —;=;ac+4 > 2c,得 acw —,c 233 2sin(2x -)2 ,即 0 1 -2sin(2x -) 12 44(2)由 tan2B=- .3n [、. 5nB=3或石 1 V15S\ ABc =~acsi nBw(a=c 时取等号)3故S A ABC 的最大值为5【解析】(I ) T f(x).n _1 cos 2x3cos2x 1 sin2x 3cos2x弘知教育内部资料 中小学课外辅导专家n nn n又••• x —< 2x -<4 2 613 又 S besin A be24所以△ ABC 面积S 的最大值等于32 27【解析】:(I )因为 f (x) (sin x eosx) +eos2 x sin1 sin2x eos2x ( ) =1+.2si n(2x )42所以,T —,即函数f(x)的最小正周期为2(n )因为 0 x ,得 2x L,所以有-sin(2x) 12 4 4 4 24所以,函数f x 的最大值为1 2此时,因为一2x —丄,所以,2x ,即x -4 4 4428即 2 < 1 2sinn2x -3 • f(x) maxf (X)min(n) •/ f (x)f(x)f(x)•- m f (X)maxf ( X) min••• 1 m 4,即m 的取值范围是(1,4).6【解析】:(1)由已知得b 1 2 * 4e 2 a 2 si nA ,32bccos A又在锐角△ ABC 中,所以A=60,[不说明是锐角 △ ABC 中,扣 1 分](II)因为 a=2,A=60 所以 b e be 4,S1 3besin Abe2而 b 2 e 2 2be be 42bcbe 4 ,3x 2sin xeosx eos 2 x eos2x。

高三数学专题复习函数的性质及应用

高三数学专题复习函数的性质及应用

函数的基本性质与函数的综合运用是高考对函数内容考查的重中之重,其中函数单调性与奇偶性是高考命题的必考内容之一,有具体函数,还会涉及抽象函数。

函数单调性是函数在定义域内某个区间上的性质,函数奇偶性是函数在整个定义域上的性质。

研究基本性质,不可忽略定义域对函数性质的影响。

函数定义域体现了函数图像左右方向的延伸程度,而值域又表现了函数图像在上下方向上的延伸程度。

对函数单调性要深入复习,深刻理解单调性定义,熟练运用单调性定义证明或判断一个函数的单调性,掌握单调区间的求法,掌握单调性与奇偶性之间的联系。

掌握单调性的重要运用,如求最值、解不等式、求参数范围等,掌握抽象函数单调性的判断方法等等。

要充分重视运用方程与函数、等价转换、分类讨论及数形结合等数学思想,运用分离变量方法解决函数相关问题,并围绕函数单调性分析解决函数综合问题。

一、函数与反函数例1.(1)已知A={1,2,3},B={4,5},则以A为定义域,B为值域的函数共有个.(2)、(2012•徐汇区一模)已知函数f(x)=x2﹣1的定义域为D,值域为{﹣1,0,1},试确定这样的集合D最多有个.(3)(2013•上海)对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f﹣1(x),且f﹣1([0,1))=[1,2),f﹣1((2,4])=[0,1).若方程f(x)﹣x=0有解x0,则x0= .二、函数值域及最值求法例2、(1)(2011•上海)设g(x)是定义在R 上,以1为周期的函数,若函数f(x)=x+g(x)在区间[0,1]上的值域为[﹣2,5],则f(x)在区间[0,3]上的值域为.(2)(2013•黄浦区二模)已知,若存在区间[a,b]⊆(0,+∞),使得{y|y=f(x),x∈[a,b]}=[ma,mb],则实数m的取值范围是.(3).(2012•虹口区一模)已知函数f(x)=2x+a,g(x)=x2﹣6x+1,对于任意的都能找到,使得g(x2)=f(x1),则实数a的取值范围是.三、函数单调性与奇偶性例3、(1)(2013•资阳一模)已知函数若f(2m+1)>f(m2﹣2),则实数m的取值范围是.(2)已知是R上的增函数,那么a的取值范围是.(3)(2012•上海)已知y=f(x)是奇函数,若g(x)=f(x)+2且g(1)=1,则g(﹣1)= .(4)f(x)为R上的偶函数,g(x)为R上的奇函数且过(﹣1,3),g(x)=f(x﹣1),则f(2012)+f(2013)= .四、函数的周期性例4、(1)已知奇函数满足的值为 。

高三总复习6——函数的周期性与反函数

高三总复习6——函数的周期性与反函数

高三总复习——函数的周期性与反函数知识要点及典型例题:(一)函数的周期性:1.周期函数的定义:对于函数y=f(x),如果存在一个常数T≠0,使得当x取定义域内任意一个值时,恒有f(x+T)=f(x)成立,称y=f(x)为周期函数,T为周期函数的周期。

2.由定义可以得到:(1)周期函数的定义域区间的形式应是无界区间(-∞,+∞),或至少有一端是无界的[a,+∞),(-∞,a];这是因为:若设y=f(x)的定义域为D,对任取x∈D,总有x+T∈D,(T≠0),则D必是无界区间。

如:y=sinx,当x∈(-∞,+∞),或x∈[0,+∞),或x∈(-∞,0]都可成为周期函数,而若当x ∈(0,10π]时,取9π∈[0,10π],而9π+2π[0,10π],则无法满足任取x∈[0,10π],使f(x+T)=f(x)恒成立。

(2)若T≠0为y=f(x)(x∈R)的一个周期,则nT(n∈Z且n≠0)也是y=f(x)的周期,这是因为:∵f(x+T)=f(x),且x∈R,x+T∈R,∴f(x+T+T)=f(x+T)=f(x)。

因此,2T为f(x)的周期,依此类推:因此,nT(n∈Z且n≠0)是y=f(x),x∈R的周期,如,y=sinx的一个周期为2π,则4π,6π,8π……或-2π,-4π,-6π……都是y=sinx的周期。

3.关于函数周期性问题的应用有两个方面:(1)三角函数方面,通过三角变换一般化归为形如y=Af(x+φ)的形式。

(2)一般函数y=f(x)的周期问题。

4.例题分析:例1.求下列函数的最小正周期:(1) y=3sin(x+) (m≠0)(2) y=cos4x-sin4x(3) y=sin2(4) y=tanx-cotx解:(2) y=cos4x-sin4x=(cos2x+sin2x)(cos2x-sin2x)=cos2x,则T==π。

例2.设y=f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x,求f(7.5)的值。

2022年高考数学函数的微专题复习专题01 函数图象的识别与辨析(解析版)

2022年高考数学函数的微专题复习专题01 函数图象的识别与辨析(解析版)

2022年高考数学函数的微专题复习专题01函数图象的识别与辨析题型一、由函数的解析式识别图象函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项例1、【2020年天津卷】.函数241xy x =+的图象大致为()A.C.变式1、【2020年浙江卷】.函数y =x cos x +sin x 在区间[–π,+π]的图象大致为()A. B.C. D.变式2、(江苏省连云港市2021届高三调研)函数3ln |2|()(2)-=-x f x x 的部分图象大致为().A .B .C .D .变式3、(2021·山东德州市·高三期末)函数22sin 3()cos x xf x x x +=+在[,]-ππ的图象大致为()A .B .C .D .题型二、由函数的图象辨析函数的解析式由函数的图象确定解析式,首先要观察函数的图象,可以从以下几个方面入手:(1)观察函数的对称性,判断函数的奇偶性;(2)观察图象所在象限,判断函数的定义域和值域;(3)从图象中观察一些特殊位置以及图象的发展趋势;结合上面的信息进行对函数解析式的排除。

(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项例2、(山东省2020-2021学年高三调研)已知函数()y f x =的图象如图所示,则此函数可能是()A .()2e e 2x xf x x x --=+-B .()2e e 2x xf x x x --=+-C .()22e e x xx x f x -+-=-D .()22e e x xx x f x -+-=-变式1、(2021·江苏苏州市·高三期末)在数学的研究性学习中,常利用函数的图象研究函数的性质,也利用函数的解析式研究函数的性质,下列函数的解析式(其中 2.71828e =⋅⋅⋅为自然对数的底数)与所给图象最契合的是()A .22sin 1x y x =+B .221xy x =+C .x xxx e e y e e ---=+D .x xxxe e y e e --+=-变式2、(山东省青岛市2020-2021学年高三模拟)已知函数()f x 的部分图象如下所示,则()f x 可能为()A .cos 1()22x xx f x -+=+B .cos sin ()22x xx x x f x -+=+C .cos sin ()22x xx x x f x -+=-D .cos sin ()22x xx x x f x -+=+题型三、情景问题中解析式情景问题中的解析式问题关键要从问题情景中挖掘有用的信息,从情景中理解所给的函数解析式所具有的特点,然后再结合具体的解析式研究性质等问题。

完整版)高三三角函数专题复习(题型全面)

完整版)高三三角函数专题复习(题型全面)

完整版)高三三角函数专题复习(题型全面)三角函数考点1:三角函数的概念三角函数是以角度或弧度为自变量的函数,包括正弦函数、余弦函数、正切函数等。

考点2:三角恒等变换三角恒等变换包括两角和、差公式、倍角半角公式、诱导公式、同角的三角函数关系式等。

考点3:正弦函数、余弦函数、正切函数的图像和性质正弦函数、余弦函数、正切函数的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质都需要掌握。

考点4:函数y=Asin(x)(A,)的图像与性质函数y=Asin(x)(A,)的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质也需要掌握。

此外,该函数的图像还可以通过一定的变换得到。

一、三角函数求值问题1.三角函数的概念例1.若角的终边经过点P(4a,3a)(a0),则sin=-3/5.2.公式法例2.设(0,π/2),若sin=1/2,则2cos()=√3.练1.已知角的终边上一点的坐标为(sinθ。

cosθ)(θ∈(π/2,π)),则sin=-cosθ。

3.化简求值例3.已知为第二象限角,且sin=15/17,求sin(+π/4)的值。

练:1.已知sin=1/5,则sin4-cos4的值为-24/25.2.已知tan(θ+)=1/2,求tanθ和sin2θ-cosθ.sinθ+2cos2θ的值。

4.配凑求值例4.已知,∈(π/3,π/2),且sin(+)=-√3/2,sin(-)=1/2,求cos(+)的值。

练:1.设α∈(π/12,π/3),β∈(0,π/6),且sin(α+β)=-√3/2,sin(β-α)=-1/2,则cos(α+β)=1/2.1.已知三角函数的值,求其他三角函数的值已知 $sin\alpha = \frac{4}{5}$,$cos\beta = \frac{3}{5}$,$cos(\alpha - \beta) = \frac{1}{2}$,$sin(\beta + \theta) =\frac{3}{5}$,求 $sin(\alpha + \beta)$ 和 $tan(\alpha - 2\beta)$。

(完整版)高三一轮复习函数专题1---函数的基本性质

(完整版)高三一轮复习函数专题1---函数的基本性质

函数专题1、函数的基本性质复习提问:1、如何判断两个函数是否属于同一个函数。

2、如何求一个函数的定义域(特别是抽象函数的定义域问题)3、如何求一个函数的解析式。

(常见方法有哪些)4、如何求函数的值域。

(常见题型对应的常见方法)5、函数单调性的判断,证明和应用(单调性的应用中参数问题)6、函数的对称性(包括奇偶性)、周期性的应用7、利用函数的图像求函数中参数的范围等其他关于图像问题 知识分类一、函数的概念:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. 1、试判断以下各组函数是否表示同一函数?(1)f (x )=2x ,g (x )=33x ;(2)f (x )=x x ||,g (x )=⎩⎨⎧<-≥;01,01x x(3)f (x )=1212++n n x ,g (x )=(12-n x )2n -1(n ∈N *);(4)f (x )=x1+x ,g (x )=x x +2;(5)f (x )=x 2-2x -1,g (t )=t 2-2t -1.二、函数的定义域(请牢记:凡是说定义域范围是多少,都是指等式中变量x 的范围) 1、求下列函数的定义域:(1)y=-221x +1(2)y=422--x x (3)x x y +=1 (4)y=241+-+-x x(5)y=3142-+-x x (8)y=3-ax (a为常数)2、(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域; (2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;3、若函数)(x f y =的定义域为[ 1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 5、已知函数682-+-=k x kx y 的定义域为R ,求实数k 的取值范围。

高三数学一轮复习《函数的概念与性质》练习题 (含答案)

高三数学一轮复习《函数的概念与性质》练习题 (含答案)

高三数学一轮复习《函数的概念与性质》练习题 (含答案)函数的概念及其表示一、单选题1.函数11y x =-的定义域是( )A. (0,2]B. (,1)(1,2]-∞⋃C. (1,)+∞D. [1,2]2.设函数21,1()2,1x x f x x x ⎧+≤⎪=⎨>⎪⎩,则[(3)]f f =( )A .15 B.3 C. 23 D. 1393.已知函数f (x +1)=3x +2,则f (x )的解析式( )A.3x -1B. 3x +1C. 3x +2D. 3x +44.下列各对函数表示同一函数的是( )(1) ()f x x =与2()g x =;(2) ()2f x x =-与()g x =(3) 2()(0)f x x x π=≥与2()(0)g r r r π=≥; (4) ()f x x =与,0(),0x x g x x x ≥⎧=⎨-<⎩.A.(1)(2)(4)B.(2)(4)C.(3)(4)D.(1)(2)(3)(4)5.已知函数y = f (x )的定义域是[-2,3], 则y =f (2x -1)的定义域是() A. 5[0,]2 B. [1,4]- C. 1[,2]2- D. [5,5]-6.已知函数221,0()3,0x x f x x x +≥⎧=⎨<⎩,且0()3f x =,则实数0x 的值为( )A.-1B.1C.-1或1D.-1或-3二、多选题7.关于函数y =f (x ),以下说法正确的是( )A.y 是关于x 的函数B.对于不同的x ,y 的值也不同C.f (a )表示当x =a 时函数f (x )的值,是一个常量D.f (x )一定可以用一个具体的式子表示出来8.若函数2(),(,0)(0,)1x f x x x =∈-∞⋃+∞+,则下列等式成立的是( ) A. 1()()f x f x = B. 1()()f x f x -= C.11()()f f x x = D. ()()f x f x -=- 三、填空题9.已知函数()1f x ax =+,且(2)1f =-,则(2)f -=_______.10.若函数2(21)2f x x x +=-,则(3)f =_______,()f x =___________.11.已知函数22,2()21,2x ax x f x x x ⎧+≥=⎨+<⎩,若[(1)]0f f >,则实数a 的取值范围是___________.函数的基本性质一、单选题1. 下列函数中,值域为(,0)-∞的是( )A. 2y x =-B. 131()3y x x =-<C. 1y x =D. y =2.下列函数是偶函数,且在(,0]-∞上是增函数的是( )A .1y x =- B. 2()f x x = C. 3y x = D. ,0,0x x y x x -≥⎧=⎨<⎩3.已知()f x 是实数集上的偶函数,且在区间[0,)+∞上是增函数,则(2)f -,()f π-,(3)f 的大小关系是( )A. ()(2)(3)f f f π->->B. (3)()(2)f f f π>->-C. (2)(3)()f f f π->>-D. ()(3)(2)f f f π->>-4.函数()y f x =在R 上是增函数,且(2)(9)f m f m >-+,则实数m 的取值范围是( )A. (,3)-∞-B. (0,)+∞C. (3,)+∞D. (,3)(3,)-∞-⋃+∞5.函数()y f x =是以3为周期的偶函数,且当(0,1)x ∈时,()21f x x =+,则2021()2f =( ) A.2022 B.2 C.4 D.66.已知偶函数()f x 在区间[0,)+∞上是单调递增,则满足1(21)()3f x f -<的x 的取值范围是( ) A. 12(,)33 B. 12[,)33 C. 12(,)23 D. 12[,)23二、多选题7.如果函数()f x 在[a ,b ]上是减函数,对于任意的1212,[,]()x x a b x x ∈≠,那么下列结论正确的是( ) A. 1212()()0f x f x x x -<- B. 1212()[()()]0x x f x f x --< C. 12()()()()f a f x f x f b ≥>≥ D. 12()()f x f x <8.已知函数()f x 是定义在R 上的奇函数,下列说法正确的是( )A. (0)0f =B.若()f x 在[0,)+∞上有最小值-1,则()f x 在(,0]-∞上有最大值1C. 若()f x 在[1,)+∞上为增函数,则()f x 在(,1]-∞-上为减函数D.若0x >时,2()2f x x x =-,则0x <时,2()2f x x x =--三、填空题9.如图是定义在闭区间[5,5]-上的函数()y f x =的部分图像,根据图像可知函数()y f x =的单调递增区间是_______,单调递减区间是______.10.若()f x 是定义在R 上的奇函数,且1(2)()f x f x +=,则(8)f 的值为___. 11.若2()3f x ax bx a b =+++是偶函数,且定义域为[1,2]a a -,则a =_____,b =______.本章检测 函数的概念和性质一、单选题1. 已知函数2()23f x x mx =-+在[-2,+∞)上单调递增,在(-∞,-2]上单调递减,则f (1)的值为( )A.-3B.13C.7D.52.已知f (x )为奇函数,且在(-∞,0)上为增函数,g (x )为偶函数,且在(-∞,0)上为增函数,则在(0,+∞)_上,下列结论正确的)A.两个都是增函数B.两个都是减函数C. f (x )为增函数,g (x )为减函数D. f (x )为减函数,g (x )为增函数3.已知函数g (x )= f (2x )-x 2是奇函数,且f (1)=2,则f (-1)=( ) _3 A. 32- B.-1 C. 32 D. 744.已知函数(3)5,1()2,1a x x f x a x x -+≤⎧⎪=⎨>⎪⎩是(-∞,+∞)上的减函数,则a 的取值范围是( )A. (0,3)B. (0,3]C. (0,2)D. (0,2]5.已知函数g (x )是定义在[a -16,3a ]上的奇函数,且21,0()(),0x x f x f x a x -≥⎧=⎨+<⎩, 则f (-2020)=( )A.2B. 7C. 10D.-16. 已知定义在R 上的奇函数f (x )满足当x >0时,f(x )=x 2-2x ,则关于x的不等式f (x )<0的解集为( )A. (-2,2)B. (2,0)(0,2)-⋃C. (,2)(2,)-∞-⋃+∞D. (,2)(0,2)-∞-⋃二、多选题7.已知定义在区间[-3,3]上的一个偶函数,它在[-3,0]上的图象如图所示,则下列说法正确的是( )A.这个函数有两个单调递增区间B.这个函数有三个单调递减区间C. f (2)<2D.这个函数的值域为[-2,2]8.已知定义域为R 的函数f (x )是奇函数,且满足f (1-x )=f (1+x ),当0<x ≤1时,f (x )=2x ,则下列结论正确的是( )A. f (x )的最小正周期为2B.当-1<x ≤1时,f (x )=2xC. f (x )在[11,13]上单调递增D. f (x )的最大值为2,最小值为-2三、填空题9.已知函数,0(),0x x f x x x ⎧≥⎪=-<若f (a )+f (-1)=2,则a =_______.10.已知函数f (x )=x 5+ax 3+bx +2,且f (2)=3,则f (-2)=________.11.函数f (x )为奇函数,定义域为R ,若f (x +1)为偶函数,且f (1)=1,则f (2020)+f (2021)=_______。

高三函数专题复习

高三函数专题复习

函数、函数与方程及函数的应用考 点 整 合1.函数的性质(1)单调性(ⅰ)用来比较大小,求函数最值,解不等式和证明方程根的唯一性.(ⅱ)常见判定方法:①定义法:取值、作差、变形、定号,其中变形是关键,常用的方法有:通分、配方、因式分解;②图象法;③复合函数的单调性遵循“同增异减”的原则;④导数法.(2)奇偶性:①若f (x )是偶函数,那么f (x )=f (-x );②若f (x )是奇函数,0在其定义域内,则f (0)=0;③奇函数在关于原点对称的区间内有相同的单调性,偶函数在关于原点对称的区间内有相反的单调性;(3)周期性:常见结论有①若y =f (x )对x ∈R ,f (x +a )=f (x -a )或f (x -2a )=f (x )(a >0)恒成立,则y =f (x )是周期为2a 的周期函数;②若y =f (x )是偶函数,其图象又关于直线x =a 对称,则f (x )是周期为2|a |的周期函数;③若y =f (x )是奇函数,其图象又关于直线x =a 对称,则f (x )是周期为4|a |的周期函数;④若f (x +a )=-f (x )⎝ ⎛⎭⎪⎫或f (x +a )=1f (x ),则y =f (x )是周期为2|a |的周期函数. 2.函数的图象(1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.(2)在研究函数性质特别是单调性、值域、零点时,要注意结合其图象研究.3.求函数值域有以下几种常用方法:(1)直接法;(2)配方法;(3)基本不等式法;(4)单调性法;(5)求导法;(6)分离变量法.除了以上方法外,还有数形结合法、判别式法等.4.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解.5.应用函数模型解决实际问题的一般程序 读题(文字语言)⇒建模(数学语言)⇒求解(数学应用)⇒反馈(检验作答)与函数有关的应用题,经常涉及到物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.解答这类问题的关键是确切的建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.热点一 函数性质的应用【例1】 (1)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为________(从小到大排序).(2)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则()∑=+mi i i y x 1=________.探究提高 (1)可以根据函数的奇偶性和周期性,将所求函数值转化为给出解析式的范围内的函数值.(2)利用函数的对称性关键是确定出函数图象的对称中心(对称轴).【训练1】 (1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.(2)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________.热点二 函数图象的应用【例2】 (1)已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则实数a 的取值范围是________.(2)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则实数a 的取值范围是________.探究提高 (1)涉及到由图象求参数问题时,常需构造两个函数,借助两函数图象求参数范围.(2)图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.【训练2】 设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x<0的解集为________.热点三 函数与方程问题[微题型1] 函数零点个数的求解【例3-1】 函数f (x )=4cos 2x 2·cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)|的零点个数为________.探究提高 解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.[微题型2] 由函数的零点(或方程的根)求参数【例3-2】 (1)设函数f (x )=⎩⎪⎨⎪⎧x -1e x ,x ≥a ,-x -1,x <a ,g (x )=f (x )-b .若存在实数b ,使得函数g (x )恰有3个零点,则实数a 的取值范围为________.(2)已知函数f (x )=⎩⎨⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是________.探究提高 利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.【训练3】设函数f(x)=x2+3x+3-a·e x(a为非零实数),若f(x)有且仅有一个零点,则a的取值范围为________.1.解决函数问题忽视函数的定义域或求错函数的定义域,如求函数f(x)=1x ln x的定义域时,只考虑x>0,忽视ln x≠0的限制.2.如果一个奇函数f(x)在原点处有意义,即f(0)有意义,那么一定有f(0)=0.3.三招破解指数、对数、幂函数值的大小比较.(1)底数相同,指数不同的幂用指数函数的单调性进行比较;(2)底数相同,真数不同的对数值用对数函数的单调性比较;(3)底数不同、指数也不同,或底数不同,真数也不同的两个数,常引入中间量或结合图象比较大小.4.对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.一、填空题1.函数f(x)=ln x+1-x的定义域为________.2.函数f(x)=log5(2x+1)的单调增区间是________.3.函数f (x )=⎩⎨⎧2x ,x ≤0,-x 2+1,x >0的值域为________.4.定义在区间[0,3π]上的函数y =sin 2x 的图象与y =cos x 的图象的交点个数是________.5.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎨⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.6.已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围是________.7.已知函数f (x )=⎩⎨⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数.若直线y =k (x +1)(k >0)与函数y =f (x )的图象恰有三个不同的交点,则实数k 的取值范围是________.8.设函数f (x )=⎩⎨⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1.(1)若a=1,则f(x)的最小值为________;(2)若f(x)恰有2个零点,则实数a的取值范围是________.二、解答题9.已知函数f(x)=x2-2ln x,h(x)=x2-x+a.(1)求函数f(x)的极值;(2)设函数k(x)=f(x)-h(x),若函数k(x)在[1,3]上恰有两个不同零点,求实数a 的取值范围.。

函数与方程及函数的综合应用课件——高三数学一复习

函数与方程及函数的综合应用课件——高三数学一复习
-1 200,已知每千件商
2
x 1
品售价为50万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
解析 (1)当0<x<50时,L(x)=50x- 1 x 2 10 x -200=- 1 x2+40x-200,
6
4 3
3 2
6
2
函数f(x)的一个零点位于 , 内,即x0∈ , .故选C.


6 4
答案 C


6 4
考法二 已知函数有零点(方程有根)求参数值(或取值范围)
1.直接法:利用零点构建关于参数的方程(组)或不等式(组),直接求解.
2.参数分离法:将参数与自变量分离,转化为求函数的最值或值域.
2
2

当x≥50时,L(x)=50x-52x- 7 200 +1 200-200=1 000- 2 x 7 200 ,
x 1
1 2
x 40 x 200,0 x 50,
所以L(x)= 2

1 000 2 x 7 200 , x 50.
3.5专题三、函数与方程及
函数的综合应用
知识梳理
基础篇
考点一 函数的零点
1.函数的零点
1)函数零点的定义:对于一般函数y=f(x),把使f(x)=0的实数x叫做函数y=
f(x)的零点.
注意:零点不是点,是满足f(x)=0的实数x.
2)三个等价关系:方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的

高考数学《函数》专题复习

高考数学《函数》专题复习

函数一、17届 一模一、填空、选择题1、(宝山区2017届高三上学期期末) 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为2、(崇明县2017届高三第一次模拟)设函数2log ,0()4,0x x x f x x >⎧⎪=⎨⎪⎩≤,则((1))f f -= .3、(虹口区2017届高三一模)定义{}()f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{}2.13=,{}44=.以下关于“取上整函数”性质的描述,正确的是( ).①(2)2()f x f x =; ②若12()()f x f x =,则121x x -<; ③任意12,x x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=..A ①② .B ①③ .C ②③ .D ②④4、(黄浦区2017届高三上学期期终调研)已知函数()y f x =是奇函数,且当0x ≥时,2()log (1)f x x =+.若函数()y g x =是()y f x =的反函数,则(3)g -= .5、(静安区2017届向三上学期期质量检测)已知)(x g y =与)(x h y =都是定义在),0()0,(+∞-∞ 上的奇函数,且当0>x 时,⎩⎨⎧>-≤<=.1),1(,10,)(2x x g x x x g ,x k x h 2log )(=(0>x ),若)()(x h x g y -=恰有4个零点,则正实数k 的取值范围是 【 】A .]1,21[;B .]1,21(;C .]2log ,21(3;D .]2log ,21[3.6、(闵行区2017届高三上学期质量调研)函数()1f x =的反函数是_____________.7、(浦东新区2017届高三上学期教学质量检测)已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有()*f n N ∈,且()()3f f n n =恒成立,则()()20171999f f -=____________.8、(普陀区2017届高三上学期质量调研)函数x x f 2log 1)(+=(1≥x )的反函数=-)(1x f .9、(青浦区2017届高三上学期期末质量调研)如图,有一直角墙角,两边的长度足够长,若P 处有一棵树与两墙的距离分别是4m 和(012)am a <<,不考虑树的粗细.现用16m 长的篱笆,借助墙角围成一个矩形花圃ABCD .设此矩形花圃的最大面积为u ,若将这棵树围在矩形花圃内,则函数()u f a =(单位2m )的图像大致是……………………( ).A .B .C .D .10、(松江区2017届高三上学期期末质量监控)已知函数()1xf x a =-的图像经过(1,1)点,则1(3)f -=▲ .11、(徐汇区2017届高三上学期学习能力诊断)若函数22,0(),0xx f x x m x ⎧≤⎪=⎨-+>⎪⎩的值域为(],1-∞,则实数m 的取值范围是____________12、(杨浦区2017届高三上学期期末等级考质量调研)若函数2()log 1x af x x -=+的反函数的图像过点(2,3)-,则a =________.13、(长宁、嘉定区2017届高三上学期期末质量调研)若函数a x x f ++=)1(log )(2的反函数的图像经过点)1,4(,则实数=a __________.14、(崇明县2017届高三第一次模拟)下列函数在其定义域内既是奇函数又是增函数的是A .tan y x =B .3xy =C .13y x =D .lg y x =15、(浦东新区2017届高三上学期教学质量检测)已知函数()y f x =的反函数为()1y f x -=,则函数()y f x =-与()1y f x -=-的图像( ). A .关于y 轴对称 B .关于原点对称C .关于直线0x y +=对称D .关于直线0x y -=对称16、(普陀区2017届高三上学期质量调研)设∈m R ,若函数()11)(32+++=mx x m x f 是偶函数,则)(x f 的单调递增区间是 .17、(普陀区2017届高三上学期质量调研)方程()()23log 259log 22-+=-x x 的解=x .18、(普陀区2017届高三上学期质量调研)已知定义域为R 的函数)(x f y =满足)()2(x f x f =+,且11<≤-x 时,21)(x x f -=;函数⎩⎨⎧=≠=.0,1,0,lg )(x x x x g ,若)()()(x g x f x F -=,则[]10,5-∈x ,函数)(x F 零点的个数是 .19、(奉贤区2017届高三上学期期末)方程1lg )3lg(=+-x x 的解=x ____________ 20、(金山区2017届高三上学期期末)函数()2xf x m =+的反函数为1()y fx -=,且1()y f x -=的图像过点(5,2)Q ,那么m =二、解答题1、(崇明县2017届高三第一次模拟)设12()2x x af x b+-+=+(,a b 为实常数).(1)当1a b ==时,证明:()f x 不是奇函数;(2)若()f x 是奇函数,求a 与b 的值;(3)当()f x 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c ,都有2()33f x c c <-+成立?若存在试找出所有这样的D ;若不存在,请说明理由.2、(虹口区2017届高三一模)已知二次函数2()4f x ax x c =-+的值域为[)0,+∞.(1)判断此函数的奇偶性,并说明理由; (2)判断此函数在2,a⎡⎫+∞⎪⎢⎣⎭的单调性,并用单调性的定义证明你的结论;(3)求出()f x 在[1,)+∞上的最小值()g a ,并求()g a 的值域.3、(黄浦区2017届高三上学期期终调研)已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在实数t ,使得(2)f t +()(2)f t f =+.(1)判断()32f x x =+是否属于集合M ,并说明理由; (2)若2()lg2af x x =+属于集合M ,求实数a 的取值范围;(3)若2()2x f x bx =+,求证:对任意实数b ,都有()f x M ∈.4、(静安区2017届向三上学期期质量检测)设集合|)({x f M a =存在正实数a ,使得定义域内任意x 都有)}()(x f a x f >+.(1) 若22)(x x f x-=,试判断)(x f 是否为1M 中的元素,并说明理由;(2) 若341)(3+-=x x x g ,且a M x g ∈)(,求a 的取值范围; (3) 若),1[),(log )(3+∞∈+=x xkx x h (R ∈k ),且2)(M x h ∈,求)(x h 的最小值.5、(普陀区2017届高三上学期质量调研)已知∈a R ,函数||1)(x a x f += (1)当1=a 时,解不等式x x f 2)(≤;(2)若关于x 的方程02)(=-x x f 在区间[]1,2--上有解,求实数a 的取值范围.6、(青浦区2017届高三上学期期末质量调研)已知函数2()2(0)f x x ax a =->. (1)当2a =时,解关于x 的不等式3()5f x -<<;(2)对于给定的正数a ,有一个最大的正数()M a ,使得在整个区间[0 ()]M a ,上,不等式|()|5f x ≤恒成立. 求出()M a 的解析式;(3)函数()y f x =在[ 2]t t +,的最大值为0,最小值是4-,求实数a 和t 的值.7、(松江区2017届高三上学期期末质量监控)已知函数21()(21x xa f x a ⋅-=+为实数) . (1)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由; (2)若对任意的1x ≥ ,都有1()3f x ≤≤,求a 的取值范围.8、(徐汇区2017届高三上学期学习能力诊断)某创业团队拟生产A 、B 两种产品,根据市场预测,A 产品的利润与投资额成正比(如图1),B 产品的利润与投资额的算术平方根成正比(如图2).(注:利润与投资额的单位均为万元)(1)分别将A 、B 两种产品的利润()f x 、()g x 表示为投资额x 的函数;(2)该团队已筹集到10万元资金,并打算全部投入A 、B 两种产品的生产,问:当B 产品的投资额为多少万元时,生产A 、B 两种产品能获得最大利润,最大利润为多少?参考答案:一、填空、选择题1、解析:1+log 8a =4,log 8a =3,化为指数:3a =8,所以,a =221log y x =+,即:12y x -=,所以反函数为12x y -=2、-23、C4、-75、C6、()()211(1)fx x x -=-≥ 7、548、【解析】∵x ≥1,∴y=1+2log x ≥1,由y=1+2log x ,解得x=2y ﹣1,故f ﹣1(x )=2x ﹣1(x ≥1).故答案为:2x ﹣1(x ≥1). 9、B 10、211、01m <≤ 12、2a =13、【解析】函数a x x f ++=)1(log )(2的反函数的图象经过点(4,1), 即函数a x x f ++=)1(log )(2的图象经过点(1,4), ∴4=log 2(1+1)+a ∴4=1+a , a=3.故答案为:3. 14、C 15、D16、【解析】由题意:函数()11)(32+++=mx x m x f 是偶函数,则mx=0,故得m=0, 那么:f (x )=23x +1,根据幂函数的性质可知:函数f (x )的单点增区间为(0,+∞). 故答案为:(0,+∞). 17、【解析】由题意可知:方程log 2(9x ﹣5)=2+log 2(3x ﹣2)化为:log 2(9x ﹣5)=log 24(3x ﹣2) 即9x ﹣5=4×3x ﹣8 解得x=0或x=1;x=0时方程无意义,所以方程的解为x=1. 故答案为1. 18、【解析】定义域为R 的函数y=f (x )满足f (x +2)=f (x ), 可得f (x )的周期为2, F (x )=f (x )﹣g (x ),则令F (x )=0,即f (x )=g (x ), 分别作出y=f (x )和y=g (x )的图象, 观察图象在[﹣5,10]的交点个数为14.x =0时,函数值均为1,则函数F (x )零点的个数是15. 故答案为:15.19、5 20、1二、解答题1、解:(1)证明:511212)1(2-=++-=f ,412121)1(=+-=-f ,所以)1()1(f f -≠-,所以)(x f 不是奇函数............................3分(2))(x f 是奇函数时,)()(x f x f -=-,即bab a x x x x ++--=++-++--112222对定义域内任意实数x 都成立即0)2(2)42(2)2(2=-+⋅-+⋅-b a ab b a x x ,对定义域内任意实数x 都成立...........................................5分所以⎩⎨⎧=-=-042,02ab b a 所以⎩⎨⎧-=-=21b a 或⎩⎨⎧==21b a .经检验都符合题意........................................8分(2)当⎩⎨⎧==21b a 时,121212212)(1++-=++-=+x x x x f ,因为02>x ,所以112>+x ,11210<+<x, 所以21)(21<<-x f .......................................10分 而4343)23(3322≥+-=+-c c c 对任何实数c 成立;所以可取D =R 对任何x 、c 属于D ,都有33)(2+-<c c x f 成立........12分当⎩⎨⎧-=-=21b a 时,)0211212212)(1≠-+-=---=+x x f xx x (, 所以当0>x 时,21)(-<x f ;当0<x 时,21)(>x f .............14分1)因此取),0(+∞=D ,对任何x 、c 属于D ,都有33)(2+-<c c x f 成立. 2)当0<c 时,3332>+-c c ,解不等式321121≤-+-x 得:75log 2≤x .所以取]75log ,(2-∞=D ,对任何属于D 的x 、c ,都有33)(2+-<c c x f 成立.....16分2、解:(1)由二次函数2()4f x ax x c =-+的值域为[)0,+∞,得0a >且41604ac a-=,解得4ac =.……………………2分(1)4f a c =+-,(1)4f a c -=++,0a >且0c >,从而(1)(1)f f -≠,(1)(1)f f -≠-,∴此函数是非奇非偶函数.……………………6分(2)函数的单调递增区间是2,a ⎡⎫+∞⎪⎢⎣⎭.设1x 、2x 是满足212x x a >≥的任意两个数,从而有21220x x a a->-≥,∴222122()()x x a a ->-.又0a >,∴222122()()a x a x a a ->-,从而22212424()()a x c a x c a a a a-+->-+-,即22221144ax x c ax x c -+>-+,从而21()()f x f x >,∴函数在2,a ⎡⎫+∞⎪⎢⎣⎭上是单调递增.……………………10分(3)2()4f x ax x c =-+,又0a >,02x a=,[)1,x ∈+∞ 当021x a =≥,即02a <≤时,最小值0()()0g a f x == 当021x a =<,即2a >时,最小值4()(1)44g a f a c a a==+-=+-综上,最小值002()442a g a a a a <≤⎧⎪=⎨+->⎪⎩……………………14分 当02a <≤时,最小值()0g a = 当2a >时,最小值4()4(0,)g a a a=+-∈+∞ 综上()y g a =的值域为[0,)+∞……………………16分3、解:(1)当()32f x x =+时,方程(2)()(2)38310f t f t f t t +=+⇔+=+ ……2分 此方程无解,所以不存在实数t ,使得(2)()(2)f t f t f +=+,故()32f x x =+不属于集合M . ……………………………4分(2)由2()lg2af x x =+属于集合M ,可得 方程22lg lg lg (2)226a a ax x =++++有实解22[(2)2]6(2)a x x ⇔++=+有实解2(6)46(2)0a x ax a ⇔-++-=有实解,………7分若6a =时,上述方程有实解;若6a ≠时,有21624(6)(2)0a a a ∆=---≥,解得1212a -≤+故所求a的取值范围是[1212-+. ……………………………10分 (3)当2()2x f x bx =+时,方程(2)()(2)f x f x f +=+⇔+2222(2)244x x b x bx b ++=+++⇔32440x bx ⨯+-=, ………………12分令()3244x g x bx =⨯+-,则()g x 在R 上的图像是连续的,当0b ≥时,(0)10g =-<,(1)240g b =+>,故()g x 在(0,1)内至少有一个零点;当0b <时,(0)10g =-<,11()320bg b =⨯>,故()g x 在1(,0)b内至少有一个零点;故对任意的实数b ,()g x 在R 上都有零点,即方程(2)()(2)f x f x f +=+总有解, 所以对任意实数b ,都有()f x M ∈. ………………………16分 4、解:(1)∵1)0()1(==f f , ∴1)(M x f ∉. ……………………………4分(2)由0413341)(41)()()(32233>-++=++--+=-+a a x a ax x a x x a x x g a x g …2分 ∴0)41(12934<--=∆a a a a , ……………………………3分 故 1>a . ……………………………1分(3)由0)(log ]2)2[(log )()2(33>+-+++=-+xkx x k x x h x h , ………………1分 即:)(log ]2)2[(log 33xkx x k x +>+++∴ 022>+>+++xkx x k x 对任意),1[+∞∈x 都成立∴ 3113)2(2<<-⇒⎩⎨⎧-><⇒⎩⎨⎧->+<k k k xk x x k ……………………………3分 当01≤<-k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当10<<k 时,)1(log )1()(3min k h x h +==; ……………………………1分 当31<≤k 时,)2(log )()(3min k k h x h ==. ……………………………1分 综上:⎪⎩⎪⎨⎧<≤<<-+=.31),2(log ,11),1(log )(33min k k k k x h ……………………………1分5、【解】(1)当1=a 时,||11)(x x f +=,所以x x f 2)(≤x x 2||11≤+⇔……(*) ①若0>x ,则(*)变为,0)1)(12(≥-+x x x 021<≤-⇔x 或1≥x ,所以1≥x ;②若0<x ,则(*)变为,0122≥+-xx x 0>⇔x ,所以φ∈x 由①②可得,(*)的解集为[)+∞,1。

高三函数一轮复习(史上最全)

高三函数一轮复习(史上最全)

函 数一、函数及其表示自主梳理1.函数的基本概念 (1)函数定义设A ,B 是非空的 ,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中 ,称f :A →B 为从集合A 到集合B 的一个函数,x 的取值范围A 叫做函数的__________,__________________叫做函数的值域.(2)函数的三要素__________、________和____________. (3)函数的表示法表示函数的常用方法有:________、________、________. (4)函数相等如果两个函数的定义域和__________完全一致,则这两个函数相等,这是判定两函数相等的依据. (5)分段函数:在函数的________内,对于自变量x 的不同取值区间,有着不同的____________,这样的函数通常叫做分段函数.分段函数是一个函数,它的定义域是各段取值区间的________,值域是各段值域的________. 2.映射的概念 (1)映射的定义设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B中 确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的 .(2)由映射的定义可以看出,映射是 概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合,A 、B 必须是 数集.自我检测1.(2011·佛山模拟)设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列4个图形,其中能表示集合M 到N 的函数关系的有( )A .0个B .1个C .2个D .3个2.(2010·湖北)函数y =1log 0.5x -的定义域为( )A .(34,1)B .(34,+∞)C .(1,+∞)D .(34,1)∪(1,+∞)3.(2010·湖北)已知函数f(x)=⎩⎪⎨⎪⎧log 3x ,x >02x, x ≤0,则f(f (19))等于( )A .4 B.14C .-4D .-144.下列函数中,与函数y =x 相同的函数是( )A .y =x 2xB .y =(x )2C .y =lg 10xD .y =2log 2x5.(2011·衡水月考)函数y =lg(ax 2-ax +1)的定义域是R ,求a 的取值范围.探究点一 函数与映射的概念例1 (教材改编)下列对应关系是集合P 上的函数的是________.(1)P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; y =x 2,x ∈P ,y ∈Q ;(2)P ={-1,1,-2,2},Q ={1,4},对应关系:f :x →y =x 2,x ∈P ,y ∈Q ;(3)P ={三角形},Q ={x |x >0},对应关系f :对P 中三角形求面积与集合Q 中元素对应.变式迁移1 已知映射f :A →B .其中B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是 ( )A .k >1B .k ≥1C .k <1D .k ≤1 探究点二 求函数的定义域例2 (1)求函数y =x +1+x -0-x的定义域;(2)已知函数f (2x +1)的定义域为(0,1),求f (x )的定义域.变式迁移2 已知函数y =f (x )的定义域是[0,2],那么g (x )=f x 21+x +的定义域是________________________________________________________________________.探究点三 求函数的解析式例3 (1)已知f (2x+1)=lg x ,求f (x );(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(3)已知f (x )满足2f (x )+f (1x)=3x ,求f (x ).变式迁移3 (2011·武汉模拟)给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式.探究点四 分段函数的应用例4 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c , x ≤0,2, x >0.若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4变式迁移4 (2010·江苏)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0,则满足不等式f (1-x 2)>f (2x )的x 的范围是________________.1.与定义域有关的几类问题第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围;第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义; 第三类是不给出函数的解析式,而由f (x )的定义域确定函数f [g (x )]的定义域或由f [g (x )]的定义域确定函数f (x )的定义域.第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题来解决. 2.解析式的求法求函数解析式的一般方法是待定系数法和换元法,除此还有代入法、拼凑法和方程组法.(满分:75分)一、选择题(每小题5分,共25分)1.下列各组中的两个函数是同一函数的为 ( )(1)y 1=x +3x -5x +3,y 2=x -5;(2)y 1=x +1x -1,y 2=x +1x -1;(3)f (x )=x ,g (x )=x 2;(4)f (x )=3x 4-x 3,F (x )=x 3x -1;(5)f 1(x )=(2x -5)2,f 2(x )=2x -5.A .(1)(2)B .(2)(3)C .(4)D .(3)(5)2.函数y =f (x )的图象与直线x =1的公共点数目是 ( ) A .1 B .0 C .0或1 D .1或23.(2011·洛阳模拟)已知f (x )=⎩⎪⎨⎪⎧x +x ≤-,x 2-1<x,2x x,若f (x )=3,则x 的值是 ( )A .1B .1或32C .1,32或± 3D. 34.(2009·江西)函数y =x +-x 2-3x +4的定义域为 ( ) A .(-4,-1) B .(-4,1) C .(-1,1) D .(-1,1]5.(2011·台州模拟)设f :x →x 2是从集合A 到集合B 的映射,如果B ={1,2},则A ∩B 为 ( )A .∅B .{1} C6.下列四个命题:(1)f (x )=x -2+1-x 有意义;(2)函数是其定义域到值域的映射;(3)函数y =2x (x∈N )的图象是一条直线;(4)函数y =⎩⎪⎨⎪⎧x 2, x ≥0,-x 2,x <0的图象是抛物线.其中正确的命题个数是________.7.设f (x )=⎩⎪⎨⎪⎧3x +1 xx 2x,g (x )=⎩⎪⎨⎪⎧2-x 2x x,则f [g (3)]=________,g [f (-12)]=________.8.(2010·陕西)已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =______.三、解答题(共38分)9.(12分)(1)若f (x +1)=2x 2+1,求f (x )的表达式; (2)若2f (x )-f (-x )=x +1,求f (x )的表达式; (3)若函数f (x )=xax +b,f (2)=1,又方程f (x )=x 有唯一解,求f (x )的表达式.10.(12分)已知f (x )=x 2+2x -3,用图象法表示函数g (x )=f x +|f x2,并写出g (x )的解析式.11.(14分)(2011·湛江模拟)某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x (百台),其总成本为G (x )万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R (x )(万元)满足R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.8, 0≤x ≤5,10.2, x >5.假定该产品产销平衡,那么根据上述统计规律: (1)要使工厂有盈利,产品x 应控制在什么范围?(2)工厂生产多少台产品时盈利最大?此时每台产品的售价为多少?一、函数及其表示答案 自主梳理 1.(1)数集 任意一个数x 都有唯一确定的数f(x)和它对应 定义域 函数值的集合{f(x)|x∈A} (2)定义域 值域 对应关系 (3)解析法 列表法 图象法 (4)对应关系 (5)定义域 对应关系 并集 并集 2.(1)都有唯一 一个映射 (2)函数 非空自我检测1.B [对于题图(1):M 中属于(1,2]的元素,在N 中没有象,不符合定义;对于题图(2):M 中属于(43,2]的元素的象,不属于集合N ,因此它不表示M 到N 的函数关系;对于题图(3):符合M 到N 的函数关系;对于题图(4):其象不唯一,因此也不表示M 到N 的函数关系.]2.A 3.B 4.C5.解 函数y =lg(ax 2-ax +1)的定义域是R ,即ax 2-ax +1>0恒成立. ①当a =0时,1>0恒成立;②当a ≠0时,应有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0, ∴0<a <4.综上所述,a 的取值范围为0≤a <4. 课堂活动区例1 解题导引 函数是一种特殊的对应,要检验给定的两个变量之间是否具有函数关系,只需要检验:①定义域和对应关系是否给出;②根据给出的对应关系,自变量在其定义域中的每一个值,是否都有唯一确定的函数值.(2)解析 由于(1)中集合P 中元素0在集合Q 中没有对应元素,并且(3)中集合P 不是数集,所以(1)和(3)都不是集合P 上的函数.由题意知,(2)正确.变式迁移1 A [由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根.∴Δ=4(1-k )<0,∴k >1时满足题意.]例2 解题导引 在(2)中函数f (2x +1)的定义域为(0,1)是指x 的取值范围还是2x +1的取值范围?f (x )中的x 与f (2x +1)中的2x +1的取值范围有什么关系?解 (1)要使函数有意义,应有⎩⎪⎨⎪⎧x +1≥0,x -1≠0,2-x >0,2-x ≠1,即⎩⎪⎨⎪⎧x ≥-1,x ≠1,x <2,解得⎩⎪⎨⎪⎧-1≤x <2,x ≠1.所以函数的定义域是{x |-1≤x <1或1<x <2}. (2)∵f (2x +1)的定义域为(0,1), ∴1<2x +1<3,所以f (x )的定义域是(1,3).变式迁移2 (-1,-910)∪(-910,2]解析 由⎩⎪⎨⎪⎧0≤x 2≤2x +1>01+x +得-1<x ≤2且x ≠-910. 即定义域为(-1,-910)∪(-910,2].例3 解题导引 函数解析式的类型与求法(1)若已知函数的类型(如一次函数、二次函数),可用待定系数法.(2)已知复合函数f (g (x ))的解析式,可用换元法,此时要注意变量的取值范围.(3)已知f (x )满足某个等式,这个等式除f (x )是未知量外,还出现其他未知量,如f (-x )、f (1x)等,要根据已知等式再构造其他等式组成方程组,通过解方程组求出f (x ).解 (1)令2x +1=t ,则x =2t -1,∴f (t )=lg 2t -1,∴f (x )=lg 2x -1,x ∈(1,+∞).(2)设f (x )=ax +b ,(a ≠0)则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,∴⎩⎪⎨⎪⎧a =2,b +5a =17,∴a =2,b =7,故f (x )=2x +7.(3)2f (x )+f (1x)=3x , ①把①中的x 换成1x,得学案5 函数的单调性与最值导学目标: 1.理解函数的单调性、最大值、最小值及其几何意义.2.会用定义判断函数的单调性,会求函数的单调区间及会用单调性求函数的最值.自主梳理 1.单调性(1)定义:一般地,设函数y =f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是______________.(2)单调性的定义的等价形式:设x 1,x 2∈[a ,b ],那么(x 1-x 2)(f (x 1)-f (x 2))>0⇔f x 1-f x 2x 1-x 2>0⇔f (x )在[a ,b ]上是________;(x 1-x 2)(f (x 1)-f (x 2))<0⇔f x 1-f x 2x 1-x 2<0⇔f (x )在[a ,b ]上是________.(3)单调区间:如果函数y =f (x )在某个区间上是增函数或减函数,那么说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的__________.(4)函数y =x +a x(a >0)在 (-∞,-a ),(a ,+∞)上是单调________;在(-a ,0),(0,a )上是单调______________;函数y =x +a x(a <0)在______________上单调递增.2.最值 一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≤M (f (x )≥M );②存在x 0∈I ,使得f (x 0)=M .那么,称M 是函数y =f (x )的____________.自我检测1.(2011·杭州模拟)若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是 ( )A .增函数B .减函数C .先增后减D .先减后增2.设f (x )是(-∞,+∞)上的增函数,a 为实数,则有 ( )A .f (a )<f (2a )B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)>f (a )3.下列函数在(0,1)上是增函数的是 ( ) A .y =1-2x B .y =x -1C .y =-x 2+2x D .y =54.(2011·合肥月考)设(a ,b ),(c ,d )都是函数f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系是 ( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不能确定5.当x ∈[0,5]时,函数f (x )=3x 2-4x +c 的值域为 ( )A .[c,55+c ]B .[-43+c ,c ]C .[-43+c,55+c ] D .[c,20+c ]探究点一 函数单调性的判定及证明例1 设函数f (x )=x +ax +b(a >b >0),求f (x )的单调区间,并说明f (x )在其单调区间上的单调性.变式迁移1 已知f (x )是定义在R 上的增函数,对x ∈R 有f (x )>0,且f (5)=1,设F (x )=f (x )+1f x,讨论F (x )的单调性,并证明你的结论.探究点二 函数的单调性与最值例2 (2011·烟台模拟)已知函数f (x )=x 2+2x +ax,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.变式迁移2 已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,求实数a 的取值范围.探究点三 抽象函数的单调性例3 (2011·厦门模拟)已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.变式迁移3 已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2.分类讨论及数形结合思想例 (12分)求f (x )=x 2-2ax -1在区间[0,2]上的最大值和最小值. 【答题模板】解 f (x )=(x -a )2-1-a 2,对称轴为x =a .(1) 当a <0时,由图①可知,f (x )min =f (0)=-1,f (x )max =f (2)=3-4a .[3分](2)当0≤a <1时,由图②可知,f (x )min =f (a )=-1-a 2,f (x )max =f (2)=3-4a .[6分](3)当1<a ≤2时,由图③可知,f (x )min =f (a )=-1-a 2,f (x )max =f (0)=-1.[9分](4)当a >2时,由图④可知,f (x )min =f (2)=3-4a ,f (x )max =f (0)=-1. 综上,(1)当a <0时,f (x )min =-1,f (x )max =3-4a ;(2)当0≤a <1时,f (x )min =-1-a 2,f (x )max =3-4a ;(3)当1<a ≤2时,f (x )min =-1-a 2,f (x )max =-1; (4)当a >2时,f (x )min =3-4a ,f (x )max =-1.[12分] 【突破思维障碍】(1)二次函数的单调区间是由图象的对称轴确定的.故只需确定对称轴与区间的关系.由于对称轴是x =a ,而a 的取值不定,从而导致了分类讨论.(2)不是应该分a <0,0≤a ≤2,a >2三种情况讨论吗?为什么成了四种情况?这是由于抛物线的对称轴在区间[0,2]所对应的区域时,最小值是在顶点处取得,但最大值却有可能是f (0),也有可能是f (2).1.函数的单调性的判定与单调区间的确定常用方法有:(1)定义法;(2)导数法;(3)图象法;(4)单调性的运算性质.2.若函数f (x ),g (x )在区间D 上具有单调性,则在区间D 上具有以下性质: (1)f (x )与f (x )+C 具有相同的单调性.(2)f (x )与af (x ),当a >0时,具有相同的单调性,当a <0时,具有相反的单调性.(3)当f (x )恒不等于零时,f (x )与1f x具有相反的单调性.(4)当f (x ),g (x )都是增(减)函数时,则f (x )+g (x )是增(减)函数.(5)当f (x ),g (x )都是增(减)函数时,则f (x )·g (x )当两者都恒大于零时,是增(减)函数;当两者都恒小于零时,是减(增)函数.(满分:75分)一、选择题(每小题5分,共25分)1.(2011·泉州模拟)“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.(2009·天津)已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x , x ≥0,4x -x 2, x <0,若f (2-a 2)>f (a ),则实数a 的取值范围是 ( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)3.(2009·宁夏,海南)用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x,x +2,10-x }(x ≥0),则f (x )的最大值为 ( ) A .4 B .5 C .6 D .74.(2011·丹东月考)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]5.(2011·葫芦岛模拟)已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数,则下列结论一定正确的是________(填序号).①y =[f (x )]2是增函数;②y =1f x是减函数;③y =-f (x )是减函数; ④y =|f (x )|是增函数.8.设0<x <1,则函数y =1x +11-x的最小值是________.三、解答题(共38分)9.(12分)(2011·湖州模拟)已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围.10.(12分)已知f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围.11.(14分)(2011·鞍山模拟)已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f a +f ba +b>0成立.(1)判断f (x )在[-1,1]上的单调性,并证明它;(2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.答案 自主梳理1.(1)增函数(减函数) (2)增函数 减函数 (3)单调区间 (4)递增 递减 (-∞,0),(0,+∞) 2.最大(小)值自我检测 1.B [由已知得a <0,b <0.所以二次函数对称轴为直线x =-b2a<0,且图象开口向下.]2.D [∵a 2+1>a ,f (x )在R 上单调递增,∴f (a 2+1)>f (a ).]3.C [常数函数不具有单调性.]4.D [在本题中,x 1,x 2不在同一单调区间内,故无法比较f (x 1)与f (x 2)的大小.]5.C [∵f (x )=3(x -23)2-43+c ,x ∈[0,5],∴当x =23时,f (x )min =-43+c ;当x =5时,f (x )max =55+c .]课堂活动区例1 解题导引 对于给出具体解析式的函数,判断或证明其在某区间上的单调性问题,可以结合定义(基本步骤为:取点,作差或作商,变形,判断)来求解.可导函数则可以利用导数求解.有些函数可以转化为两个或多个基本初等函数,利用其单调性可以方便求解.解 在定义域内任取x 1,x 2,且使x 1<x 2, 则Δx =x 2-x 1>0,Δy =f (x 2)-f (x 1)=x 2+a x 2+b -x 1+ax 1+b=x 2+a x 1+b -x 2+b x 1+a x 1+b x 2+b=b -a x 2-x 1x 1+b x 2+b.∵a >b >0,∴b -a <0,∴(b -a )(x 2-x 1)<0, 又∵x ∈(-∞,-b )∪(-b ,+∞),∴只有当x 1<x 2<-b ,或-b <x 1<x 2时,函数才单调.当x 1<x 2<-b ,或-b <x 1<x 2时,f (x 2)-f (x 1)<0,即Δy <0.∴y =f (x )在(-∞,-b )上是单调减函数,在(-b ,+∞)上也是单调减函数.变式迁移1 解 在R 上任取x 1、x 2,设x 1<x 2,∴f (x 2)>f (x 1),F (x 2)-F (x 1)=[f (x 2)+1f x 2]-[f (x 1)+1f x 1]=[f (x 2)-f (x 1)][1-1f x 1f x 2],∵f (x )是R 上的增函数,且f (5)=1,∴当x <5时,0<f (x )<1,而当x >5时f (x )>1; ①若x 1<x 2<5,则0<f (x 1)<f (x 2)<1,∴0<f (x 1)f (x 2)<1,∴1-1f x 1f x 2<0,∴F (x 2)<F (x 1);②若x 2>x 1>5,则f (x 2)>f (x 1)>1,∴f (x 1)·f (x 2)>1,∴1-1f x 1f x 2>0,∴F (x 2)>F (x 1).综上,F (x )在(-∞,5)为减函数,在(5,+∞)为增函数.例2 解 (1)当a =12时,f (x )=x +12x+2,设x 1,x 2∈[1,+∞)且x 1<x 2,f (x 1)-f (x 2)=x 1+12x 1-x 2-12x 2=(x 1-x 2)(1-12x 1x 2)∵x 1<x 2,∴x 1-x 2<0,又∵1<x 1<x 2,∴1-12x 1x 2>0,∴f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2) ∴f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=72.(2)方法一 在区间[1,+∞)上,f (x )=x 2+2x +a x>0恒成立,等价于x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞), y =x 2+2x +a =(x +1)2+a -1递增, ∴当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时,函数f (x )恒成立, 故a >-3.方法二 f (x )=x +a x+2,x ∈[1,+∞),当a ≥0时,函数f (x )的值恒为正,满足题意,当a <0时,函数f (x )递增;当x =1时,f (x )min =3+a ,于是当且仅当f (x )min =3+a >0时,函数f (x )>0恒成立, 故a >-3.方法三 在区间[1,+∞)上f (x )=x 2+2x +a x>0恒成立等价于x 2+2x +a >0恒成立.即a >-x 2-2x 恒成立.又∵x ∈[1,+∞),a >-x 2-2x 恒成立,∴a 应大于函数u =-x 2-2x ,x ∈[1,+∞)的最大值.∴a >-x 2-2x =-(x +1)2+1.当x =1时,u 取得最大值-3,∴a >-3. 变式迁移2 解 设1<x 1<x 2.∵函数f (x )在(1,+∞)上是增函数,∴f (x 1)-f (x 2)=x 1-a x 1+a 2-(x 2-a x 2+a2)=(x 1-x 2)(1+ax 1x 2)<0.又∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2恒成立.∵1<x 1<x 2,x 1x 2>1,-x 1x 2<-1.∴a ≥-1,∴a 的取值范围是[-1,+∞).例3 解题导引 (1)对于抽象函数的问题要根据题设及所求的结论来适当取特殊值说明抽象函数的特点.证明f (x )为单调减函数,首选方法是用单调性的定义来证.(2)用函数的单调性求最值.(1)证明 设x 1>x 2, 则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2) =f (x 1-x 2)+f (x 2)-f (x 2) =f (x 1-x 2)又∵x >0时,f (x )<0.而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上为减函数. (2)解 ∵f (x )在R 上是减函数, ∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 又∵f (3)=f (2+1)=f (2)+f (1)=f (1)+f (1)+f (1) ∴f (3)=3f (1)=-2,f (-3)=-f (3)=2.∴f (x )在[-3,3]上的最大值为2,最小值为-2. 变式迁移3 解 (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1, 由于当x >1时,f (x )<0,∴f (x 1x 2)<0,即f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2), ∴函数f (x )在区间(0,+∞)上是单调递减函数. (3)由f (x 1x 2)=f (x 1)-f (x 2)得f (93)=f (9)-f (3),而f (3)=-1,∴f (9)=-2.由于函数f (x )在区间(0,+∞)上是单调递减函数, ∴当x >0时,由f (|x |)<-2,得f (x )<f (9),∴x >9; 当x <0时,由f (|x |)<-2,得f (-x )<f (9), ∴-x >9,故x <-9,∴不等式的解集为{x |x >9或x <-9}. 课后练习区1.A [f (x )对称轴x =a ,当a ≤1时f (x )在[1,+∞)上单调递增.∴“a =1”为f (x )在[1,+∞)上递增的充分不必要条件.]2.C [由题知f (x )在R 上是增函数,由题得2-a 2>a ,解得-2<a <1.]3.C [由题意知函数f (x )是三个函数y 1=2x,y 2=x +2,y 3=10-x 中的较小者,作出三个函数在同一坐标系之下的图象(如图中实线部分为f (x )的图象)可知A (4,6)为函数f (x )图象的最高点.]4.D [f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a 的取值范围是0<a ≤1.]5.A [∵f (-x )+f (x )=0,∴f (-x )=-f (x ). 又∵x 1+x 2>0,x 2+x 3>0,x 3+x 1>0, ∴x 1>-x 2,x 2>-x 3,x 3>-x 1. 又∵f (x 1)>f (-x 2)=-f (x 2), f (x 2)>f (-x 3)=-f (x 3), f (x 3)>f (-x 1)=-f (x 1),∴f (x 1)+f (x 2)+f (x 3)>-f (x 2)-f (x 3)-f (x 1). ∴f (x 1)+f (x 2)+f (x 3)>0.]6.[0,32]解析 y =⎩⎪⎨⎪⎧-x -x xx -x x.画图象如图所示:可知递增区间为[0,32].7.③解析 举例:设f (x )=x ,易知①②④均不正确. 8.4解析 y =1x +11-x =1x -x ,当0<x <1时,x (1-x )=-(x -12)2+14≤14.∴y ≥4.9.(1)证明 当x ∈(0,+∞)时,f (x )=a -1x,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0.f (x 1)-f (x 2)=(a -1x 1)-(a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2<0.………………………………………………………………………(5分)∴f (x 1)<f (x 2),即f (x )在(0,+∞)上是增函数.……………………………………………………………………………………………(6分)(2)解 由题意a -1x<2x 在(1,+∞)上恒成立,设h (x )=2x +1x,则a <h (x )在(1,+∞)上恒成立.……………………………………………………………………………………………(8分)∵h ′(x )=2-1x 2,x ∈(1,+∞),∴2-1x2>0,∴h (x )在(1,+∞)上单调递增.…………………………………………………………(10分) 故a ≤h (1),即a ≤3.∴a 的取值范围为(-∞,3].…………………………………………………………(12分) 10.解 设f (x )的最小值为g (a ),则只需g (a )≥0, 由题意知,f (x )的对称轴为-a2.(1)当-a2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73.又a >4,故此时的a 不存在.……………………………………………………………(4分)(2)当-a2∈[-2,2],即-4≤a ≤4时,g (a )=f (-a 2)=3-a -a 24≥0得-6≤a ≤2.又-4≤a ≤4,故-4≤a ≤2.……………………………………………………………(8分) (3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0得a ≥-7. 又a <-4,故-7≤a <-4.综上得所求a 的取值范围是-7≤a ≤2.………………………………………………(12分) 11.解 (1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数, ∴f (x 1)-f (x 2)=f (x 1)+f (-x 2) =f x 1+f -x 2x 1+-x 2·(x 1-x 2),由已知得f x 1+f -x 2x 1+-x 2>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在[-1,1]上单调递增.……………………………………………………………(4分) (2)∵f (x )在[-1,1]上单调递增,∴⎩⎪⎨⎪⎧x +12<1x -1,-1≤x +12≤1,-1≤1x -1分∴-32≤x <-1.……………………………………………………………………………(9分)(3)∵f (1)=1,f (x )在[-1,1]上单调递增.∴在[-1,1]上,f (x )≤1.…………………………………………………………………(10分)问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]成立. 下面来求m 的取值范围.设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,自然对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0,且g (1)≥0, ∴m ≤-2,或m ≥2.∴m 的取值范围是m =0或|m |≥2.……………………………………………………(14分) 2f (1x )+f (x )=3x, ②①×2-②,得3f (x )=6x -3x,∴f (x )=2x -1x.变式迁移3 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,即f (x )=x 2-1,x ∈[1,+∞).(2)设f (x )=ax 2+bx +c (a ≠0),∴f (x +2)=a (x +2)2+b (x +2)+c , 则f (x +2)-f (x )=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧4a =4,4a +2b =2. ∴⎩⎪⎨⎪⎧a =1,b =-1.又f (0)=3,∴c =3,∴f (x )=x 2-x +3.例4 解题导引 ①本题可以先确定解析式,然后通过解方程f (x )=x 来确定解的个数;也可利用数形结合,更为简洁.②对于分段函数,一定要明确自变量所属的范围,以便于选择与之相应的对应关系. ③分段函数体现了数学的分类讨论思想,相应的问题处理应分段解决.C [方法一 若x ≤0,则f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧-2+b -+c =c ,-2+b -+c =-2, 解得⎩⎪⎨⎪⎧b =4,c =2.∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2, x ≤0,2, x >0.当x ≤0,由f (x )=x ,得x 2+4x +2=x ,解得x =-2,或x =-1;当x >0时,由f (x )=x ,得x =2. ∴方程f (x )=x 有3个解.方法二 由f (-4)=f (0)且f (-2)=-2,可得f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图(如图所示).方程f (x )=x 的解的个数就是函数图象y =f (x )与y =x 的图象的交点的个数,所以有3个解.]变式迁移4 (-1,2-1)解析 函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0的图象如图所示:f (1-x 2)>f (2x )⇔⎩⎪⎨⎪⎧1-x 2>2x1-x 2>0,解得-1<x <2-1.课后练习区1.C [(1)定义域不同;(2)定义域不同;(3)对应关系不同;(4)定义域相同,且对应关系相同;(5)定义域不同.]2.C [有可能是没有交点的,如果有交点,那么对于x =1仅有一个函数值.]3.D [该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4),∴f (x )=x 2=3,x =±3,而-1<x <2,∴x = 3.]4.C5.D [由已知x 2=1或x 2=2,解之得,x =±1或x =±2,若1∈A ,则A ∩B ={1},若1∉A ,则A ∩B =∅,故A ∩B =∅或{1}.] 6.1解析 (1)x ≥2且x ≤1,不存在;(2)函数是特殊的映射;(3)该图象是由离散的点组成的;(4)该图象是两个不同的抛物线的两部分组成的,不是抛物线.故只有(2)正确.7.7 31168.29.解 (1)令t =x +1,则x =t -1,∴f (t )=2(t -1)2+1=2t 2-4t +3,∴f (x )=2x 2-4x +3.………………………………………………………………………………………………(4分)(2)∵2f (x )-f (-x )=x +1,用-x 去替换式子中的x ,得2f (-x )-f (x )=-x +1,……(6分)即有⎩⎪⎨⎪⎧2f x -f -x =x +12f -x -f x =-x +1,解方程组消去f (-x ),得f (x )=x3+1.……………………………………………………(8分)(3)由f (2)=1得22a +b =1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x (1ax +b -1)=0,解此方程得x =0或x =1-ba,…(10分)又∵方程有唯一解, ∴1-b a =0,解得b =1,代入2a +b =2得a =12,∴f (x )=2xx +2.……………………………………………………………………………(12分)10.解 函数f (x )的图象如图所示,……………………………………(6分) g (x )=⎩⎪⎨⎪⎧x 2+2x -3 x ≤-3或x 0 -3<x …………………………………………………(12分)11.解 依题意,G (x )=x +2,设利润函数为f (x ),则f (x )=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8,0≤x ≤5,8.2-x , x >5.………………………………………………(4分)(1)要使工厂赢利,则有f (x )>0.当0≤x ≤5时,有-0.4x 2+3.2x -2.8>0,得1<x <7,所以1<x ≤5.………………………………………………………………(8分) 当x >5时,有8.2-x >0, 得x <8.2,所以5<x <8.2.综上所述,要使工厂赢利,应满足1<x <8.2,即产品应控制在大于100台小于820台的范围内.……………………………………………………………………………………(10分)(2)当0≤x ≤5时,f (x )=-0.4(x -4)2+3.6.故当x =4时,f (x )有最大值3.6.…………………………………………………………(12分) 而当x >5时,f (x )<8.2-5=3.2.所以当工厂生产400台产品时,赢利最大,x =4时,每台产品售价为R4=2.4(万元/百台)=240(元/台).……………………………………………………………………………(14分)学案6 函数的奇偶性与周期性导学目标: 1.了解函数奇偶性、周期性的含义.2.会判断奇偶性,会求函数的周期.3.会做有关函数单调性、奇偶性、周期性的综合问题.自主梳理1.函数奇偶性的定义如果对于函数f (x )定义域内任意一个x ,都有______________,则称f (x )为奇函数;如果对于函数f (x )定义域内任意一个x ,都有____________,则称f (x )为偶函数.2.奇偶函数的性质(1)f (x )为奇函数⇔f (-x )=-f (x )⇔f (-x )+f (x )=____; f (x )为偶函数⇔f (x )=f (-x )=f (|x |)⇔f (x )-f (-x )=____.(2)f (x )是偶函数⇔f (x )的图象关于____轴对称;f (x )是奇函数⇔f (x )的图象关于_____ ___ 对称.(3)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有________的单调性. 3.函数的周期性(1)定义:如果存在一个非零常数T ,使得对于函数定义域内的任意x ,都有f (x +T )=________,则称f (x )为________函数,其中T 称作f (x )的周期.若T 存在一个最小的正数,则称它为f (x )的________________.(2)性质: ①f (x +T )=f (x )常常写作f (x +T 2)=f (x -T2).②如果T 是函数y =f (x )的周期,则kT (k ∈Z 且k ≠0)也是y =f (x )的周期,即f (x +kT )=f (x ).③若对于函数f (x )的定义域内任一个自变量的值x 都有f (x +a )=-f (x )或f (x +a )=1f x或f (x +a )=-1f x(a 是常数且a ≠0),则f (x )是以______为一个周期的周期函数.自我检测1.已知函数f (x )=(m -1)x 2+(m -2)x +(m 2-7m +12)为偶函数,则m 的值是 ( ) A .1 B .2 C .3 D .42.(2011·茂名月考)如果奇函数f (x )在区间[3,7]上是增函数且最大值为5,那么f (x )在区间[-7,-3]上是 ( )A .增函数且最小值是-5B .增函数且最大值是-5C .减函数且最大值是-5D .减函数且最小值是-53.函数y =x -1x的图象 ( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称4.(2009·江西改编)已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 012)+f (2 011)的值为 ( )A .-2B .-1C .1D .25.(2011·开封模拟)设函数f (x )=x +x +ax为奇函数,则a =________.探究点一 函数奇偶性的判定 例1 判断下列函数的奇偶性.(1)f (x )=(x +1)1-x 1+x ;(2)f (x )=x (12x -1+12); (3)f (x )=log 2(x +x 2+1);(4)f (x )=⎩⎪⎨⎪⎧x 2+x , x <0,-x 2+x ,x >0.变式迁移1 判断下列函数的奇偶性.(1)f (x )=x 2-x 3;(2)f (x )=x 2-1+1-x 2;(3)f (x )=4-x2|x +3|-3.探究点二 函数单调性与奇偶性的综合应用例2 函数y =f (x )(x ≠0)是奇函数,且当x ∈(0,+∞)时是增函数,若f (1)=0,求不等式f [x (x -12)]<0的解集.变式迁移2 (2011·承德模拟)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________.探究点三 函数性质的综合应用例3 (2009·山东)已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0),在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.变式迁移3 定义在R 上的函数f (x )是偶函数,且f (x )=f (2-x ).若f (x )在区间[1,2]上是减函数,则f (x )( )A .在区间[-2,-1]上是增函数,在区间[3,4]上是增函数B .在区间[-2,-1]上是增函数,在区间[3,4]上是减函数C .在区间[-2,-1]上是减函数,在区间[3,4]上是增函数D .在区间[-2,-1]上是减函数,在区间[3,4]上是减函数转化与化归思想的应用例 (12分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围. 【答题模板】解 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2), ∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.[2分] (2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0.[4分]令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数.[6分] (3)依题设有f (4×4)=f (4)+f (4)=2, f (16×4)=f (16)+f (4)=3,[7分] ∵f (3x +1)+f (2x -6)≤3,即f ((3x +1)(2x -6))≤f (64)[8分] ∵f (x )为偶函数,∴f (|(3x +1)(2x -6|)≤f (64).[10分]又∵f (x )在(0,+∞)上是增函数,f (x )的定义域为D. ∴0<|(3x +1)(2x -6)|≤64.[11分]解上式,得3<x ≤5或-73≤x <-13或-13<x <3.∴x 的取值范围为{x |-73≤x <-13或-13<x <3或3<x ≤5}.[12分]【突破思维障碍】在(3)中,通过变换已知条件,能变形出f (g (x ))≤f (a )的形式,但思维障碍在于f (x )在(0,+∞)上是增函数,g (x )是否大于0不可而知,这样就无法脱掉“f ”,若能结合(2)中f (x )是偶函数的结论,则有f (g (x ))=f (|g (x )|),又若能注意到f (x )的定义域为{x |x ≠0},这才能有|g (x )|>0,从而得出0<|g (x )|≤a ,解之得x 的范围.【易错点剖析】在(3)中,由f (|(3x +1)·(2x -6)|)≤f (64)脱掉“f ”的过程中,如果思维不缜密,不能及时回顾已知条件中函数的定义域中{x |x ≠0},易出现0≤|(3x +1)(2x -6)|≤64,导致结果错误.1.正确理解奇函数和偶函数的定义,必须把握好两个问题:①定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件;②f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.2.奇偶函数的定义是判断函数奇偶性的主要依据.为了便于判断函数的奇偶性,有时需要先将函数进行化简,或应用定义的等价形式:f (-x )=±f (x )⇔f (-x )±f (x )=0⇔f -xf x=±1(f (x )≠0).3.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也真.利用这一性质可简化一些函数图象的画法,也可以利用它判断函数的奇偶性.4.关于函数周期性常用的结论:对于函数f (x ),若有f (x +a )=-f (x )或f (x +a )=1f x或f (x +a )=-1f x(a 为常数且a ≠0),则f (x )的一个周期为2a(满分:75分)一、选择题(每小题5分,共25分)1.(2011·吉林模拟)已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值为( )A .-13 B.13C.12 D .-122.(2010·银川一中高三年级第四次月考)已知定义域为{x |x ≠0}的函数f (x )为偶函数,且f (x )在区间(-∞,0)上是增函数,若f (-3)=0,则f xx<0的解集为 ( ) A .(-3,0)∪(0,3) B .(-∞,-3)∪(0,3) C .(-∞,-3)∪(3,+∞) D .(-3,0)∪(3,+∞)3.(2011·鞍山月考)已知f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f x,当1≤x ≤2时,f (x )=x -2,则f (6.5)等于 ( )A .4.5B .-4.5C .0.5D .-0.54.(2010·山东)设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x+2x +b (b 为常数),则f (-1)等于 ( )A .3B .1C .-1D .-35.设函数f (x )满足:①y =f (x +1)是偶函数;②在[1,+∞)上为增函数,则f (-1)与f (2)大小关系是 ( )A .f (-1)>f (2)B .f (-1)<f (2)C6.(2010·辽宁部分重点中学5月联考)若函数f (x )=⎩⎪⎨⎪⎧x -1,x >0,a , x =0,x +b ,x <0是奇函数,则a +b =________.7.(2011·咸阳月考)设函数f (x )是定义在R 上的奇函数,若f (x )满足f (x +3)=f (x ),且f (1)>1,f (2)=2m -3m +1,则m 的取值范围是________. 8.已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若f (2)=2,则f (2 010)的值为________.三、解答题(共38分)9.(12分)(2011·汕头模拟)已知f (x )是定义在[-6,6]上的奇函数,且f (x )在[0,3]上是x 的一次式,在[3,6]上是x 的二次式,且当3≤x ≤6时,f (x )≤f (5)=3,f (6)=2,求f (x )的表达式.10.(12分)设函数f (x )=x 2-2|x |-1(-3≤x ≤3) (1)证明f (x )是偶函数; (2)画出这个函数的图象;(3)指出函数f (x )的单调区间,并说明在各个单调区间上f (x )是增函数还是减函数; (4)求函数的值域.11.(14分)(2011·舟山调研)已知函数f (x )=x 2+a x(x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在[2,+∞)上为增函数,求实数a 的取值范围.答案 自主梳理1.f (-x )=-f (x ) f (-x )=f(x ) 2.(1)0 0 (2)y 原点 (3)相反3.(1)f(x ) 周期 最小正周期 (2)③2a 自我检测1.B [因为f(x )为偶函数,所以奇次项系数为0,即m -2=0,m =2.] 2.A [奇函数的图象关于原点对称,对称区间上有相同的单调性.] 3.A [由f(-x)=-f(x),故函数为奇函数,图象关于原点对称.]4.C [f (-2 012)+f (2 011)=f (2 012)+f (2 011)=f (0)+f (1)=log 21+log 2(1+1)=1.] 5.-1解析 ∵f (-1)=0,∴f (1)=2(a +1)=0,∴a =-1.代入检验f(x)=xx 12-是奇函数,故a =-1.课堂活动区例1 解题导引 判断函数奇偶性的方法.(1)定义法:用函数奇偶性的定义判断.(先看定义域是否关于原点对称).(2)图象法:f(x)的图象关于原点对称,则f(x)为奇函数;f(x)的图象关于y 轴对称,则f(x )为偶函数. (3)基本函数法:把f(x)变形为g(x)与h(x)的和、差、积、商的形式,通过g(x)与h(x)的奇偶性判定出f(x)的奇偶性.解 (1)定义域要求xx+-11≥0且x ≠-1, ∴-1<x ≤1,∴f(x)定义域不关于原点对称,∴f(x )是非奇非偶函数.(2)函数定义域为(-∞,0)∪(0,+∞).∵f(-x )=-x )21121(+--x=-x )21212(+-x x =)21122(--x x x =)21121(+-xx =f(x). ∴f(x )是偶函数. (3)函数定义域为R .∵f (-x )=log 2(-x +x 2+1)=log 21x +x 2+1=-log 2(x +x 2+1) =-f (x ),∴f (x )是奇函数.(4)函数的定义域为(-∞,0)∪(0,+∞). 当x <0时,-x >0,则f (-x )=-(-x )2-x =-(x 2+x )=-f (x ); 当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ).∴对任意x ∈(-∞,0)∪(0,+∞)都有f (-x )=-f (x ). 故f (x )为奇函数.变式迁移1 解 (1)由于f (-1)=2,f (1)=0,f (-1)≠f (1),f (-1)≠-f (1),从而函数f (x )既不是奇函数也不是偶函数.(2)f (x )的定义域为{-1,1},关于原点对称,又f (-1)=f (1)=0,f (-1)=-f (1)=0,∴f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧4-x 2≥0|x +3|≠3得,f (x )定义域为[-2,0)∪(0,2].∴定义域关于原点对称,又f (x )=4-x 2x,f (-x )=-4-x2x∴f (-x )=-f (x ) ∴f (x )为奇函数.例2 解题导引 本题考查利用函数的单调性和奇偶性解不等式.解题的关键是利用函数的单调性、奇偶性化“抽象的不等式”为“具体的代数不等式”.在关于原点对称的两个区间上,奇函数的单调性相同,偶函数的单调性相反. 解 ∵y =f (x )为奇函数,且在(0,+∞)上为增函数, ∴y =f (x )在(-∞,0)上单调递增, 且由f (1)=0得f (-1)=0.若f [x (x -12)]<0=f (1),则⎩⎪⎨⎪⎧x x -12xx -12即0<x (x -12)<1,解得12<x <1+174或1-174<x <0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲---函数的定义域
一、解析式型
当函数关系可用解析式表示时,其定义域的确定只需保证这个解析式在实数范围内有意义即可.求解时要由解析式有意义列出关于自变量的不等式或不等式组,此不等式(或组)的解集就是所求函数的定义域.
例1 、求下列函数的定义域.
(1)
y =
(2)y =;
(3)2
lg(31)
y x =++;
(4)x y cos =
例2、求函数()lg()lg(1)f x x k x =-+-的定义域.
二、抽象函数型
抽象函数就是指没有给出具体对应关系的函数,求抽象函数的定义域一般有两种情况:一种情况是已知函数()f x 的定义域,求复合函数[()]f g x 的定义域;另一种情况是已知函数[()]f g x 的定义域,求函数()f x 的定义域.
例3、已知函数)(x f 的定义域是(12]-,,求函数)]3([log 2
1x f -的定义域.
三、实际问题型
四、学过的函数
第二讲---函数的值域
求函数的值域没有通性解法,只能依据函数解析式的结构特征来确定相应的解法,下面给出常见方法。

一、分析观察法:结构不复杂,可以通过基本函数的值域及不等式的性质观察出
函数的值域。

例1、求函数()1y x =≥的值域。

例2、求函数y
例3、求函数32
y x =
-的值域。

三、换元法
求值域;
注意:(1)新元的取值范围,(2)三角换元法中,角的取值范围要尽量小。

例4、求函数y x =-
例5、求函数4y x =+的值域
四、配方法:二次函数或可转化为二次函数的复合函数常用此方法来还求解
例6、求函数y =的值域。

五、判别式法
方程有实根,即0≥∆从而求得y 的范围,即值域。

注意:①定义域为R ,②要对方程的二次项系数进行讨论。

例7、求函数22122
x y x x +=
-+的值域。

例8、求函数3cos 2y x =
-的值域。

例9、求函数2sin 2sin x y x -=
+的值域。

例10、求函数sin 2cos x y x
=
-的值域
七、基本不等式法:
得最值。

注意“一正、二定、三等”
例11、求函数1y x x
=+
的值域。

例12、求函数2
12y x x =+
(0)x >的值域
八、利用函数单调性:
结合函数的定义域,可求得值域。

例13、求函数x y 2=,[]2,2-∈x 的值域。

例14、求函数y =
例15、求函数y x =-
例16、求函数21()(2)x f x x x
+=≥的值域。

九、数形结合法
若函数的解析式的几何意义较明显,如距离、斜率等,可用数形结合法。

例17、求函数()()2282++-=
x x y 的值域
十、导数法
例18、求函数5224+-=x x y 在区间[]2,2-上的值域
第三讲---函数的单调性
一、主要方法:
1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集;
2.判断函数的单调性的方法有:
()1定义;()2已知函数的单调性;()3函数的导数;()4如果()f x 在区间D 上是增(减)函数,那么()f x 在D 的任一非空子区间上也是增(减)函数;()5图像法;()6复合函数的单调性结论:“同增异减”; ()7奇函数在对称的单调区间内单调性相同,偶函数在对称的单调区间内单调性相反;()8 互为反函数的两个函数具有相同的单调性;(9)在公共定义域内,增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数;增函数-)(x f 减函数)(x g 是增
函数;减函数-)(x f 增函数)(x g 是减函数;()10函数)0,0(>>+=b a x
b ax y 在
,⎛⎫-∞+∞ ⎪ ⎪⎝⎭或上单调递增;在0⎡⎫⎛⎪ ⎢⎪ ⎣⎭⎝
或上是单调递减。

3.证明函数单调性的方法:利用单调性定义
二、典型例题
例1、求下列函数的单调区间:
()
120.7log (32)y x x =-+()2y =
例2、若函数()y f x =在R 上单调递增,2()()f m f m >-,求m 的取值范围
例3、函数()()2212-+-+=a x a x x f 在(]3,∞-上是减函数,求a 的取值范围。

例4、函数()()14322-+-+-=a x a x x f 在[)+∞,1上是减函数,求a 的取值范围。

例5、函数()b ax x x f +-=2在()1,∞-上是减函数,在()+∞,1上是增函数,求a
例6、求函数()8log 2log 2
12
21++-=x x x f 的的单调区间.
例7、求函数⎪⎭
⎫ ⎝⎛-=x y 24sin log 2π的单调区间.
例8、若函数()x f 的图象与函数()x x g ⎪⎭
⎫ ⎝⎛=31的图象关于直线x y =对称,求()
22x x f -的单调递减区间.
例9、函数()()1132++-=x m mx x f 在[-1,2]上是增函数,求m 的取值范围。

例10、已知函数21)(++=
x ax x f 在区间),2(+∞-上是增函数,试求a 的取值范围
例11、已知函数()()a ax x x f +-=221log 在区间()
2,∞-上是单调增函数,求a 的
取值范围。

第四讲---函数的奇偶性
一、主要知识及方法
(一)主要知识:
1.函数的奇偶性的定义;
2.奇偶函数的性质:
(1)定义域关于原点对称;
(2)偶函数的图像关于y 轴对称,奇函数的图像关于原点对称; 3.()f x 为偶函数()(||)f x f x ⇔=.
4.若奇函数()f x 的定义域包含0,则(0)0f =.
(二)主要方法:
1、判断函数的奇偶性,首先要研究函数的定义域,其次要考虑()x f 与()x f -的关系。

2、牢记奇偶函数的图像特征,有助于判断函数的奇偶性;
3、判断函数的奇偶性有时可以用定义的等价形式:
()()0f x f x ±-=,()1()
f x f x =±-. 4.设()f x ,()
g x 的定义域分别是12,D D ,那么在它们的公共定义域上:
奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇.
二、例题讲解
例1、已知函数()1,21
x f x a =-
+,若()f x 为奇函数,则a =________。

例2、()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设⎪⎭⎫ ⎝⎛=56f a ,⎪⎭
⎫ ⎝⎛=23f b ,⎪⎭⎫ ⎝⎛=25f c 则( ) (A )a b c << (B )b a c << (C )c b a << (D )c a b <<
例3、已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a = ( )
(A )0 (B )1 (C )-1 (D )±1 例4、判断下列各函数的奇偶性:
(1)()(f x x =-(2)22lg(1)()|2|2x f x x -=--;(3)22(0)()(0)x x x f x x x
x ⎧+<⎪=⎨-+>⎪⎩.
例5、设a 为实数,函数2()||1f x x x a =+-+,x R ∈.
(1)讨论()f x 的奇偶性; (2)求 ()f x 的最小值.
例6、(1)已知()f x 是R 上的奇函数,且当(0,)x ∈+∞时,()(1f x x =,
则()f x 的解析式为.
(2)已知()f x 是偶函数,x R ∈,当0x >时,()f x 为增函数,若120,0x x <>,
且12||||x x <,则( )
A .12()()f x f x ->-
B .12()()f x f x -<-
C .12()()f x f x ->-
D . 12()()f x f x -<-
例7、 已知()f x 是定义在实数集R 上的函数,满足(2)()f x f x +=-,且[0,2]
x ∈时,2()2f x x x =-,
(1)求[2,0]x ∈-时,()f x 的表达式;(2)证明()f x 是R 上的奇函数.。

相关文档
最新文档