九年级数学上入学测试题及答案
九年级上册数学测试题(含答案)

九年级上册数学测试题(含答案)九年级上册数学测试题考试时间:120分钟分数:120)一、选择题(本大题共10小题,共30分)1.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨。
问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程560(1+x)2=1850.选A。
2.若一元二次方程(2m+6)x2+m2−9=0的常数项是0,则m 等于-3或3.选A或B。
3.如图,AB是⊙O的一条弦,OD⊥AB于点C,交⊙O 于点D,连接OA。
若AB=4,CD=1,则⊙O的半径为√15.选C。
4.若抛物线y=x2−2x+m与x轴有交点,则m的取值范围是m≤1.选D。
5.如图,A、B、C是⊙O上三个点,∠AOB=2∠BOC,则下列说法中正确的是∠OBA=∠OCA。
选A。
6.⊙O中,OD⊥AB于C,AE过点O,连接EC,若AB=8,CD=2,则EC长度为2√5.选A。
7.下列判断中正确的是:弦的垂直平分线必平分弦所对的两条弧。
选C。
8.如图,已知⊙P与坐标轴交于点A、O、B,点C在⊙P 上,且∠ACB=60°,若点B的坐标为(0,3),则弧OA的长为2√3π。
选D。
9.将含有角的直角三角板OAB如图放置在平面直角坐标中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转,则点A的对应点A′的坐标为(√3,1)。
选A。
10.如图,在直角三角形ABC中,AC=2√3,以点C为圆心,CB的长为半径后点B与点A恰好重合,则绕点D旋转画弧,与AB边交于点E,将图中阴影部分的面积为2π/3.选A。
一、选择题(本大题共10小题,共30分)1.B2.A3.A4.C5.B6.C7.A8.A9.B10.C二、填空题(本大题共8小题,共24分)11.$-m^2+6m+16$12.$y_3<y_1<y_2$13.$CD=2\sqrt{3}$14.$16m/3$15.$2\sqrt{3}$16.$5/2$17.$30^\circ$18.$4\sqrt{2}$三、解答题(本大题共7小题,共66分)19.1) $m\geq 3$2) $m=5$。
湖南省长沙市明德教育集团2024-2025学年九年级数学第一学期开学达标测试试题【含答案】

湖南省长沙市明德教育集团2024-2025学年九年级数学第一学期开学达标测试试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列图形中,既是轴对称图形,又是中心对称图形的是()A .等边三角形B .等腰直角三角形C .平行四边形D .菱形2、(4分)如图,在平面直角坐标系中有两点A (5,0),B (0,4),则它们之间的距离为()A .B C D .3、(4分)如图,ABC 是等腰直角三角形,BC 是斜边,将ABP 绕点A 逆时针旋转后,能与ACP '重合,如果3AP =,那么PP '的长等于()A .B .C .D .4、(4分)我们把宽与长的比值等于黄金比例12-的矩形称为黄金矩形.如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AE AD 等于()A .2B .12C .32-D .12+5、(4分)某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月约节水情况.见表:节水量/m 30.20.250.30.40.5家庭数/个24671请你估计这400名同学的家庭一个月节约用水的总量大约是()A .130m 3B .135m 3C .6.5m 3D .260m 36、(4分)下列命题是假命题的是()A .四个角相等的四边形是矩形B .对角线互相平分的四边形是平行四边形C .四条边相等的四边形是菱形D .对角线互相垂直且相等的四边形是正方形7、(4分)观察下列命题:(1)如果a<0,b>0,那么a +b<0;(2)如果两个三角形的3个角对应相等,那么这两个三角形全等;(3)同角的补角相等;(4)直角都相等.其中真命题的个数是().A .0B .1C .2D .38、(4分)图1长方形纸带,26CEF ∠=︒,将纸带沿EF 折叠成图2再沿AF 折叠成图3,图3中的DFE ∠的度数是.A .98°B .102°C .124°D .156°二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,含有30°的直角三角板△ABC ,∠BAC =90°,∠C =30°,将△ABC 绕着点A 逆时针旋转,得到△AMN ,使得点B 落在BC 边上的点M 处,过点N 的直线l ∥BC ,则∠1=______.10、(4分)如图,在Rt ABC ∆中,90C ∠=︒,4AC =,3BC =,把ABC ∆绕AB 边上的点D 顺时针旋转90°得到A B C '''∆,B C ''交AB 于点E ,若AE BD =,则DE 的长是________.11、(4分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a ).如图,若曲线3(0)y x x =>与此正方形的边有交点,则a 的取值范围是________.12、(4分)已知平行四边形ABCD 中,AB =5,AE 平分∠DAB 交BC 所在直线于点E ,CE =2,则AD =_____.13、(4分)每本书的厚度为0.6cm ,把这些书摞在一起总厚度y (单位:)cm 随书的本数x 的变化而变化,请写出y 关于x 的函数解析式__,(不用写自变量的取值范围)三、解答题(本大题共5个小题,共48分)14、(12分)如图1,在△ABC 中,AB =AC ,D 、E 是BC 边上的点,连接AD 、AE ,以△ADE 的边AE 所在直线为对称轴作△ADE 的轴对称图形△AD ′E ,连接D ′C ,若BD =CD ′.(1)求证:△ABD ≌△ACD ′;(1)如图1,若∠BAC =110°,探索BD ,DE ,CE 之间满足怎样的数量关系时,△CD ′E 是正三角形;(3)如图3,若∠BAC =90°,求证:DE 1=BD 1+EC 1.15、(8分)如图,四边形ABCD 是菱形,过AB 的中点E 作AC 的垂线EF ,交AD 于点M ,交CD 的延长线于点F .(1)证明:AM DM =;(2)若2DF =,求当形ABCD 的周长;(3)在没有辅助线的前提下,图中共有_________对相似三角形.16、(8分)某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB <BC)的对角线的交点O 旋转(①→②→③),图中的M 、N 分别为直角三角形的直角边与矩形ABCD 的边CD 、BC 的交点.(1)该学习小组成员意外的发现图①中(三角板一边与CC 重合),BN 、CN 、CD 这三条线段之间存在一定的数量关系:CN 2=BN 2+CD 2,请你对这名成员在图①中发现的结论说明理由;(2)在图③中(三角板一直角边与OD 重合),试探究图③中BN 、CN 、CD 这三条线段之间的数量关系,直接写出你的结论.(3)试探究图②中BN 、CN 、CM 、DM 这四条线段之间的数量关系,写出你的结论,并说明理由.17、(10分)如图,直线y=﹣34x+3与x 轴交于点C ,与y 轴交于点B ,抛物线y=ax 2+34x+c 经过B 、C 两点.(1)求抛物线的解析式;(2)如图,点E 是直线BC 上方抛物线上的一动点,当△BEC 面积最大时,请求出点E 的坐标和△BEC 面积的最大值;(3)在(2)的结论下,过点E 作y 轴的平行线交直线BC 于点M ,连接AM ,点Q 是抛物线对称轴上的动点,在抛物线上是否存在点P ,使得以P 、Q 、A 、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.18、(10分)如图,平行四边形AEFG 的顶点G 在平行四边形ABCD 的边CD 上,平行四边形ABCD 的顶点B 在平行四边形AEFG 的边EF 上.求证:S □ABCD =S □AEFGB卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知直线y=kx+b与y=2x+1平行,且经过点(﹣3,4),则函数y=kx+b的图象可以看作由函数y=2x+1的图象向上平移_____个单位长度得到的.20、(4分)四边形ABCD中,AD∥BC,AD=BC,对角线AC、BD相交于点O,若CD =3cm,△BOC的周长比△AOB的周长大2cm,则四边形ABCD的周长=______cm.21、(4分)已知一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是___________.22、(4分)如图,正方形ABCD中,对角线AC、BD相交于点O,DE平分∠ADO交AC 于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF、BF、E′F.若AE=2.则四边形ABFE′的面积是_____.23、(4分)在ABCD中8AD=,AE平分BAD∠交BC点E,DF平分ADC∠交BC 于点F,且2EF=,则AB的长为__________.二、解答题(本大题共3个小题,共30分)24、(8分)(1)解不等式组:213236xx x-≥⎧⎨+>-⎩(2)解方程:32111x x-=--25、(10分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.26、(12分)先化简,再求值:222411(1)()442aa a a+-÷--,其中12a=.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D 【解析】按照轴对称图形和中心对称图形的定义逐项判断即可.【详解】解:A 、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B 、等腰直角三角形是轴对称图形,不是中心对称图形,故本选项错误;C 、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;D 、菱形是轴对称图形,也是中心对称图形,故本选项正确.故选:D .本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是解题的关键.2、A 【解析】先根据A 、B 两点的坐标求出OA 及OB 的长,再根据勾股定理即可得出结论.【详解】∵A (5,0)和B (0,4),∴OA =5,OB =4,∴AB ==故选A .本题考查了勾股定理的应用,根据坐标得出OA 及OB 的长是解题关键.3、A【解析】解:如图:根据旋转的旋转可知:∠PAP′=∠BAC=90°,AP=AP′=3,根据勾股定理得:'==PP A .4、B【解析】利用黄金矩形的定理求出AD AB =512,再利用矩形的性质得1AE AB BE AB AD AB AD AD AD AD --===-,代入求值即可解题.【详解】解:∵矩形ABCD 中,AD=BC,根据黄金矩形的定义可知AD AB =12,∵BE BC =,∴111,2AE AB BE AB AD AB AD AD AD AD --===-==故选B 本题考查了黄金矩形这一新定义,属于黄金分割概念的拓展,中等难度,读懂黄金矩形的定义,表示出边长比是解题关键.5、A 【解析】先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.【详解】20名同学各自家庭一个月平均节约用水是:(0.2×2+0.25×4+0.3×6+0.4×7+0.5×1)÷20=0.325(m 3),因此这400名同学的家庭一个月节约用水的总量大约是:400×0.325=130(m 3),故选A .6、D【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,根据矩形,平行四边形,菱形,正方形的判定定理判断即可.【详解】解:A 、正确,符合矩形的判定定理;B 、正确,符合平行四边形的判定定理;C、正确,符合菱形的判定定理;D、错误,例如对角线互相垂直的等腰梯形.故选:D.本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7、C【解析】根据不等式的运算、相似三角形的判定定理、补角的性质、直角的性质对各命题进行判断即可.【详解】(1)如果a<0,b>0,那么a+b的值不确定,错误;(2)如果两个三角形的3个角对应相等,那么这两个三角形相似,错误;(3)同角的补角相等,正确;(4)直角都相等,正确;故真命题的个数是2个故答案为:C.本题考查了命题的问题,掌握不等式的运算、相似三角形的判定定理、补角的性质、直角的性质是解题的关键.8、B【解析】由矩形的性质可知AD∥BC,由此可得出∠AFE=∠CEF=26°,再根据翻折的性质可知每翻折一次减少一个∠AFE的度数,由此即可算出∠DFE度数.【详解】解:∵四边形ABCD为长方形,∴AD∥BC,∴∠AFE=∠CEF=26°.由翻折的性质可知:图2中,∠EFD=180°-∠AFE=154°,∠AFD=∠EFD-∠AFE=128°,图3中,∠DFE=∠AFD-∠AFE=102°,故选择:B.本题考查了翻折变换以及矩形的性质,解题的关键是找出∠DFE=180°-3∠AFE .解决该题型题目时,根据翻折变换找出相等的边角关系是关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、30°【解析】试题分析:根据旋转图形的性质可得:AB=AM ,∠AMN=∠B=60°,∠ANM=∠C=30°,根据∠B=60°可得:△ABM 为等边三角形,则∠NMC=60°,根据平行线的性质可得:∠1+∠ANM=∠NMC=60°,则∠1=60°-30°=30°.10、2【解析】在Rt △ACB 中,5AB ==,由题意设BD=B′D=AE=x ,由△EDB′∽△ACB ,可得ED DB AC BC '=,推出43DE x =,可得453x x x ++=,求出x 即可解决问题。
人教版九年级(上)数学学科测试题(含答案)

BA 汕头市-第一学期初三数学科单元测练题(二)一、选择题(每小题4分,共32分,在每小题给出的四个选项中,只有一项符合题目要求) 1、下列图形中,既是轴对称图形又是中心对称图形的是( )A 、B 、C 、D 、2、一个暗箱装有10个黑球,8个白球,12个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是( ) A 、31 B 、81 C 、154 D 、114 3、在下图的四个三角形中,不能由△ABC 经过旋转或平移得到的是( )4、下列调查工作需采用普查方式的是( )A 、环保部门对淮河某段水域的水污染情况的调查;B 、电视台对正在播出的某电视节目收视率的调查;C 、质检部门对各厂家生产的电池使用寿命的调查;D 、企业在给职工做工作服前进行的尺寸大小的调查。
5、2007年5月份,某市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,这组数据的中位数、众数分别是( )A 、32,31B 、31,32C 、31,31D 、32,35 6、如图,两圆轮叠放在墙边,若两圆的半径分别为R 和r (R>r ),则它们 与墙的切点A 和B 间的距离为( )A 、R+rB 、R 2-r 2C 、RrD 、Rr 27、图7是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( )ABCA 、B 、C 、D 、QP 21M OBAPDCB AO8、如图,AB 是⊙O 的直径,M 是⊙O 上一点,MN ⊥AB ,垂足为N , P 和Q 分别是AM 和BM 上一点(不与端点重合),如果 ∠MNP=∠MNQ ,下面结论正确的是( )①∠1=∠2;②∠P+∠Q=180°;③∠Q=∠PMN ;④PM=QM ;⑤M N 2=PN ·QN A 、①②③ B 、①③⑤ C 、④⑤ D 、①②⑤ 二、填空题(每小题4分,共20分)9、一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是____________10、如图,P 是⊙O外一点,OP垂直于弦AB于点C,交AB 于点D, 连接OA 、OB 、AP 、BP ,根据以上条件写出3个正确结论(OA=OB 除外):①__________;②____________;③_____________ 11、观察下列各式:22151(11)1005225=⨯+⨯+= 22252(21)1005625=⨯+⨯+= 22353(31)10051225=⨯+⨯+=……依此规律,第n 个等式(n 为正整数)为 . 12、如图所示的两个圆盘中,指针落在每一个数上的机会均等, 那么两个指针同时落在偶数上的概率是_____________. 13、如图,在10×6的网格图中(每个小正方形的边长均为1个单位长),⊙A 的半径为1,⊙B 的半径为2,要使⊙A 与静止的⊙B 内切,那么⊙A 由图示位置需向右平移 个单位长.俯视图 图7A 、B 、C 、D 、1 23汕头市2007-2008学年度第一学期初三数学科单元测练题(二)学校_____________班级___________姓名_____________座号_______评分______________ 一、选择题(4分⨯8=32分)二、填空题(4分⨯5=20分)9、 10、 11、12、 13、三、解答题(每小题7分,共35分)14、15、⊙O的半径为5cm,P是⊙O外一点,PO=8cm,过P的直线交⊙O于A、B,∠OPA=30°,求AB的长。
重庆市第一一〇中学校2024-2025学年2024--2025学年九年级上学期入学测试数学试题

重庆市第一一〇中学校2024-2025学年2024--2025学年九年级上学期入学测试数学试题一、单选题1.5-的倒数是【 】A .15 B .15- C .5 D .5-2.下列图形是中心对称图形的是( )A .B .C .D . 3.如图,直线m n ∥,Rt ABC △的顶点A 在直线n 上,90C ∠=︒,AB ,CB 分别交直线m 于点D 和点E ,且DB DE =,若25B ∠=︒,则1∠的度数为( )A .60︒B .65︒C .70︒D .75︒4的值应在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 5.下列命题中,不正确的是( )A .顺次连接菱形各边中点所得的四边形是矩形.B .有一个角是直角的菱形是正方形.C .对角线相等且垂直的四边形是正方形.D .有一个角是60°的等腰三角形是等边三角形.6.如图,在平行四边形ABCD 中,∠ABC 的平分线交AD 于点E ,过点A 作AF ⊥BE ,垂足为点F ,若AF =5,BE =24,则CD 的长为( )A .8B .13C .16D .187.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑧个图案中三角形的个数为( )A .14B .16C .18D .208.如图1,四边形ABCD 中,AB CD ∥,90D ??,CA CB =,动点E 从点D 出发,沿折线D C B A ---方向以1单位/秒的速度匀速运动,在整个运动过程中,ADE V 的面积S 与运动时间t (秒)的函数图象如图2所示,则四边形ABCD 的面积是( )A .15B .16C .17D .189.如图,四边形ABCD 为正方形,E 为CD 上一点,BF AE ⊥于点F ,连接DF ,设ABF α∠=,若2BF AF =,则ADF ∠可表示为( )A .2aB .152a +︒C .45α︒-D .60α︒-10.在多项式a b c d e ++++中添加1个绝对值符号,使得绝对值符号内含有(25)k k ≤≤项,并把绝对值符号内最右边项的“+”改为“-”,称此为“绝对操作”.最后将绝对值符号打开并化简,得到的结果记为M .例如:将原多项式添加绝对值符号后,可得a b c d e ++++,此时2k =.再将“+b ”改为“b -”,可得a b c d e -+++.于是同一种“绝对操作”得到的M 有2种可能的情况:M a b c d e =-+++或M a b c d e =-++++.下列说法正确的个数为①若5k =,0M =,则e a b c d =+++;②共有2种“绝对操作”,可能得到M a b c d e =+-++;③共有3种“绝对操作”,使得可能得到的M 中有且只有2个“-”( )A .0B .1C .2D .3二、填空题11.()()2022π--+-=.12.若一个多边形的内角和是900º,则这个多边形是边形.13.分解因式:()()2141a b b ---=.14.将点P (3,4)绕原点逆时针旋转90°,得到的点P 的对应点的坐标为.15.某药品原价每盒25元,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是多少?设该药品平均每次降价的百分率为x ,则可列方程为.16.若关于x 的方程2222x ax x x ++=---有正整数解,且关于y 的不等式组2423210y a y -⎧<⎪⎨⎪--≤⎩至少有两个整数解,则符合条件的所有整数a 的和为.17.如图,正方形ABCD 中,E 为DC 边上一点,连接AE BD 、,点M 为AE 中点,点O 为BD 中点,连接BM ,点K 为BM 中点,连接KO,若AB =DE OK =.18.一个两位正整数m ,若m 满足各数位上的数字均不为0,称m 为“相异数”,将m 的两个数位上的数字对调得到一个新数n ,把m 放在n 的左边组成第一个四位数A ,把m 放在n的右边组成第二个四位数B ,记()99A B F m -=,计算(36)F =;若s ,t 都是“相异数”,s 个位上的数字等于t 十位上的数字,且F (s )被11除余7,()()63F s F t +=,则满足条件的所有s 的平均数为.三、解答题19.计算:(1)()()242x x y x y --- (2)225441a a a a a a --⎛⎫-÷ ⎪++⎝⎭ 20.如图,在四边形ABCD 中,直线EF 分别与AD BC ,交于点E ,F ,与AC 交于点O ,AB CD ∥,B D ∠=∠,EM 平分DEF ∠.(1)尺规作图:作BFE ∠的角平分线FN 交AB 于点N ;(只保留作图痕迹)(2)在(1)所作的图形中,求证:EM FN ∥.证明:∵AB CD ∥,∴,在ABC V 和CDA V中, B D BAC DCA AC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABC CDA V V≌, ∴,∴AD BC ∥,∴DEF BFE ∠=∠,∵EM 平分DEF ∠,FN 平分BFE ∠,∴12MEF DEF ∠=∠,12NFE BFE ∠=∠, ∴,∴EM FN ∥.小西进一步研究发现,两条平行线被第三条直线所截,所得的一组内错角的角平分线均有此特征,请依照题意完成下面命题:两条平行线被第三条直线所截,.21.某中学以“守法规知礼让,安全文明出行”为主题,组织全校交通安全知识竞赛.现从七、八年级中各随机抽取20名同学的竞赛成绩(百分制)进行整理和分析(成绩均为整数,成绩得分用x 表示),共分成五个等级:A 、060x ≤≤,B 、6070x <≤,C 、7080x <≤,D 、8090x <≤,E 、90100x <≤(其中成绩大于90为优秀),下面给出了部分信息、七年级抽取的20名学生的成绩在D 等级中的数据是:81,85,85,85,85,89. 八年级抽取的20名学生的成绩在D 等级中的数据是:82,84,85,85,87,89,89.根据以上信息,解答下列问题:(1)请补全条形统计图,并直接写出a 、b 的值;(2)根据以上数据分析,你认为哪个年级的竞赛成绩更好,并说明理由(写出一条理由即可);(3)已知该校七、八年级各有800名学生参与了知识竞赛,请估计两个年级竞赛成绩优秀的学生人数一共有多少?22.酸辣粉是重庆的特色美食,沙坪坝好吃街某店推出两款酸辣粉,一款是“杂酱酸辣粉”,另一款是“爆肚酸辣粉”.已知1份“杂酱酸辣粉”和2份“爆肚酸辣粉”需60元;3份“杂酱酸辣粉”和1份“爆肚酸辣粉”需70元.(1)求每份“杂酱酸辣粉”和“爆肚酸辣粉”的价格分别为多少元?(2)辣椒是酸辣粉的灵魂调料之一,受气候影响6月份辣椒的价格在5月份的基础上会上调25%,该小吃店每月均用2400元购买辣椒,这样6月份购买辣椒的数量比5月份购买辣椒的数量少3千克,求6月份每千克辣椒的价格为多少元?23.如图,在菱形ABCD 中,对角线AC BD ,交于点O ,64AC BD ==,,动点P 从点A 出发,沿着折线A →O →B 运动,速度为每秒1个单位长度,到达B 点停止运动,设点P 的运动时间为t 秒,PAD △的面积为y .(1)直接写出y 关于t 的函数表达式,并注明自变量t 的取值范围;(2)在直角坐标系中画出y 与t 的函数图象,并写出它的一条性质;(3)根据图象直接写出当4y ≤时t 的取值范围.24.旅游旺季,某沙漠景区吸引了大量游客,为了更好的参观,特绘制了沙漠线路的平面示意图.景点B 在入口A 的正西方向,景点C 在景点B 的正北方向,景点D 在入口A 的北偏西30︒方向1000米处,景点D 在景点C 的东南方向1800米处. 1.41≈,1.73)(1)求AB 的长度;(结果精确到个位)(2)小明和小华从入口A 处进入,约定一起到景点C 处看日落.小明选择步行①A D C --,步行速度为90米/分钟,在景点D 处停留5分钟观赏沙漠中的泉水景观,然后按原速继续向景点C 前进.小华选择骑骆驼②A B C --,在景点B 处不停留,骆驼队伍速度为110米/分钟,若两人同时从入口A 出发,请计算说明小明和小华谁先到达景点C ?(结果精确到0.1) 25.如图1,在平面直角坐标系中,直线1l ∶5y x =-+与y 轴交于点A ,直线2l ∶y kx b=+与x 轴、y 轴分别交于点()40B -,和点C ,直线l 1与直线l 2交于点()2D d ,.(1)求直线2l 的解析式;(2)若点E 为线段BC 上一个动点,过点E 作EF x ⊥轴于点F ,交1l 直线于点G ,当253EG BF +=时,求EGD V 的面积; (3)如图2,将2l 向下平移3个单位长度得到直线3l ,直线3l 与直线1l 交于点H ,点D 关于y 轴的对称点为点G ,点M 为直线1l 上一个动点,点N 为直线2l 上一个动点.若以点G ,H ,M ,N 为顶点的四边形是平行四边形,直接写出所有满足条件的点M 的坐标并写出求其中一个点M 坐标的过程.26.已知:如图,在矩形ABCD 中,点E 在边BC 上,以DE 为边作矩形DEGF ,其中GF 经过点A,连接AE、BG.∠的平分线;(1)若点A是GF的中点,求证:ED是AEC(2)若BG AG=,1AF=,求AD的长;CE=,2=,求出AG的长.(3)若四边形ABCD是边长为10的正方形,BG BE。
九年级上册数学测试题及答案

、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的 字母写在答题纸上;本题共 32分,每小题4分)1.已知O O 的直径为3cm ,点P 到圆心0的距离0P = 2cm ,则点P7 .下列命题中,正确的是二、填空题(本题共 16分,每小题4分) 9.已知两个相似三角形面积的比是 2 : 1,则它们周长的比 —_ .k 十 110.在反比例函数y = 中,当x > 0时,y 随x 的增大而增大,则k的取值范围是x11. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是A.在O O 外 2.已知△ ABC 中,/C=90° B.在O O 上,AC=6, C.在O O 内BC=8,贝U cosB 的值是D.不能确定A . 0.6B . 3 .如图,△ ABC 中, 的是占八 4 D.-3N 分别在两边 AB 、AC 上,MN // BC,则下列比例式中,不正确0.75C. 0.84. 5.6. A .AM_BMC.下列图形中,既是中心对称图形又是轴对称图形的是BC ACMN AMA .C.10 cm ,则O O 1和O 。
2的位置关系是离某二次函数y=ax 2+bx+c 的图象如图所示, D.相交则下列结论正确的是A. a>0, b>0, c>0B. a>0, b>0, c<0C. a>0, b<0, c>0D. a>0, b<0, c<0A .平面上三个点确定一个圆 B.等弧所对的圆周角相等C.平分弦的直径垂直于这条弦D.与某圆一条半径垂直的直线是该圆的切线 8.把抛物线y =— x 2 + 4x — 3先向左平移 线解析式是A. y =— (x + 3)2 — 2 3个单位,再向下平移 B . y =— (x + 1)2— 12个单位, 则变换后的抛物X4C. y =— x 2 + x — 5D .前三个答案都不正确D.N CC ._________ ;甲队以2 : 0战胜乙队的概率是____________ .12. 已知O O 的直径AB 为6cm ,弦CD 与AB 相交,夹角为 30 °交点 M 恰好为AB 的一个三等分点,贝U CD 的长为 _________ cm . 三、解答题(本题共 30分,每小题5分) 13. 计算:COS 245 °- 2tan45 ° tan30 ° . 3 sin60 .14. 已知正方形 MNPQ 内接于△ ABC (如图所示),若△ ABC 的面积为该正方形的边长. 15. 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30。
2020秋北师大版九年级数学上第一、二章检测题含答案

单元测试(一) 特殊平行四边形(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分)1.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=8,则CD的长是( )A.6 B.5 C.4 D.32.如图,矩形ABCD中,对角线AC、BD相交于点O,若∠OAD=40°,则∠COD=( )A.20° B.40° C.80° D.100°3.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是( )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC4.如图,在矩形ABCD中,对角线AC、BD相交于点O,若OA=2,则BD的长为( )A.4 B.3 C.2 D.15.如果要证明ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明( )A.AB=AD且AC⊥BD B.AB=AD且AC=BDC.∠A=∠B且AC=BD D.AC和BD互相垂直平分6.菱形的两条对角线长分别是6和8,则此菱形的边长是( )A.10 B.8 C.6 D.57.在正方形ABCD中,AB=12,对角线AC,BD相交于点O,则△ABO的周长是( )A.12+12 2 B.2+6 2C.12+ 2 D.24+6 28.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为( ) A.16a B.12aC.8a D.4a9.正方形的一条对角线长为4,则这个正方形面积是( )A.8 B.4 2C.8 2 D.1610.下列命题中,错误的是( )A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等11.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED为菱形的是( )A.AB=BC B.AC=BCC.∠B=60° D.∠ACB=60°12.如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,则∠DAF=( )A.40° B.35°C.20° D.15°13.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )A.75° B.60° C.55° D.45°14.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=( )A. 2 B.2 C. 6 D.2 215.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )A.AB=BE B.DE⊥DCC.∠ADB=90° D.CE⊥DE二、填空题(本大题共5个小题,每小题5分,共25分)16.如图,菱形ABCD的一条对角线的中点O到AB的距离为2,那么O点到另一边的距离为________.17.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB的大小为________度.18.如图所示,已知ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明ABCD是矩形的有________(填写序号).19.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是________________.20.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86 cm,对角线长是13 cm,那么矩形的周长是多少?22.(8分)如图,四边形ABCD中,AB=CD,∠BAD+∠ADC=180°,AC与BD相交于点O,△AOB是等边三角形,求证:四边形ABCD是矩形.23.(10分)如图,已知正方形ABCD,延长AB到E,使AE=AC,以AE为一边作菱形AEFC,若菱形的面积为92,求正方形的边长.24.(12分)如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.25.(12分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G.(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以证明.26.(14分)以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,求线段AB的最小值.27.(16分)已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD∶AB=________时,四边形MENF是正方形.参考答案1.C2.C3.B4.A5.B6.D7.A8.C9.A 10.C 11.B 12.C 13.B 14.A 15.B 16.2 17.60 18.①④ 19.AC =BD 或AB ⊥BC 20.22.521.∵△AOB 、△BOC 、△COD 和△AOD 四个小三角形的周长和为86 cm ,且AC =BD =13 cm , ∴AB +BC +CD +DA =86-2(AC +BD)=86-4×13=34(cm), 即矩形ABCD 的周长是34 cm.22.证明:∵∠BAD +∠ADC =180°, ∴AB ∥CD.又∵AB =CD ,∴四边形ABCD 是平行四边形. ∵△AOB 是等边三角形, ∴AO =BO.∴2AO =2BO ,即AC =BD. ∴四边形ABCD 是矩形. 2 23.设正方形的边长为x ,∵AC 为正方形ABCD 的对角线,∴AC =2x.∴S 菱形AEFC =AE ·CB =2x ·x =2x 2.∴2x 2=9 2. ∴x 2=9.∴x =±3.舍去x =-3. ∴正方形边长为3.24.(1)在菱形ABCD 中,AB =AD ,∠A =60°, ∴△ABD 为等边三角形. ∴∠ABD =60°.(2)由(1)可知BD =AB =4, 又∵O 为BD 的中点, ∴OB =2.又∵OE ⊥AB ,∠ABD =60°, ∴∠BOE =30°. ∴BE =12OB =1.25.(1)由图可知,∠DAG ,∠AFB ,∠CDE 与∠AED 相等. (2)选择∠AFB =∠AED ,证明如下: ∵四边形ABCD 是正方形,∴∠DAB =∠B =90°,AB =AD.在Rt △BAF 和Rt △ADE 中,⎩⎪⎨⎪⎧BA =AD ,AF =DE ,∴Rt △BAF ≌Rt △ADE(HL).∴∠AFB =∠AED.26.∵四边形CDEF 是正方形,∴∠OCD =∠ODB =45°,∠COD =90°,OC =OD. ∵AO ⊥OB , ∴∠AOB =90°.∴∠AOC +∠AOD =90°,∠AOD +∠BOD =90°. ∴∠AOC =∠BOD.∵在△COA 和△DOB 中,⎩⎪⎨⎪⎧∠OCA =∠ODB ,OC =OD ,∠AOC =∠BOD ,∴△COA ≌△DOB.∴OA =OB.∵∠AOB =90°,∴△AOB 是等腰直角三角形.由勾股定理得AB =OA 2+OB 2=2OA , 要使AB 最小,只要OA 取最小值即可, 根据垂线段最短,OA ⊥CD 时,OA 最小, ∵四边形CDEF 是正方形, ∴FC ⊥CD ,OD =OF =OC. ∴CA =DA. ∴OA =12CF =1.∴AB = 2.∴AB 的最小值为 2.27.(1)证明:∵四边形ABCD 是矩形, ∴AB =CD ,∠A =∠D =90°. 又∵M 是AD 的中点, ∴AM =DM.在△ABM 和△DCM 中,⎩⎪⎨⎪⎧AB =CD ,∠A =∠D ,AM =DM ,∴△ABM ≌△DCM(SAS).(2)四边形MENF 是菱形.证明:∵E ,F ,N 分别是BM ,CM ,CB 的中点, ∴NE ∥MF ,NE =MF.∴四边形MENF 是平行四边形. 由(1),得BM =CM , ∴ME =MF.∴四边形MENF 是菱形.(3)当AD ∶AB =2∶1时,四边形MENF 是正方形.理由: ∵M 为AD 中点, ∴AD =2AM.∵AD ∶AB =2∶1, ∴AM =AB. ∵∠A =90°,∴∠ABM =∠AMB =45°. 同理:∠DMC =45°.∴∠EMF =180°-45°-45°=90°. ∵四边形MENF 是菱形, ∴四边形MENF 是正方形. 故答案为2∶1.单元测试(二) 一元二次方程(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分) 1.下列方程中,关于x 的一元二次方程是( )A .x 2+2y =1 B.1x 2+1x-2=0C .ax 2+bx +c =0 D .x 2+2x =12.用公式法解一元二次方程3x 2-2x +3=0时,首先要确定a ,b ,c 的值,下列叙述正确的是( )A .a =3,b =2,c =3B .a =-3,b =2,c =3C .a =3,b =2,c =-3D .a =3,b =-2,c =33.若关于x 的方程2x m -1+x -m =0是一元二次方程,则m 为( )A .1B .2C .3D .04.一元二次方程x 2-2x -1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根5.一元二次方程x 2+4x -3=0的两根为x 1,x 2,则x 1·x 2的值是( )A .4B .-4C .3D .-3 6.方程x(x +2)=0的根是( )A .x =2B .x =0C .x 1=0,x 2=-2D .x 1=0,x 2=27.用配方法解方程x 2-2x -5=0时,原方程应变形为( )A .(x +1)2=6B .(x -1)2=6C .(x +2)2=9D .(x -2)2=9 8.根据下面表格中的对应值:判断方程ax 2+bx +c =A .3<x <3.23 B .3.23<x <3.24 C .3.24<x <3.25 D .3.25<x <3.26 9.解方程(x +1)(x +3)=5较为合适的方法是( )A .直接开平方法B .配方法C .公式法或配方法D .分解因式法10.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为( )A .0B .1C .2D .411.三角形两边长分别为3和6,第三边是方程x 2-6x +8=0的根,则三角形的周长为( )A .11B .13C .15D .11或13 12.下列说法不正确的是( )A .方程x 2=x 有一根为0B .方程x 2-1=0的两根互为相反数C .方程(x -1)2-1=0的两根互为相反数D .方程x 2-x +2=0无实数根13.对二次三项式x 2-10x +36,小聪同学认为:无论x 取什么实数,它的值都不可能等于11;小颖同学认为:可以取两个不同的值,使它的值等于11.你认为( )A.小聪对,小颖错 B.小聪错,小颖对C.他们两人都对 D.他们两人都错14.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7 644平方米,则道路的宽应为多少米?设道路的宽为x米,则可列方程为( )A.100×80-100x-80x=7 644B.(100-x)(80-x)+x2=7 644C.(100-x)(80-x)=7 644D.100x+80x=35615.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )二、填空题(本大题共5小题,每小题5分,共25分)16.将方程3x(x-1)=5化为ax2+bx+c=0的形式为____________.17.若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________.18.若(m+n)(m+n+5)=6,则m+n的值是________.19.一件工艺品进价100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降低1元出售,则每天可多售出4件,要使顾客尽量得到优惠,且每天获得的利润为3 596,每件工艺品需降价________元.20.已知关于x的方程x2-(a+b)x+ab-1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x21+x22<a2+b2.则正确结论的序号是________.(填上你认为正确的所有序号)三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)选择适当的方法解下列方程:(1)(x-3)2=4;(2)x2-5x+1=0.22.(8分)已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若mn+m+n=2,求a的值.23.(10分)随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2013年销售烟花爆竹20万箱,到2015年烟花爆竹销售量为9.8万箱.求咸宁市2013年到2015年烟花爆竹年销售量的平均下降率.24.(12分)小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2.”他的说法对吗?请说明理由.25.(12分)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程的根的情况;(2)若方程有一个根为3,求m的值.26.(14分)观察下列一元二次方程,并回答问题:第1个方程:x2+x=0;第2个方程:x2-1=0;第3个方程:x2-x-2=0;第4个方程:x2-2x-3=0;…(1)第2 016个方程是____________________;(2)直接写出第n个方程,并求出第n个方程的解;(3)说出这列一元二次方程的解的一个共同特点.27.(16分)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.参考答案1.D 2.D 3.C 4.B 5.D 6.C 7.B 8.C 9.C 10.B 11.B 12.C 13.D 14.C 15.B 16.3x 2-3x -5=0 17.-3 18.-6或1 19.6 20.①② 21.(1)x 1=1,x 2=5. (2)x 1=5+212,x 2=5-212.22.∵m ,n 是关于x 的一元二次方程x 2-3x +a =0的两个解,∴m +n =3,mn =a. ∵mn +m +n =2,∴a +3=2.解得a =-1.23.设年销售量的平均下降率为x ,依题意,得20(1-x)2=9.8. 解这个方程,得x 1=0.3,x 2=1.7. ∵x 2=1.7不符合题意, ∴x =0.3=30%.答:咸宁市2013年到2015年烟花爆竹年销售量的平均下降率为30%.24.(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(10-x)cm.由题意,得x 2+(10-x)2=58.解得x 1=3,x 2=7.4×3=12,4×7=28.答:小林把绳子剪成12 cm 和28 cm 的两段.(2)假设能围成.由(1)得x 2+(10-x)2=48.化简得x 2-10x +26=0. ∵b 2-4ac =(-10)2-4×1×26=-4<0, ∴此方程没有实数根. ∴小峰的说法是对的.25.(1)∵b 2-4ac =(2m)2-4×1×(m 2-1)=4>0, ∴方程有两个不相等的实数根.(2)将x =3代入原方程,得9+6m +m 2-1=0.解得m 1=-2,m 2=-4.26.(1)x 2-2 014x -2 015=0(2)第n 个方程是x 2-(n -2)x -(n -1)=0,解得x 1=-1,x 2=n -1.(3)这列一元二次方程的解的一个共同特点:有一根是-1. 27.(1)△ABC 是等腰三角形.理由: ∵x =-1是方程的根,∴(a +c)×(-1)2-2b +(a -c)=0. ∴a +c -2b +a -c =0. ∴a -b =0. ∴a =b.∴△ABC 是等腰三角形.(2)∵方程有两个相等的实数根,∴(2b)2-4(a +c)(a -c)=0.∴4b 2-4a 2+4c 2=0. ∴a 2=b 2+c 2.∴△ABC 是直角三角形. (3)∵△ABC 是等边三角形,∴(a +c)x 2+2bx +(a -c)=0可整理为2ax 2+2ax =0. ∴x 2+x =0.解得x 1=0,x 2=-1.。
四川省成都市嘉祥外国语学校2024年九年级数学第一学期开学达标测试试题【含答案】

四川省成都市嘉祥外国语学校2024年九年级数学第一学期开学达标测试试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列函数中,y 随x 的增大而减小的函数是()A . 3 y x=B .41y x =-C .2y x =--D .31y x =-2、(4分)下面有四个定理:①平行四边形的两组对边分别相等;②平行四边形的两组对角分别相等;③平行四边形的两组对边分别平行;④平行四边形的对角线互相平分;其逆命题正确的有()A .1个B .2个C .3个D .4个3、(4分)有一组数据7、11、12、7、7、8、11,下列说法错误的是()A .中位数是7B .平均数是9C .众数是7D .极差为54、(4分)在2(1)1y k x k =++-中,若y 是x 的正比例函数,则k 值为()A .1B .1-C .±1D .无法确定5、(4分)如图,一根木棍斜靠在与地面OM 垂直的墙面ON 上,设木棍中点为P ,若木棍A 端沿墙下滑,且B 沿地面向右滑行.在此滑动过程中,点P 到墙角点O 的距离()A .不变B .变小C .变大D .先变大后变小6、(4分)2014年4月13日,某中学初三650名学生参加了中考体育测试,为了了解这些学生的体考成绩,现从中抽取了50名学生的体考成绩进行了分析,以下说法正确的是()A .这50名学生是总体的一个样本B .每位学生的体考成绩是个体C .50名学生是样本容量D .650名学生是总体7、(4分)长春市某服装店销售夏季T 恤衫,试销期间对4种款式T 恤衫的销售量统计如下表:款式A B C D 销售量/件1851该店老板如果想要了解哪种款式的销售量最大,那么他应关注的统计量是()A .平均数B .众数C .中位数D .方差8、(4分)甲、乙是两个不透明的纸箱,甲中有三张标有数字14,12,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a ,从乙中任取一张卡片,将其数字记为b .若a ,b 能使关于x 的一元二次方程210ax bx ++=有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为()A .23B .59C .49D .13二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)某种细菌病毒的直径为0.00005米,0.00005米用科学记数法表示为______米.10、(4分)在平面直角坐标系中,已知坐标()3, 1B ,将线段AB (第一象限)绕点O (坐标原点)按逆时针方向旋转90︒后,得到线段''A B ,则点'B 的坐标为____.11、(4分)如图,在△ABC 中,BC 的垂直平分线MN 交AB 于点D ,CD 平分∠ACB .若AD =2,BD =3,则AC 的长为_____.12、(4分)点P 在第四象限内,P 到轴的距离是3,到轴的距离是5,那么点P 的坐标为.13、(4分)分解因式:225ax a -=____________三、解答题(本大题共5个小题,共48分)14、(12分)在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m 天,乙队共做了n 天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?15、(8分)某人购进一批琼中绿橙到市场上零售,已知卖出的绿橙数量x(千克)与售价y(元)的关系如下表:数量x(千克)12345…售价y(元)2+0.14+0.26+0.38+0.410+0.5…(1)写出售价y(元)与绿橙数量x(千克)之间的函数关系式;(2)这个人若卖出50千克的绿橙,售价为多少元?16、(8分)如图,在▱ABCD 中,E 、F 分别是BC 、AD 边上的点,且∠1=∠1.求证:四边形AECF 是平行四边形.17、(10分)如图,AB 是⊙O 的直径,AC ⊥AB ,E 为⊙O 上的一点,AC =EC ,延长CE 交AB 的延长线于点D .(1)求证:CE 为⊙O 的切线;(2)若OF ⊥AE ,OF =1,∠OAF =30°,求图中阴影部分的面积.(结果保留π)18、(10分)一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果的单价是多少元?(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a %销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a 的最大值.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在比例尺为1∶100000的地图上,量得甲、乙两地的距离是15cm ,则两地的实际距离▲km.20、(4分)如图,△ABC 中,已知AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长为_____.21、(4分)若某组数据的方差计算公式是S 2=14[(7-x )+(4-x )2+(3-x )2+(6-x )2],则公式中x =______.22、(4分)在平面直角坐标系xoy 中,将点N ()1,2--绕点O 旋转180,得到的对应点的坐标是__________.23、(4分)已知关于x 的方程x 2-2ax +1=0有两个相等的实数根,则a =____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,矩形ABCD 中,AB=2,BC=5,E 、P 分别在AD .BC 上,且DE=BP=1.连接BE,EC,AP,DP,PD 与CE 交于点F,AP 与BE 交于点H .(1)判断△BEC 的形状,并说明理由;(2)判断四边形EFPH 是什么特殊四边形,并证明你的判断;(3)求四边形EFPH 的面积.25、(10分)已知:直线l :y =2kx ﹣4k +3(k ≠0)恒过某一定点P .(1)求该定点P 的坐标;(2)已知点A 、B 坐标分别为(0,1)、(2,1),若直线l 与线段AB 相交,求k 的取值范围;(3)在0≤x ≤2范围内,任取3个自变量x 1,x 2、x 3,它们对应的函数值分别为y 1、y 2、y 3,若以y 1、y 2、y 3为长度的3条线段能围成三角形,求k 的取值范围.26、(12分)今年水果大丰收,A ,B 两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A 基地运往甲、乙两销售点的费用分别为每件40元和20元,从B 基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A 基地运往甲销售点水果x 件,总运费为W 元,请用含x 的代数式表示W ,并写出x 的取值范围;(2)若总运费不超过18300元,且A 地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】根据一次函数的性质,k<0,y随x的增大而减小,找出各选项中k值小于0的选项即可.【详解】解:A、B、D选项中的函数解析式k值都是正数,y随x的增大而增大,=--中,k=1-<0,y随x的增大而减少.C选项y x2故选:C.本题考查了一次函数的性质,主要利用了当k>0时,y随x的增大而增大;当k<0时,y 随x的增大而减小.2、D【解析】分别写出各个命题的逆命题,根据平行四边形的判定定理判断即可.【详解】解:平行四边形的两组对边分别相等的逆命题是两组对边分别相等的四边形是平行四边形,是真命题;平行四边形的两组对角分别相等的逆命题是两组对角分别相等的四边形是平行四边形,是真命题;平行四边形的两组对边分别平行的逆命题是两组对边分别平行的四边形是平行四边形,是真命题;平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,是真命题。
九年级数学上全册练习题(有答案)

第二十一章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______;(5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xxx x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( )(2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=- 6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)第二十二章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______. 5.若x x m -m+-222)(-3=0是关于x 的一元二次方程,则m 的值是______.6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3)542=-x (4)2122=+x x A .1个B .2个C .3个D .4个 8.在方程:3x 2-5x =0,,5312+=+x x 7x 2-6xy +y 2=0,322,052222--=+++xx x x ax =0,3x 2-3x =3x 2-1中必是一元二次方程的有( ). A .2个 B .3个 C .4个 D .5个 9.x 2-16=0的根是( ). A .只有4 B .只有-4 C .±4 D .±8 10.3x 2+27=0的根是( ).A .x 1=3,x 2=-3B .x =3C .无实数根D .以上均不正确 三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0.13..25)1(412=+x14.(2x +1)2=(x -1)2.综合、运用、诊断一、填空题15.把方程x x x +=-2232化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______. 17.若方程2kx 2+x -k =0有一个根是-1,则k 的值为______. 二、选择题18.下列方程:(x +1)(x -2)=3,x 2+y +4=0,(x -1)2-x (x +1)=x ,,01=+xx ,5)3(21,42122=+=-+x x x 其中是一元二次方程的有( ).A .2个B .3个C .4个D .5个19.形如ax 2+bx +c =0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A .a 是任意实数B .与b ,c 的值有关C .与a 的值有关D .与a 的符号有关 20.如果21=x 是关于x 的方程2x 2+3ax -2a =0的根,那么关于y 的方程y 2-3=a 的解是( ). A .5±B .±1C .±2D .2±21.关于x 的一元二次方程(x -k )2+k =0,当k >0时的解为( ).A .k k +B .k k -C .k k -±D .无实数解三、解答题(用直接开平方法解下列方程) 22.(3x -2)(3x +2)=8. 23.(5-2x )2=9(x +3)2.24..063)4(22=--x25.(x -m )2=n .(n 为正数)拓广、探究、思考26.若关于x 的方程(k +1)x 2-(k -2)x -5+k =0只有唯一的一个解,则k =______,此方程的解为______.27.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( ).A .2或-2B .2C .-2D .以上都不正确 28.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值.29.三角形的三边长分别是整数值2cm ,5cm ,k cm ,且k 满足一元二次方程2k 2-9k -5=0,求此三角形的周长.测试2 配方法与公式法解一元二次方程学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程.课堂学习检测一、填空题1.+-x x 82_________=(x -__________)2. 2.x x 232-+_________=(x -_________)2. 3.+-px x 2_________=(x -_________)2.4.x ab x -2+_________=(x -_________)2. 5.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是______.6.一元二次方程(2x +1)2-(x -4)(2x -1)=3x 中的二次项系数是______,一次项系数是______,常数项是______. 二、选择题7.用配方法解方程01322=--x x 应该先变形为( ).A .98)31(2=-xB .98)31(2-=-x C .910)31(2=-xD .0)32(2=-x8.用配方法解方程x 2+2x =8的解为( ). A .x 1=4,x 2=-2 B .x 1=-10,x 2=8 C .x 1=10,x 2=-8 D .x 1=-4,x 2=29.用公式法解一元二次方程x x 2412=-,正确的应是( ). A .252±-=xB .252±=x C .251±=x D .231±=x 10.方程mx 2-4x +1=0(m <0)的根是( ).A .41 B .m m-±42 C .mm-±422D .mm m -±42 三、解答题(用配方法解一元二次方程)11.x 2-2x -1=0. 12.y 2-6y +6=0.四、解答题(用公式法解一元二次方程) 13.x 2+4x -3=0.14..03232=--x x五、解方程(自选方法解一元二次方程) 15.x 2+4x =-3.16.5x 2+4x =1.综合、运用、诊断一、填空题17.将方程x x x 32332-=++化为标准形式是______________________,其中a =____ __,b =______,c =______.18.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 二、选择题19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为( ).A .-2B .-4C .-6D .2或6 20.4x 2+49y 2配成完全平方式应加上( ).A .14xyB .-14xyC .±28xyD .0 21.关于x 的一元二次方程ax a x 32222=+的两根应为( ).A .22a±-B .a 2,a 22C .422a± D .a 2±三、解答题(用配方法解一元二次方程) 22.3x 2-4x =2. 23.x 2+2mx =n .(n +m 2≥0).四、解答题(用公式法解一元二次方程)24.2x -1=-2x 2.25.x x 32132=+26.2(x -1)2-(x +1)(1-x )=(x +2)2.拓广、探究、思考27.解关于x 的方程:x 2+mx +2=mx 2+3x .(其中m ≠1)28.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?测试3 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为∆=b 2-4ac , (1)当b 2-4ac ______0时,方程有两个不相等的实数根; (2)当b 2-4ac ______0时,方程有两个相等的实数根; (3)当b 2-4ac ______0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m =______. 3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ______. 4.若方程(x -m )2=m +m 2的根的判别式的值为0,则m =______. 二、选择题5.方程x 2-3x =4根的判别式的值是( ). A .-7 B .25 C .±5 D .56.一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ). A .正数 B .负数 C .非负数 D .零 7.下列方程中有两个相等实数根的是( ). A .7x 2-x -1=0 B .9x 2=4(3x -1) C .x 2+7x +15=0D .02322=--x x8.方程03322=++x x 有( ).A .有两个不等实根B .有两个相等的有理根C .无实根D .有两个相等的无理根 三、解答题9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.11.求证:不论m 取任何实数,方程02)1(2=++-mx m x 都有两个不相等的实根.综合、运用、诊断一、选择题12.方程ax 2+bx +c =0(a ≠0)根的判别式是( ).A .242ac b b -±-B .ac b 42-C .b 2-4ac D .abc13.若关于x 的方程(x +1)2=1-k 没有实根,则k 的取值范围是( ).A .k <1B .k <-1C .k ≥1D .k >1 14.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实根,则k 的值为( ).A .-4B .3C .-4或3D .21或32- 15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不等的实根,则m 的取值范围是( ).A .23<m B .23<m 且m ≠1 C .23≤m 且m ≠1 D .23>m16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实根,那么以正数a ,b ,c为边长的三角形是( ). A .锐角三角形 B .钝角三角形 C .直角三角形 D .任意三角形 二、解答题17.已知方程mx 2+mx +5=m 有相等的两实根,求方程的解.18.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根.19.如果关于x 的一元二次方程2x (ax -4)-x 2+6=0没有实数根,求a 的最小整数值.20.已知方程x 2+2x -m +1=0没有实根,求证:方程x 2+mx =1-2m 一定有两个不相等的实根.拓广、探究、思考21.若a ,b ,c ,d 都是实数,且ab =2(c +d ),求证:关于x 的方程x 2+ax +c =0,x 2+bx +d =0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根) 1.x (x -3)=0.______ 2.(2x -7)(x +2)=0.______ 3.3x 2=2x .______ 4.x 2+6x +9=0.______ 5..03222=-x x ______ 6..)21()21(2x x -=+______7.(x -1)2-2(x -1)=0.______. 8.(x -1)2-2(x -1)=-1.______ 二、选择题9.方程(x -a )(x +b )=0的两根是( ). A .x 1=a ,x 2=b B .x 1=a ,x 2=-b C .x 1=-a ,x 2=b D .x 1=-a ,x 2=-b 10.下列解方程的过程,正确的是( ).A .x 2=x .两边同除以x ,得x =1.B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0,.1,3221==∴x x 三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程) 11.3x (x -2)=2(x -2).12..32x x =*13.x 2-3x -28=0. 14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3. *16.2x 2-x -15=0.四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值.综合、运用、诊断一、写出下列一元二次方程的根18.0222=-x x .______________________. 19.(x -2)2=(2x +5)2.______________________. 二、选择题20.方程x (x -2)=2(2-x )的根为( ).A .-2B .2C .±2D .2,2 21.方程(x -1)2=1-x 的根为( ).A .0B .-1和0C .1D .1和022.方程0)43)(21()43(2=--+-x x x 的较小的根为( ).A .43-B .21C .85D .43 三、用因式分解法解下列关于x 的方程 23..2152x x =-24.4(x +3)2-(x -2)2=0.25..04222=-+-b a ax x26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根; (2)若此方程有两个整数根,求m 的值.测试5 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、填空题(写出下列一元二次方程的根) 1.3(x -1)2-1=0.__________________2.(2x +1)2-2(2x +1)=3.__________________ 3.3x 2-5x +2=0.__________________ 4.x 2-4x -6=0.__________________ 二、选择题5.方程x 2-4x +4=0的根是( ). A .x =2 B .x 1=x 2=2 C .x =4 D .x 1=x 2=46.5.27.0512=+x 的根是( ).A .x =3B .x =±3C .x =±9D .3±=x7.072=-x x 的根是( ). A .77=x B .77,021==x x C .x 1=0,72=xD .7=x8.(x -1)2=x -1的根是( ). A .x =2 B .x =0或x =1 C .x =1 D .x =1或x =2 三、用适当方法解下列方程 9.6x 2-x -2=0. 10.(x +3)(x -3)=3.11.x 2-2mx +m 2-n 2=0. 12.2a 2x 2-5ax +2=0.(a ≠0)四、解下列方程(先将你选择的最佳解法写在括号中) 13.5x 2=x .(最佳方法:______)14.x 2-2x =224.(最佳方法:______)15.6x 2-2x -3=0.(最佳方法:______)16.6-2x 2=0.(最佳方法:______)17.x 2-15x -16=0.(最佳方法:______)18.4x 2+1=4x .(最佳方法:______)19.(x -1)(x +1)-5x +2=0.(最佳方法:______)综合、运用、诊断一、填空题20.若分式1872+--x x x 的值是0,则x =______. 21.关于x 的方程x 2+2ax +a 2-b 2=0的根是____________.二、选择题22.方程3x 2=0和方程5x 2=6x 的根( ).A .都是x =0B .有一个相同,x =0C .都不相同D .以上都不正确23.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是( ).A .b a x a b x 2,221==B .ba x ab x ==21, C .0,2221=+=x abb a x D .以上都不正确 三、解下列方程24.(x +1)2+(x +2)2=(x +3)2.25.(y -5)(y +3)+(y -2)(y +4)=26.26..02322=+-x x27.kx 2-(k +1)x +1=0.四、解答题28.已知:x 2+3xy -4y 2=0(y ≠0),求yx y x +-的值.29.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)拓广、探究、思考30.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________________.31.在实数范围内把x 2-2x -1分解因式为____________________.32.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为,24,221aac b b x x -±-=请你计算x 1+x 2=____________,x 1·x 2=____________.并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.(2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______.(3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______.(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值: ①;1121x x + ②;2221x x + ③|x 1-x 2|; ④;221221x x x x + ⑤(x 1-2)(x 2-2).测试6 实际问题与一元二次方程学习要求会灵活地应用一元二次方程处理各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8题O MPC BA九年级上入学数学试卷本试卷满分为120分,考试时间为120分钟.一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求)1.化简2)2(-的结果正确的是( )A .-2B .2C .±2D .42.在实属范围内x 有意义,则x 的取值范围是( ) A .x ≥0 B .x ≤0 C .x >0 D .x <03.下列运算中,正确的是( )A .562432=+B .248=C .3327=÷D .3)3(2-=-4.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项是0,则m 的值是( )A .1B .2C .1或2D . 0 5.方程x x 42=的解是( )A .x=4B .x=2C .x=4或x=0D .x=06、某农场今年1月某种作物的产量为5000吨,3月上升到7200吨,这两个月平均每月增长的百分率是( )A 、10%B 、22%C 、20%D 、20%- 7.如图,四个边长为2的小正方形拼成一个大正方形,A 、 B 、O 是小正方形顶点,⊙O 的半径为2,P 是⊙O 上的点,且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45° C .60° D .90° 8、如图,AB 、AC 是⊙O 的切线,B 、C 为切点,50A ︒∠=,点P 是圆上异于B 、C ,且在BMC 上的动点,则BPC ∠的度数是( ) A 、65︒ B 、115︒C 、11565︒︒或 D 、13065︒︒或9.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x =(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( )得 分 评卷人P O7题图A .40 m/sB .20 m/sC .10 m/sD .5 m/s10.如图,A 、B 、C 、D 为⊙O 的四等分点,动点P 从圆心O 出发,沿O — C — D — O 路线作匀速运动.设运动时间为t (s ),∠APB=y(°),则下列图象中表示y 与t 之间函数关系最恰当的是( )11.在Rt △ABC 中,∠C=90°,AC=12,BC=5,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是( )A .25πB .65πC .90πD .130π12.如图,ABC △是等腰直角三角形,BC 是斜边,将ABP △绕点A 逆时针旋转后,能与ACP '△重合,如果3AP =,那么PP '的长等于( ) A . 33 B .23C .42D .32二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.=⋅-312 。
14.比较大小:8 51 (填“<”、“=”或“>” )15.同时掷二枚普通的骰子,数字和为l 的概率为 ,数字和为7的概率为 ,数字和为2的概率为 .16.如图,AB 与⊙O 相切于点B ,AO 延长线交⊙O 点C ,连接BC ,若∠A=38°,则∠C= 。
17.在16×6的网格图中(每个小正方形的边长均为1个单位长),⊙A 的半径为1,⊙B 的半径为2,要使⊙A 与静止的⊙B 相切,那么⊙A 由图示位置需向右平移 个单位长.18.如图,梯形ABCD 中,AD ∥BC ,∠C =900,AB =AD =4,BC =6,以A 为圆心在梯形内画出一个最大的扇形(图中阴影部分)的面积是三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤) 得 分 评卷人得 分 评卷人B A 第10题图 O PD CB Ay t 09045y t 09045y t 0904545900t y A B C D (第12题图)16题图.CB OAABD18题图19.(本小题满分8分)已知实数m,n(m >n)是方程02322=+-x x 的两个根,求nmm n +的值.20.(本小题满分8分)如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD∥AB,且AB = 26m ,OE⊥CD 于点E .水位正常时测得OE ∶CD=5∶24(1)求CD 的长;(2)现汛期来临,水面要以每小时4 m 的速度上升,则经过多长时间桥洞会刚刚被灌满?21.(本小题满分9分) 如图,已知等边ABC △,以边BC 为直径的半圆与边AB,AC 分别交于点D 、E,过点D 作DF ⊥AC 于点F ,(1)判断DF 与⊙O 的位置关系,并证明你的结论;(2)过点F 作FH ⊥BC 于点H ,若等边ABC △的边长为8,求AF ,FH 的长。
O20题图22.(本小题满分9分)有一个面积为150平方米的长方形的鸡场,鸡场的一边靠墙(墙长18米),墙的对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米,求鸡场的长和宽各位多少米?24.(本小题满分10分)我县某单位于五一期间组织职工到辽河源森林公园旅游,下面是领队与旅行社导游就收费标准的一段对话:领导:组团去辽河源森林公园旅游每人收费是所少? 导游:如果人数不超过25人,人均旅游费用为100元。
领导:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元。
该单位按旅行社的收费标准组团游览辽河源森林公园结束后,共支付给旅行社2700元。
请你根据上述信息,求该单位这次到辽河源森林公园观光旅游的共有多少人?F如图25(a),两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.△绕点O顺时针旋转90角,在图14(b)中作出旋转(1)将图25(a)中的OAB△(保留作图痕迹,不写作法,不证明).后的OAB(2)在图25(a)中,你发现线段AC,BD的数量关系是,直线AC,BD相交成度角.△绕点O顺时针旋转一个锐角,得到图25(c),这时(2)(3)将图25(a)中的OAB△绕点O继续旋转更大的角时,结中的两个结论是否成立?作出判断并说明理由.若OAB论仍然成立吗?作出判断,不必说明理由.图25(c)图25(a)图25(b)数学试题参考答案一、选择题BACBC CBCCCBD 二、填空题13. -6 14. > 15. 0 61 361 16. 26° 17. 1或3或5或7 18. 4π 三、解答题19.解:对于方程02322=+-x x a=1,b=-23,c=24 (131)31312432244214)32(4222-=+=∴±=⨯±=-±-=∴=⨯⨯--=-n m a ac b b x ac b8............428)13)(13()13()13(222222==-+++-=+=+=+∴mn m n mn m mn n n m m n 20.解:(1)∵直径AB = 26m ∴OD=m AB 13262121=⨯= ……………………………………1分 ∵OE ⊥CD ∴CD DE 21=…………………………………………………………..2分 ∵OE ∶CD=5∶24 ∴OE ∶ED=5∶12 ∴设OE=5x,ED=12x ∴在Rt △ODE 中22213)12()5(=+x x …………………………………………………………4分解得x=1∴CD=2DE=2×12×1=24m ………………………………………….………..5分 (2)由(1)的OE=1×5=5m 延长OE 交圆O 于点F ∴EF=OF-OE=13-5=8m ∴)(248小时= 所以经过2小时桥洞会刚刚被灌满………………..…..8分 21.(1)DF 与⊙O 相切 …………………………1分 证明:连接OD ∵ABC △是等边三角形∴∠A=∠B=∠C=600∵OD=OB∴△ODB 是等边三角形 ……………………………2分 ∴∠DOB=600∴∠DOB =∠C=600∴OD ∥AC ∵DF ⊥AC∴ DO ⊥DF …………………………………………4分 ∴DF 与⊙O 相切………………………………………5分 (2)解:连接CD∵CB 是⊙O 直径 ∴DC ⊥AB 又∵AC=CB=AB ∴D 是AB 中点 ∴AD=482121=⨯=AB 在直角三角形ADF 中 ∠A=600 ∠ADF=300 ∠AFD= 900∴242121=⨯==AD AF ………….7分 ∴FC=AC-AF=8-2=6∵ FH ⊥BC∴∠FHC= 900∵∠C=600∴ ∠FHC=300∴362121=⨯==FC HC ∴3322=-=FH FC FH …..9分22.解:设鸡场的宽为x 米,则长为(33-2x+2)米根据题意列方程得:x(33-2x+2)=150………………………5分 整理得:01503522=+-x x 解方程得:5.7,1021==x x则33-2x+2=15或20因为墙长18米,所以20不符合题意舍去………………….8分 答:鸡场的长和宽分别为15米和10米。
………………….9分 23.解:(1)将x =1,y =-1;x =-3,y =-9分别代入c x ax y ++=42得⎪⎩⎪⎨⎧+-⨯+-⨯=-+⨯+⨯=-.)3(4)3(9,141122c a c a 解得 ⎩⎨⎧-==.6,1c a …………………………(3分)∴二次函数的表达式为642-+=x x y .………………………………(4分)(2)对称轴为2-=x ;顶点坐标为(-2,-10). ………………………………(6分)(3)将(m ,-m )代入642-+=x x y ,得 642-+=-m m m ,解得1,621=-=m m .∵m >0,∴61-=m 不合题意,舍去.∴ m =1. …………………………………………………………………(7分) ∵点P 与点Q 关于对称轴2=x 对称,∴点Q 到x 轴的距离为1. ………………………………………………(8分) 24.解:设该单位这次到辽河源森林公园旅游共有x 人。
因为100×25=2500<2700,所以员工人数一定超过25人。
可得方程【100-2(x-25)】x=2700 整理得01350752=+-x x 解得30,4521==x x当451=x 时,100-2(x-25)=60<70,故舍去1x 当302=x 时,100-2(x-25)=90>70,符合题意。
答:该单位这次到辽河源森林公园旅游共有30人.25. 解:(1)如图3(a )(AB ,字母位置互换扣1分,无弧扣1分,不连结AB 扣1分,扣完为止) ······························ 3分 (2)AC BD =;90(90)(每空1分) ················· 5分(3)成立.如图3(b )90COD AOB ∠=∠=∵COA AOD AOD DOB ∠+∠=∠+∠∴即:COA DOB ∠=∠(或由旋转得COA DOB ∠=∠) ··········· 7分图3(a )图3(b )CO OD =∵ OA OB = COA DOB ∴△≌△ ··········· 8分 AC BD =∴ ····························· 9分 延长CA 交OD 于E ,交BD 于F (下面的证法较多)COA DOB ∵△≌△,ACO ODB ∠=∠∴················ 10分 CEO DEF ∠=∠∵ 90COE EFD ∠=∠=∴ AC BD ∴⊥ ····· 11分 旋转更大角时,结论仍然成立. ····················· 12分。