高一数学空间几何体的结构2

合集下载

高中数学必修2导学案

高中数学必修2导学案

高中数学必修2导学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高一数学必修2 编制:廖信山审核:王育仁使用时间:2013年11月___日班级:__________ 组别:_________ 组号:_________ 姓名:___________空间几何体的结构(1)【学习目标】1.通过观察模型、图片,使学生理解并能归纳出棱柱、棱锥、棱台的结构特征。

2.通过对棱柱、棱锥、棱台的观察分析,培养学生的观察能力、空间想象能力和抽象概括能力。

3.通过教学活动,逐步培养学生探索问题的精神。

【自主学习】任务一阅读教材第2~3页,回答下列问题:1.空间几何体:____________________________________________________ 。

2.什么是多面体、多面体的面、棱、顶点?3.什么是旋转体、旋转体的轴?任务二阅读教材第3~4页,回答下列问题:1.什么是棱柱、棱柱的底、侧面、侧棱、顶点有什么特征如何表示如何分类思考:正方体、长方体是棱柱吗?2.什么是棱锥、棱锥的底、侧面、侧棱、顶点有什么特征如何表示如何分类思考:有一个面是多边形,其余各面是三角形的多面体是棱锥吗?3.什么是棱台、棱台的底、侧面、侧棱、顶点有什么特征如何表示如何分类2【合作探究】1.棱柱、棱锥、棱台都是多面体,当底面发生变化时,它们能否互相转化呢?【目标检测】A级:必做题1.一个多面体至少有________个面,面数最少的棱柱有_________个顶点。

2.在三棱锥A-BCD,可以当作棱锥底面的三角形的个数为()A.1B.2C.3D.43.在棱柱中()A、只有两个面平行B、所有的棱都平行C、所有的面都是平行四边形D、两底面平行,且各侧棱也互相平行4.棱台不具有的性质是()A.两底面平行且相似B.侧面都是梯形C.侧棱都平行D.侧棱延长后必交于一点B级:选做题1、若一个棱锥的侧面都是等边三角形,这个棱锥最多是()棱锥。

高一数学空间几何体的结构课件

高一数学空间几何体的结构课件

探究问题
分别以直角三角形的不同的边所在的直线为 轴旋转三角形得到的旋转体形状相同吗? 如果不 同请你画出来。
1.1.1 柱、 锥、 台、 球
的结构特征
1. 棱柱的结构特征
什么叫棱柱? 有两个面互相平行, 其余各面都是四边形,并 且每相邻两个四边形的公 共边都互相平行,由这些 面围成的多面体叫做棱柱.
1.1 空间几何体的结构
奥运场馆
鸟巢
奥运场馆
水立方
世博场馆
中国馆 世博轴
演艺中心
在我们周围存在着各种各样的物体,它们 都占据着空间的一部分,如果我们只考虑 这些物体的形状和大小,而不考虑其它因 素,那么由这些抽象出来的空间图形就叫 做空间几何体.
11/12/2014
5
观察这八个几何体,说说它们有何共同的特 征?
思考 ? 这两个几何体与棱锥有什么关系?
S
截面A' B ' C ' D ' E '∽ 底面 ABCDE
E'
A' D' C' B'
D O
E A
C
B
3. 棱台的结构特征
什么是棱台? 一般地,用一个平行于棱锥底面的平面去截 棱锥,底面和截面中间的部分的多面体叫做棱台.
上底面 侧面
侧棱
下底面
顶点
三棱台
(2)侧面都是平行四边形. F
底面
18
(3)侧棱平行且相等.
11/12/2014
顶点
2.棱锥的结构特征
什么是棱锥?
一般地,有一个面是 多边形,其余各面都是有 一个公共点的三角形,由 这些面围成的多面体叫做 棱锥.
符号表示:四棱锥S-ABCD

高一数学必修2-第一章空间几何体知识点

高一数学必修2-第一章空间几何体知识点

第一章空间几何体1.1 空间几何体的结构1. 多面体与旋转体:(1)由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面.相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.(2)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴.2. 棱柱:(1)有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.(2)侧棱垂直于底面的棱柱叫直棱柱,否则斜棱柱;底面是正多边形的直棱柱叫正棱柱。

(3)棱柱的分类:按底面的多边形的边数分,有三棱柱、四棱柱、五棱柱等.按侧棱与底面的关系分为直棱柱和斜棱柱。

(4)底面是平行四边形的四棱柱叫平行六面体;侧棱与底面垂直的平行六面体叫直平行六面体;底面为矩形的直平行六面体叫长方体;底面为正方形的长方体叫正四棱柱;棱长都相等的正四棱柱叫正方体。

(5)棱柱的性质:①两底面是对应边平行的全等多边形;②侧面、对角面都是平行四边形;③侧棱平行且相等;④平行于底面的截面是与底面全等的多边形。

3. 棱锥:(1)有一个面是多边形,其余各面都是有一公共点的三角形,由这些面所围成的几何体叫做棱锥.棱锥中,这个多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边叫做棱锥的侧棱.(2)底面是正多边形,顶点在底面的射影是正多边形的中心的棱锥叫正棱柱。

正棱柱顶点与底面中心的连线段叫正棱锥的高;正棱锥侧面等腰三角形底边上的高叫正棱锥的斜高。

(3)棱锥的分类:按底面的多边形的边数分,有三棱锥、四棱锥、五棱锥等.(4)棱锥的性质:①侧面、对角面都是三角形;②平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(5)正棱锥的性质:①正棱锥各侧棱都相等,各侧面都是全等的等腰三角形。

高一数学知识点总结_空间几何体的结构知识点

高一数学知识点总结_空间几何体的结构知识点

⾼⼀数学知识点总结_空间⼏何体的结构知识点⾼⼀数学怎么学? 学⽣学习期间,在课堂的时间占了⼀⼤部分。

因此听课的效率如何,决定着学习的基本状况,今天⼩编在这给⼤家整理了⾼⼀数学知识点总结,接下来随着⼩编⼀起来看看吧!⾼⼀数学知识点总结(⼀)空间⼏何体的结构知识点1、静态的观点有两个平⾏的平⾯,其他的⾯是曲⾯;动态的观点:矩形绕其⼀边旋转形成的⾯围成的旋转体,象这样的旋转体称为圆柱。

2、定义:以矩形的⼀边所在直线为旋转轴,其余各边旋转⽽形成的的曲⾯所围成的旋转体叫做圆柱,旋转轴叫圆柱的轴;垂直于旋转轴的边旋转⽽成的圆⾯叫做圆柱的底⾯;平⾏于圆柱轴的边旋转⽽成的⾯叫圆柱的侧⾯,圆柱的侧⾯⼜称圆柱的⾯。

⽆论转到什么位置,不垂直于轴的边都叫圆柱侧⾯的母线。

表⽰:圆柱⽤表⽰轴的字母表⽰。

规定:圆柱和棱柱统称为柱体。

3、静态观点:有⼀平⾯,其他的⾯是曲⾯;动态的观点:直⾓三⾓形绕其⼀直⾓旋转形成的⾯围成的旋转体,像这样的旋转体称为圆锥。

4、定义:以直⾓三⾓形的⼀条直⾓边所在的直线为旋转轴,其余两边旋转⽽形成的⾯所围成的旋转体叫做圆锥。

旋转轴叫圆锥的轴;垂直于旋转轴的边旋转⽽成的圆⾯成为圆锥的底⾯;不垂直于旋转轴的边旋转⽽成的曲⾯叫圆锥的侧⾯,圆锥的侧⾯⼜称圆锥的⾯,⽆论旋转到什么位置,这条边都叫做圆锥侧⾯的母线。

表⽰:圆锥⽤表⽰轴的字母表⽰。

规定:圆锥和棱锥统称为锥体。

5、定义:以半直⾓梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转⽽形成的曲⾯所围成的⼏何体叫圆台。

还可以看成⽤平⾏于圆锥底⾯的平⾯截这个圆锥,截⾯于底⾯之间的部分。

旋转轴叫圆台的轴。

垂直于旋转轴的边旋转⽽形成的圆⾯称为圆台的底⾯;不垂直于旋转轴的边旋转⽽成的曲⾯叫做圆台的侧⾯,⽆论转到什么位置,这条边都叫圆台侧⾯的母线。

表⽰:圆台⽤表⽰轴的字母表⽰。

规定:圆台和棱台统称为台体。

6、定义:以半圆的直径所在的直线为旋转轴,将半圆旋转⼀周所形成的曲⾯称为球⾯,球⾯所围成的旋转体称为球体,简称为球。

空间几何体的结构_王素华.ppt

空间几何体的结构_王素华.ppt

三棱柱
四棱柱
五棱柱
四、棱柱的表示
用底面各顶点的字母表示棱柱。
三棱柱ABC-A'B'C' 四棱柱ABCD-A'B'C'D'
六棱柱ABCDEF-A'B'C'D'E'F
常见的棱柱
长方体:侧面和底面都是矩形的棱柱. 正方体:侧面和底面都是正方形的棱柱.
棱柱的结构特征
思考:你能举出关于棱柱的生活实例吗?
么四边形?
平行四边形
理论迁移
例1、过BC的截面截长方体的一角,使 EF∥B’C’所得的几何体是不是棱柱,为 什么?
D' F C'
D' D C
A' D
E
B' C
A
F
C'
B
A
B
A'
E
B'
思考:有两个面互相平行, 其余各面都是四边形的几何体是 棱柱吗? 答:不一定是.如右图所 示,不是棱柱. 思考:有两个面互相平行, 其余各面都是平行四边形的几 何体是棱柱吗? 答:不一定是.如右图所 示,不是棱柱.
底 面
E
侧棱 F
D
C
A
侧面
B
顶点
思考:棱柱上、下两个底面的形状大小 如何?各侧面的形状如何?
两底面是全等的多边形, 各侧面都是平行四边形
三、棱柱的分类
思考:各种各样的棱柱,主要有什么不 同?你认为棱柱的三 角形、四边形、五边形、 …… 我们把这 样的棱柱分别叫做三棱柱、四棱柱、五棱 柱、……
二、棱柱的有关概念
两个互相平行的面 棱柱的底面:
H/

江苏省盐城中学高中数学立体几何知识点总结

江苏省盐城中学高中数学立体几何知识点总结

高一立体几何知识梳理盐城中学高一数学组一、空间几何体(一)空间几何体的类型多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其这条直线称为旋转体的轴.(二)几种空间几何体的结构特征1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱.1.2 棱柱的分类图1-1棱柱①棱柱,械垂直于底面》直棱柱 底山是多形)正棱柱其他棱柱…底面是四边形 棱柱 底面是平行四边形 四棱柱平行六面体 侧棱垂直于底面直平行底面是矩形底面是正方形 六面体长方体 性质:棱长都相等 正四棱柱正方体I 、II 、m 、1.3 侧面都是平行四边形,且各侧棱互相平行且相等;两底面是全等多边形且互相平行;平行于底面的截面和底面全等;棱柱的面积和体积公式s 二ch (c 是底周长,h 是高) 直棱柱侧S 直棱柱表面=C ・h+2S 底2.1(V 棱柱=S 底•h棱锥的结构特征棱锥的定义)棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.()正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底f斜棱柱面的中心,这样的棱锥叫做正棱锥.2.2正棱锥的结构特征I、平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;II、正棱锥的各侧棱相等,各侧面是全等的等腰三角形;III、两个特征三角形:()A POH(包含棱锥的高、斜高和底面内切圆半径);()A POB(包含棱锥的高、侧棱和底面外接圆半径)正棱锥侧面积:S=1ch'(c为底周长,h,为斜高)P正棱椎2体积:V=1Sh(S为底面积,h为高)DC棱椎3OHAB正四面体:各条棱长都相等的三棱锥叫正四面体2对于棱长为a正四面体的问题可将它补成一个边长为—a的正方体问题.211正四面体的中心到底面与顶点的距离之比为1:3(=-/』舟3:/十6正方体体对角线2正方体体对角线3、棱台的结构特征3.1棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台.3.2正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形;(3)正棱台的对角面也是等腰梯形;(4)各侧棱的延长线交于一点.4、圆柱的结构特征4.1圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.4.2圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4圆柱的面积和体积公式S圆柱侧面=2n•r•h(r为底面半径,h为圆柱的高)V圆、=S h=nr2h5、圆锥的结构特征5.1圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;(3)母线的平方等于底面半径与高的平方和:l2=r2+h25.3圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3圆台的面积和体积公式S圆台侧=n•(R+r)•l(r、R为上下底面半径)V1=1/3(n r2+n R2+n rR)h(h为圆台的高)7球的结构特征7.1球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2球的结构特征⑴球心与截面圆心的连线垂直于截面;⑵截面半径等于球半径与截面和球心的距离的平方差:r2=R2-d2⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线;球外切正方体,球直径等于正方体的边长.7-3球的面积和体积公式S=4nR2(R为球半径);V=4/3nR3(三)空球面间几何体的表面积与体积球空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积:S=2兀rl+2兀r2圆锥的表面积:S=兀rl+兀丫2圆台的表面积:S=兀r1+兀丫*兀Rl+兀R2球的表面积:S=4兀R2空间几何体的体积柱体的体积:V=S L X h;锥体的体积:v=1S X h底,3底1.T74〜台体的体积:V=-(S+JSS+S)X h;球体的体积:V二万兀R33上%’上下下3斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y轴的线长度变半,平行于x,z轴的线长度不变;二、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面7的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平/:□力面的一条斜线垂直,那么它和这条斜线的射影垂直.人二L如图,已知PO ±a ,斜线PA 在平面a 内的射影为OA ,a 是平面a 内一条直线. ①三垂线定理:若a ^OA ,则a ^PA .即垂直射影则垂直斜线.②三垂线定理逆定理:若a ^PA ,则a ^OA .即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:allb[线线平行n 线面平行)性质定理:aliauu/i〔线面平行n线线平行)CK H p-b★判断或证明线面平行的方法⑴利用定义(反证法):/I a=0,则l〃a(用于判断);⑵利用判定定理:线线平行0线面平行(用于证明);⑶利用平面的平行:面面平行n线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:/Aa=A2.1直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角0.2.2线面角的范围:0£[0°,90°]注意:当直线在平面内或者直线平行于平面时,0=0°;当直线垂直于平面时,0=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:。

新课标人教A版-高一数学必修二定理总结

新课标人教A版-高一数学必修二定理总结

第一章 空间几何体 1.1 空间几何体的结构 结构特征 棱柱 棱锥 棱台 定义底面 两底面是全等的多边形 多边形 两底面是相似的多边形 侧面 平行四边形 三角形 梯形侧棱平行且相等 相交于顶点 延长线交于一点 平行于底面的截面 与两底面是全等的多边形 与底面是相似的多边形 与两底面是相似的多边形 过不相邻两侧棱的截面平行四边形三角形梯形1.2 空间几何体的三视图和直观图我们把一束平行光线照射下形成的投影,叫做平行投影.平行投影的投影线是平行的.在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影.(a )中心投影 (b )斜投影 (c )正投影 正视图、侧视图、俯视图统称为三视图1.一个几何体的正视图和侧视图的高度一样;2.正视图与俯视图的长度一样;3.侧视图与俯视图宽度一样;定义:上述画水平放置的平面图形的直观图的方法叫做斜二测画法,有如下步骤和规则(1)在原图形中建立平面直角坐标系xoy ,同时建立直观图坐标系y o x ''',确定水平面,045='''∠y o x ; (2)与坐标轴平行的线段保持平行;(3)水平线段等长,竖直线段减半. 1.3 空间几何体的表面积与体积表中S 表示面积,C ’、C 分别表示上、下底面周长,h 表示高,h ’表示斜高,l 表示侧棱长。

表示l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R 表示半径。

第二章 点、直线、平面之间的位置关. 2.1 空间点、直线、平面之间的位.平面特征:平面没有大小、厚薄和宽窄,几何里的平面是无限延展的.平面内有无数个点,平面可以看成点的集合. 点A 在平面α内,记作A ∈α;点B 在平面α外,记作B ∉α.直线 l 在平面α内表示为α⊂l ;直线l 不在平面α内表示为α⊄m . 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理2 推论1:经过一条直线和这条直线外一点,有且只有一个平面。

高一数学必修二

高一数学必修二

高一数学必修二第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积1.柱、锥、台、球的结构特征(1)柱棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。

底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

棱柱与圆柱统称为柱体。

(2)锥棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。

底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥……圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面。

棱锥与圆锥统称为锥体。

(3)台棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。

圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴。

圆台和棱台统称为台体。

(4)球以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。

必修2-第一章空间几何体-1.1柱、锥、台、球的结构特征

必修2-第一章空间几何体-1.1柱、锥、台、球的结构特征
棱锥的性质:
侧面、对角面都是三角形;平行于底面的截面 与底面相似,其相似比等于顶点到截面距离与高 的比的平方。
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
想一想:
用一个平行于棱锥底面的平面去截棱 锥,得到怎样的两个几何体?
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
侧棱
F A
ED
B
侧面
C
顶点
的公共边叫侧棱,侧面与底面
的公共顶点叫棱柱的顶点。
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
棱柱的分类:棱柱的底面可以是三角形、 四边形、五边形、 …… 我们把这样的棱柱 分别叫做三棱柱、四棱柱、五棱柱、……
三棱柱
四棱柱
五棱柱
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
D’
GG’
C’
A’
F’
F
B’
HH ’
D
E E’
C
A
B
答:都是棱柱.
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
探究4:
观察右边的棱柱,共有多少 对平行平面?能作为棱柱的 底面的有几对?
答:四对平行平面;只有一对可以作为棱 柱的底面. 棱柱的任何两个平行平面都可以作为棱柱 的底面吗?
用一个平行于棱锥底面 的平面去截棱锥,底面与截 面之间的部分是棱台。
D’
D A’
C’
B’
C
A
B
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
棱台的分类:
由三棱锥、四棱锥、五棱锥…截得的棱 台,分别叫做三棱台,四棱台,五棱台…
棱台的表示方法:

高一数学棱柱、棱锥和棱台的结构特征2

高一数学棱柱、棱锥和棱台的结构特征2

D'
C'
O'
A'
B'
D
C
O
A B
2.右图中 的几
何体是不是棱台? 为什么?
棱柱、棱锥、棱台之间的关系 棱锥是当棱柱的一个底面收缩为一个
点时形成的空间图形, 棱台则可以看成是用 一个平行于棱锥
底面的平面截棱锥所得到的图形, 要注意的是棱台的各条侧棱延长后,
将会交于一点,即棱台可以还原成棱锥.
例1.有四个命题:① 各侧面是全等的等 腰三角形的四棱锥是正四棱锥;② 底面 是正多边形的棱锥是正棱锥;③ 棱锥的 所有侧面可能都是直角三角形;④ 四棱 锥的四个侧面中可能四个都是直角三角 形。其中正确的命题有 ③ ④ .
例2. 已知正四棱锥V-ABCD,底面面积为 16,一条侧棱长为2 11,计算它的高和斜 高。 解:设VO为正四棱锥V- ABCD的高,作OM⊥BC于 点M,则M为BC中点,
连接OM、OB,则 VO⊥OM,VO⊥OB.
因为底面正方形ABCD的面积是16,所以 BC=4,MB=OM=2,
OB BM 2 OM 2 2 2
又因为VB= 2 11,在Rt△VOB 中,由勾股定理得
VO VB2 OB2
(2 11)2 (2 2)2 6
在Rt△VOM中,由勾股定理得
VM 62 22 2 10
即正四棱锥的高为6,斜高为2 10
练习题:
1.能保证棱锥是正棱锥的一个条件是 (C ) (A)底面为正多边形 (B)各侧棱都相等 (C)各侧面与底面都是全等的正三角形 (D)各侧面都是等腰三角形
1.1.2 棱柱、棱锥和棱台 的结构特征(二)
三. 棱锥及相关概念
1.定义:有一个面是多边形,而其余各 面都是有一个公共顶点的三角形,由这些 面围 成的几何体叫做棱锥,如下图所示。

空间几何体的结构

空间几何体的结构

棱锥的分类: 棱锥的分类: 按底面多边形的边数, 按底面多边形的边数,可以分为三 棱锥、四棱锥、五棱锥、 棱锥、四棱锥、五棱锥、…… S A B D C
什么叫棱台 棱台的分类: 棱台的分类: 由三棱锥、四棱锥、五棱锥…截 由三棱锥、四棱锥、五棱锥 截 得的棱台,分别叫做三棱台 四棱台, 三棱台, 得的棱台,分别叫做三棱台,四棱台, 五棱台… 五棱台
我们把由一个平面图形绕它所在平面内的一条 旋转体。 定直线旋转所形成的封闭几何体叫做旋转体 定直线旋转所形成的封闭几何体叫做旋转体。 这条定直线叫做旋转体的轴 这条定直线叫做旋转体的轴。
A' O'

A O
棱柱的分类:棱柱的底面可以是三角形、 棱柱的分类:棱柱的底面可以是三角形、 四边形、五边形、 四边形、五边形、 …… 我们把这样的棱柱 分别叫做三棱柱 四棱柱、五棱柱、 三棱柱、 分别叫做三棱柱、四棱柱、五棱柱、……
观察下面的几何体,哪些是棱柱? 观察下面的几何体,哪些是棱柱?
练习: 练习:<1> P9 1(2) ( ) B:有两个面互相平行,其余各面都是平 有两个面互相平行, 行四边形的几何体是棱柱吗? 行四边形的几何体是棱柱吗? 不一定是. 答:不一定是. 如图所示,不是棱柱. 如图所示,不是棱柱.
什么叫棱锥
空间几何体的结构
1.空间几何体
如果我们只考虑物体的形状和大小, 如果我们只考虑物体的形状和大小,而不考 形状 虑其它因素, 虑其它因素,那么由这些物体抽象出来的空 间图形就叫做空间几何体。 间图形就叫做空间几何体。 空间几何体
一般地, 一般地,我们把由若干个平面 多面体。 多边形围成的几何体叫做多面体 多边形围成的几何体叫做多面体。
母 线

高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征

高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征

解:所截两部分分别是四棱柱和三棱柱.几何体ABCD-
一二三
知识精要 思考探究 典题例解 迁移应用
三、简单几何体的表面展开与折叠问题 1.绘制展开图
(1)绘制多面体的表面展开图要结合多面体的几何特征,发 挥空间想象能力或者是亲手制作多面体模型.
(2)在解题过程中,常常给多面体的顶点标上字母,先把多面 体的底面画出来,然后依次画出各侧面,便可得到其表面展开


底面:两个互相平行的面

侧面:底面以外的其余各面

侧棱:相邻侧面的公共边

顶点:侧面与底面的公共顶



记 法
棱柱 ABCDEF-A'B'C'D'E'F'
分 类
按底面多边形的边数分为三棱柱、四棱柱…
目标导航 预习导引
12
(2)棱锥的结构特征:
定 有一个面是多边形,其余各面都是有一个公共顶
义 点的三角形,由这些面所围成的多面体叫做棱锥
紧扣概念解题 在解答关于空间几何体概念的判断题时,要注意紧扣定义 判断,这就要求熟悉各种空间几何体的概念的内涵和外延,切 忌只凭图形主观臆断,如本例若意识不到棱台各侧棱延长后
交于一点则会致错.
多个梯形相连.
一二三
知识精要 思考探究 典题例解 迁移应用
【例3】 (1)请画出如图所示的几何体的表面展开图.
(2)根据下面所给的平面图形,画出立体图形.
一二三
知识精要 思考探究 典题例解 迁移应用
思路分析:由题意首先弄清几何体的侧面各是什么形状,然 后再通过空间想象或动手实践进行展开或折叠. 解:(1)展开图如图所示
A1B1C1平行于平面ABC,

人教版高一数学必修二辅导讲义:1.1空间几何体的结构

人教版高一数学必修二辅导讲义:1.1空间几何体的结构

第一章、空间几何体1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征(一)课本知识:1.空间几何体(1)空间几何体的定义空间中的物体都占据着空间的一局部,假设只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.类别多面体旋转体定义由假设干个围成的几何体由一个平面图形绕它所在平面内的一条旋转所形成的.图形相关概念面:围成多面体的各个.棱:相邻两个面的.顶点:的公共点.轴:形成旋转体所绕的 .2.多面体多面体定义图形及表示相关概念棱柱有两个面互相,其余各面都是,并且每相邻两个四边形的公共边都互相,由这些面所围成的多面体叫做棱柱.如图可记作:棱柱底面(底):两个互相平行的面.侧面:.侧棱:相邻侧面的.顶点:侧面与底面的.棱锥有一个面是,其余各面都是有一个公共顶点的,由这些面所围成的多面体叫做棱锥如图可记作:棱锥底面(底):面.侧面:有公共顶点的各个.侧棱:相邻侧面的.顶点:各侧面的.棱台用一个的平面去截棱锥,底面与截面之间的局部叫做棱台.如图可记作:棱台上底面:原棱锥的.下底面:原棱锥的.侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与上(下)底面的公共顶点.知识梳理:要点一棱柱、棱锥、棱台的概念1.棱柱的结构特征侧棱都相等,侧面都是平行四边形,两个底面相互平行;2.棱锥的结构特征有一个面是多边形,其余各面是有一个公共顶点的三角形;3.棱台的结构特征上下底面相互平行,各侧棱的延长线交于同一点.典型例题1、有以下说法:①有两个面平行,其余各面都是平行四边形所围成的几何体一定是棱柱;②各个面都是三角形的几何体是三棱锥;③用一个平行于棱锥底面的平面去截棱锥,得到的几何体叫做棱台;④棱柱的各相邻侧面的公共边互相平行.以上说法中,正确说法的序号是________(写出所有正确说法的序号).反应训练1、有以下说法:①一个棱锥至少有四个面;②如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;③五棱锥只有五条棱;④用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.以上说法中,正确说法的序号是________(写出所有正确说法的序号).典型例题2、长方体ABCD-A′B′C′D′,当用平面BCFE把这个长方体分成两局部后,各局部形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.反应训练2、以下说法:①有两个面互相平行,其余的面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确的个数为( ) A.3 B.2 C.1 D.0 要点三多面体的外表展开图1.绘制多面体的外表展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型,在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其外表展开图.2.假设是给出多面体的外表展开图,来判断是由哪一个多面体展开的,那么可把上述过程逆推.典型例题3、请画出以下图所示的几何体的外表展开图.反应训练3、根据右图所给的几何体的外表展开图,画出立体图形1.1.1柱、锥、台、球的结构特征(二)1.1.2简单组合体的结构特征课本知识:1.旋转体旋转体结构特征图形表示圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;于轴的边旋转而成的圆面叫做圆柱的底面;于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,于轴的边都叫做圆柱侧面的母线我们用表示圆柱轴的字母表示圆柱,左图可表示为圆锥以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的所围成的旋转体叫做圆锥我们用表示圆锥轴的字母表示圆锥,左图可表示为圆台用平行于的平面去截圆锥,底面与截面之间的局部叫做圆台我们用表示圆台轴的字母表示圆台,左图可表示为球以半圆的直径所在直线为旋转轴,旋转一周所形成的旋转体叫做球体,简称球.半圆的圆心叫做球的,半圆的半径叫做球的半径,半圆的直径叫做球的直径球常用球心字母进行表示,左图可表示为(1)定义:由组合而成的几何体叫做简单组合体.(2)简单组合体的两种根本形式:由简单几何体而成;由简单几何体一局部而成.特别提醒:圆是一条封闭的曲线,圆面是一个圆围成的圆内平面.球是几何体,球面是指半圆沿直径旋转形成的曲面,球是旋转体.知识梳理:要点一、旋转体的结构特征圆柱、圆锥、圆台、球从生成过程来看,它们分别是由矩形、直角三角形、直角梯形、半圆绕着某一条直线旋转而成的几何体,因此它们统称为旋转体.但应注意的是:所谓旋转体就是一个平面图形绕着这个平面图形所在的平面内一条直线旋转一周所得到的几何体,因此它还含有除圆柱、圆锥、圆台、球之外的几何体.典型例题1、以下说法:①在圆柱的上、下两底面的圆周上各取一点,那么这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,那么这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的选项是( )A.①②B.②③C.①③D.②④反应训练1、以下说法中正确的选项是( )A.圆台是直角梯形绕其一边旋转而成的B.圆锥是直角三角形绕其一边旋转而成的C.圆柱不是旋转体D.圆台可以看作是平行于底面的平面截一个圆锥而得到的要点二圆柱、圆锥、圆台的侧面展开图把柱、锥、台体沿一条侧棱或母线展开成平面图,这样便把空间问题转化成了平面问题,对解决简单空间几何体的面积问题或侧面上(球除外)两点间的距离问题,是很有效的方法.典型例题2、如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?反应训练2、假设本例中蚂蚁围绕圆柱转两圈,如下图,那么它爬行的最短距离是多少?要点三简单组合体的结构特征判断实物图是由哪些简单几何体所组成的图形问题,首先要熟练掌握简单几何体的结构特征,其次要善于将复杂的组合体“分割〞成几个简单的几何体.简单组合体有以下三种形式:1.多面体与多面体的组合体:即由两个或两个以上的多面体组合而成的几何体.2.多面体与旋转体的组合体:即由一个多面体与一个旋转体组合而成的几何体.3.旋转体与旋转体的组合体:即由两个或两个以上的旋转体组合而成的几何体.典型例题3、请描述如下图的组合体的结构特征.反应训练3、说出以下几何体的结构特征.一、选择题1.以下说法中正确的选项是( )A .棱柱中两个互相平行的平面一定是棱柱的底面B .棱柱的面中,至少有两个面互相平行C .棱柱中一条侧棱的长叫棱柱的高D .棱柱的侧面是平行四边形,但它的底面一定不是平行四边形2.如图,D ,E ,F 分别是等边△ABC 各边的中点,把该图按虚线折起,可以得到一个( )A .棱柱 B .棱锥 C .棱台 D .旋转体3.以下三个说法,其中正确的选项是( )①用一个平面去截棱锥,棱锥底面和截面之间的局部是棱台; ②两个底面平行且相似,其余各面都是梯形的多面体是棱台; ③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台. A .0个 B .1个 C .2个 D .3个4.在长方体ABCD -A 1B 1C 1D 1中,AB =3,AD =2,CC 1=1,一条绳子从点A 沿外表拉到点C 1,那么绳子的最短的长是( )A .3 2 B .2 5 C.26 D .65.如图,以下几何体中,________是棱柱,________是棱锥,________是棱台.6.在正方体上任意选择4个顶点,它们可能是如下各种几何图形的4个顶点,这些几何体是________(写出所有正确结论的序号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.7.在如下图的三棱柱ABC -A 1B 1C 1中,请连接三条线,把它分成三局部,使每一局部都是一个三棱锥.8.如下图,在正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=2,由顶点B 沿棱柱侧面(经过棱AA 1)到达顶点C 1,与AA 1的交点记为M .求:(1)三棱柱侧面展开图的对角线长;(2)从B 经M 到C 1的最短路线长及此时A 1MAM的值.1.以下说法正确的选项是( )A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心2.底面半径为2且底面水平放置的圆锥被过高的中点且平行于底面的平面所截,那么截得的截面圆的面积为( )A.πB.2π C.3πD.4π3.以下说法正确的有( )①球的半径是球面上任意一点与球心的连线段②球的直径是球面上任意两点间的连线段③用一个平面截一个球,得到的是一个圆④不过球心的截面截得的圆的半径小于球半径A.①② B.①④ C.①②④D.③④4.如下图的几何体,关于其结构特征,以下说法不正确的选项是( )A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形5.给出以下说法:(1)直角三角形绕一边旋转得到的旋转体是圆锥(2)夹在圆柱的两个平行截面间的几何体还是一个旋转体(3)圆锥截去一个小圆锥后剩余局部是圆台(4)通过圆台侧面上一点,有无数条母线其中正确的说法是________(写出所有正确说法的序号).6.把一个圆锥截成圆台,圆台的上下底面半径之比是14,母线长为10,那么圆锥的母线长是________.7.如图(1)所示,正三棱柱的底面边长是4cm、过BC的一个平面交侧棱AA′于D,假设AD的长为2cm,求截面△BCD的面积.图(1) 图(2)8.从一个底面半径和高都是R的圆柱中,挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到如以下图所示的几何体.如果用一个与圆柱下底面距离等于l并且平行于底面的平面去截它,求所得截面的面积.。

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结

高中数学立体几何知识点归纳总结一、立体几何知识点归纳第一章空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体—-把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征1。

棱柱1。

1棱柱-—有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①底面为矩形侧棱与底面边长相等1。

3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形.1。

4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】②(了解)长方体的一条对角线与过顶点A的三条棱所成的角分别是,那么,;③(了解)长方体的一条对角线与过顶点A的相邻三个面所成的角分别是,则,。

1.5侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱长为邻边的矩形。

1.6面积、体积公式:(其中c为底面周长,h为棱柱的高)2。

圆柱2.1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。

2。

2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形.2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。

2。

4面积、体积公式:S圆柱侧=;S圆柱全=,V圆柱=S底h=(其中r为底面半径,h为圆柱高)3。

棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。

空间几何体的结构特征、表面积与体积6题型分类-备战2025年高考数学一轮专题复习考点突破和专题检测

空间几何体的结构特征、表面积与体积6题型分类-备战2025年高考数学一轮专题复习考点突破和专题检测

专题31空间几何体的结构特征、表面积与体积6题型分类1.空间几何体的结构特征(1)多面体的结构特征(2)旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相等,垂直于底面相交于一点延长线交于一点轴截面矩形等腰三角形等腰梯形圆侧面展开图矩形扇形扇环2.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中x ′轴、y ′轴的夹角为45°或135°,z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴,平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段,长度在直观图中变为原来的一半.3.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrl S 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l4.柱、锥、台、球的表面积和体积常用结论1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等(祖暅原理).2.直观图与原平面图形面积间的关系:S 直观图=24S 原图形,S 原图形=22S 直观图.(一)1.空间几何体结构特征的判断技巧(1)说明一个命题是错误的,只要举出一个反例即可.(2)在斜二测画法中,平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.(3)在解决空间折线(段)最短问题时一般考虑其展开图,采用化曲为直的策略,将空间问题平面化.2.多面体表面展开图可以有不同的形状,应多实践,观察并大胆想象立体图形与表面展开图的关系,一定先观察立体图形的每一个面的形状.3.最大路径问题:大胆展开,把问题变为平面两点间线段最短问题.2-2.(2024高一下·上海奉贤·期末)如图,23O A O B ''''==,,则AB 的长度为2-3.(2024高一上·山东济宁·阶段练习)有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示).ABC ∠=2-4.(2024高二上·宁夏石嘴山·正方形,则原来图形的面积是3-3.(2024·安徽黄山·一模)如图,以AD为斜边的等腰直角三角形,为.题型4:最短路径问题4-1.(2024高三·全国·专题练习)如图,一竖立在地面上的圆锥形物体的母线长为面圆上的点P出发,绕圆锥爬行一周后回到点为().A .153B .323527πC .128281πD .8334-2.(2024高一下·河南开封·期中)如图,已知正四棱锥S ABCD -的侧棱长为23,侧面等腰三角形的顶角为30︒,则从A 点出发环绕侧面一周后回到A 点的最短路程为()A .26B .23C .6D .64-3.(2024·辽宁·三模)盲盒是一种深受大众喜爱的玩具,某盲盒生产厂商要为棱长为4cm 的正四面体魔方设计一款正方体的包装盒,需要保证该魔方可以在包装盒内任意转动,则包装盒的棱长最短为()A .6cmB .26cmC .46cmD .6cm4-4.(2024高一下·湖北武汉·期中)如图,一个矩形边长为1和4,绕它的长为4的边旋转二周后所得如图的一开口容器(下表面密封),P 是BC 中点,现有一只妈蚁位于外壁A 处,内壁P 处有一米粒,若这只蚂蚁要先爬到上口边沿再爬到点P 处取得米粒,则它所需经过的最短路程为()A .2π36+B .2π16+C .24π36+D .241π+4-5.(2024高一·全国·课后作业)如图所示,在正三棱柱111ABC A B C -中,2AB =,12AA =,由顶点B 沿棱柱侧面(经过棱1AA )到达顶点1C ,与1AA 的交点记为M ,则从点B 经点M 到1C 的最短路线长为()A.22B.25C.4D.45(二)基本立体图形的表面积的体积1.(1)多面体的表面积是各个面的面积之和.(2)旋转体的表面积是将其展开后,展开图的面积与底面面积之和.(3)组合体的表面积求解时注意对衔接部分的处理.2.空间几何体的体积的常用方法公式法规则几何体的体积,直接利用公式割补法把不规则的几何体分割成规则的几何体,或者把不规则的几何体补成规则的几何体等体积法通过选择合适的底面来求几何体体积的一种方法,特别是三棱锥的体积A.27 722+三模)陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址A .()1441213π+C .()1081213π+5-4.(2024·河北·模拟预测)棱台)建筑物为方亭.”1111ABCD A B C D -的正四棱台(如图所示)面边长的3倍.已知方亭的体积为A .2380m B .2400m C .2450m 5-5.(2024高三下·海南海口·期中)如图是一个圆台形的水杯,圆台的母线长为分别为4cm 和2cm .为了防烫和防滑,该水杯配有一个皮革杯套,包裹住水杯杯和杯套的厚度忽略不计,则此杯套使用的皮革的面积为(A .238πcmB .2124πcm 3C .2140πcm 3D .248πcm A .242B .246-4.(2024·浙江·模拟预测)如图是我国古代量粮食的器具为20cm 和10cm ,侧棱长为56cm .约可装()31000cm 1L =()A .1.5LB .1.7LC .2.3LD .2.7L6-5.(2024高三上·广西·阶段练习)在棱长为2的正方体1111ABCD A B C D 内,放入一个以1AC 为铀线的圆柱,且圆柱的底面所在平面截正方体所得的截面为三角形,则该圆柱体积的最大值为.一、单选题1.(2024高三下·安徽·阶段练习)已知几何体,“有两个面平行,其余各面都是平行四边形”是“几何体为棱柱”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2024高三·全国·对口高考)设有三个命题;甲:底面是平行四边形的四棱柱是平行六面体;乙:底面是矩形的平行六面体是长方体;丙:直四棱柱是平行六面体.以上命题中真命题的个数为()A .0个B .1个C .2个D .3个3.(2024高二上·安徽合肥·阶段练习)如图所示,观察四个几何体,其中判断正确的是()A .是棱台B .是圆台C .不是棱柱D .是棱锥4.(2024·西藏拉萨·一模)位于徐州园博园中心位置的国际馆(一云落雨),使用现代科技雾化“造云”,打造温室客厅,如图,这个国际馆中3个展馆的顶部均采用正四棱锥这种经典几何形式,表达了理性主义与浪漫主义的对立与统一.其中最大的是3号展馆,其顶部所对应的正四棱锥底面边长为19.2m ,高为9m ,则该正四棱锥的侧面面积与底面面积之比约为()13.16≈)A .2B .1.71C .1.37D .15.(2024高三下·湖南长沙·阶段练习)为了给热爱朗读的师生提供一个安静独立的环境,某学校修建了若干“朗读亭”.如图所示,该朗读亭的外形是一个正六棱柱和正六棱锥的组合体,正六棱柱两条相对侧棱所在的轴截面为正方形,若正六棱锥的高与底面边长的比为2:3,则正六棱锥与正六棱柱的侧面积的比值为()A .8B C .19D .1276.(2024·甘肃张掖·模拟预测)仿钧玫瑰紫釉盘是收藏于北京故宫博物院的一件明代宣德年间产的瓷器.该盘盘口微撇,弧腹,圈足.足底切削整齐.通体施玫瑰紫釉,釉面棕眼密集,美不胜收.仿钧玫瑰紫釉盘的形状可近似看成是圆台和圆柱的组合体,其口径为15.5cm ,足径为9.2cm ,顶部到底部的高为4.1cm ,底部圆柱高为0.7cm ,则该仿钧玫瑰紫釉盘圆台部分的侧面积约为()(参考数据:π的值取3 4.6≈)A .2143.1cmB .2151.53cmC .2155.42cmD .2170.43cm 7.(2024·广东梅州·三模)在马致远的《汉宫秋》楔子中写道:“毡帐秋风迷宿草,穹庐夜月听悲笳.”毡帐是古代北方游牧民族以为居室、毡制帷幔.如图所示,某毡帐可视作一个圆锥与圆柱的组合体,圆锥的高为4,侧面积为15π,圆柱的侧面积为18π,则该毡帐的体积为()A .39πB .18πC .38πD .45π8.(2024高三上·广东河源·开学考试)最早的测雨器记载见于南宋数学家秦九韶所著的《数书九章》(1247年).该书第二章为“天时类”,收录了有关降水量计算的四个例子,分别是“天池测雨”、“圆罂测雨”、“峻积验雪”和“竹器验雪”.如图“竹器验雪”法是下雪时用一个圆台形的器皿收集雪量(平地降雪厚度=器皿中积雪体积除以器皿口面积),已知数据如图(注意:单位cm ),则平地降雪厚度的近似值为()A .91cm 12B .31cm 4C .95cm 12D .97cm 129.(2024高一下·陕西宝鸡·期末)盲盒是一种深受大众喜爱的玩具,某盲盒生产厂商要为棱长为2cm 的正四面体魔方设计一款正方体的包装盒,需要保证该魔方可以在包装盒内任意转动,则包装盒的棱长最短为()A 6cmB .26cmC .6cmD .6cm10.(2024高二下·安徽·阶段练习)我们知道立体图形上的最短路径问题通常是把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线.请根据此方法求函数()2222,313130,0)f x y x x y y x xy y x y =-+-+-+>>的最小值()A 2B 3C 6D .2311.(2024·全国)已知圆锥PO 3O 为底面圆心,PA ,PB 为圆锥的母线,120AOB ∠=︒,若PAB 934)A .πB 6πC .3πD .36π12.(2024·全国)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,增加的水量2.65≈)()A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯13.(2024高一·全国·课后作业)若一个正方体的体对角线长为a ,则这个正方体的全面积为()A .22a B .2C .2D .214.(2004·重庆)如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔正方体的表面积(含孔内各面)是()A .258B .234C .222D .21015.(2024高一下·贵州黔西·期末)端午节吃粽子是中华民族的传统习俗.地区不同,制作的粽子形状也不同,黔西南州最出名的就是鲜肉的灰色粽子,其形状接近于正三棱锥(如图).若正三棱锥的底面边长为2,高为1,则该三棱锥的侧面积为()AB .C .D .16.(2024·河南·模拟预测)在正四棱锥P ABCD -中,AB =,若正四棱锥P ABCD -的体积是8,则该四棱锥的侧面积是()AB .C .D .17.(2024高三上·辽宁·期末)已知四棱台的上、下底面分别是边长为2和4的正方形,侧面均为腰长为4的等腰梯形,则该四棱台的表面积为()A .10+B .34C .20+D .6818.(2024高三上·广东·阶段练习)“李白斗酒诗百篇,长安市上酒家眠”,本诗句中的“斗”的本义是指盛酒的器具,后又作为计量粮食的工具,某数学兴趣小组利用相关材料制作了一个如图所示的正四棱台来模拟“斗”,用它研究“斗”的相关几何性质,已知该四棱台的上、下底的边长分别是2、4,高为1,则该四棱台的表面积为()A .B .32C .20+D .20+19.(2024高三上·湖北·开学考试)已知正四棱台上底面边长为2,下底面边长4,高为3,则其表面积为()A .36B .20C .20+D .4820.(2024高一下·全国·课后作业)已知一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比是()A .122ππ+B .144ππ+C .12ππ+D .142ππ+21.(2024·广东湛江·二模)如图,将一个圆柱()*2n n ∈N 等分切割,再将其重新组合成一个与圆柱等底等高的几何体,n 越大,重新组合成的几何体就越接近一个“长方体”.若新几何体的表面积比原圆柱的表面积增加了10,则圆柱的侧面积为()A .10πB .20πC .10πnD .18π22.(2024·福建)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于A .2πB .πC .2D .123.(2024高三上·全国·阶段练习)已知圆锥的底面半径为2,高为)A .4πB .12πC .16πD .π324.(2024·四川成都·二模)若圆锥的表面积为12π,底面圆的半径为2,则该圆锥的高为()A .4B .C .2D25.(2024高三上·河南·阶段练习)佛兰德现代艺术中心是比利时洛默尔市的地标性建筑,该建筑是一座全玻璃建筑,整体成圆锥形,它利用现代设计手法令空间与其展示的艺术品无缝交融,形成一个统一的整体,气势恢宏,美轮美英.佛兰德现代艺术中心的底面直径为8m ,侧面积为2229m ,则该建筑的高为()A .26mB .28mC .30mD .36m26.(2024高三上·河南·开学考试)圆台1OO 轴截面面积为1:2,母线与底面所成角为60 ,则圆台侧面积为()A .B .C .6πD .9π27.(2024高二上·江苏镇江·开学考试)已知圆台的上下底面半径分别为2和5,且母线与下底面所成为角的正切值为43,则该圆台的表面积为()A .59πB .61πC .63πD .64π28.(2024·甘肃兰州·模拟预测)攒尖是中国古建筑中屋顶的一种结构形式,常见的有圆形攒尖、三角攒尖、图所示是某研究性学习小组制作的三台阁仿真模型的屋顶部分,它可以看作是不含下底面的正四棱台和正三棱柱的组合体,已知正四棱台上底、下底、侧棱的长度(单位:dm )分别为2,6,4,正三棱柱各棱长均相等,则该结构表面积为()A .28dmB .244dmC .248dmD .28dm29.(2024高三上·黑龙江哈尔滨·期中)正三棱柱侧面的一条对角线长为2,且与底面成30︒角,则此三棱柱的体积为()A B .14C D 30.(2008·四川)若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为060的菱形,则该棱柱的体积等于A B .C .D .31.(2024高三上·河南焦作·开学考试)把过棱锥的顶点且与底面垂直的直线称为棱锥的轴,过棱锥的轴的截面称为棱锥的轴截面.现有一个正三棱锥、一个正四棱锥、一个正六棱锥,它们的高相等,轴截面面积的最大值也相等,则此正三棱锥、正四棱锥、正六棱锥的体积之比为()A .91::34B .91::38C .98D .3232.(2024·广东深圳·二模)设表面积相等的正方体、正四面体和球的体积分别为1V 、2V 和3V ,则()A .123V V V <<B .213<<V V V C .312V V V <<D .321V V V <<33.(2024·河南郑州·模拟预测)《九章算术·商功》:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑”.意思是一个长方体沿对角面斜解(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜解(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为V ,由该长方体斜解所得到的堑堵、阳马和鳖臑的体积分别为1V ,2V ,3V ,则下列等式错误的是()A .123V V V V ++=B .122V V =C .232V V =D .236VV V -=34.(2024高三下·浙江杭州·阶段练习)已知矩形ABCD 中,2AB =,4BC =,E 是AD 的中点,沿直线BE 将△ABE 翻折成△A BE ',则三棱锥A BDE '-的体积的最大值为()A .3B C D .335.(2024·全国)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A .20+B .C .563D .336.(2024高一下·江苏连云港·阶段练习)在《九章算术⋅商功》中将正四面形棱台体(棱台的上、下底面均为正方形)称为方亭.在方亭1111ABCD A B C D -中,1122AB A B ==,四个侧面均为全等的等腰梯形且面积之和为)A .72B .76C D 37.(2024高三上·山西运城·期中)已知一个正四棱台的上下底面边长为1、3,则棱台的体积为()A .B .3C .12D .1338.(2024·河南·模拟预测)光岳楼,又称“余木楼”“鼓楼”“东昌楼”,位于山东省聊城市,在《中国名楼》站台票纪念册中,光岳楼与鹳雀楼、黄鹤楼、岳阳楼、太白楼、滕王阁、蓬莱阁、镇海楼、甲秀楼、大观楼共同组成中国十大名楼.其墩台为砖石砌成的正四棱台,如图所示,光岳楼的墩台上底面正方形的边长约为32m ,下底面正方形的边长约为34.5m ,高的4倍比上底面的边长长4m ,则光岳楼墩台的体积约为()A .39872.75mB .39954.75mC .39988.45mD .39998.25m 39.(四川省仁寿第一中学校(北校区)2023-2024学年高三上学期9月月考文科数学试题)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .π2C .3π4D .π440.(2024高三上·江苏苏州·开学考试)若某圆柱体的底面半径与某球体的半径相等,圆柱体与球体的体积之比和它们的表面积之比的比值相等,则该圆柱体的高与球体的半径的比值为()A .54B .43C .32D .241.(2024·河南·模拟预测)圆锥的高为2,其侧面展开图的圆心角为2π3,则该圆锥的体积为().A .π4B .π3C .π2D .2π642.(2024高三上·福建厦门·阶段练习)已知母线长为5的圆锥的侧面积为15π,则这个圆锥的体积为()A .12πB .16πC .24πD .48π43.(2024高三下·河南开封·阶段练习)木桶作为一种容器,在我国使用的历史已经达到了几千年,其形状可视为一个圆台.若某圆台形木桶上、下底面的半径分别为20cm,13cm ,母线长为25cm ,木板厚度忽略不计,则该木桶的容积为()A .314225πcm 3B .34552πcmC .320725πcm 3D .36632πcm 44.(2024高三上·福建厦门·阶段练习)用一个平行于圆锥C 底面的平面截该圆锥得到一个圆台,若圆台上底面和下底面半径之比为23,则该圆台与圆锥C 的体积之比为()A .58B .1727C .1927D .34二、多选题45.(2024·全国)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =46.(2024·福建·模拟预测)等腰梯形的上下底边之比为13,若绕该梯形的对称轴旋转一周所得几何体的表面积为16π,则该梯形的周长可能为()A .B .8C .D .1647.(2024·河南·模拟预测)如图,正三棱柱111ABC A B C -的底面边长为1,高为3,F 为棱1AA 的中点,,D E 分别在棱11,BB CC 上,且满足1A D DE EA ++取得最小值.记四棱锥111A B C ED -、三棱锥1,F A DE A DEF --的体积分别为123,,V V V ,则()A .123334V V V ++<B .23V V =C .1223V V =D .123V V V =+48.(2024高三上·湖南·5)A .该正方体的体积为5B 556C .该正方体的表面积为30D .该正方体的外接球的表面积为15π三、填空题49.(2024·辽宁锦州·模拟预测)已知用斜二测画法画梯形OABC 的直观图O A B C ''''如图所示,3O A C B ''''=,C E O A ''''⊥,8OABC S =,//CD y '''轴,22C E ''=D ¢为O A ''的三等分点,则四边形OABC 绕y 轴旋转一周形成的空间几何体的体积为.50.(2024高三·全国·对口高考)若正ABC 用斜二测画法画出的水平放置图形的直观图为A B C ''' ,当A B C ''' 3ABC 的面积为.51.(2024高三下·上海宝山·开学考试)我们知道一条线段在“斜二测”画法中它的长度可能会发生变化的,现直角坐标系平面上一条长为4cm 线段AB 按“斜二测”画法在水平放置的平面上画出为A B '',则A B ''最短长度为cm (结果用精确值表示)52.(2024高三·全国·阶段练习)如图,梯形ABCD 是水平放置的一个平面图形的直观图,其中=45∠ ABC ,1AB AD ==,DC BC ⊥,则原图形的面积为.53.(2024高三上·上海普陀·期中)2022年4月16日,神舟十三号载人飞船返回舱在东风着陆场预定区域成果着陆.如图,在返回过程中使用的主降落伞外表面积达到1200平方米,若主降落伞完全展开后可以近似看着一个半球,则完全展开后伞口的直径约为米(精确到整数)54.(2024高一下·四川成都·阶段练习)已知圆锥的底面半径为1,其侧面展开图为一个半圆,则该圆锥的体积为.55.(2024·安徽·模拟预测)如图,在三棱锥P -ABC 的平面展开图中,CD AB ∥,AB AC ⊥,22AB AC ==,CD =,cos BCF ∠65=,则三棱锥-P ABC 外接球表面积为.56.(2024·安徽马鞍山·模拟预测)已知三棱锥P -ABC 的底面ABC 为等边三角形.如图,在三棱锥P -ABC的平面展开图中,P ,F ,E 三点共线,B ,C ,E 三点共线,cos PCF ∠=PC =,则PB =.57.(2024高三上·山西大同·阶段练习)如图,在三棱锥-P ABC 的平面展开图中,1AC =,AB AD ==AB AC ⊥,AB AD ⊥,30CAE ∠=︒,则三棱锥-P ABC 的外接球的表面积为.58.(2024高三·河北·专题练习)如图,正方体1111ABCD A B C D -的棱长为a ,点E 为1AA 的中点,在对角面11BB D D 上取一点M ,使AM ME +最小,其最小值为59.(2024高三上·四川成都·开学考试)如图一个正六棱柱的茶叶盒,底面边长为10cm ,高为20cm ,则这个茶叶盒的表面积为2cm .60.(2024高二上·上海黄浦·阶段练习)若长方体的对角线的长为9cm ,其长、宽、高的和是15cm ,则长方体的全面积是.61.(2024·全国·模拟预测)正四棱锥P -ABCD 的各条棱长均为2,则该四棱锥的表面积为.62.(2024高三·全国·专题练习)一个正三棱台的上、下底面边长分别是3cm 和6cm ,高是32cm .则三棱台的斜高为;三棱台的侧面积为;表面积为.63.(2024高三·全国·专题练习)若矩形的周长为36,矩形绕它的一条边旋转形成一个圆柱,求圆柱侧面积的最大值为.64.(2024高二上·北京海淀·期中)若一个圆锥的轴截面是等边三角形,其面积为是.65.(2024高三上·全国·专题练习)某地球仪上北纬030纬线的长度为12()cm π,该地球仪的半径是cm ,表面积是cm2.66.(2024·全国)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,32OK =,且圆O 与圆K 所在的平面所成的一个二面角为60 则球O 的表面积等于.67.(2009年普通高等学校招生全国统一考试理科数学(全国卷Ⅱ))设OA 是球O 的半径,M 是OA 的中点,过M 且与OA 成45 角的平面截球O 的表面得到圆C .若圆C 的面积等于74π,则球O 的表面积等于68.(2024·全国)用平面α截半径为R 的球,如果球心到截面的距离为2R ,那么截得小圆的面积与球的表面积的比值为.69.(2024高三上·广东广州·阶段练习)陀螺是中国民间较早的娱乐工具之一,也称陀罗,图l 是一种木陀螺,可近似地看作是一个圆锥和一个圆柱的组合体,其直观图如图2所示,其中A 是圆锥的顶点,B ,C 分别是圆柱的上、下底面圆的圆心,且1AB =,3AC =,底面圆的半径为1,则该陀螺的表面积是.70.(2024高三·全国·专题练习)如图,八面体的每一个面都是正三角形,并且4个顶点A ,B ,C ,D 在同一个平面内.如果四边形ABCD 是边长为30cm 的正方形,那么这个八面体的表面积是2cm .71.(2024高三上·天津北辰·阶段练习)已知一个圆柱的高是底面半径的2倍,且其上、下底面的圆周均在球面上,若球的体积为23,则圆柱的体积为.72.(2024高三上·云南昆明·、则该圆锥的体积为.73.(2024·浙江嘉兴·模拟预测)已知圆锥的底面半径为1,侧面积为2π,则此圆锥的体积是.74.(2024高三上·广东广州·阶段练习)已知圆锥的底面半径为2,侧面展开图是一个圆心角为120°的扇形.把该圆锥截成圆台,已知圆台的下底面与该圆锥的底面重合,圆台的上底面半径为1,则圆台的体积为.。

高一数学空间几何体讲义

高一数学空间几何体讲义

空间几何体讲义知识总结:1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台'''''E D C B A P -几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.圆柱的结构特征
以矩形的一边所在 问题 1:圆柱可以由什么 直线为旋转轴 ,其余边旋 平面图形旋转得到? 转形成的面所围成的旋 旋转体: 转体叫做圆柱。 所谓旋转体,就是把 问题 2: 模仿圆锥,表示 一个平面图形绕它所在 图中圆柱,并指出圆柱 平面内的一条定直线旋 的轴,底面,侧面,以 转,所形成的封闭几何 及它的一条母线, 体。这条定直线称为旋 转体的轴。如:圆锥
A’
母 线 O’ B’
轴 侧 面
A
O B
底面
圆柱SO
5.棱台的结构特征
用一个平行于棱锥 底面的平面去截棱锥, 底面与截面之间的部 分是棱台.
表示:用表示底面的各 顶点的字母表示。 如: 棱台ABCD-A’B’C’D’
侧棱 A 顶点 B’ 上 底 C’ 面
D’
D A’
C 侧面
下底面 B
底面是三角形,四边形,五边形----的棱台 分别叫三棱台,四棱台,五棱台---
※.有两个面互相平行 ※.其余各面都是平行四边形
E’ F’ A’
B’ D’ C’
※.每相邻两个四边形的公共 边互相平行
概念:凡是符合上述特 征的多面体都叫棱柱。
底 面
E
侧棱 F
D
C
A
侧面
表示:用表示底面的各顶点的字母表示。 如:棱柱ABCDEF-A’B’D’E’F’ 注:多面体指的是若干个平面 多边形围成的几何体。
返回
4.圆锥的结构特征:
以直角三角形的一 条直角边所在直线为 旋转轴, 两余边旋转形 成的面所围成的旋转 体叫做圆锥。 圆锥可以用它的轴来表示。 如:圆锥SO
A 顶点 S 母 线 轴 侧 面
O
B
底面
返回
思考1:倾斜后的 几何体还是柱体 吗?
E’ F’ A’
D’
B’
C’
E F A
D C B
思考2:这是一个 台体吗?(可看 课本P10.第二题 图(一))
小结: 棱柱 棱锥 圆锥
棱柱 棱台 台体 锥体 柱体
圆柱
棱台
圆台
考一考:
空 间 几 何 体 多面体
棱锥
圆锥 旋转体 圆柱
圆台
球(自主探究)
多谢指导!
作业:课本习题1.1 1-2, 预习球的结构特征
多面体:若干个平面多边 形围成 的几何体。如图所示: 多面体的面:围成多面体的 各个 E’ 多边形。如:面ABCDEF F’ A’ 多面体的棱:相邻两个面的公共 边。如:棱AA’ 多面体的顶点:棱与棱的公共点。 如:顶点A’ F
返回
; 绝地求生辅助
vfg80wiv
了救仁家老夫人,你早就挨板子了。”没得我帮老妇人盖好被子,鼠头人又责骂道,“仁老夫人不用你瞎操心,待会儿就会有 丫鬟来照料她,你做好你的本分就行。”听着鼠头人这么讲道,我也识趣的走了,但是我还是担心不知这傅家会怎么对待仁老 夫人。我已经答应了仁玉要好好照顾仁老夫人,但是自己在这里又没什么权利,得想个办法才行啊。9初到傅府|接新娘一事已 经完了,但我没有忘记我要粘着傅家过日子的目的。我赶紧向鼠头人身旁靠过去,恭敬地说道:“傅总管,那么现在我们是不 是也该动身回傅家了?”鼠头人用眼角瞄了我一眼,轻蔑地说道:“这事用不着你提醒,赶紧把你们家的下人叫过来,好了我 们就出发回去。”“那现在就可以走了,这仁家就我一个下人。”我应和道。“哟,就你一个下人啊?”鼠头人轻蔑中带着满 满地嘲笑意味反问道,“那也难怪,这烂屋子穷主人请不起仆人也是正常的。”这话听的我真不爽,心想,起码这一屋子人都 是能吃苦过活的好人,哪像你这只鼠头,仗势欺人,小心活命不长。也罢,我也就只有想想的份,现在的我可不敢当面说这货 的不是。过没多久,鼠头人叫上原先傅家的下人,再带上我这个新加入的下人,一同往傅家走去了。果真走了好远的路,我们 终于来到了傅家大宅门前。傅家大宅可真是雄伟啊!光是大宅的正门,就足足有两层楼这么高;两侧的围墙似乎在无限地伸延 着,完全看不见尽头;加之以摆在门口两侧的两头石狮子以及金光闪闪的写着“傅府”二字的巨大门牌,真是突出一个霸气。 霸气是挺霸气的,门面也是做得很光亮的,但是就是不知道里面的人是些怎么样的人儿。话说十个官员九个贪,贪得越多自家 的宅子也才建得越风光,倘若里面的傅家人们都是些权利之人,那么就算他们的物质生活有多丰富,也始终感受不到家人的关 爱,始终不会懂亲情是什么,因为他们只是靠着金钱与权利联系在一起,血缘之情想必已经被丢弃在不知何处了。随着鼠头人 一同踏入傅家大宅的正门,迎面扑来的是气场十分强大的喜庆情景。虽说这是傅家四少爷娶一个小老婆,但是这壮观的场面实 在是令人难以与之前在仁家门前发生的事情联想起来。大厅里坐满了达官贵人,他们的穿着打扮无不显得高贵,仔细瞅瞅,发 现有着各式各样的人儿;肚子大得吓人的中年男人们应该是傅家大老爷在朝中的大臣朋友;一些看起来稍微显得年轻帅气的要 不是官员们的儿子侄子什么的,就是来保护他们的保镖们;再要数的就是那一群聚在一起的女人们,她们个个穿着极其夸张, 胭脂水粉想必涂得满脸都是,她们围在一起有说有笑的,时不时还会传来一阵阵高音度的笑声。这时,从大厅里走出一位妇女。 我仔细打量着她,心中硬是吃了一大惊,这真是
B
顶点
1.棱锥的结构特征
※ .有一个面是多边形 ※.其余各面都是三角形 ※.这些三角形都有一个公共顶点 概念:凡是符合上述特 征的多面体都叫棱锥。
侧棱
A D 侧面 C 底面 B S 顶点
棱锥可以表示为:棱锥S-ABCD 底面是三角形,四边形,五边形----的棱锥 分别叫三棱锥,四棱锥,五棱锥---
6.圆台的结构特征
用一个平行于圆锥底面 的平面去截圆锥,底面与截面 之间的部分是圆台.
问题:圆台与圆柱,圆锥 类似,都是旋转体,请问 圆台还可以由哪个平面图 形旋转得到?
问题2: 模仿圆柱,表示图中圆 台,并指出圆台的轴,上下底面, 侧面,以及它的一条母线,
O’ O
A
B
(1)
(2)
(3)
(4)
(5)
A E
D’ B’
C’
D
C
B
返回
浓厚的兴趣和较好 的 思维让你灵气十足. 执著的创造力和丰富 的想象力 ,总是让你 在生活中事半功倍。 但灵性不等于知识也 不等于智慧。
返回
你是一个情商极高 的人,为人处事都很 随和,但遇上原则性 的事,你也绝不含糊。
返回
少有的个性可能让身 边的人不太理解你, 但你最要好的朋友依 然会支持你,即使她 很难明白你的思想。
湖州一中
沈立英
形 状 与 大 小
(1)
(2)
(3)
(4)
(5)
如果我们只考虑物体占用空 间部分的形状和大小,而不 考虑其它因素,那么由这些 物体抽象出来的空间图形, 就叫做空间几何体。
(6)
(7)
(8)
(9)
(10)
1.1.1柱、锥、台、球的结构特征
1.棱柱:
1.棱柱 棱柱的结构特征: 1. :
很好的心理测试,耐心做完会 有意外惊喜(仅供娱乐):请 你凭第一感觉按自己的心愿给 下列图形分组,然后把答案写 在纸上,再点击
(6)
(7) (8)
(9)
请选择相应的选项: A.(1)(2)(3)(7),(4)(6)(9),(5)(8)
B.(1)(2)(4)(7)(8)(9), (3)(5)(6)
C. 其它
相关文档
最新文档