含孔复合材料实验相关

含孔复合材料实验相关
含孔复合材料实验相关

开孔对平纹编织C/SiC 陶瓷基复合材料力学行为的影响

1.试样与实验过程

实验所用平纹编织C/Si复合材料试样有西北工业大学超高温复合材料实验室采用化学气相渗透(CVI)工艺制造,其主要组分为T2300碳纤维和Si基体。材料密度大约为2.1~2.2g/cm3,孔隙体积分数约15%,基体体积分数40%。平纹编织C/Si复合材料板加工成型后,用金刚石线切割机将其切割成狗骨状试样,在其中心钻出半径为3mm的通孔,试样如图所示(mm)

(图画好)

开孔试样的拉伸,压缩和疲劳实验均在MTS810液压伺服疲劳试验机上进行。拉伸和压缩实验采用位移控制加载,加载速率为0.5mm/min,载荷从零开始直至试样断裂。通过拉伸实验,确定疲劳实验峰值应力取值范围,单向等幅疲劳实验采用位移控制加载,加载速率为0.6mm/min,应力比和加载频率分别取0.1和10Hz。实验中利用MTS Model632引申全程记录应力应变曲线。

2.实验结果与分析

开孔试样的拉压应力—应变曲线为非线性过程,在低应力时就出现损伤。压缩过程开始阶段呈线弹性,当应力增加到裂纹闭合点(Crack Clo2 sure Point)后,由于基体裂纹闭合引起材料宏观模量增加,开始出现非线性过程,直至试样断裂破坏。

根据拉伸实验结果确定开孔试样的极限拉伸强度(Ultimate Tension Strength,UTS)为233.2Mpa。

表1为开孔试样的,拉伸,压缩和疲劳性能,可看出,开孔使平纹编织C/Si陶瓷基复合材料的性能有一定程度降低。拉伸强度和破坏应变分别降低了12.2%和54.9%,压缩强度和破坏应变分别降低了12.2%和54.9%,拉破坏应变降低的程度比较大,说明开孔使试样的韧性降低。

(1)拉伸试验

拉伸试验分为单调拉伸试验和循环加卸载试验两个部分,单调拉伸试验采用位

移控制加载,加载速率为0.5mm/min,载荷从零开始直至试验件断裂;循环加卸载

试验采用载荷控制加载,加载速率为710N/min,载荷从零开始,加载到大约710N 进行卸载,卸载到接近零时再次加载到比原来载荷水平高710N左右,然后再卸载到接近零,如此重复,直至试验件断裂。试验时,首先将试件上端夹持在固定的夹具中,然后调整下方夹具位置,将下端夹紧,在试验机控制PC中输入保护参数即可进行试验,试验过程中利用MTSModel6犯引伸计全程采集轴向应变,如图2-5中所示用橡皮筋固定在试验件上,其测量应变的长度为50mm。由引申计测量到的轴向应变通过数据采集卡接入数据采集PC,整个试验系统示意图如图2-7所示。试验结束后处理数据得到单调拉伸和循环加卸载过程应力一应变曲线以及描述材料损伤的量(卸载模量、残余应变、迟滞环宽度)随卸载应力的变化关系曲线。最后采用

光学显微镜(DZ3ZOOMMicroscope)观察试验件断口,分析其损伤破坏机理。

二维编织C·SIC复合材料开孔构件的力学性能

航空、航天器上使用的复合材料,大多数都用在复杂物理、化学或高温环境下

的承力结构或部件上[ll,因此对于复合材料结构件的研究显得更为重要。本章主要研究复合材料开孔构件常温下的拉伸、压缩和疲劳性能。

大量的试验结果表明复合材料开孔试验件拉伸、压缩强度以及疲劳性能主要取决于孔的尺寸和试件宽度之比。

开孔试件和光滑试件力学性能的差别是由于孔周围应力集中引起的,对于如图5一1所示的承受轴向载荷或疲劳载荷的开孔复合材料平板,应力集中系数长和疲劳缺口系数K f分别可以表示为[2]:

式(5-l)和(5-2)中,为板边上的应力(按板净截面面积计算的),R为开

孔的半径,分别为光滑试验件和缺口(或开孔)试验件的疲劳极限强度。

一直以来,人们都在试图建立复合材料开孔试验件的强度准则,但由于复合材

料开孔试验件损伤和破坏机理的复杂性,目前大多数强度模型都是经验或半经验形式的,whitney和Nuismer提出了点应力准则(Psc)和平均应力准则(ASC)13]。

(l)点应力准则

点应力准则认为,对于图5-1所示的带孔板,当沿y轴距离开孔边上为d0的点

的应力,达到不开孔板的强度时,带孔板发生破坏:

2二维编织C一Sic复合材料带孔试件的轴向拉一压性能

1拉伸行为

典型的二维编织C/SIC复合材料带孔构件拉伸应力一应变曲线如图5一2所示。对

比图3一2可以发现,二维编织C/SIC复合材料带孔构件的拉伸应力一应变曲线和二维编织C/siC复合材料的拉伸应力一应变曲线较为相似,仍具有明显的非线性特征,也

存在低应力状态下(约25MPa以前)的直线段,但其在数值上稍低于二维编织C/SIC

复合材料(37.SMPa),以后在构件断裂之前,随着拉伸应力的增加,其切线斜率

逐步减小,并不存在基体裂纹饱和点。二维编织OsiC复合材料带孔构件拉伸强度

和断裂应变分别为204.1巧初尹。和0.308%,由于孔周围应力集中的影响,其拉伸强

度和断裂应变要比二维编织C/SIC复合材料本身低得多,二者的对比如表5一1所示

按照经验法中的点应力准则,当带孔构件从孔边断裂时,由式(5一3)和表5一1 可知:

(R ,0)=264.5mpa ,由式(5-1)可以计算开孔半径为R 的带孔板的平均应

力集中系Kt ,即:

可见,二维编织C/SIC 复合材料的带孔构件的开孔引起的拉伸强度差为29.6%

具有较低的缺口敏感性。这可能是因为拉伸过程中复合材料通过基体开裂、界面脱

粘和滑动等方式使高应力区重新分布,开孔边的应力转移到了周围区域,应力趋于均匀,降低了开孔对强度的影响。

在计算开孔应力集中系数时,由于光滑试验件和开孔构件的净截面的尺寸不一致,会对计算结果产生影响。但有关研究表明,若将光滑试验件和开孔构件的净截面的尺寸取作相同,按照上面公式计算的结果差别较小。

在本文中研究了两种因素对层合板强度一是孔的直径二是孔的形状因此本文,两种类型的试件对于圆形孔试件孔的直为0mm(完好试件)和5mm,10mm,15mm 根据GB/T1447-2005,件的尺寸取250mm*25mm*1.68mm

采用In-stron5569试验机,以5mm/min 的速度施加载荷,载荷和位移都用试验机自带的力传感器和位移测量

含孔层合板剩余强度的预测与试验验证

引言

本章针对含孔层合板,预测其拉伸剩余强度,并进行试验验证;本章重点对

其疲劳载荷作用下损伤起始和累积扩展,以及此后在静载作用下的损伤起始、累积扩展及最终破坏进行模拟。

含孔层合板静强度的预测与试验验证

含孔层合板疲劳剩余强度与疲劳载荷最大应力密切相关,而疲劳载荷中最大

应力大小依赖于结构的静强度,因此结构静强度是疲劳性能分析中的重要参数。以下针对文献[1]中的三种孔径层合板进行了预测和分析。层合板的几何参数见

表4.1,单层板的材料性能见附表1。

本文计算表明,对于表 4.1 中的三种孔径层合板,在静拉伸载荷作用下,其

逐渐破坏规律基本一致,为节省篇幅,本节主要以孔径D=9mm 为例,对层合板的破坏规律进行分析。

有限元模型及边界条件

(1)建立有限元模型

含孔板的几何尺寸及铺层参数如上表4.1 所示。单元类型为solid46,其有限

元模型共包含17920 个单元,有限元网格划分如图4.1 所示。

(2)边界条件

在有限元模型中,根据含孔层合板的实际边界条件,对模型沿长度方向一端

所有节点进行所有自由度的约束,另一端施加面载荷,如图 4.1 所示。

根据如图3.1程序流程预测含孔板的静强度时,初始施加均布静载荷10MPa,

每次施加均布载荷增量为10MPa;模拟过程中,以含孔层合板所有0°铺层内纤维损伤沿宽度方向扩展到板的边界处为其结构最终破坏标准

有限元模型及边界条件

(1)建立有限元模型

对于疲劳载荷作用下含孔层合板,使用静载累积损伤建模方法对其进行三维

有限元建模,有限元模型如图 4.1 所示。模型中各材料参数均与静载逐渐损伤扩展分析中相同。疲劳三维逐渐损伤分析方法中重要参数——静强度,使用静载逐渐损伤分析的强度预测方法计算得到,其整个计算过程见图 3.1。

(2)边界条件

在有限元模型中,根据含孔层合板的实际边界条件,对模型的一端所有节点

进行所有自由度的约束,另一端施加面载荷,如图4.1 所示。

在疲劳载荷阶段,为提高计算效率,循环增量的选取按照以下原则:初始施

加循环n=10,疲劳载荷为104次时每次施加循环增量为5×102

;疲劳载荷为105次时循环增量为5×103

;疲劳载荷为106次循环时循环增量为5×104。

剩余强度中的静载荷阶段,对于每种孔径的含孔层合板,初始施加均布载荷

10MPa,每次施加均布载荷增量为10MPa。

在每个加载循环过程中都对每个单元进行应力分析、失效判定、材料退化分

析,对每一铺层及整个含孔层合板都得到一系列随载荷循环变化的损伤累积状态,直到最终含孔层合板结构破坏为止。模拟过程中,当含孔层合板所有00

铺层内纤维损伤沿宽度方向扩展到板的边界时,结构达到最终破坏。

复合材料实验讲义

实验1 环氧树脂的环氧值测定 一、实验目的 掌握分析环氧树脂环氧值的方法。 二、实验原理 环氧值E定义为100g环氧树脂中环氧基团物质的量(摩尔数)。 基于0.1mol高氯酸标准滴定液与溴化四乙铵作用所生成的初生态溴化氢同环氧基的反应。使用结晶紫作指示剂,或对于深色产物使用电位滴定法测定终点。其化学反应方程式为一旦高氯酸过量则HBr就过量。由空白实验与试样所耗高氯酸的差值计算样品的环氧值。该方法的缺点是不适用于含氮元素的环氧树脂。 三、实验仪器和设备 分析天平、滴定管等及必要的分析纯化学试剂。 四、实验步骤 1、取100ml冰乙酸与0.1g结晶紫溶解后作为滴定指示剂。 2、取8.5ml 70%高氯酸水溶液加入1000ml的容量瓶中,在加入 300ml冰乙酸,摇匀后再 加20ml乙酸酐,最后以冰乙酸冲稀到刻度。 3、标定高氯酸溶液。称m克邻苯二甲酸氢钾(分子质量204.22),用冰乙酸溶解,再用V 毫升高氯酸溶液滴定至显绿色终点,高氯酸浓度(单位:mol/L)为: 4、取100g溴化四乙铵溶于400ml冰乙酸中,加几滴结晶紫指示剂于其中。 5、称取环氧树脂0.5g左右(精确至0.2mg)放入烧瓶中,加入10ml三氯甲烷溶解,加入 20ml冰乙酸,再用移液管移10ml溴化四乙铵溶液,立即用已标定了的高氯酸溶液滴定,由紫色变为稳定绿色为滴定终点。记下所耗毫升数V 1 和温度t。 6、同时并行取10ml 三氯甲烷、20ml冰乙酸以及用移液管移10ml溴化四乙铵溶液放入烧 瓶中,立即用高氯酸滴定,同样由紫色变成稳定绿色为滴定终点。记录所耗毫升数V 0(空白实验)。 7、环氧值按下式计算: 式中:m——环氧树脂质量g; N ——高氯酸标准溶液浓度mol/L; V 1、V ——试样和空白试验所耗高氯酸体积ml; 8、注意所用环氧树脂应不含氮元素。

聚合物基复合材料

聚合物基复合材料 摘要:聚合物基复合材料以其特有的性能近年来越来越受到人们的青睐。本文简单的介绍了聚合物基复合材料,描述了其作为一种新材料的性能特点,并详细描述了其发展历史及应用。 关键词:聚合物、复合材料、应用、历史 1、聚合物基复合材料 复合材料是指:两个或两个以上独立的物理相,包括粘接材料(基体)和粒料纤维或片状材料所组成的一种固体物。 (1) 复合材料的组分材料虽然保持其相对独立性,但复合材料的性能却不是各组分材料性能的简单加和,而是有着重要的改进。(2)复合材料中通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。(3)分散相是以独立的形态分布在整个连续相中,两相之间存在着界面。分散相可以是增强纤维,也可以是颗粒状或弥散的填料。 聚合物基复合材料(PMC)是以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合,各种材料在性能上互相取长补短,产生协同效应,材料的综合性能优于原组成材料而满足各种不同的要求,充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。通常意义上的聚合物基复合材料一般就是指纤维增强塑料。 而聚合物基复合材料一般都具有以下特性: 1. 比强度、比模量大。比强度和比模量是度量材料承载能力的一个指标,比强度越高,同一零件的自重越小;比模量越高,零件的刚性越大。复合材料的比强度和比模量都比较大,例如碳纤维和环氧树脂组成的复合材料,其比强度是钢的

镁合金的发展及应用

1 / 8 镁合金的发展及应用 摘要:综述镁合金的特点及其在交通、航空航天、兵器方面的应用情况,并结合兵器零件的使用特点和性能要求,分析了镁合金在兵器装备中的应用前景, 展望 关键词:镁合金,特点,发展,应用 1 引言 镁合金的密度很小,是钢的四分之一、铝的三分之二,但镁合金的比强度却大于钢和铝,是最轻的金属结构材料。因此,镁合金在电子产品、汽车、航空航天等需要高比强度金属材料的领域具备广阔的发展前景。但是镁合金的化学活性高,在有机酸、无机酸和含盐的溶液中均会被腐蚀,且腐蚀速率较高,使得镁合金的应用受到了很大的限制。 镁合金是重要的有色轻金属材料,具有比强度、比刚度高,减振性、电磁屏 蔽和抗辐射能力强,易切削加工,易回收等一系列优点,广泛应用于航空航天、 2 镁合金的特点 (1)重量轻:镁合金的比强度要高于铝合金和钢/铁、但略低于比强度最高的纤维增强塑料;其比刚度与铝合金和钢/铁相当,但却远远高于纤维增强塑料。比强度(强度/密度之比值)、比耐力(耐力/密度之比值)则比铝、铁都要高。在实用金属结构材料中其比重最小(密度为铝的2/3,钢的1/4)。这一特性对于现代社会的手提类产品减轻重量、车辆减少能耗以及兵器装备的轻量化具有非常重要的意义。 (2)高的阻尼和吸震、减震性能:镁合金具有极好的吸收能量的能力,可吸收震动和噪音,保证设备能安静工作。镁合金的阻尼性比铝合金大数十倍,减震效果很显著,采用镁合金取代铝合金制作计算机硬盘的底座,可以大幅度减轻重量(约降低70%),大大增加硬盘的稳定性,非常有利于计算机的硬盘向高速、大容量的方向发展。 (3)良好的抗冲击和抗压缩能力:其抗冲击能力是塑料的20倍;当镁合金

力学实验报告

力学实验报告 篇一:工程力学实验(全) 工程力学实验学生姓名:学号:专业班级:南昌大学工程力学实验中心目录实验一金属材料的拉伸及弹性模量测定试验实验二金属材料的压缩试验实验三复合材料拉伸实验实验四金属扭转破坏实验、剪切弹性模量测定实验五电阻应变片的粘贴技术及测试桥路变换实验实验六弯曲正应力电测实验实验七叠(组)合梁弯曲的应力分析实验实验八弯扭组合变形的主应力测定实验九偏心拉伸实验实验十偏心压缩实验实验十二金属轴件的高低周拉、扭疲劳演示实验实验十三冲击实验实验十四压杆稳定实验实验十五组合压杆的稳定性分析实验实验十六光弹性实验实验十七单转子动力学实验实验十八单自由度系统固有频率和阻尼比实验 1 2 6 9 12 16 19 23 32 37 41 45 47 49 53 59 62 65实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理引伸仪标距l =mm 实验前 2低碳钢弹性模量测定 E? 实验后 ?F?l = (?l)?A 屈服载荷和强度极限载荷 3载荷―变形曲线(F―Δl曲线)及结果四、问题讨论(1)比较低碳钢与铸铁在拉伸时的力学性能;(2)试从不同的断口特征说明金属的两种基本破坏形式。 4篇二:工程力学实验报告工程力学实验报告自动化12级实验班 1-1 金属材料的拉伸实验一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度ReH,下屈服强度ReL和抗拉强度Rm 。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。 3.测定铸铁的抗拉强度Rm。 4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。 5.学习试验机的使用方法。二、设备和仪器 1.试验机(见附录)。 2.电子引伸计。 3.游标卡尺。三、试样 (a) (b) 图1-1 试样拉伸实验是材料力学性能实验中最基本的实验。为使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定。我国国标GB/T228-2002 “金属材料室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。它们均由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样

金属基纳米复合材料制备工艺

金属基纳米复合材料制备工艺 材料研1203 石南起Z1205020金属基纳米复合材料是以金属及合金为基体,以高性能的第二相为增强体,与一种或几种金属或非金属纳米级增强体结合的复合材料,因兼有金属和纳米相而具有独特的结构特征和物理、化学及力学性能,成为一种新兴的纳米复合材料和新型金属功能材料。 1.金属基纳米复合材料的种类和基本性能 (1)相对于传统的金属材料来说,具有较高的比强度与比刚度; (2)与聚合物基复合材料相比,它又具有优良的导电性与耐热性; (3)与陶瓷基材料相比,它又具有高韧性和高冲击性能。 2.金属基纳米复合材料的种类 金属基复合材料是以金属为基体,以高强度的第二相为增强体而制得的复合材料。因此,对这种材料的分类既可按基体来进行、也可按增强体来进行。 按增强体类型分为:1.颗粒增强复合材料;2.层状复合材料;3.纤维增强复合材料。 按基体类型分为:1.铝基复合材料;2.镍基复合材料;3.钛基复合材料;4.镁基复合材料。 按用途分为:1.结构复合材料;2.功能复合材料。 3.金属基纳米复合材料性能特征 金属基复合材料的性能取决于所选用金属或合金基体和增强物的特性、含量、分布等。综合归纳金属基复合材料有以下性能特点。 A.高比强度、比模量 B. 良好的导热、导电性能 C.热膨胀系数小、尺寸稳定性好 D.良好的高温性能和耐磨性 E.良好的断裂韧性和抗疲劳性能 F.不吸潮、不老化、气密性好 4.金属基纳米复合材料制备工艺的分类: (1)固态法:粉末冶金法、真空热压扩散结合、热等静压、超塑性成型 / 扩散结合、模压。(2)液态法:液态浸渗、真空压铸、反压铸造、半固态铸造。 (3)喷射成型法:等离子喷涂成型、喷射成型。 (4)原位生长法。 制备金属基纳米复合材料的具体方法有机械合金化法、熔融纺丝法、粉末冶金法、机械诱发自蔓延高温合成反应法、真空蒸发惰性气体凝聚及真空原位加压法等。 A.机械合金化法 将按合金粉末金属元素配比配制的试料放入立滚、行星或转子高能球磨机中进行高能球磨,制得纳米晶的预合金混合粉末,为防止粉末氧化,球磨过程中采用惰性气体保护;球磨制得的纳米晶混合粉经烧结致密化形成金属基纳米复合材料。在球磨过程中,大量的碰撞现象发生在球粉末与磨球之间,被捕获的粉末在碰撞作用下发生严重的塑性变形,使粉末反复的焊合和断裂。经过“微型锻造”作用,元素粉末混合均匀,晶粒尺度达到纳米级,层状结构达到1um下,比表面积大大增加。由于增加了反应的接触面积,缩短了扩散距离,元素粉末间能充分进行扩散,扩散速率对反应动力的限制减小,而且晶粒产生高密度缺陷,储备了大量的畸变能,使反应驱动力大大增加。 B.高能球磨法 20世纪60年代末,美国首先用高能球磨法制备出氧化物弥散强化合金,高能球磨法是利

镁基复合材料的性能及应用

镁基复合材料的性能及应用 罗文昌2013121532 摘要:镁基复合材料因其轻量化和高性能而成为当今高新技术领域中最富竞争力和最有希望采用的复合材料之一。本文将综述镁基复合材料的不同制备方法及其对复合材料组织、结构、性能的影响,并提出镁基复合材料的研究和发展方向。 关键词:镁基复合材料;基体镁合金;性能;应用;发展 1.引言 现代科学的发展和技术的进步,对材料性能提出了更高的要求,往往希望材料具有某些特殊性能的同时,又具备良好的综合性能。复合材料是将两种或两种以上不同性能、不同形态的组分材料通过复合手段组合而成的一种多相材料。近年来,金属基复合材料在许多领域得到了应用。目前金属基复合材料的制备方法已有很多,并在铁基、镁基、铜基、铝基、钛基等金属基复合材料中取得了比较大的成功。镁基复合材料是继铝基复合材料之后又一具有竞争力的轻金属基复合材料主要特点是密度低、比强度和比刚度高,同时还具有良好的耐磨性、耐高温性、耐冲击性、优良的减震性能及良好的尺寸稳定性和铸造性能等;此外,还具有电磁屏蔽和储氢特性等,是一类优秀的结构与功能材料,也是当今高新技术领域中最有希望采用的复合材料之一;在航空航天、军工产品制造、汽车以及电子封装等领域中具有巨大的应用前景。根据镁基复合材料的特点,结合原有的金属基复合材料的制备工艺,材料工作者尝试了多种新的适合制备镁基复合材料的方法与工艺,对研制、开发镁基复合材料起到了很好的促进作用。 2.镁基复合材料的组织与性能 相对于传统金属材料和铝基复合材料,有关镁基复合材料的组织与性能的研究目前虽然已经取得了一定的成果,但还不够全面深入,力学性能数据分散性也比较大,仍处于探索性研究阶段。材料工作者对镁基复合材料的耐磨性能和疲劳断裂机理进行了研究,并围绕镁基复合材料的力学性能及物理性能做了一些工作。力学性能主要集中于复合材料的拉伸与压缩性能,时效特性,以及低温与高温超塑性等方面;物理性能有阻尼性能和储氢性能等研究内容。储氢镁基复合材料一般采用球磨法制备。高能球磨后,颗粒活化,镁颗粒与增强相颗粒以及颗粒内部的大量相界、微观缺陷的存在是材料具有优异氢化性能的主要原因。通过机械合金化工艺可以制备出具有优良储氢性能的复合材料,典型体系:Mg—Mg2Ni,而且若在研磨过程中辅以某些有机添加剂对提高材料的储氢性能有很大帮助,但较高的脱氢温度以及相对较慢的吸放氢速度限制了镁基合金实际应用。另外非晶态镁基复合材料的优良性能更是引起了人们的普遍兴趣。在实际应用中,由于镁基复合材料过硬的性能,镁基复合材料在在各领域中被广泛应用。镁基复合材料组织特征为增强体分布在基体合金中,同时引入了大量的界面以及高密度位错缠结,其晶粒度较基体合金也小,无论是高密度位错引起的位错强化,还是细化晶粒的作用都将提高和改善复合材料的拉伸强度和刚度等力学性能。另外,挤压变形、固溶时效以及其它一些工艺的运用和调整都将有利于进一步提高镁基复合材料力学性能镁基复合材料具有良好的阻尼性能(减振性能)、电磁屏蔽性能和储氢特性,是良好的功能材料,还具备密度小、贮氢容量高、资源丰富等优点。镁基贮氢复合材料正被日益重视,主要制备方法有多元合金化、机械合金化、多元复合等。 3.镁基复合材料的应用 从近期发展看,镁基复合材料并没有大规模地应用于常规结构件中,但它们在航空航天和汽车电子工业中的众多构件方面有着广阔的应用前景。 美国TEXTRON、DOW 化学公司用SiC /Mg复合材料制造螺旋桨、导弹尾翼、内部加强的汽

特种纤维复合材料国家实验室(中材)

特种纤维复合材料国家重点实验室 特种纤维复合材料国家重点实验室于2007年7月9日被科技部列入首批企业国家重点实验室建设计划,并于2011年4月25日通过科技部组织的验收。特种纤维复合材料国家重点实验室依托中材科技股份有限公司,旨在结合国家中长期科技发展战略,针对我国新材料产业的重大需求,围绕我国特种纤维复合材料行业发展中急需解决的关键技术、共性技术问题开展应用基础研究和性能测试及评价技术研究,并研究制定国际标准、国家和行业标准,聚集和培养优秀人才,引领和带动纤维复合材料行业的技术进步。 “特种纤维复合材料国家重点实验室”依托中材科技及建材行业树脂基复合材料重点实验室建立,并借助中材科技前身原南京玻璃纤维研究设计院、北京玻璃钢研究设计院和苏州非金属矿工业设计研究院等三家国家级科研院所四十多年的技术资源及人才优势,针对行业发展需要的关键问题、共性问题和技术发展趋势,以形成具有自主知识产权的纤维复合材料制造、评价、应用技术为目标,重点开展特种玻璃纤维新成份体系研究、玻璃纤维产业化关键技术及装备研究、特种纤维复合材料设计与制造共性关键技术研究和特种纤维复合材料性能测试及评价技术研究。 实验室建设期内成果显著,承担了多项国家863计划、科技支撑计划、军工科研项目,获得多项国防和行业科技奖,授权专利31项,申请专利18项。自主研发的一批新技术在复合材料风电叶片、高压复合气瓶、高温过滤材料及军工配套等领域获得广泛应用,在行业关键技术创新、辐射和推广方面发挥了重要的带动作用,取得了良好的经济和社会效益。 “特种纤维复合材料国家重点实验室”设立以下研究单元: (一)实验测试中心:包括材料成分分析、材料物理性能分析、复合材料热分析、材料性能评价等4个开放测试实验室,承担测试及性能评价技术研究,并作为公共服务平台,对行业开放; (二)基础技术研究部:包括材料性能评价技术、纤维产业化共性关键技术、复合材料模拟和设计技术、复合材料制造关键技术等4个研究室;针对行业共性关键技术,开展应用基础研究; (三)应用技术研究部:针对特种纤维复合材料行业需求,开展共性关键技

复合材料实习报告总结

复合材料实习报告总结 复合材料实习报告总结 ,隔离膜的铺放顺序,应为抽真空的缘故,我们要住辅助材料的边角不能覆盖至制品上,因为受压会使制品表面有压痕影响之间的工艺性能。一般的是隔离膜在制品的表面,然后是吸胶材料,最后是透气毡,而打真空袋是要明确以不能能漏气也就是要保证真空袋通过腻子胶条和模紧密贴合不漏气,另外一个是要是真空袋抽正空后要与模具和制品紧密贴合不能有褶皱。手糊成型的有点很多,如其一不需要复杂的设备,只需要简单的模具,工具,投资少,成本低。其二生产技术易掌控,人员只需经过短期的培训即可生产。其三复合材料产不受尺寸,形状的限制。其四可以与其他材料同时复合制成一体和对于一些不宜运输的大制品等。缺点就是产品质量不够稳定,生产环境差,气味大,加工时粉尘过多。不能用来制造高性能产品,生产效率低下。这是我感受到的,我对于手糊成型的理解。我们不仅要提高制品的工艺性能,更要减少制品的生产成本和提高工做卫生的环境条件。注重团队合作,时间的分配,设计的和理性的。 而手糊成型完了就接着是热压罐成型工艺过程: 一,模具的准备。模具要用软质材料轻轻搽拭干净,并检查时候漏气。然后在模具上涂布脱模剂。 二裁剪和铺叠。按样板裁好带有离型纸的预浸料,剪切时必须注意纤维方向然后将才好的预浸料揭去离型纸按照规定顺序和方向铺叠,每一层要用橡胶辊等工具将预浸料压实,赶出空气。

三组合和装袋,在模具上将预浸料胚料和各种辅助材料组合并装袋,应检查真空袋周边是否良好。 四热压固化,将真空袋系统组合到热压罐中,接好真空管路,关闭热压罐,然后按确定的工艺要求抽真空、加热、固化。最后就是出罐脱模,固化完成后,冷却到室温后,将真空移除热压罐,去除各种辅助材料后进行修整。 典型的热压罐固化工艺过程五个阶段: 1升温阶段; 2吸胶阶段; 3继续升温阶段 4保温热压阶段; 5冷却阶段。 我们小组遇到问题主要有裁剪时不一,就是尺寸不统一。在进行磨具合拢是不能很好的贴合,模具夹合时有缝隙需要要纤维预浸料填补。我们贴挡胶胶条是要注意把要流胶的位置都挡上。 再次,要深化自己的工作任务。熟悉每一件制品的制作方法,细节。做到烂熟于心。学会面对不同的困难,采用不同的操作技巧。力争让每一件制品都能然自己感到称心如意,更力争增加操作经验,提高产品质量。 最后,端正好自己心态。其心态的调整使我更加明白,不论做任何事,务必竭尽全力。这种精神的有无,可以决定一个人日后事业上的成功或失败,而我们的工作中更是如此。如果一个人领悟了通过全力工作来免除工作中的辛劳的秘诀,那么他就掌握了达到成功的原

纳米复合材料发展与现状

纳米复合材料发展与现状 201041505118 李少军10材料一班 1 纳米复合材料 超细粒子(或纳米粒子)是指尺度介于原子、分子、离子与块状材料之间,粒径在1~100nm范围以内的微小固体颗粒。随着物质的超细化,产生了块状材料不具有的表面效应、小尺寸效应、量子效应,从而使超细粒子与常规颗粒材料相比具有一系列优异的物理、化学性质。纳米粒子经压制、烧结或溅射组合而成的具有某些特定功能的结构即纳米材料。它断裂强度高、韧性好、耐高温,纳米复合同时也提高材料的硬度、弹性模量、Weibull模数,并对热膨胀系数、热导率、抗热震性产生影响。[1] 纳米复合主要指在微米级结构的基体中引入纳米级分散相。纳米复合材料(复合超微细颗粒)表现出许多与模板核本质不同的性质,如不同的表面组成、磁性、光学性能、稳定性及表面积等。纳米复合材料涉及的范围广泛,它包括纳米陶瓷材料、纳米金属材料、纳米磁性材料、纳米催化材料、纳米半导体材料、纳米聚合材料等。纳米粒子具有很高的活性,例如木屑、面粉、纤维等粒子若小到纳米级的范围时,一遇火种极易引起爆炸。纳米粒子是热力学不稳定系统,易于自发地凝聚以降低其表面能,因此对已制备好的纳米粒子,如果久置则需设法保护,例如保存在惰性空气中或其他稳定的介质中以防止凝聚。纳米材料是物质以纳米结构按一定方式组装成的体系。它是纳米科技发展的重要基础,也是纳米科技最为重要的研究对象。纳米材料也被人们誉为21 世纪最有前途的材料。由于纳米材料本身所具有的特殊性能。作为一种全新性能的先进复合材料,在微电子、信息、汽车、宇航、国防、冶金、机械、生物、医药、光学等诸多领域有极广泛的应用前景。 2 纳米复合材料的分类 研究纳米复合材料的一个重要目的是改进并提高块体材料的性能,或通过结构复合来发现块材料中并不存在的性能或效应。和块体材料相比,纳米复合材料的物理和化学性质将更多地依赖于材料的表面缺陷和量子尺寸效应。目前.纳米复合材料的种类繁多,可分为:固态纳米复合材料和液态纳米复合材料。基质材料对于纳米粒子的结构具有稳定作用;而基质材料的不同,又可将纳米复合材料区分为:无机基纳米复合材料和聚合物基纳米复合材料。聚合物基包括单聚合物、共聚合物和聚合物的混合;无机基则包括玻璃,如多孔玻璃、分子筛、溶胶一凝胶玻璃和陶瓷等。[2]还可根据纳米粒子的物理性质可将纳米复合材料区分为:半导体纳米复合材料、铁电体微晶复合材料、染料分子纳米复合材料、稀土纳米复合材料、金属(合金)纳米复合材料、光学纳米复合材料(非线性、发光、光折变等)、磁性纳米复合材料等。 3 纳米复合材料的制备 3.1 溶胶- 悬浮液混合法

镁合金压铸技术的几个主要问题

镁合金压铸技术的几个主要问题及其使用前景 1前言 镁合金材料1808年面世, 1886年始用于工业生产。镁合金压铸技术从1916年成功地将镁合金用于压铸件算起,至今也经历了八十余年的发展。人类在认识和驾驭镁合金及其制品的生产技术方面,经历了漫长的探索历程。从1927年推出高强度MgAl9Zn1开始,镁合金的工业使用获得了实质性的进展。1936年德国大众汽车公司开始用压铸镁合金生产“甲壳虫”汽车的发动机传动系统零件,1946年单车使用镁合金量达18kg左右。美国在1948~1962年间用热室压铸机生产的汽车用镁合金压铸件达数百万件。尽管如此,过去镁合金作为结构材料主要用于航空领域,在其它领域,世界上镁的主要用途是生产铝合金,其次用于钢的脱硫和球墨铸铁生产。 近年来, 由于人们对产品轻量化的要求日益迫切,镁合金性能的不断改善及压铸技术的显著进步,压铸镁合金的用量显著增长。特别是人类对汽车提出了进一步减轻重量、降低燃耗和排放、提高驾驶安全性和舒适性的要求, 镁合金压铸技术正飞速发展。此外,镁合金压铸件已逐步扩大到其他领域,如手提电脑外壳,手提电锯机壳,鱼钩自动收线匣,录像机壳,移动电话机壳,航空器上的通信设备和雷达机壳,以及一些家用电器具等。 镁主要由含镁矿石提炼。我国辽宁省大石桥市一带的菱镁矿储量占世界储量的60%以上,矿石品位高达40%以上。我国生产的镁砂和镁砂制品大量用于出口。充分利用我国丰富的镁砂资源进行深度开发,结合我国汽车、计算机、通讯、航天、电子等新兴产业的发展,促进镁合金压铸件的生产和使用,是摆在我国铸造工作者面前的一项任务。 2、压铸镁合金的研究 镁合金的密度小于2g/cm3,是目前最轻的金属结构材料,其比强度高于铝合金和钢,略低于比强度最高的纤维增强塑料;其比刚度和铝合金和钢相当,远高于纤维增强塑料;其耐腐蚀性比低碳钢好得多,已超过压铸铝合金A380;其减振性、磁屏蔽性远优于铝合金[1];鉴于镁合金的动力学粘度低,相同流体状态(雷诺指数相等)下的充型速度远大于铝合金,加之镁合金熔点、比热容和相变潜热均比铝合金低,故其熔化耗能少,凝固速度快,镁合

纳米复合材料

纳米复合材料的制备及其应用 分析化学饶海英20114209033 摘要:聚合物基复合材料目前已经成为复合材料发展的一个重要方向,它涉及了材料物理、材料化学、有机材料、高分子化学与物理等众多学科的知识。本文主要针对纳米复合材料的制备方法、性能及应用等方面的研究进展情况进行了综述。 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国航、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分。80年代初Roy等提出的纳米复合材料[1-3],为复合材料研究应用开辟了崭新的领域。纳米复合材料是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。由于纳米微粒独特的效应,使其物理和化学性能方面呈现出不同的性能。将纳米材料与复合材料结合起来,所构成的纳米复合材料兼有纳米材料和复合材料的优点,因而引起科学家的广泛关注和深入的研究[4-5,44,45]。纳米复合材料的基体不同,所构成的复合材料类型也不同,如:金属基纳米材料[9-11,43]。陶瓷基纳米材料[12]、聚合物基纳米材料。 近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。 1纳米聚合物基复合材料 1.1 纳米聚合物基复合材料的合成进展 在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。较早发展起来的几种聚合物纳米复合材料的制备方法[13-14]有共混法、溶胶-凝胶法(sol-ge1)、插层复合技术(interaction),可分为插层和剥离(exfoliate)两种技术、原位(in-situ)法、母料法、模定向合成法(template directed)包括化学方法和电化学方法。 声化学合成(sonochemical synthesis)是制备具有独特性能的新材料的有效方法。

无损探伤实验报告

2011—2012 学年第2 学期实验(实习)报告 课程名称:飞机结构防腐 授课班级:090146A 授课教师:郭巧荣 姓名:李一鲁 学号:090146111

实验一超声波检测法 一、实验目的 1、了解超声波检测法的基本原理、优点和应用局限性。 2、熟悉超声波检测设备的基本使用方法;熟悉使用垂直探头和斜探头探测试件内部缺陷的操作过程。 二、实验仪器设备(只需写明实验设备的重要组成部分,无需写具体型号) 数字式超声波探伤仪、被测试块和耦合剂 三、实验原理 所谓超声波检测法是利用超声波在被检材料中的响应关系来 检测孔蚀、裂纹等缺陷及厚度的一种检测方法。利用压电材料产生超声波,入射到被检材料中。超声波在异质界面上会发生反射、折射等现象,尤其是不能通过气体固体界面。如果金属中有气孔、裂纹、分层等缺陷(缺陷中有气体),超声波传播到金属与缺陷的界面处时,就会全部或部分反射。反射回来的超声波被探头接收,通过仪器内部的电路处理,在仪器的荧光屏上就会显示出不同高度和有一定间距的波形。可以根据波形的变化特征判断缺陷在工件中的深度、位置和形状。 四、实验步骤 1. 探头连接:将直探头、斜探头或其它类型探头与超声波探伤仪相连接。 2. 超声波探伤仪基本参数的设定:根据探伤构件的材料、外形尺寸及选用的探头类型,调节、设定超声波探伤仪的声速、声程等检测参数。 3. 仪器校准:利用标准校准试块,校准仪器,设定仪器零点。 4. 涂耦合剂:在探伤区域内涂抹耦合剂。

5. 进行探伤操作。 五、实验结果描述 纵波进行检测,工件无缺陷时,只显示始波T和底波B,当工件中有缺陷时,在始波和底波之间出现一个伤波;当工件中缺陷横截面积很大时,将无底波,声束被缺陷全反射。 用横波进行检测,工件无缺陷时,一般只显示始波T而不显示底波B,因为横波的穿透能力差,当有缺陷时,在始波后出现一个伤波。 六、回答思考题 1、简述超声波检测法的特点及适用性。 超声波检测法可用于金属、非金属、复合材料制件的损伤探测,既可以检测工件内部的缺陷,也可以检测工件表面的缺陷。可用来检测锻件、型材的裂纹、分层、夹杂,铸件中的气孔、裂纹、疏松等缺陷,焊缝中的裂纹、气孔、未焊透等缺陷,复合材料的分层、脱胶等缺陷,还可以测定工件的厚度。 采用超声波厚度仪从一侧测量构件的厚度,精确度可达到±1%。 可以用超声波厚度仪检测轻微的腐蚀,但不能检测中等或严重的腐蚀损伤。这是因为中等以上的腐蚀损伤,由于超声波的散射,不会得到构件厚度度数。但是,当清除腐蚀产物后,可以用它来测量去腐后的构件的厚度,并可以进一步确定腐蚀造成的材料的减少量。 2、说明纵波探测法根据什么确定缺陷的位置和大小。 设探测面到缺陷的距离为x,材料的厚度为t,从示波器始波T 到伤波F的长度为Lf,从始波到底波的长度为Lb,可得x=(LF/LB)t。由此,可求出缺陷的位置。另外伤波高度随缺陷或损伤增大而增高,所以可由伤波高度估计缺陷或损伤的大小。当缺陷或损伤很大时,可以移动探头,按显示缺陷或损伤的范围求出缺陷或损伤的延伸尺寸。 3、分析超声波探测法中使用斜探头产生横波的特点,说明为

金属基纳米复合材料

金属基纳米复合材料 摘要:本论文主要介绍了纳米复合材料的设计(包括结构设计和功能设计),讨论了金属基复合材料的制备方法以及对所制备的金属基纳米复合材料的性能进行了分析,最后对金属基纳米复合材料的发展进行了展望 。 关键词:纳米复合材料简介金属基复合材料特性金属基复合材料制备方法碳纳米管金属基纳米复合材料展望 引言:金属基纳米复合材料是以金属及合金为基体,与一种或几种金属或非金属纳米级增强相相结合的复合材料。金属基纳米复合材料具有力学性能好、剪切强度高、工作温度较高、耐磨损、导电导热好、耐湿性好、不吸气、尺寸稳定、不老化等优点,故以其优异的性能应用于自动化、航天、航空等高技术领域。各种复合新工艺,如压铸、半固态复合铸造,喷射沉积和直接氧化法、反应生成法等的应用,促进了纳米颗粒、纳米晶片、纳米晶须增强金属基复合材料的快速发展,使成本不断降低,从而使金属基纳米复合材料的应用由自动化、航空、航天工业扩展到汽车工业,而使其应用越来越广泛,进入到生产生活的各个方面。 纳米复合材料简介 纳米材料是由纳米量级(1—100nm)的纳米粒子组成的固体材料。纳米微粒有4个基本效应:小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应。因此,纳米材料表现出一些特殊性能,如高热膨胀系数、高比热容、低熔点、奇特的磁性、极强的吸波性能等。纳米微粒尺寸很小,纳米粒子的表面原子数与其总原子数的比值随着粒径尺寸的减小而急剧增大,所以纳米材料有高密度缺陷、高的过剩能、大的比表面积和界面过剩体积。纳米材料也因此具有许多特殊的性能,如高的弹性模量、较强的韧性、高强度、超强的耐磨性、自润滑性和超塑性等。由于纳米材料的特异性能,纳米材料有着广泛的应用。 根据纳米复合材料的功能特性和使用时的侧重点,可将其粗略地分为结构纳米复合材料和功能纳米复合材料两大类。前者主要用在产品或工程的结构部件上,着重在材料的结构强度、刚性、韧性、耐热性能等机械、物理、力学性质和耐化学腐蚀与耐恶劣环境能力上的赋予;后者侧重在利用材料的特殊光、电、声、热、磁敏感应、信息贮存与传输、能量贮存与释放等性能及效应来实现某种功能。根据纳米复合材料的复合途径可分为:纳米相—纳米相复合材料,纳米相—常规块体复合材料及复合纳米薄膜。根据复合材料组分的性质可分为无机—无机纳米、有机—有机纳米以及无机—有机纳米复合材料。 金属基纳米复合材料的特性 金属基纳米复合材料的力学性能主要具有如下的特点:高强度和高韧性,高比强度和高比模量,抗蠕变和抗疲劳性好,高温性能好,断裂安全性高等。 1.微观结构 研究人员用超声波气态原子化法和热挤压锻造制备纳米复合材料,研究其微观结构演化、热稳定性和ɑ-Al纳米相生长动力学,发现:原子化粉末的微观结构受基体中溶质过饱和度、隐含微应力、溶质大小、分布状态和沉积纳米相的体 (Ni,Fe)纳米相积分数等因素影响;在热的结晶过程中,ɑ-Al相的沉积和Al 3

复材综合实验报告

本科实验报告 课程名称: 复合材料工程综合实验 姓 名: 贾高洪 专业班级 复材1301 学 号: 130690101 指导教师: 母静波、侯俊先、王光硕 2016年 5 月 27 日 装备制造学院实验报告 课程名称:__复合材料工程综合实验__________指导老师:实验名称: 手糊成型工艺实验 实验类型:_____操作实验_ 同组学生姓名:_____ _____ 一、实验目的和要求 1.掌握手糊成型工艺的技术要点、操作程序和技巧; 2.学会合理剪裁玻璃布、毡和铺设玻璃布、毡; 3.进一步理解不饱和聚酯树脂、脱模剂和胶衣树脂配方、凝胶、固化和富树脂层等概念和实际意义。 二、实验内容和原理 实验内容: 1.根据具体条件设计一种切实可行的制品(脸盆、垃圾桶)。 2.制品约为3mm ~4mm 厚,形状自定。 3.按制品要求剪裁玻璃布、毡。

4.手糊工艺操作,贴制作人标签。 5.固化后修毛边,如有可能还可装饰美化。 6.对自己手糊制品进行树脂含量测定。 实验原理: 手糊成型是最早使用的一种工艺方法。随着坡璃钢工业的迅速发展,尽管新的成型工艺不断涌现,但由于手糊成型具有投资少;无需复杂的专用设备和专门技术;可根据产品设计要求合理布置增强材料的材质、数量和方向,可以局部随意加强;不受产品几何形状和尺寸限制,适合于大型产品和批量不大的产品的生产等特点,至于仍被国外普遍采用,在各国玻璃钢工业生厂中仍占有工要地位。象我国这样人口众多的国家,在相当长的一段时间内,手糊成型仍将是发展玻璃钢工业的一种主要成型方法。 不饱和聚酯树脂中的苯乙烯既是稀释剂又是交联剂,在固化过程中不放出小分子,手糊制品几乎90%是采用不饱和聚酯树脂作为基体。模具结构形式大致分为阴模、阳模、对模三种。 阴模可使产品获得光滑的外表面,因此适用于产品外表面要求较光,几何尺寸较准确的产品,如汽车车身、船体等。阳模能使产品获得光滑的内表面,适用于内表几何尺寸要求较严的制品,如浴缸、电镀槽等。 脱模材料是玻璃钢成型中重要的辅助材料之一,如果选用不当,不仅会给施工带来困难,而且会使产品及模具受到损坏。脱模材料的品种很多,而且又因选用的粘接剂不同而各有所别。常用的脱模剂可归纳为三大类:即薄膜型脱模材料、混合溶液型脱模剂和油膏、蜡类脱模剂。薄膜型脱模材料有:玻璃纸、聚酯薄膜,聚氯乙烯薄膜,聚乙烯醇薄膜等等。本次实验我们选用聚乙烯醇做脱模剂。 本实验利用手糊工艺制备简单的玻璃纤维增强聚合物基复合材料制件。常温常压固化。 三、主要仪器设备 管式炉:差示扫描量热仪 仪器型号:OTF-1200X 生产厂商:合肥科晶材料技术有限公司 1.手糊工具:辊子、毛刷、刮刀、剪刀。 2.玻璃纤维布、毡,不饱和聚酯树脂,引发剂,促进剂,塑料盆,塑料桶。 四、操作方法和实验步骤 (1)配制脱模剂:聚乙烯醇8克溶解于64克水,在缓慢的加入64克乙醇。 (2)按制件形状和大小裁剪玻璃布或毡备用。 (3)在模具表面均匀连续的用纱布涂上一层聚乙烯醇溶液,脱模剂完全干透后,应随即上胶衣或进

含孔复合材料实验相关

开孔对平纹编织C/SiC 陶瓷基复合材料力学行为的影响 1.试样与实验过程 实验所用平纹编织C/Si复合材料试样有西北工业大学超高温复合材料实验室采用化学气相渗透(CVI)工艺制造,其主要组分为T2300碳纤维和Si基体。材料密度大约为2.1~2.2g/cm3,孔隙体积分数约15%,基体体积分数40%。平纹编织C/Si复合材料板加工成型后,用金刚石线切割机将其切割成狗骨状试样,在其中心钻出半径为3mm的通孔,试样如图所示(mm) (图画好) 开孔试样的拉伸,压缩和疲劳实验均在MTS810液压伺服疲劳试验机上进行。拉伸和压缩实验采用位移控制加载,加载速率为0.5mm/min,载荷从零开始直至试样断裂。通过拉伸实验,确定疲劳实验峰值应力取值范围,单向等幅疲劳实验采用位移控制加载,加载速率为0.6mm/min,应力比和加载频率分别取0.1和10Hz。实验中利用MTS Model632引申全程记录应力应变曲线。 2.实验结果与分析 开孔试样的拉压应力—应变曲线为非线性过程,在低应力时就出现损伤。压缩过程开始阶段呈线弹性,当应力增加到裂纹闭合点(Crack Clo2 sure Point)后,由于基体裂纹闭合引起材料宏观模量增加,开始出现非线性过程,直至试样断裂破坏。 根据拉伸实验结果确定开孔试样的极限拉伸强度(Ultimate Tension Strength,UTS)为233.2Mpa。

表1为开孔试样的,拉伸,压缩和疲劳性能,可看出,开孔使平纹编织C/Si陶瓷基复合材料的性能有一定程度降低。拉伸强度和破坏应变分别降低了12.2%和54.9%,压缩强度和破坏应变分别降低了12.2%和54.9%,拉破坏应变降低的程度比较大,说明开孔使试样的韧性降低。

高性能稀土镁合金及其研究进展

高性能稀土镁合金及其研究进展 镁合金作为一种轻质的绿色工程材料具有很大的应用前景,被称为21世纪的“绿色工程材料”。然而,大部分镁合金的力学性能(尤其高温力学性能)较差,使其应用受到限制。因此,如何改善其力学性能成为亟待解决的问题。添加合金化元素是常用来改善镁合金力学性能的手段之一,尤其是添加稀土元素。稀土元素对镁合金具有“净化”“细化”“强化”“合金化”的四重作用。Mg-RE系合金因其优异的高温拉伸性能、抗蠕变性能及良好的塑性成形能力而备受青睐,被认为是最具有应用前景的高温高强合金体系。因此,本文主要综述近年来国内外在高性能稀土镁合金方面的研究进展,重点介绍制备高性能镁合金的制备方法、加工技术、热处理工艺、强韧化机制及目前研究中存在的问题与不足。 1.Mg-RE系合金 Mg-RE系合金是目前镁合金中最重要的高强耐热镁合金体系,尤其是含有重稀土元素(Gd、Y、Dy、Ho、Er等)的镁合金。Mg-RE系二元合金的时效硬化特性、强度与稀土添加量成正比关系,如在 Mg-Gd二元合金体系中Gd的质量百分含量若低于10%则合金的时效析出偏低或者无析出,直接导致合金的强度及耐热性能降低。为了降低稀土的添加量且不影响时效硬化特性效果,在Mg-RE二元合金的基础上添加其它合金化元素开发出了三元、四元等稀土镁合金。目前,稀土镁合金主要包括在Mg-Gd体系上形成的Mg-Gd-Y、Mg-Gd-Er、Mg-Gd-Ho、Mg-Gd-Dy等系列合金,在Mg-Y体系上形成的Mg-Y-Gd、Mg-Y-Nd、Mg-Y-Sc-Mn 等系列合金,为了细化晶粒稀土镁合金中常常加入Zr元素。 除了早期的WE54、WE43合金,Mordike等通过添加Sc及Mn等元素,开发了抗蠕变性能优于WE43合金的Mg-4Y-1Sc-1Mn(wt.%)合金;He等用普通铸造+挤压+峰值时效的方法制备了高强耐热Mg-10Gd-2Y-0.5Zr(wt.%)合金,其室温下的屈服强度、抗拉强度、延伸率分别可高达331 MPa、397 MPa、1%。最近,Li等通过轧制+时效的方法制备了Mg-14Gd-0.5Zr 合金,其屈服强度、延伸率分别可高达445 MPa、2%。Mg-RE系合金是目前最适合、最有前途的可应用在航空航天或汽车上的镁合金材料,多数单位都将此系列合金的目标性能提高到550Mpa-600Mpa,稳定使用温度在200 o C。晶粒细化、形变强化、沉淀强化是目前稀土镁合金采用的强化手段。目前的研究主要集中在沉淀强化方面。Mg-RE系合金主要的时效析出强 化相为β′′ (DO 19)、β′(cbco),其中,β′′相的化学成分为Mg 3 RE, β′相的化学成分为Mg15RE3。 β′相与基体具有半共格关系,匹配较好,大量、致密、规则析出的β′相,可有效阻止位错运动,被认为是合金强度提高的主要原因之一。 目前的研究仍有不足,主要表现在以下几个方面:(1)合金中含有大量的稀土,导致合金成本偏高;(2)合金的塑性加工性能偏差,有必要寻找改善合金塑性的新方法、新理论;(3)合金的塑性变形机制研究较少,需大研究稀土溶质原子、晶粒尺寸、晶界类型、织构等对滑移系机制的影响规律。 2.Mg-RE-Zn系合金 Mg-RE-Zn合金是现在研究的一个热点,一方面因为Kawamura于2001年用快速凝固粉/

重点试验室固定客座人员管理条例-金属基复合材料国家重点试验室

重点实验室固定、客座人员管理条例 一、国家实验室的发展目标是以国家高科技、国防建设的需求及学科前沿发展为引导,开展多结构、多功能复合材料的应用基础研究,为满足高科技、国防建设的发展对高性能化、高功能化、高可靠性、低成本的先进复合材料的迫切需求,提供方向性、共性、关键性的理论依据和原理性技术支撑,和小批量、多品种、高技术含量的军用和民用关键急需复合材料。在加强金属基复合材料的应用研究的同时,继续推进复合材料在航空、航天、信息和汽车工业等领域的实际应用;不断开展其它基体的复合材料的研究,尤其重点逐步向多学科交叉平台发展,以期在多结构、多功能复合材料的研究上有所作为。进一步加强来自不同学科和不同学术背景的研究人员之间的融合和 交流,使实验室真正成为跨学科的学术交流和研究平台,使实验室成为本领域国际著名的实验室 实验室主要以材料学、材料加工工程和凝聚态物理3个二级学科为支撑,结合实验室研究现状和发展趋势,确定实验室的主要研究方向为: 1、金属基复合材料:主要研究铝、镁、钛基复合材料的设计、 制备、加工和应用过程的关键基础理论和应用问题,继续加 强在金属基复合材料的界面、制备科学、重熔与再生和成型 加工等应用基础研究课题;同时依据对复合材料长期系统深 入地研究所取得的阶段性成果,大力推进复合材料在航空、 航天和国防工业中的实际应用。 2、聚合物基复合材料:主要研究聚合物基复合材料的分子设计、 合成新方法、加工和应用过程的关键基础理论和应用问题, 如功能聚合物分子设计理论、合成新方法、声隐身复合材料 消声瓦和复合材料螺旋桨等研究方向。 3、新型功能复合材料: (1)能源用复合材料:主要研究能源用新型功能复合材料的 制备、加工和应用过程的关键基础理论课题。 (2)遗态复合材料:主要研究将植物、生物的结构等自然结 构为模板,制备出各种具有特殊功能材料,并开展对转换机 理等问题的基础和前沿的探索研究。 (3)纳米复合材料:以纳米尺度特殊的结构和功能效应为基 础,开展聚合物基和金属基纳米复合材料的基础和应用基础 研究。

防腐实验报告

2012—2013学年第一学期 实验(实习)报告 课程名称: 授课班级: 授课教师:谭娜 姓名: 学号:

实验一超声波检测法 一、实验目的 1、了解超声波检测法的基本原理、优点和应用局限性。 2、熟悉超声波检测设备的基本使用方法;熟悉使用垂直探头和斜探头探测试件内部缺陷的操作过程。 二、实验仪器设备(只需写明实验设备的重要组成部分,无需写具体型 号) 数字式超声波探伤仪、被测试块和耦合剂 三、实验原理 超声波工作的原理:主要是基于超声波在试件中的传播特性。a 声源产生超声波,采用一定的方式使超声波进入试件;b 超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;c 改变后的超声波通过检测设备被接收,并可对其进行处理和分析;d 根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 四、实验步骤 1.探头连接:将直探头、斜探头或其它类型探头与超声波探伤仪相连接。 2.超声波探伤仪基本参数的设定:根据探伤构件的材料、外形尺寸及选用的探头 类型,调节、设定超声波探伤仪的声速、声程等检测参数。 3.仪器校准:利用标准校准试块,校准仪器,设定仪器零点。 4.涂耦合剂:在探伤区域内涂抹耦合剂。 5.进行探伤操作。 五、实验结果描述 不同的缺陷显示的波形不一样,随着缺陷深度的增加,显示器上的波形也增加。 六、回答思考题 1、简述超声波检测法的特点及适用性。

答:a 适用于金属、非金属和复合材料等多种制件的无损检测;b 穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm 的薄壁管材和板材,也可检测几米长的钢锻件;c 缺陷定位较准确;d 对面积型缺陷的检出率较高;e 灵敏度高,可检测试件内部尺寸很小的缺陷;f 检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。 2、说明纵波探测法根据什么确定缺陷的位置和大小。 答:工件无缺陷时,只显示始波T和底波B。当工件中有缺陷时,在始波和底波之间出现一个伤波;当缺陷横截面积很大时,将无底波,声束被缺陷全反射。设探测面到缺陷的距离为x,材料厚度为t,从示波器始波T到伤波F的长度为LF,从始波到底波的长度为LB,可得x=(LF/LB)t。由此,可求出缺陷的位子。另外,伤波高度岁缺陷或损伤增大而增高,所以可由伤波高度估计缺陷或损伤的大小。当缺陷或损伤很大时,可以移动探头,按显示缺陷或损伤的范围求出缺陷或损伤的延伸范围。 3、分析超声波探测法中使用斜探头产生横波的特点,说明为什么在超声波检测中使用横波探测来辅助纵波探测。 答;通过选择探头角度,使声束与缺陷走向垂直,从而使反射回波最大,达到监测目的。横波检测可以弥补纵波检测的不足之处。用纵波直探头检测,工件中垂直于探测面的缺陷或损伤不易被发现。因此,常辅以横波检查。横波波长短,检查能力比纵波高,波束指向性好,分辨力强。

相关文档
最新文档