第四章 频率域激发极化法
其它电法:激发极化和电磁法
人工场源频率测深的激发方式有两种, 其中一种是利用接地电极,将交变电流送人 地下,当供电偶极,距离不很大时,由此而 产生的电磁场就相当于水平电偶极子的场, 另一种激发方式是采用不接地线框,其中通 以交变电流后在其周围便形成了一个相当于 垂直磁偶极子的电磁场。
三、甚低频电磁法
甚低频 (VLF)电磁法是一种被动源电 探方法,它利用超长波通讯电台所发射的电 磁波为场源,通过在地表、空中或地下探测 场的参数变化,从而来达到找矿或解决有关 水文工程地质问题的目的。
(二)联合剖面装置
联剖装置能得到2条ηs曲线,将2条曲线配合 起来作推断解释,能较准确确定极化体位置(根据 “反交点”)和判断极化体倾向。但联剖ηs曲线较复 杂,对相邻极化体的分辨能力较差,且对近地表小 极化体的干扰反映较灵敏,地形对异常的畸变也较 明显和复杂。
此外,从工作方法和技术看,电极距对联剖异 常的影响较大,恰当地选用电极距对联剖装置很重 要,有时甚至需要几种电极距作测量,这会使生产 效率降低;联剖需要敷设一条“无穷远线”,这不仅 使装置笨重,生产效率低,而且电磁耦合干扰问题 较大。故联剖不用作普查找矿的基本装置,仅在详 查中为解决特定问题(如确定极化体位置和产状 等),才在少数剖面上布置激电联剖测量,而且多 在时间域激电法中采用。
在我国,偶极装置主要用于电磁耦合问题 比较突出的频率域激电法。
四、激发极化法应用实例
(一)激发极化法在水文地质调查中的应用 不同岩、矿石的激发极化特性主要表现在二次
场的大小及其随时间的变化上。在金属矿的普查勘 探中,主要采用了表征二次场大小的参数,如极化 率及频散率等。但在水文地质调查中,我们更重视 表征二次场衰减特性的参数,如衰减度,激发比、 衰减时等。激发极化法在水文地质调查中的应用主 要有两点:一是区分含碳质的岩层与含水岩层所引 起的异常,二是寻找地下水,划分出富水地段。
电法勘探-直流电法-激发极化法
(1)装置类型 (2)极化体的导电性 (3)装置相对于极化体的位置 (4)充放电时间
注意与电阻 率和视电阻 率对比
二、激发极化法的仪器装备和工作方法
装置类型与电阻率法相同。联合剖面、中间梯度和电 测深装置;交流激电法常用偶极装置。常用中间梯度 和偶极装置
三、极化体的激电异常
(一)中间梯度装置的激电异常
不同岩矿石极化率对比表
(三)激发极化法测定的参数
2.视极化率ηs和视频散率Ρs Nhomakorabeas
V2 V
100 %
Ps
V f1 V f 2 V f2
100 %
在电场有效作用范围内各种岩矿石极化率或频散率 的综合影响值——视极化率或视频散率。
(三)激发极化法测定的参数
3.视极化率ηs和视频散率Ρs的影响因素
常用中间梯度和偶极装置三极化体的激电异常一中间梯度装置的激电异常三极化体的激电异常一中间梯度装置的激电异常三极化体的激电异常一中间梯度装置的激电异常三极化体的激电异常一中间梯度装置的激电异常注意两侧剖面注意两侧剖面极大值在地面极大值在地面上的投影并不上的投影并不在铜板正上方在铜板正上方三极化体的激电异常二联合剖面装置的激电异常三极化体的激电异常二联合剖面装置的激电异常三极化体的激电异常三偶极剖面装置的激电异常注意与直流电测深曲线对比三极化体的激电异常四测深装置的激电异常1211????四激发极化法的应用一高电阻率高极化率判断矿体倾向采用中梯装置电剖面法激发极化法四激发极化法的应用二
激发极化法(IP)的优点:
① 能寻找侵染状矿体。 ② 能区分电子导体和离子导体产生的异常。
③ 地形起伏不会产生假异常。
激发极化法(IP)的缺点:
① 矿化(黄铁矿化、石墨化的岩层)岩层产生 强激电异常
频率域激电法
1
x
RRa aRRb bRRc
(3.8)
由(3.7)式经过相当推演后,可将等效网络阻抗写成
ZiZ0 1m11i1c
(3.9)
CHINA
UNIVERSITY OF GEOSCIENCES
将阻抗Z(iω)和Z(0)对测量装置作归一化,计算电 阻率 KUKZ,则可得体极化条件下复电阻 率的表达式:I
UNIVERSITY OF GEOSCIENCES
我们考察矿化岩石(体极化体)内一个小单元[图
3-1(a)]其中脉石矿物(1)实际上为绝缘体;离子
导电(裂隙水)通道(2)概括为两条:a——未被
电子导电矿物粒(3)堵塞的通道和b——被电子导
电矿物粒堵塞的通道。a通道只有纯电阻Ra;而b通 道除离子导体和电子导体内部的纯电阻Rb之外,还 串联有电子导电颗粒表面极化的等效阻抗ZIP。根
CHINA
UNIVERSITY OF GEOSCIENCES
图2.3
CHINA
UNIVERSITY OF GEOSCIENCES
岩石颗粒-溶液界面上双电层的结构
图2.4 岩石颗粒表面双层变形引起的激电效应
CHINA
UNIVERSITY OF GEOSCIENCES
• 在外电流作用下,岩石颗粒表面双电层分散区之 阳离子发生位移,形成双电层形变(图2.4,b);
CHINA
UNIVERSITY OF GEOSCIENCES
• 1950年以前,所有的IP测量都是在时间域进行的。 1950年根据实验室的测量结果,科列特和赛格尔 提出了用不同频率的交流测量方式。维特大大地 扩展了这种方法的可能性,并在当年进行了成功 的实验
CHINA
UNIVERSITY OF GEOSCIENCES
激发极化法极化率衰减曲线测量技术
激发极化法极化率衰减曲线测量技术上海绿海电脑科技有限公司陆焕文电法勘探测量方法与仪器的分类:1:按电场生成分类:可分为天然电场法和人工电场法。
天然电场是大地中自然产生的,或者是有雷电,远距离长波无线电台发出的电场,底下电化学效应自己引起的电场(自然电场)。
人工电场是勘探人员用发送机法术固定的电流波形在底下建立的人工电场。
人工电场还可以分成传导类电场和感应类电场,传导类电场是发送机的发送电极接地的(用铜电极赶插入地下)。
感应类电场是用无线电发送天线向空中发射后感应到地下的,即发送机发送端不接地(如测地雷达)。
2:按被测的参数分类:根据测量不同的物探参数可以分成不同的测量仪器,从被测信号频率的高低可分成以下几类:* 直流:(超低频1HZ以下)直流电阻率法* 低频:(0.1HZ~20HZ)激发极化法* 音频:(20HZ~10KHZ)音频磁大地电流法3:按测量效率分类:按一次供电可同时测多少的物理册点分类:* 单点普通方法:每测一个物理点后要移动测量电极到新物理点再测,需要“跑极”,这种方法仪器简单,人工多,效率低。
* 多点同时测量的高密度法:这种方法可以一次发送机供电。
同时多个物理测点上同时测量,测量效率高,数据可靠性高。
高密度测量中还可分为多线制和总线制。
多线制是一台主机上引出多道测量线,用星形网直接接到不同物理点的MN接线电极上。
这种方法的缺点是要用长导线传诵模拟量ΔV信号,而ΔV信号是mV级的微弱信号,容易受空中电磁波干扰,测量精度受影响。
总线制是一台主机与多台从机用一根电缆连接起来,组成一个野外现成总线局域网,主机用数字通讯指挥各从机同时测量,测量完成后用数字通讯把各从机测得的信号分时传送给主机。
在长线上传送的是数字信号。
选用半双工的RS485通讯总线,距离可达1000米,数字不易受干扰,一根电缆线最多可以带128个从机。
4:按野外的布极方法分类,以下介绍几种常用的布极和K 值计算公式 * 中间梯度法A 供电电极组B 供电电极组 M NM NA MN 距(米) BKmn = (2π* AM * AN * BM * BN) / [MN *(AM * AN + BM * BN)]A,B供电电极是固定的,MN在A,B中间区域移动(在A,B的1/2区域内)*电测探法(对称测探法)BK值与中间梯度法计算相同,只是这儿的AM = BN在此M,N是固定在AB中间,而A,B供电电极是可以对称的向两边移动。
激发极化法
AB AB ≥ MN ≥ 的常规关系确定。为了满足这一关系,通常在一条 3 30
分布。一般
关于测量电极距 MN ,则可按 测深曲线上会出现 MN 的接头点。
几种装置在不同地电条件下的正演 曲线及异常规律
起伏地形条件下脉状体上中梯装置的 电阻网模拟剖面曲线
球体上方三种极距的ηs曲 线都有所谓的“反交点”。 交点两侧曲线成镜像对称, 随着AO的加在,两则极大 值向远离球体方向位移。 当然,如果AO(→∞)极 距足够远,两曲组将重合 成一条(相当于中梯)
交点 在两 板体 中间
高低不同两板体, 曲线不对称,如果 根据所夹面积解释 产装右倾,则出错 误
1 (L l) ( 1.2.17) 2 AO BO ≥ 3h 或 ( 1.2.18) 式中 L 为极化体走向长度; l 为极化体下延长度; h 为极化体顶端埋藏深度 AO BO
1 1 MN ~ AO 3 5
(1.2.19)
“无穷远” 极,应垂直测线方向布设,它与最近测线的距离应大于 AO 的 3-5 倍。当斜交测线方向布设 时,它与最近测线的距离应大于 AO 的 10 倍。
一般来讲,激电法可采用电阻率法中的各种装置类型。但究竟选择哪种装置采用多大电极距,还需根据任务要求,工作地区的地质、 地球物理条件和装置本身的特点等进行综合考虑。现对激电法中目前常用的几种装置类型特点及电极距的确定原则介绍如下,供参考。 (一)中间梯度装置 1.装置特点 中间梯度位置(简称中梯装置) ,它的最大优点,就是敷设一次供电导线和供电电极( A、 B)能在相当大的面积上进行测量,特别 是能用几台接收机同时在几条测线上进行观测(图 1.2.3) ,因而具有较高的生产效率。最适于做面积性普查工作。 另外,由于中梯装置的观测范围处于 A、B 之间的中间地段,接近于水平均匀极化条件,故对各种产状和不同相对电阻率的极化体, 均能产生较明显的异常,且异常形态比较简单,易于解释。 大家知道,中间梯度装置有纵向中梯和横向中梯之分。图 1.2.3 所示为常用的纵向中梯,即 AB 连线方向(测线方向)垂直于目标极 化体的走向。而横向中梯的 AB 连线方向则是与目标极化体的走向平行。由于横向中梯只适于勘查良导电或低阻脉状极化体,而对电阻 率与围岩相近或高于围岩的极化体则效果不佳。因此在金属矿产普查阶段应用较少。
第四章频率域激发极化法
第四章 频率域激发极化法频率域激电法主要使用偶极装置。
我国常用的频率域视激电参数为视频散率 P s ;80 年 代初期,研制和引进了相位激电仪,开始在频率域激电法中研究新的参数——视相位φs ; 随后又研制和引进了频谱激电系统,使视复电阻率频谱r s (i w )成了新的研究对象。
下面分别 介绍这些参数的异常形态。
3.4.1 视频散率异常除在小比例尺普查找矿阶段使用单个或两个极距作偶极剖面观测外, 通常偶极—偶极装 置都采用多个极距的测量,即供电和测量偶极长度保持相同(AB =MN =a ),逐个改变偶极间 隔系数(一般 n=1,2,3,……,6)进行观测。
所以,偶极—偶极装置兼有剖面法和测深 法的双重性质,它的观测结果,除可绘制成剖面曲线外,更多地是表示为拟断面图。
图 3.4.1 给出了低阻水平、倾斜、垂直板状体和水平圆柱体上偶极装置的视频散率 P s 拟断面图。
模拟参数表明围岩是不极化的,而低阻极化体的频散率 P 2®100%。
从图 3.4.1 可看到,不同形状和产状的极化体上的 P s 拟断面图有很大差别:低阻水平板状极化体的 P s 拟断面图的高值等值线对称地位于极化体两侧下方,呈“八”字形分布。
当一个偶极(AB 或 MN )位于远处,另一个偶极(MN 或 AB )位于极化体正上方,对极化体水平极化(即沿延伸方向极化),可得到最大的激电异常。
低阻倾斜板状极化体的 P s拟断面图具有不对称形状, 主异常的倾斜方向与极化体的倾向相反,极化体位于主异常等值线簇的上端附近。
P s 异常极大点位于 极化体下盘。
这是因为该点图3.4.2 体极化球体上偶极装置的视相位φs 剖面曲线和拟断面图球体参数:r 0=5;h 0=6,ρ20=10Ω·m ,m 2=0.6,c 2=0.25,τ2=1s ;围岩参数:ρ10=10Ω·m ,m 1=0.04,c 1=0.25,τ1=0.1s ;偶极长度 a=2;频率 f =1Hz 。
激发极化法
电法勘探:根据地壳中不同岩层之间、岩石和矿石之间存在的电磁性质差异,通过观测天然存在的或由人工建立的电场、电磁场分布,来研究地质构造、寻找有用矿产资源,解决工程、环境、灾害等地质问题的一种地球物理勘探方法。
方法分类:主动源人工或天然场源自然电场法被动源 大地电磁测深法甚低频电磁法电阻率法:以地壳中岩石和矿石的导电性差异为物质基础,通过观测与研究人工建立的地中电流场的分布规律进行找矿和解决地质电阻率法电磁法 充电法 激发激化法问题的一组电法勘探的分支方法。
充电法:向矿体充电,通过观测其充电电场的空间分布来了解矿体规模和赋存状态的电法勘探方法。
电磁法:是以地壳中岩、矿石的导电性、导磁性和介电性为主要物性基础,根据电磁感应原理,通过观测和研究电磁场的空间与时间分布规律,来寻找地下有用矿产资源和解决地质、环境工程等问题的一组电法勘探方法。
自然电场法:利用岩、矿石由于电化学作用在其周围产生的自然极化电场进行找矿、填图和解决水文地质问题的一种被动源电法勘探方法。
大地电磁测深法:利用在低、中频率范围很宽(10-4-104Hz)广泛分布的天然变化的电磁场,进行深部地质构造研究的一种频率域电磁测深法。
甚低频电磁法:利用分散在全球各地数十个频率为15-25kHz的长波电台作为场源,进行地质矿产及水资源勘查。
激发极化法一、概念1、激电效应在向地下供入稳定电流时,测量电极间的电位差随时间而变大并经过一段(一般约几分钟)时间后趋于某一饱和值(充电过程);在断开供电电流后,测量电极间的电位差在最初一瞬间很快下降而后随时间相对缓慢地下降,并经过一段(一般约几分钟)时间后衰减接近于零(放电过程)。
这种在充电和放电过程中产生随时间缓慢变化的附加电场现象,称为激电效应(激发极化效应)。
2、激发极化法它是以地壳中不同岩、矿石的激电效应差异为物质基础,通过观测与研究人工建立的直流(时间域)或交流(频率域)激电场的分布规律进行找矿和解决地质问题的一组电法勘探分支方法。
4激发极化法解析
第一节激发极化法基础
一、岩石和矿石的激发极化机理
(一)电子导体的激发极化机理 电子导体(包括大多数金属矿和石墨及其矿化岩石)的激发极化机理一般认 为是由于电子导体与其周围溶液的界面上发生过电位差的结果。 在一定的外电流作用下,“电极”和溶液界面上的双电层电位差相对平衡电 极电位之变化,在电化学中称为“过电位”或“超电压” 。
式中deltU2(T,t)是供电时间为T和断电后t时刻测得的二次电位差。 极化率是用百分数表示的无量纲参数。由于deltU2(T,t)和deltU (T)均与供电电流I成正比(线性关系),极化率是与电流无关 的常数。但极化率与供电时间T和测量延迟时间t有关,因此,当 提到极化率时,必须指出其对应的供电和测量时间T和t。为简单 起见,如不特加说明,一般便将极化率yita定义为长供电和无延 时的极限极化率。 U ( ) U (0) (T , t ) |T ,t 0 U ( )
s (T , t y )
U 2 (t y ) U (T ) 100% ms (T , t y t j / 2)
t y t j ty
U 2 (t ) dt U (T )
时间域激电法的观测仪器较易制造,而且由于通常是观测供电脉冲断 开几百毫秒之后的二次电位差,受电磁耦合的干扰较小,故工作方法和解 释理论都比较简单。但这种时间感观测仪器乃是宽通带的接收机,对大地 噪声、工业游散电流和极化不稳等的抗干扰能力差,加之待测的二次电位 差通常远比一次电位差小,为提高信噪比往往要求大功率供电,从而使这 种方法的装备十分笨重,生产效率较低、成本高。
时间域谱激电法:是既保持频谱激电法能获得丰富信息的优 点,又能提高生产效率的一种新方法。这种方法观测直流脉冲激 发下总场电位差的充电过程 ΔU(T)(次要的)和断电后二次电位 差的放电过程ΔU2(t)(主要的)。 根据时间特性和频率特性的等效性可知,时间域谱激电法能 获得频谱激电法同样的信息;而前者原则上讲只要作一次测量便 可获得所需的时间谱数据。由于微电子技术的发展,当代时间域 激电测量系统已能通过自动跟踪和补偿极化电位差、信号增强技 术和数字滤波等来有效地压制干扰,克服早期时间域测量的缺点, 使时间域谱激电测量成为可能。不过,目前时间域谱激电法还有 一些理论和技术问题有待研究和完善,可能还要经过几年才能成 熟。
地球物理勘探-第四章电法勘探
总场
绝对测量 相对测量
辐射场
异常场
地质雷达 甚低频法
相对测量
瞬变场
异常场
绝对测量
连续波电磁测井 瞬变脉冲电磁测井 井中无线电波透视
频率电磁测深法 多频振幅相位法 多频振幅法 水平线圈法 倾角法 椭圆极化法 振幅比相位差法 虚分量法
瞬变脉冲电磁法
天然场
天然音频磁场航空电法
航
空
连续波航空电法
人工场
瞬变脉冲航空电法
影响视电阻率的因素有: (1)电场作用范围内地电断面——本身的电阻率分布,如断面中 各地层或地质体的电阻率、形状、规模、厚度、埋深等; (2)电极装置的类型、电极距的大小、测点位置、电场有效作用 范围等。
3.电阻率法的物理实质
s
j0
jMN
cos
MN
s
jMN j0
MN
地下电阻率为均匀的介质
• 一般来讲,对一定埋深和一
定大小的良导矿脉而言,当电极
AO小
距AO很小时,随AO的增大,异
α=0°
常明显增大,曲线歧离带越明显
AO中Βιβλιοθήκη ,但当AO增大到一定程度后,异
α=30°
常不再增加,反而开始下降,当 AO大 α=60°
AO很大时,异常将趋于零,两条
曲线基本重合,更没有歧离带可
A a
言。
α=90°
三、电测深法
1.概述 电测深法是探测电性不同的岩层沿垂向分布情况的电阻率
方法。该方法采用在同一测点上多次加大供电极距的方式, 逐次测量视电阻率ρs的变化。
电测深法适宜于划分水平的或倾角不大(<20°)的岩层,在 电性层数目较少的情况下,可进行定量解释。
电法-激电法
判断倾向?
北测区ρs (a),Fs(b)等值线 平面图
案例2
中梯法
A 判断矿体电阻率和极 化率性质? B 判断矿体倾向? C 优先设计那个钻孔?
案例3
天堂
垂直分带,一般在950米以上 均为锰矿体,无铅锌矿化,在 850米左右则开始见有铅锌矿 化,而在700米以下则多为铅 锌矿化,锰矿化较弱。
2)脉状极化体的激电异常
①直立椭球体主剖面上的视极化率异常
A高极化良导脉体
与激化场垂直
与激化场一致
当其走向与激发场方向一致时(b),极化体对其附近与其平行的极化电流有 强烈的吸引作用,使电流更多的从极化体内部通过,从而使激发极化效应增强。 此外,极化体强烈吸引其附件电流的结果,将使极化体上方地面附近的一次场 电流密度大为减小,从而使这里的总场也相应减弱。垂直-吸引不那么强
(2)时间制式
时间域激发极化法供电方式有单向长脉宽和双向短 脉宽两种。在普查和大部分详查区应采用双向短脉 宽供电方式。研究异常或解决某些特定的问题时, 也可采用长脉宽供电方式。
一般供电时间5秒,周期20秒,断电延时200 ms (具体情况具体设置)
(3)工作精度
无位差(无点位误差),是U、I 的观测误差和其他误差的叠加 有位差(有点位误差)是装置误差和无位误差的叠加
常见岩石的极化率一般为1%~2%左右,个别可达4 %~5%;多金属硫化矿物因含有电子导体极化率一 般比较高,可达10%~50%,但金属氧化矿的极化率 一般比较低;含炭岩层和石墨的极化率一般比较高, 也可达10%~50%。
(6)几种规则形体的激电异常
装置类型与电阻率法相同。 直流激电法常用联合剖面、中间梯度和电测深装置; 交流激电法常用中间梯度和偶极装置。
激发极化法
激发极化法
一, 激发极化法原理
3,激发极化法测量参数 , (1)极化率 )
η 和视极化率ηs
η=
U 2 ×100% U
激发极化法
一, 激发极化法原理
3,激发极化法测量参数 , (2) )
激发极化法
一, 激发极化法原理
3,激发极化法测量参数 , (3) 激发极化时间特性参数 ) 二次场在衰减中是一个较复杂的电化学过程,不 二次场在衰减中是一个较复杂的电化学过程, 同岩石成分,结构和含水层上二次场衰减是不同的, 同岩石成分,结构和含水层上二次场衰减是不同的, 如在含水层上二次场衰减慢, 如在含水层上二次场衰减慢,而在非含水层上衰减较 快.
激发极化法
一, 激发极化法原理
3)激发极化法测量参数 ) (3) 激发极化时间特性参数 ) 衰减时S: ① 衰减时 : 是指把断层瞬时所测得的二次场 U 2定为 100%,则 U 2 衰减到某一规定数值(如 , 衰减到某一规定数值( 50%,75%,45%和30%)时所需要的时 , , 和 ) 间称为衰减时,单位为秒. 描述了二次 间称为衰减时,单位为秒.S描述了二次 衰减的快慢. 场 U 2 衰减的快慢.
激发极化法
二, 激发极化电位形成的物理化学过程
2,离子导体激发极化效应 ,离子导体激发极化效应——薄膜极化假说 化效应 薄膜极化假说
激发极化法
二, 激发极化电位形成的物理化学过程
电子导体激发极化场的强弱决定于激励电流的大小和作用 时间长短,以及电子导体的电化学活动性大小等; 时间长短,以及电子导体的电化学活动性大小等; 离子导体的极化电位大小与很多因素有关,其中起主要作 离子导体的极化电位大小与很多因素有关, 用的是湿度,孔隙水含盐浓度, 用的是湿度,孔隙水含盐浓度,岩石颗粒大小及激励电流大小 等. 影响极化电位衰减速度的因素有:岩石颗粒大小, 影响极化电位衰减速度的因素有:岩石颗粒大小,含粘土 成分多少,岩石的孔隙度大小,湿度及地下水流动情况等. 成分多少,岩石的孔隙度大小,湿度及地下水流动情况等.
激发极化法
比例系数η表征了岩石的激发极化性质,称之为“极化率”,通常用百
分数来表示。于是上式改写为:
η= ∆V2/ ∆V.100%
式中 ∆V2: 是断电瞬间(没有延时时间)的二次场电位差
∆V:是达到饱和值的极化场电位差(∆V1+ ∆V2)
极化率η的物理意义:岩石在外电场的激发下,二次场与极化场
(2) 不同的岩矿石的充、放电时间特征 也不一样
a)一般来说在相同激励条件下,面极 化介质(致密块状矿体)达到饱和渐近值所 需的时间,比体极化介质(浸染状矿体)达 到饱和渐近值所需的时间长。
b)颗粒大、孔隙大、富水性强的体极 化介质,其充、放电速度更慢,即高含 水性的岩石比含水性差的岩石充、放电 时间长 。
(3)磁性矿物的非线性特征与石墨相似;而方铅矿、黄铜矿的非 线性特征与黄铜矿相似。
值得注意的是:在野外实际勘查中,在同装置、同极 距、同测点等相同条件下,在测量误差允许范围内,不 会因改变电流而引起 ηs的变化。这是因为一次场的电 流密度在线性段电流密度小于5μA/cm2的条件,例如 在均匀半无限介质表面上有一点电源A,供电电流强度 I=1A,在距A点10米处的M点的电流密度:
2)当有外加电流流过上述电子导体-溶液系统时,电子导体两端电极电位 产生偏差而出现“过电位”(也叫“超电压”),电极开始极化,电子导体内 部的电荷将重新分布形成“阴极”及“阳极”。由于电化学反应速度滞后于电 荷传递速度,形成电荷堆积(充电过程),在周围溶液中也分别于电子导体的 “阴极”和“阳极”处,形成阳离子和阴离子的堆积,使正常双电层发生变化 ,见图1.2b。
CSUT
第一节 激发极化法的基本原理
一、 稳定电流场中的激发极化法效应
第四章 第六节 激发极化法
在进行电阻率法测量时,人们常常发现:在 向地下供入稳定电流的情况下,仍可观测到测量 电极间的电位差随时间而变化(一般是变大), 并经相当时间(一般约为几分钟)后趋于某一固 定的饱和值;在断开供电电流后,测量电极间的 电位差在最初一瞬间很快下降,而后便随时间相 对缓慢下降,并在相当长时间后(通常约为几分 钟)衰减接近于零。
一、直流激发极化法的基本原理 关于激电效应的机理,以往曾提出许多不同 的假说,直至目前仍处于研究中。本节仅介绍几 种较为公认的假说。 1.电子导体的激发极化机理 目前,国内、外对电子导体(包括大多数金 属矿石和石墨及其矿化岩石)的激发极化机理问 题,意见比较一致,一般认为是由于电子导体与 其周围溶液的界面上发生超电压(overvoltage) 的结果。
三、直流激发极化法的应用 激电法的应用范围很广,无论在金属和非金 属固体矿了成功的应用。 1.在寻找铜矿床上的应用 2.在铅锌矿床上的应用 3.利用激发极化法寻找地下水
双频激电法及其发明人何继善 双频激电法是唯一的一种由中国人提出原理, 由中国人发明仪器,在辽阔的中国土地上取得成 功应用的电法勘探仪器和方法。
这种在充电和放电过程中产生随时间缓慢变 化的附加电场现象,称为激发极化效应(简称激 电效应),它是岩、矿石及其所含水溶液在电流 作用下所发生的复杂电化学过程的结果。激发极 化法(简称激电法)是以不同岩、矿石激电效应 只差为物质基础,通过观测和研究大地激电效应, 来探查地下地质情况的一种分支电法。本法目前 在我国应用很广,地质效果引人重视。
创立和发展了以伪随机信号电磁法和双频激 电法为特色的资源勘探地球物理的理论和方法, 被国际上誉为应用地球物理界的一重大事件。发 明和研制出一系列具国际先进水平的仪器,其中 双频激电仪仅1980年至1985年间就创价值418万 元,他的理论、方法和仪器在全国应用,已找到 一大批矿产,据专家鉴定已探明储量计算,潜在 经济价值超过800亿元,其系列仪器在地勘和工 程勘察中得到广泛应用,获得了国内外同行专家 承认与高度评价。创立“拟合流场法”探测堤防、 大坝、矿山、建筑物等的隐蔽渗漏,在全国得到 推广应用。
电法勘探4-激发极化法
综上所述,各种交流激电参数和直流激 电参数均可相互联系起来,即相位和频 散率及极限极化率和实测极化率参数间, 都近似地存在正比关系。 研究其中某种参数的性质便可代表其余 参数的有关特征。
4.激发极化法的工作方法
采用不极化电极
激发极化法装置的选取
原则上讲,电阻率法的各种电极装置都可用于 激电法,不过,这些装置在激电法中的特点和效 能各不相同,故应根据激电法的地质任务、工区 地电条件和仪器、设备情况,合理选用装置类型。 现对激电法中几种常用装置的特点和效能作些对 比性的讨论,以供选择装置时参考。
极化率的影响因素
体极化岩、矿石的极化率除了与观测时的充放 电时间有关外,还和岩、矿石的成分、含量、 结构及含水性等多种因素有关。 我国物探工作者对大量矿化岩、矿石标本作了 系统观测 ,研究了多种因素对岩、矿石极化 率的影响规律,研究结果表明,在上述诸多因 素中,影响 岩、矿石极化率的主要因素是电 子导电矿物的含量和岩、矿石的结构、构造。
(3) 非矿化岩石的激发极化效应
不含电子导电矿物的非矿化岩石,属纯离子导体, 在电流激发下的激发极化都发生在细小岩 石颗 粒与周围溶液的界面上,也是体极化。 但其激电性质又与矿化岩石不同: ①岩石的极化率通常很低,一般不超过1~2%, 少数能达到4~5%。 下面列举了一些岩石和矿石极化率的实测数据的 统计结果,它表明了一般情况下,岩、矿石极化 率的数量概念。
U t 2 1000 (T , t ) 0 U (T )
极化率为用百分数表示的无量纲参数
为简单起见,我们将长时间供电(T→ ∞,即充 电达饱和)和断电瞬间(t→0)测得的饱和极化率 η(∞,0)定义为极化率 ,记为η。
激发极化法Tgeophys_InducedP_1
电子导体
1 激发极化法概述
• 电子导体的激发极化过程
⒈电子导体的激发激化机理
电流
j j
电流
6
1 激发极化法概述
过电位的产生与电流流过电极-溶液界面相伴随的 一系列电化学反应的迟缓性有关。 当电流于“阴极”从溶液进入电子导体时,溶液中 的载流子从电子导体表面获得电子,实现电荷的传 递;同样,当电流于“阳极” 流入溶液时,溶液中的 载子(阴离子)将释放电子。若此速度极快,便不会 在界面两侧形成异性电荷的堆积,因而不会形成过电 位;但实际上电极过程的速度有限,因此形成过电位 随着通电时间的延续,界面两侧堆积的异性电荷将 逐渐增多,过电位随之增大,直至过电位便趋于某一 个饱和值,不在继续增大。这便是过电位的形成过程 或充电过程。过电位的饱和值与流过界面的电流密度 有关,并随其增大而增大。
⒉ 参数选择和确定
tgη s1 − tgη s 6 Cs = tgθs = tgt6 − tgt1 式中:θS为直线与横坐标的夹角;η S1为延时t1所测得的ηS; ηS6为延时t6所测得的ηS;t6>t1(取t1=75ms,t6=1400ms) Cs值的实际求法是将各测点上采集的六个不同积分段的极化率 值(ηS1~ηS6),作最佳线性拟合,求得直线斜率(Cs)。
tgη S 1 − tgη 2 tgη S 2 − tgη S 3 tgη S 1 − tgη S 2 + + tgt 2 − tgt1 tgt 3 − tgt 2 tgt 3 − tgt1 C BS = tgη 4 − tgη S 5 tgη S 5 − tgη S 6 tgη S 4 − tgη S 6 式中:t1-t6S分别取 75 +、150、300、 +550、900、1400ms,CBS参 tgt 5 − tgt 4 tgt 6 − tgt 5 tgt 6 − tgt 4
《频率域激电法》课件
详细描述:频率域激电法的应用在一定程度上降低了矿 产资源勘探的成本,减少了传统勘探方法所需的钻孔数 量和勘探周期,提高了勘探效率。
在工程地质勘察中的应用
总结词
全面了解地质结构
抗干扰能力强
由于信号传输过程中具有稳定 性,频率域激电法在复杂环境 下仍能保持较高的测量精度。
测量速度快
通过预先设定频率,频率域激 电法能够快速完成大面积的测 量工作,提高工作效率。
适用范围广
频率域激电法不仅适用于金属 矿勘探,还可应用于非金属矿 、油气田、水文地质等领域。
频率域激电法的缺点
成本较高
智能化与自动化
随着人工智能和自动化技术的发展,频率域激电法的测量和数据处理 过程将更加智能化和自动化,提高工作效率。
THANKS FOR WATCHING
感谢您的观看
数据处理方法
频率域激电数据处理
01
数据滤波:提取有效信号,抑制干扰和噪 声
03
02
傅里叶变换:将时域信号转换为频域信号, 便于分析频率特征
04
反演计算
基于测量数据,通过反演算法计算地下电 性参数分布
05
06
确定地质异常体的位置和规模
结果解释与推断
结果解释
识别地质构造、矿体等异 常体
根据反演结果,推断地下 地质体的空间分布和规模
02
频率域激电法的基本原 理
电磁感应原理
变化的磁场产生电场
这是电磁感应的基本原理,当导体回 路中的磁场发生变化时,会在回路中 产生感应电动势。
频率域激电法的应用
第四章频率域激发极化法
第四章频率域激发极化法第四章频率域激发极化法频率域激电法主要使用偶极装置。
我国常用的频率域视激电参数为视频散率 P s ;80 年代初期,研制和引进了相位激电仪,开始在频率域激电法中研究新的参数——视相位φs ;随后又研制和引进了频谱激电系统,使视复电阻率频谱r s (i w )成了新的研究对象。
下面分别介绍这些参数的异常形态。
3.4.1 视频散率异常除在小比例尺普查找矿阶段使用单个或两个极距作偶极剖面观测外,通常偶极—偶极装置都采用多个极距的测量,即供电和测量偶极长度保持相同(AB =MN =a ),逐个改变偶极间隔系数(一般 n=1,2,3,……,6)进行观测。
所以,偶极—偶极装置兼有剖面法和测深法的双重性质,它的观测结果,除可绘制成剖面曲线外,更多地是表示为拟断面图。
图 3.4.1 给出了低阻水平、倾斜、垂直板状体和水平圆柱体上偶极装置的视频散率 P s 拟断面图。
模拟参数表明围岩是不极化的,而低阻极化体的频散率 P 2?100%。
从图 3.4.1 可看到,不同形状和产状的极化体上的 P s 拟断面图有很大差别:低阻水平板状极化体的 P s 拟断面图的高值等值线对称地位于极化体两侧下方,呈“八”字形分布。
当一个偶极(AB 或 MN )位于远处,另一个偶极(MN 或 AB )位于极化体正上方,对极化体水平极化(即沿延伸方向极化),可得到最大的激电异常。
低阻倾斜板状极化体的 P s拟断面图具有不对称形状,主异常的倾斜方向与极化体的倾向相反,极化体位于主异常等值线簇的上端附近。
P s 异常极大点位于极化体下盘。
这是因为该点图3.4.2 体极化球体上偶极装置的视相位φs 剖面曲线和拟断面图球体参数:r 0=5;h 0=6,ρ20=10Ω·m ,m 2=0.6,c 2=0.25,τ2=1s ;围岩参数:ρ10=10Ω·m ,m 1=0.04,c 1=0.25,τ1=0.1s ;偶极长度 a=2;频率 f =1Hz 。
大地电磁场课件:EM4-激发极化法
(二)椭球状极化体上的中梯激电异常
椭球体可代表具有一定走向延伸的极化体
实际工作中采用两种中梯装置: 一、纵向中梯装置(常用):
A、B、M、 N方向垂直于极化体的走向;
二、横向中梯装置: AB与MN平行于极化体走向,测线仍垂直于极化体走向,M
极与N极分别在两条测线的对应点上。
比纵向中梯的异常幅度大得多。
⑤对于高阻极化体,情况相反,
纵向中梯比横向中梯的异常幅 度大.
④原因:低阻极化体吸引电流,外电场平行走向时(横向装 置),极化体吸引电流更多,流过极化体的电流较多,极化作用 较强,总场电位差较小,异常较明显。
⑤原因:高阻体排斥电流,外电场平行走向时(横向装置), 电流受高阻极化体排斥强,流过极化体的电流较少,极化作用较 弱,加之极化面积较小,异常较小。
②异常特征由球外二次场的电流分布
(虚线)解释。
③④异异常常幅幅度度随随埋球深体增其大余急 几剧 何减 参小 数smax和 电Mh03v
参数的变化规律。
2.异常的平面分布
①平面等值线拉长,走向垂直于
外电场方向。
②改变供电(即测线)方向,延
伸方向改变。
平面图不反映极化体走向;
可用以判断极化体与围岩的相对导电性。
横向中梯装置在良导电极化体上激电异常较强,可用于在高 阻矿化背景上寻找有一定走向的低阻矿体。
2.倾斜椭球体 (1)2 =1时: ①不对称的正异常; ②异常极大点不在极化体上顶; ③倾斜向下降缓,负极值不明显; ④反倾斜向下降较陡,负极值明显。
(2)2 =0.1时(良导极化体): ①异常仍保持 2 =1时基本特征; ②异常幅度更大些; ③极大点向倾斜方向移动更远; ④曲线的不对称性更强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图3.4.1 偶极装置的不同形状和 产状二维低阻极化体上的Ps拟断 面图(导电低模拟) 围岩电性:ρ 1(fD)=1,ρ 1 (fG)=1,即P1=0;极化体电 性:ρ 2(fD)=0,ρ 2(fG) =0.1,即P2→100%。极化体的断 面形状已绘在相应的拟断面图
与极化体的倾向相反,极化体位于主异常等值线簇 的上端附近。Ps 异常极大点位于极化体下盘。这是因为 该点对应的供电和测量偶极(中心在 O1 和 O2)的电流 线均沿长轴通过极化体,而对于低阻极化体这正是最佳 极化耦合位置,故激电异常最大;低阻直立板状极化体 拟断面图的 Ps 高值等值线对称地位于极化体中心附近, 并近于呈三角形。对于各种电极距(n=1,2,„„,8) , 均为装置中心位于极化体正上方(供电和测量偶极对称 地位于极化体两侧)时取得异常极大值。因为此时地下 一次场电流线均近于沿长轴(即铅垂方向)或与长轴成 较小交角通过极化体,成为最佳极化耦合状态;水平圆 柱状极化体的 Ps 拟断面图呈“背斜”形式,其“轴部” (异常中心)大致在极化体中心附近。
3.4.2 视复电阻率频谱异常
图3.4.3 体极化球体上方不 同测点的 视相位频谱曲线h0=8,m1=0, n=5,其余条件同图3.4.2实 线表示负相位值,虚线表示 正相位值
二、不同相对电阻率的视相位频谱
图3.4.4 体极化球体正上方不同相对电阻率μ20的视相位频谱曲线 (四级近似计算结果)。曲线旁的数字表示μ20值,其余条件同图3.4.3
第四章 频率域激发极化法
频率域激电法主要使用偶极装置。 我国常用的频率域视激电参数为视频散 率Ps;80年代初期,研制和引进了相位 激电仪,开始在频率域激电法中研究新 的参数——视相位φs;随后又研制和引 进了频谱激电系统,使视复电阻率频谱 s(i)成了新的研究对象。下面分别介 绍这些参数的异常形态。
图 3.4.2 给出了频率 f=1Hz 时,一个体极化球 体上不同偶极间隔系数(n)的偶极装置视相位s 剖面曲线和拟断面图。它是在半空间条件下用近 似算法获得的。可以看出, s 剖面曲线在偶极间 隔小时(n=2) ,在球心正上方有 s(负值)的单 峰主极值,两侧出现异性次极值。虽然对视激电 相位s 来说,极化体正上方的主极值为负值,但 我们仍按常规激电法的习惯称其为“正异常” ;同 样,还将其两侧的反相异常称为“负异常” 。随着 偶极间隔增大(n=4) ,异常幅度变大,范围变宽; 但当偶极间隔很大时(n=8) ,球上出现双峰,且 主极值幅度略有减小。
3.4.3 频率域激电法的应用
图3.4.7 ××铜矿Ⅰ剖面频谱 激电地质综合剖面图 偶极装置:a=40m,n=1~6 1—T2Z周冲村组;2—T1s上青 龙组;3—T1x下青龙组;4— P2l龙潭组;5—P1q栖霞组; 6—S2f坟头组; 7—o石英闪长玢岩;8— 花岗闪长斑岩;9—黄铁矿化 花岗闪长斑岩;10—μ闪长玢 岩脉; 11—断层;12—铜钼矿化层
信息工程学院
3.4.1
视频散率异常
除在小比例尺普查找矿阶段使用单个或两个极距作 偶极剖面观测外, 通常偶极—偶极装置都采用多个极距的 测量,即供电和测量偶极长度保持相同(AB=MN=a) ,逐 个改变偶极间隔系数(一般 n=1,2,3,„„,6)进行 观测。所以,偶极—偶极装置兼有剖面法和测深法的双重 性质,它的观测结果,除可绘制成剖面曲线外,更多地是 表示为拟断面图。
图 3.4.1 给出了低阻水平、倾斜、垂直板状体和水 平圆柱体上偶极装置的视频散率 Ps 拟断面图。模拟参 数表明围岩是不极化的,而低阻极化体的频散率 P2100%。 从图 3.4.1 可看到,不同形状和产状的极化体上的 Ps 拟断面图有很大差别:低阻水平板状极化体的 Ps 拟断 面图的高值等值线对称地位于极化体两侧下方,呈 “八”字形分布。当一个偶极(AB 或 MN)位于远处, 另一个偶极(MN 或 AB)位于极化体正上方,对极化 体水平极化(即沿延伸方向极化) ,可得到最大的激电 异常。低阻倾斜板状极化体的 Ps 拟断面图具有不对称 形状,主异常的倾斜方向
图3.4.2 体极化球 体上偶极装置的 视相位φ s剖面曲 线和拟断面图 拟断面图中 实 线—“正异常”等 值线;虚线—“负 异常”等值线; 点划线—“零异常” 等值线;点线— 球体断面
对高阻极化体的模拟结果表明,高阻直立板状极 化体和低阻水平板状极化体的 Ps 拟断面异常形态相 同;而高阻水平板和低阻直立板的异常形态相似;高 阻倾斜板的异常形态则和反向倾斜的低阻板的异常形 态差不多;至于高阻圆柱状极化体,其异常形状基本 上和低阻圆柱状极化体的相同。以上不同导电性和不 同产状极化体的激电拟断面图异常形状的相似性,可 归纳为所谓“拟断面图异常的正交特性” ,即高阻板状 极化体和与之正交的低阻板状极化体的激电拟断面图 异常形态相同; 对于等轴状截面的水平圆柱体则是 “自 正交” ,即高阻和低阻极化体的激电异常形态彼此相 同。
图3.4.5 在具有不同真谱参数的球体正上方视充电率ms(虚线)和视时间常数τs(实线)随 相对电阻率μ20的变化曲线源自图上标注者外,其余条件同图3.4.3
三、不同埋深时的视相位频谱
图3.4.6 体极化球体正上方视充电率ms和视时间常数τ s随球心相对深度h0/r0的变化曲 线(四极近似计算结果,条件同图5.4—4)