生物质能利用原理与技术绪论详解演示文稿

合集下载

生物质能源利用简介(课件)

生物质能源利用简介(课件)

2)生物质热解的原理 包括分子键断裂,异构化和小分子聚合等反应。 3)影响生物质热解的因素 a.热解的最终温度:木炭产量随温度升高逐渐降低 木醋酸组成在270-400 0C变化较大,〉4000C变化 不显著。 b. 升温速率:加热速率加快,木炭产量下降,焦油产量增加,最大可 达80%的生物原油产率 c. 压力:在1.33Pa的真空下热解,不释放热量,3.15MPa热解,放大 量的热。 d. 含水率:含水率过高,热解所需时间较长。较干的木材热解会放热 较快,降低木炭产量 e. 木炭的形态:沿纤维方向的热导率比纤维垂直方向的热导率大。 f. 反应的气氛:采用过热蒸汽处理,可得到酸率8%。
3)生物柴油的燃料特性 生物柴油与常规柴油的特性比较 主要燃料特性 相对密度 动力粘度40 0C/mm2/s 闭口闪点/0C 生物柴油 常规柴油 0.88 4-6 ﹥100 0.83 2-4 60 主要燃料特性 十六烷值 燃烧功效(柴油=100%) /% S(质量分数)/% 生物柴油 常规柴油 ≧56 104 ﹤0.001 ≧49 100 ﹤0.2
1)二甲醚性质 CH3OCH3,低毒,具有麻醉作用。
1)二甲醚性质 CH3OCH3,低毒,具有麻醉作用,是汽油柴油的有力竞争者。 二甲醚的燃料特性
性质
相对密度/(kg/L) 十六烷值 2)生产工艺 a. 甲醇脱水法 b. 合成气合成
数值
0.75 55
性质
爆炸极限/% 低位发热量/(MJ/kg)
数值
5.3
生物燃料乙醇
1)乙醇的制备方法 a. 化学合成法 乙烯水合法(硫酸水合法、直接水合法),乙醛加氢法 b. 发酵法 利用微生物的发酵作用将糖份活淀粉转化为乙醇的方法。 世界60%乙醇由甜菜发酵而成,7%化学合成,33%其他原料,1998年统计数据。 2)无水乙醇的制备 a. 吸水剂脱水法 CaO+H2O—Ca(OH)2 CaO+2CH3COOH—(CH3COO)2Ca+H2O 副反应 b. 分子筛法 水分可被沸石分子筛吸附(吸附的3/4为水,1/4为乙醇) c. 共沸脱水法 向乙醇水溶液中加入苯或戊烷、环己烷等,形成三元共沸物。 d. 真空蒸馏法 真空条件下,乙醇-水的共沸物向乙醇浓度增大的方向发展。 e. 蒸馏-膜脱水法 将蒸馏的酒精通过高分子膜塔制得无水乙醇。

生物质能.最全PPT

生物质能.最全PPT

3、生物质热解
生物质 隔 绝空 气 固体、气体、液体燃料
比较
气化
热解
气化剂
空气、氧气、氢气、水蒸汽
不加
产物 加热
可燃性气体 靠自身氧化过程中产生热量
液、气、炭三态 需要加热
➢生物质热分解的主要工艺类型
工艺类型
慢速 快速 反应性
炭化 常规
快速 闪速l 闪速g 极快速 真空
加氢 甲烷
滞留期
数小时~数天 5~30min
缺点: 1、添料不方便; 2、适用于含焦油较少的燃料; 3、不适于不易燃烧的燃料。
平吸式煤气发生炉
2000℃
特点: 反应温度高,还原区小 适用于含焦油很少及含灰分 不大于5%的燃料。 如:无烟煤、焦炭、木炭等。 在南美洲得到广泛应用。
流化床式煤气发生炉
2.3 生物质原料与煤原料比较
• 生物质原料来源广泛,价廉易取。气化所用的原料主要是原木生产及木材加工的残余 物、薪柴、农业副产物等,包括板皮、木屑、枝杈、秸秆、稻壳、玉米芯等。
现代 • 木质废弃物(工业性的) • 甘蔗渣(工业性的) • 城市废物 • 生物燃料(沼气和能源型作物)
• 农作物类:包括产生淀粉可发酵生产酒精的薯类、玉米、甜高梁等,产生糖 类的甘蔗、甜菜、果实等。
• 林作物类:包括白杨、悬铃木、赤杨等速生林种,芦苇等草木类及森林工业 产生的废弃物。
• 水生藻类:包括海洋生的马尾藻、巨藻、石莼、海带等;微藻类的螺旋藻、 小球藻等.以及蓝藻、绿藻等。
0.5~5s <1s <1s <0.5s 2~30s
<10s 0.5~10s
升温速率
非常低 低
较高 高 高
非常高 中
高 高

生物质能利用原理与技术---第三章厌氧过程与沼气技术PPT课件

生物质能利用原理与技术---第三章厌氧过程与沼气技术PPT课件
有机物是覆盖地表植被在阳光作用下的产物,从光合作用的角度来说,沼气是 一种可再生能源。
厌氧过程:
有机物被厌氧菌在厌氧条件下分解产生甲烷和二氧化碳的过程。
.
25
1 厌氧过程的基本原理
早在19世纪人们就已经知道沼气的产生是一个微生物学过程。1965年美国微 生物学家Hungate教授创立了严格厌氧微生物培养技术,人们逐步开始认识到沼 气发酵的本质,揭示了沼气发酵的微生物学原理:
表2.几种有机物质的产气速度
为了使天然有机物质易于分解,以加强发酵菌的营养,要求培养基(为沼气微生 物提供生存营养的固性物质)有较大的反应表面,所以必须将含有不溶性物质的 原料粉碎。
.
42
产气率分为原料产气率、料液产气率、池容产气率几种
① 原料产气率:是指单位原料重量在整个发酵过程中的产气量口说明在一定的 发酵条件下,原料被利用水平的高低,或发酵原料的产沼气能力。原料产气 率的表示方法有三种:
.
44
4.料液浓度
料液中干物质含量的百分比为料液浓度 一般要求:夏季浓度在6%左右;冬季浓度在8%左右。
发酵料液的浓度太低或太高,对产生沼气都不利,因为: ① 浓度太低时,即含水量太多,有机物含量相对减少,会降低沼气池单位容积
中的沼气产量 ② 浓度太高时,即含水量太少,不利于沼气细菌的活动,发酵料液不易分解,
.
30
③ 产甲烷阶段
有机酸、 醇以及二 氧化碳和
氨等
产甲烷微生物群
甲烷+二氧化碳
随后,这些有机酸、醇以及二氧化碳和氨气等物质又被产甲烷微生物群利用,分 解形成甲烷和二氧化碳。
注意:
上述三个阶段的界线和参与作用的沼气微生物都不是截然分开的。尤其是液化和 产酸两个阶段,许多参与液化的微生物也会参与产酸过程。因此,有的学者把沼 气发酵基本过程分为产酸(含液化阶段)和产甲烷两个阶段。

第七讲 生物质能.ppt

第七讲  生物质能.ppt

我国目前规模最大的垃圾焚烧厂——上海江桥 生活垃圾焚烧厂,每天处理垃圾2000吨。
28
• 目前全球有垃圾电站近1000座,预计未来三年 内,将超过3000座。
29
垃圾发电平均上网电价为0.54元/千瓦时,发电成本为 0.5元/千瓦时。 火力发电成本仅为0.2元/千瓦时,水力发电的运营成本 仅为0.03/千瓦时-0.05元/千瓦时。
31
• 国内生产的生物质成型机一般为螺旋挤压式,生产 能力多在100~200kg/h之间,电机功率7.5~ 18kW,电加热功率2~4kW,生产的成型燃料多为 棒状。
生物质压缩成型燃料(棒状)
32
生物质成型燃料的特点
热性能优于木材,与中质混煤相当,而且 燃烧特性明显改善,点火容易,火力持久,黑 烟少,炉膛温度高,便于运输和储存,使用方 便、卫生,是清洁能源,有利于环保。可作为 生物质气化炉、高效燃烧炉和小型锅炉的燃料 。
33
34
生物质能开发与利用
热化学法包括热解、气化和直接液化。热解是指在隔绝空气或通 入少量空气的条件下,利用热能切断生物质大分子中的化学键,使 之转变为低分子物质的热化学反应。热解的产物包括醋酸、甲醇、 木焦油抗聚剂、木馏油和木炭等产品。其中,快速热解是一种尽可 能获得液体燃料的热解方法,其产物在常温下具有一定的稳定性, 在存储、运输和热利用等方面具有一定的优势。
37
生物质能开发与利用
间接液化是指将生物质气化得到的合成气(CO十H2),经催化合成 为液体燃料(甲醇或二甲醚等)。合成气是指由不同比例的CO和H2组
成的气体混合物。生产合成气的原料包括煤炭、石油、天然气、泥 炭、木材、农作物秸秆及城市固体废物等。生物质间接液化主要有 两个技术路线,一个是合成气—甲醇—汽油(MTG)的Mobil工艺,另 一个是合成气费托(Fischer--Tropsch)合成。

新能源 第三章生物质能PPT课件

新能源 第三章生物质能PPT课件

绿玉树
续随子。
麻风果
续随子。
麻风果
续随子。

续随子
续随子

能源农场
即建立以获取能源为目的的生物质生产基地, 以能源农场的形式大规模培育生物质,并加工 成可利用的能源。要对土地进行合理规划,尽 可能利用山地、非耕荒地和水域,选择适合当 地生长条件的生物质品种进行培育、繁殖,以 获得足够数量的高产能植物。在海洋、水域, 要充分利用海藻和水生物提取能源,建立海洋 能源农场或江河能源农场。同时,将基因工程 等现代生物技术广泛应用于能源农场中,以提 高能源转化率。
生物质能的来源
城市垃圾,主要成分包括:纸屑(占40%)、 纺织废料(占20%)和废弃食物(占20%)等。 将城市垃圾直接燃烧可产生热能,或是经过热 分解处理制成燃料使用。
城市污水,一般城市污水约含有0.02%~0.03 %的固体与99%以上的水分,下水道污泥有望 成为厌氧消化槽的主要原料。
生物能的开发和利用
生物能的开发和利用
直接燃烧生物质来产生热能、蒸汽或电 能;
利用能源作物生产液体燃料。目前具有 发展潜力的能源作物,包括:快速成长 作物树木、糖与淀粉作物(供制造乙 醇)、含有碳氧化合物作物、草本作物、 水生植物;
生产木炭和炭;
生物能的开发和利用
生物质(热解)气化后用于电力生产, 如集成式生物质气化器和喷气式蒸汽燃 气轮机(BIG/STIG)联合发电装置;
对农业废弃物、粪便、污水或城市固体 废物等进行厌氧消化,以生产沼气和避 免用错误的方法处置这些物质,以免引 起环境危害。
生物质能 的利用技术
生物质能的利用技术
生物质能的利用技术大体上分为直接燃 烧技术、物化转化技术、生化转化技术 和植物油技术四大类,各类技术又包含 了不同的子技术。

《生物质能利用技术》PPT课件

《生物质能利用技术》PPT课件

完整版课件ppt
8
2 生物质能的分类
• 林业资源 • 农业资源 • 生活污水和工业有机废水 • 城市固体废物 • 畜禽粪便
完整版课件ppt
9
3 生物质能的特点
• 可再生性
• 低污染性
• 广泛分布性
• 生物质燃料总量十分丰富 生物质能是世界第四大 能源,仅次于煤炭、石油和天然气。根据生物学家 估算,地球陆地每年生产1000~1250亿吨生物质; 海洋年生产500亿吨生物质。生物质能源的年生 产量远远超过全世界总能源需求量,相当于目前世 界总能耗的10倍。我国可开发为能源的生物质资 源到2010年可达3亿吨。
生物质能利用新技术
2/1/2021
1
生物质能利用技术
• 第一节 生物质能简介 • 第二节 生物质能的分类 • 第三节 生物质能的特点 • 第四节 生物质能的利用技术 • 第五节 生物质能的利用现状 • 第六节 生物质能的原则
完整版课件ppt
2
1.1 生物质能简介
• 生物质能 (biomass energy)
沼气 技术
循环经济
完整版课件ppt
沼气 肥料
17
户用沼气
• 1958年,毛主席提出“要好 好推广沼气”,引起全国范 围内沼气建设热潮,由于技 术不成熟和采取群众运动的 方式,此项活动昙花一现。
• 为缓解农村日益突出的生活 用能矛盾,70年代初又开始 兴办沼气,仍然没能推广。
完整版课件ppt
18
5.1 国内利用生物质能的现状
完整版课件ppt
19
5.2 国外利用生物质能的现状和技术展望
• 生物质能是丹麦主要的可再生能源,2000年丹 麦生物质能约占全国可再生能源的85%,作为 世界风力机主要的供应者,其风能只占10% 。

《生物质能的利用》课件

《生物质能的利用》课件
电。
供热
生物质能可用于家庭、工厂和 农业领域的供热,如生物质锅 炉、生物质壁炉等。
燃料
生物质能可以转化为液体燃料 ,如生物柴油和生物乙醇,可 用于替代化石燃料。
工业用途
生物质能还可用于生产化学品 、材料和纤维等工业产品。
02 生物质能的转化技术
生物质能转化技术概述
生物质能转化技术是指将生物质 转化为可利用的能源或化学品的
过程。
生物质能是一种可再生能源,具 有低碳、环保、可持续等优点。
生物质能转化技术的发展对于缓 解能源危机、减少环境污染、促
进可持续发展具有重要意义。
生物质能转化技术的种类
生物质直接燃烧技术
将生物质转化为热能,用于供热和发电 。
生物质液化技术
将生物质经过化学或生物化学转化, 生成可燃液体燃料,如生物柴油、生
生物质能的发展现状
生物质能利用历史
生物质能的应用领域
生物质能利用历史悠久,古代人类就 已开始使用木材等生物质燃料。
生物质能在能源、化工、农业等领域 得到广泛应用,为人类生产和生活提 供重要支持。
现代生物质能发展
随着环保意识的提高和能源需求的增 长,现代生物质能发展迅速,技术不 断进步。
生物质能的发展前景
国际合作与交流
强调未来国际间在生物质能领域的合作与交流的重要性,共同推动全 球生物质能技术的发展和应用。
ห้องสมุดไป่ตู้
01
02
03
替代化石能源
随着化石能源的枯竭和环 境污染的加剧,生物质能 成为替代化石能源的重要 选择。
技术创新
生物质能技术不断创新, 提高转化效率和降低成本 ,为大规模应用提供有力 保障。
农业废弃物利用

生物质能利用技术的原理与应用

生物质能利用技术的原理与应用

生物质能利用技术的原理与应用1. 背景生物质能是一种可再生的能源,来源于太阳能转化生物质的过程生物质能的利用技术主要包括直接燃烧、生物化学转换、热化学转换和生物质气化等本文将重点介绍这些技术的原理和应用2. 直接燃烧直接燃烧是将生物质直接燃烧转化为热能和光能的一种利用方式这种方式设备简单,操作方便,但能量利用率较低生物质燃烧设备主要包括燃烧锅炉和燃烧炉2.1 燃烧锅炉燃烧锅炉是将生物质燃烧产生的热能用于加热水和生成蒸汽的设备生物质锅炉通常由燃烧室、热交换器和控制系统组成燃烧室用于燃烧生物质,热交换器用于将热能传递给水,控制系统用于控制燃烧过程2.2 燃烧炉燃烧炉是将生物质直接燃烧产生的热能用于加热的设备燃烧炉通常由燃烧室、热交换器和排烟系统组成燃烧室用于燃烧生物质,热交换器用于将热能传递给空气或水,排烟系统用于排放废气3. 生物化学转换生物化学转换是利用微生物将生物质转化为生物质燃料的过程这种方式包括厌氧消化、好氧消化和堆肥等3.1 厌氧消化厌氧消化是在无氧条件下,利用微生物将生物质转化为甲烷和二氧化碳的过程厌氧消化设备主要包括消化池、发酵罐和沼气储存设备3.2 好氧消化好氧消化是在有氧条件下,利用微生物将生物质转化为二氧化碳、水和有机酸的过程好氧消化设备主要包括消化池和曝气设备3.3 堆肥堆肥是将生物质在自然条件下或通过人工方法进行分解和转化的过程堆肥设备主要包括堆肥池和翻堆设备4. 热化学转换热化学转换是利用化学反应将生物质转化为生物质燃料的过程这种方式包括气化、液化和热解等4.1 气化气化是将生物质在高温条件下转化为可燃气体(如氢、一氧化碳和甲烷)的过程气化设备主要包括气化炉、净化设备和储存设备4.2 液化液化是将生物质转化为生物质燃料(如生物质颗粒、生物油和生物气)的过程液化设备主要包括破碎设备、成型设备和储存设备热解是将生物质在高温条件下分解为可燃气体和固体燃料的过程热解设备主要包括热解炉、净化设备和储存设备5. 生物质能的应用生物质能的应用领域广泛,包括发电、供热、制冷、交通和农业等5.1 发电生物质发电是通过生物质锅炉或生物质气化发电设备将生物质能转化为电能的过程生物质发电厂可以减少温室气体排放,提高能源利用率5.2 供热生物质供热是通过生物质锅炉或生物质燃烧炉将生物质能转化为热能的过程生物质供热可以替代传统的化石能源,降低能源成本和环境污染5.3 制冷生物质制冷是通过生物质热能驱动制冷设备实现制冷的过程生物质制冷可以减少对电能的依赖,降低能源消耗5.4 交通生物质交通是通过生物质燃料驱动交通工具实现运输的过程生物质交通可以减少对化石能源的依赖,降低温室气体排放生物质农业是通过生物质能转化为农业产品或服务的过程生物质农业可以提高农业生产效率,减少对化学肥料的依赖以上就是关于生物质能利用技术的原理与应用的介绍生物质能作为一种可再生的能源,具有广泛的应用前景和重要的环境保护意义随着科技的不断发展,生物质能的利用技术将不断优化和升级,为人类社会的可持续发展做出更大的贡献6. 生物质能利用技术的挑战与解决方案虽然生物质能利用技术具有许多优点,但在实际应用过程中也面临一些挑战6.1 挑战1.生物质资源的收集和处理:生物质资源的收集和处理成本较高,且生物质资源分散,难以大规模收集2.技术设备成本:生物质能利用技术的设备成本较高,初期投资较大3.能源转换效率:生物质能的转换效率相对较低,导致能源损失较大4.环境影响:生物质能利用过程中可能产生污染物,对环境造成影响6.2 解决方案1.生物质资源的优化利用:通过优化生物质资源的收集、运输和储存过程,降低成本2.技术研发:加大对生物质能利用技术的研发投入,提高技术水平和设备性能,降低设备成本3.提高能源转换效率:通过改进生物质能转换工艺,提高能源转换效率,减少能源损失4.环境保护措施:在生物质能利用过程中采取污染物捕集和处理措施,减少对环境的影响7. 生物质能利用技术的未来发展随着全球能源需求的不断增长和环境保护意识的提高,生物质能利用技术在未来发展中具有广阔的前景7.1 发展趋势1.技术创新:未来生物质能利用技术将朝着高效、低成本、环保的方向发展2.规模化应用:生物质能利用技术将在电力、供热、交通等领域得到规模化应用3.政策支持:政府将加大对生物质能利用技术的政策支持力度,推动产业发展4.国际合作:生物质能利用技术领域的国际合作将不断加强,促进技术交流和产业发展7.2 发展挑战1.技术突破:要实现生物质能利用技术的跨越式发展,需要突破关键核心技术2.市场竞争:生物质能利用技术面临与其他可再生能源技术的竞争,需要提高竞争力3.投资融资:生物质能利用技术需要大量的资金投入,融资渠道和投资回报成为关键问题4.政策落实:政府支持政策的落实到位与否,将直接影响生物质能利用技术的发展8. 结论生物质能利用技术作为一种可再生能源技术,具有巨大的潜力和广泛的应用领域面对挑战,通过技术创新、政策支持和国际合作等途径,生物质能利用技术将实现可持续发展在未来,生物质能利用技术将在全球能源转型和环境保护中发挥重要作用(本文仅展示文章的一部分内容,如需完整文章,请根据实际需求进行续写)9. 生物质能利用技术的经济性分析生物质能利用技术的经济性是推广和应用的关键因素之一9.1 成本效益分析1.初始投资:生物质能利用设备的初始投资较高,但随着时间的推移,由于生物质资源的价格波动较小,运营成本相对较低2.运行维护:生物质能利用设备的运行维护成本相对较低,且随着技术的发展,维护成本有望进一步降低3.能源价格:生物质能的价格相对稳定,有助于降低能源价格风险9.2 政策经济激励1.补贴:许多国家和地区提供生物质能利用技术的补贴政策,降低企业的初始投资成本2.税收优惠:对生物质能利用企业实施税收减免,以鼓励生物质能的利用3.绿色信贷:金融机构提供优惠贷款利率,支持生物质能利用项目的融资10. 生物质能利用技术的市场分析生物质能利用技术的市场前景广阔,需求不断增长10.1 市场需求1.可再生能源市场:随着可再生能源市场的不断扩大,生物质能利用技术的需求将持续增长2.环保市场:生物质能利用技术有助于减少温室气体排放,满足环保市场的需求3.能源安全市场:生物质能利用技术有助于提高能源供应的安全性,受到越来越多国家的关注10.2 市场竞争1.技术竞争:生物质能利用技术领域的技术创新是市场竞争的关键2.价格竞争:生物质能利用技术的价格竞争将影响市场份额3.服务竞争:优质的售后服务将有助于提高生物质能利用设备的市场竞争力11. 生物质能利用技术的环境效益生物质能利用技术具有显著的环境效益11.1 温室气体减排生物质能利用技术有助于减少温室气体排放,减缓全球气候变化11.2 空气污染减少生物质能利用技术可以减少燃烧化石能源产生的颗粒物、二氧化硫等污染物,改善空气质量11.3 资源循环利用生物质能利用技术有助于实现资源的循环利用,减少资源浪费12. 生物质能利用技术的实例分析以下是一些生物质能利用技术的实例分析12.1 生物质发电厂某国的生物质发电厂利用农业废弃物作为生物质资源,通过生物质锅炉发电,每年减少温室气体排放数十万吨,同时为当地提供清洁、稳定的电力供应12.2 生物质锅炉某企业的生物质锅炉使用木材废弃物作为生物质资源,替代了传统的化石能源锅炉生物质锅炉的运行成本较低,且每年减少温室气体排放数千吨12.3 生物质气化发电站某地区的生物质气化发电站利用农业废弃物和林业副产品进行气化,生成可燃气体发电该项目的年发电量达到数百万千瓦时,同时减少温室气体排放和空气污染13. 总结生物质能利用技术是一种具有广泛应用前景的可再生能源技术通过技术创新、政策支持和国际合作,生物质能利用技术将实现可持续发展,为全球能源转型和环境保护作出重要贡献在未来,生物质能利用技术将在全球能源结构中占据越来越重要的地位。

《生物质能》课件

《生物质能》课件
等。
生物质能在交通领域的应用
生物质能在交通领域的应用主要 包括生物柴油和生物乙醇等方面

生物柴油是指利用动植物油脂作 为原料制成的柴油,具有可再生
、低污染等优点。
生物乙醇是指利用农作物秸秆等 原料制成的乙醇,可以用作燃料 ,也可用于生产乙烯等化工原料

03 生物质能的转化技术
生物质能转化技术概述
生物质能转化技术是指将生物质转化为可利用的 能源或化学品的技术。
生物质能是一种可再生能源,具有低碳、环保、 可持续等优点。
生物质能转化技术的发展对于解决能源危机和减 少环境污染具有重要意义。
生物质能转化技术种类
生物质直接燃烧技术
将生物质转化为热能,可用于 供热和发电。
生物质气化技术
将生物质在缺氧或绝氧条件下 进行热解,生成气体燃料。
《生物质能》ppt课 件
目录
CONTENTS
• 生物质能简介 • 生物质能的应用 • 生物质能的转化技术 • 生物质能的发展前景 • 结论
01 生物质能简介
生物质能定义
总结词
生物质能是指利用有机物质通过生物转化或热化学转化产生的能量。
详细描述
生物质能是可再生能源的一种,它利用有机物质(如木材、农作物废弃物、动物粪便等)在生物或热 化学过程中转化成能量。这种转化过程可以产生热能、电能或燃料,如生物柴油、生物气体等。
生物质能资源丰富
生物质能来源于农业废弃物、林业废弃物、城市垃圾等,资源丰富 ,可再生。
生物质能技术成熟
生物质能转化技术已经比较成熟,包括直接燃烧、气化、液化等方 式。
生物质能的发展趋势
生物质能多元化利用
未来生物质能的利用将向多元化方向发展,包括生物质发电、生 物燃料、生物质化工等领域。

生物质能源利用简介ppt课件

生物质能源利用简介ppt课件

干燥
粉碎
储存 计量
储存 计量
混合
成型
筛分
生物质型煤
生物质 干燥 粉碎 储存 计量
2.2 生物质固硫型煤燃烧特性
1)点火性能 可燃基挥发分比原煤高,进入炉膛后,生物质首先燃烧,使型
煤短时间达到着火点,生物质燃料燃烧后体积收缩,使型煤产生 很多孔道及空袭,形成多孔形球体。 2)燃烧机理
静态渗透式扩散燃烧 燃烧由表面及不断深入到内部,不会发生热解析炭冒烟现象。 3)固硫特性 生物质比煤先燃烧,形成的空隙起到了膨化疏松作用,使固硫 剂CaO颗粒内部不易发生烧结,可使空袭率增加,增大SO2和O2 向CaO颗粒内的扩散作用,提高钙的利用率。 可在较低的Ca/S下,使固硫率达到50%以上。
日本开发,间歇反应器,以He为载气,反应温度为250-400 0C, 催化剂为碱金属的碳酸盐,产油率为50%(采用发酵残渣为原料)。
Na2CO3+H2+2CO----2HCOONa+CO2 2C6H10O5+2HCOONa---2C2H10O4+H2O+CO2+Na2CO3 3)煤与生物质共同液化
可降低煤的液化温度,增加低分子量的戊烷可溶物,生物质与煤 相互作用机理不明。
汽油中可以掺入25%,提高辛烷值。Leabharlann 性质 相对密度(20 0C)
辛烷值 闪点
甲醇的燃料特性
数值
性质
0.80
馏程/0C
100 热值/(kJ/kg)
11 汽化潜热/(kJ/kg)
数值 65 19647 1105
2)甲醇生产工艺 生物质---合成气的制造----合成气净化---甲醇合成---甲醇精馏
两类催化剂: • ZnO-Cr2O3为基础的改良氧化物系统催化剂,反应压力34MPa, 温度

生物质能源(共71张PPT)

生物质能源(共71张PPT)
我国:地沟油是目前主要原料,麻风树、黄连木等油料作物有 望大面积种植。
黄连木
麻风树
生物质能利用-生物化学转化
发酵
厌氧消化
生物质能利用-生物化学转化-发酵
发酵
2005年,我国首个秸秆与煤粉混烧发电项目在枣庄十里泉发电厂竣工投产:引进了丹麦BWE公司的技术设备,对1台14万千瓦机组的锅炉燃烧器进行了秸秆混烧技术改造。 生物质能利用—直接燃烧 生物质能利用-热化学转化—生物柴油 利用范围已从木质部分利用转向全向全树利用、全林利用; 2020年,年产1000万吨 热效率可达90%;生物质能净转化效率~40% 巴西:生物质能源已达到总能源消耗的1/3,近50%汽油被乙醇替代,2020年生物油柴油参和比达到20%。 2、从生物链的传递来看,大量种植单一农作物并不符合大自然有关生物多样性的发展规律,土壤中的养分会因单一种植农作物而流失。
加水
12-20 MPa
停留时间:30min
油(含水)
生物质能物柴油替代柴油的优势
1、仅需要对柴油机进行微小的改造甚至不需要改造。
2、可以采用现有的柴油运输、销售网络。
3、从全生命周期来看不产生CO2排放。
生物质能利用-热化学转化—生物柴油
我国生物质能源的开发利用现状
• 我国拥有丰富的生物质能资源,据测算,我国理论生物质能资源为50亿吨左右标准煤,是目前中国总能耗的4倍左右。在 可收集的条件下,中国目前可利用的生物质能资源主要是传统生物质,包括农作物秸秆、薪柴、禽畜粪便、生活垃圾、工 业有机废渣与废水等。目前生物质能源仅占0.5-1%。
平均含硫量。
1:1.4
秸秆
能源草
丹麦:已建立了130多家秸秆生物发电厂。秸秆发电等可再生能源占到全国能源消费 量的24%以上。

《生物质能利用技术》课件

《生物质能利用技术》课件
生物质能在电力领域的应用具有高效、可再生、低排放等优势。与传统的化石能源相比,生物质能源 的利用效率更高,同时还可以减少对环境的负面影响。此外,生物质能源的利用还可以促进农村经济 发展和农业废弃物的资源化利用。
生物质能在交通领域的应用
生物质能在交通领域的应用主要包括 生物柴油、生物乙醇等替代燃料的使 用。这些替代燃料可以用作汽车、船 舶、飞机等交通工具的燃料,替代传 统的化石燃料。
《生物质能利用技 术》ppt课件
目 录
• 生物质能概述 • 生物质能利用技术 • 生物质能应用 • 生物质能发展前景与挑战 • 案例分析
01
生物质能概述
生物质能定义
生物质能定义
生物质能是指通过光合作用将太阳能转化为化学能,并储存在生物质中的可再 生能源。它是一种绿色、可再生的能源,具有低碳、环保、可持续等优点。
3
生物质热解技术的工艺流程较为复杂,需要高温 、真空等条件,投资和运行成本较高。
03
生物质能应用
生物质能在供热领域的应用
生物质能在供热领域的应用主要包括集中供热和分布式供热两种方式。集中供热主要应用于城市或工业园区,通过生物质锅 炉或生物质热电联产等方式,为大量用户提供热水或蒸汽。分布式供热则适用于小规模用户,如居民小区、办公楼等,通过 小型生物质锅炉或生物质壁挂炉等方式,满足用户个性化的供热需求。
生物质能在供热领域的应用具有环保、节能、经济等多重优势。与传统的化石能源相比,生物质能源燃烧产生的二氧化碳、 氮氧化物等污染物排放较少,有利于减少空气污染和温室气体排放。此外,生物质能源的利用还可以降低对化石能源的依赖 ,保障能源安全。
生物质能在电力领域的应用
生物质能在电力领域的应用主要包括生物质发电和生物质燃料电池等。生物质发电是指利用生物质能 转化为热能,再通过热能转化为电能的过程。生物质燃料电池则是利用生物质中的化学能直接转化为 电能的过程。

生物质热解气化原理与技术-绪论

生物质热解气化原理与技术-绪论

生物质热解气化原理与技术第一章绪论生物质能是绿色植物通过光合作用转换和储存下来的太阳能,是重要的可再生能源,也是人类最早主动利用的能源,在人类文明史中起到了重要的作用。

至今,生物质能仍然是世界上消费量位居第四的一次能源,在我国农村和发展中国家得到广泛应用。

传统生物质能利用方式主要是家用炉灶中的直接燃烧,是自然经济生活方式的延续。

现代生物质能技术包括热化学转换和生物化学转换两大类。

其中热化学转换技术与化石燃料技术有很强大的兼容性,在许多方面可以替代化石燃料,实现可持续发展和低碳排放,为人们所重视。

生物质热解气化是热化学转换的重要技术方向,经过科学家和工程师们的长期努力,已经发展成为一个丰富多彩的技术门类,出现了形式多样的装置和工程实例,生产出热力、电力、液体燃料、气体燃料等品位较高的二次能源,还有许多新型技术在开发之中。

生物质热解气化技术的发展一切有生命的或者曾经有生命的物质都是生物质,这是一个包罗万象的总概念,但是只有那些可以作为燃料的固体生物质才被用作热化学过程。

固体生物燃料主要包括:(1)木本原料,即树木和各种采伐、加工残余物;(2)草本原料,即草类、秸秆和各种加工残余物;(3)果壳类原料,如板栗壳、棕榈壳、花生壳等;(4)混杂燃料。

[1]生物质热解气化是通过热化学过程转变固体生物质的品质和形态,使其应用起来更加方便、高效和清洁的技术。

基本技术形式形形色色的生物质热解气化技术都是从热解和气化两个基本技术形式派生出来的,反应过程中不供应足够的氧气,以获得含有化学能的可燃烧产物为目的。

1.生物质热解生物质热解是在热作用下生物质中有机物质发生的分解反应。

在高温下,构成生物质的大分子碳氢化合物化学键断开,裂解成为较小分子的挥发物质,从固体中释放出来。

热解开始温度为200~250℃,随着温度升高,更多的挥发物质释放出来,而挥发物质质也被进一步裂解,最后残留下由碳和灰分组成的固体物质。

挥发物质中含有常温下不可凝结的简单气体,如H2、CO、CO2、CH4等,也含有常温下凝结为液体的物质,如水、酸、碳氢化合物和含氧化合物等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我国石油能源现状
中国石油 进口高度 依赖中东
高油价使 中国面临 严重输入
通胀
影响 中国 能源 安全
能源结构的不合理造成了不可挽回的环境损失
能源消费煤炭能源占有率
2-2 中国能源存在的问题
(1)人均能耗低 (2)人均能源资源不足 (3)能源效率低 (4)以煤为主的能源结构亟待调整
1)大量燃煤严重污染环境 2)大量用煤导致能源效率低下 3)交通运输压力巨大 4)能源供应安全问题提到议事日程上来
生物质能利用原理与技术绪论详解演示文 稿
优选生物质能利用原理与技术绪论
第一章 总论
一 能源 1、能源:能够为人类提供某种形式能量(机械能、热能、电能、
化学能等)的自然资源及其转化物。或者说是能量的来源称为 能源。如太阳能、风能、化石燃料、水力等。
2、能源的分类:
(1)按能源的生成方式分:一次能源和二次能源 (2)按能源在当代社会中的地位分:常规能源和新能源。 (3)按能否再生分(对一次能源):可再生和非再生能源。 (4)按其来源分(对一次能源) : ➢ 来自地球以外天体的能源:太阳能、风能、水能、生物质能 ➢ 来自地球内部的能源:地热能 ➢ 地球一其它天体的作用产生的能源:潮汐能
➢ 一些水生藻类,主要包 括海洋生的马尾藻、巨藻、
海带等,淡水生的布袋草、
浮萍、小球藻等,水生植
物转化成燃料,也是增加
能源供应的方法之一。
禽畜粪便
➢ 禽畜粪便也是一种重要 的生物质能源。除在牧区有 少量直接燃烧外,禽畜粪便 主要是作为沼气的发酵原料。 中国主要的禽畜是鸡、猪和
牛。
能源植物
➢ 能源植物种类较多,例 如制糖作物、油料植物等。 目前国内外正在研究和已 经研究利用的植物主要有 三角戟、三叶橡胶树、麻 疯树、汉加树、白乳木、 油桐、小桐子、光皮树、
19
风力发电独立系统示意图
20
香港沙洲自动气象站风力发电机
21
风力发电图
22
3-3 太阳能
• 太阳能建筑、太阳热水器要形成规模化生产;降低太阳能 电池成本,提高光电转换效率;
• 大力推广应用小功率光伏电源系统;建立分散型和集中型 联网光伏示范电站。
• 到2010年,太阳能利用总量达到467万t标准煤。
能源与新能源利用---宋长华
17
三峡水电站
3-2 风能
• 小型风力机市场化;加速中大型风力机设计、制造国产化进程 ;
• 发展风力发电控制和管理系统; • 加强和完善风电场的规划选点和勘察设计工作,建设若干个大
型风电场。 • 2000年和2010年全国风力发电装机容量分别达到30万—40万
kW和100万—110万kw。
(1)坚持实行能源节约战略方针,(2)大力优化能源结构 ,(3)煤为基础,积极发展洁净煤技术,(4)大力开发 利用新能源与可再生能源,(5)采取措施保证能源供应安 全。
14
三、中国新能源与可再生能源发展前景
(1)中国拥有丰富的新能源与可再生能源资源可供开发利用 。
(2)中国对新能源与可再生能源的需求量巨大,市场广阔。 (3)中国新能源与可再生能源的发展适逢良好的市场机遇。 (4)市场巨大推动力将促进中国新能源与可再生能源的发展
23
太阳能发电图
24
光伏发电图
25
太阳能 发电系 统
26
青海太阳能发电图
27
住宅太阳能发电系统
28
太阳能发电家用系统
29
2 千瓦美国加洲太阳发电
30
太阳能、潮汐和核电站图
31
3-4 地热能
• 积极开发高温热储地区的地热资源,进一步扩大地热直接 利用和发电规模,
• 2000年和2010年利用总量分别达到88万t标准煤和151万t标 准煤。
源于树木生长过程中修剪的枝
桠、木材加工的边角余料以及 专门提供薪材的薪炭林。
生活垃圾 ➢ 城镇生活垃圾主要是由居民
生物质资源按 照来源可分为
六大类
生活垃圾、商业和服务业垃圾、
少量建筑垃圾等废弃物所构成
的混合物,成分比较复杂,其
构成主要受居民生活水平、能 源结构、城市建设、绿化面积
以及季节变化影响。
水生植物
。 (5)已取得的成绩和国家对发展的高度重视。
• 综上所述,可以预言,在21世纪,中国的新能源与 可再生能源将会有更大、更快的发展.为中国的现 代化建设做出更大的贡献。
15
3-1 水电和海洋能
• 2010年装机容量达到2788万Kw,发电量达到1170亿kWh
。 法国朗斯潮汐电站外景
16
法国朗斯潮汐电站示意图
能源分类
3、能源的重要性:
4、人类利用能源的历史演变
• 柴草时期
• 煤炭时期
• 石油时期
• 新能源时期
二、中国能源现状、问题与对策
2-1近年我国经济状况
上世纪我国能源消费趋势图 我国能源消费预测与实际
我国资源人均占有率
中国能源实际情况
• 一次性能源人均占有量低 • 能源消费随经济发展迅速增长 • 以煤为主的能源结构短期内难以改变 • 生态环境压力明显增大
生物质能发电原理图示36来自广洲拉圾电厂37
沼气发电原理图示
38
四 我国生物质资源的分类
农作物秸秆
➢ 农作物秸秆是农业生产
的副产品,也是我国农村
森林能源
的传统燃料。秸秆资源与
➢ 森林能源是森林生长和林业 生产过程提供的生物质能源,
农业种植业的生产关系十 分密切。
主要是薪材,也包括森林工业
的一些残留物等。森林薪材来
32
地热发电系统
33
西藏年那曲地热电站
34
3-5 生物质能 • 生物质的广义概念:生物质包括所有的植物、微
生物以及以植物、微生物为食物的动物及其生产 的废弃物。有代表性的生物质如农作物、农作物 废弃物、木材、木材废弃物和动物粪便。
• 生物质的狭义概念:生物质主要是指农林业生产 过程中除粮食、果实以外的秸秆、树木等木质纤 维素(简称木质素)、农产品加工业下脚料、农 林废弃物及畜牧业生产过程中的禽畜粪便和废弃 物等物质。
13
2-3中国能源发展对策
能源中长期发展规划:结合“十一五”规划的编制我们已经拟 定了能源中长期发展规划,这个发展规划可以概括为48个 字,即:“节能优先,效率为本;煤为基础,多元发展; 立足国内,开拓海外;统筹城乡,合理布局;依靠科技, 创新体制;保护环境,保障安全”。在能源中长期规划中 强调了要调整能源结构,加快发展核电、可再生能源和大 力发展水电。中国全国人大常委会已通过了《可再生能源 法》,为我国可再生能源发展提供法律保证。
相关文档
最新文档