初中数学七年级下册第2章二元一次方程组2.3解二元一次方程组教案

合集下载

2024年七年级下册《二元一次方程组》教案

2024年七年级下册《二元一次方程组》教案

2024年七年级下册《二元一次方程组》教案2024年七年级下册《二元一次方程组》教案1(约913字)教学目标1.会用加减法解一般地二元一次方程组。

2.进一步理解解方程组的消元思想,渗透转化思想。

3.增强克服困难的勇力,提高学习兴趣。

教学重点把方程组变形后用加减法消元。

教学难点根据方程组特点对方程组变形。

教学过程一、复习引入用加减消元法解方程组。

二、新课。

1.思考如何解方程组(用加减法)。

先观察方程组中每个方程x的系数,y的系数,是否有一个相等。

或互为相反数?能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。

学生解方程组。

2.例1.解方程组思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?学生讨论,小组合作解方程组。

提问:用加减消元法解方程组有哪些基本步骤?三、练习。

1.P40练习题(3)、(5)、(6)。

2.分别用加减法,代入法解方程组。

四、小结。

解二元一次方程组的加减法,代入法有何异同?五、作业。

P33.习题2.2A组第2题(3)~(6)。

B组第1题。

选作:阅读信息时代小窗口,高斯消去法。

后记:2.3二元一次方程组的应用(1)2024年七年级下册《二元一次方程组》教案2(约900字)教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题难点:寻找等量关系教学过程:看一看:课本99页探究2问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?2、“甲、乙两种作物的总产量比为3:4”是什么意思?3、本题中有哪些等量关系?提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?思考:这块地还可以怎样分?练一练一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:农作物品种每公顷需劳动力每公顷需投入奖金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。

浙教版数学七年级下册2.3《解二元一次方程组》(第2课时)教学设计

浙教版数学七年级下册2.3《解二元一次方程组》(第2课时)教学设计

浙教版数学七年级下册2.3《解二元一次方程组》(第2课时)教学设计一. 教材分析《解二元一次方程组》是浙教版数学七年级下册第2.3节的内容,主要介绍了解二元一次方程组的基本方法和技巧。

本节课的内容是学生在学习了二元一次方程的基础上进行的,是进一步学习更复杂方程组的基础。

教材通过具体的例子引导学生掌握解二元一次方程组的方法,并能够灵活运用。

二. 学情分析七年级的学生已经掌握了二元一次方程的基本知识,对于解方程有一定的了解。

但是,解二元一次方程组相对于单个方程来说更加复杂,需要学生能够将两个方程结合起来进行求解。

因此,学生在学习本节课的内容时可能会感到有一定的困难,需要通过大量的练习来掌握解题方法。

三. 教学目标1.让学生掌握解二元一次方程组的基本方法。

2.培养学生解决实际问题的能力。

3.提高学生合作交流的能力。

四. 教学重难点1.重难点:解二元一次方程组的方法和技巧。

2.难点:如何将实际问题转化为二元一次方程组,并灵活运用解题方法。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决问题来学习解二元一次方程组的方法。

2.使用多媒体辅助教学,通过动画和例子来形象地展示解题过程。

3.分组讨论,让学生在合作中学习,提高学生的合作交流能力。

4.大量的练习,让学生在实践中掌握解题方法。

六. 教学准备1.准备相关的教学多媒体材料,如动画、例子等。

2.准备练习题,包括基础题和提高题。

3.准备黑板和粉笔,用于板书解题过程。

七. 教学过程1.导入(5分钟)通过一个实际问题引入二元一次方程组的概念,激发学生的学习兴趣。

2.呈现(15分钟)使用多媒体展示二元一次方程组的解法,引导学生理解解题思路。

3.操练(15分钟)让学生分组讨论,每组解决一个二元一次方程组的问题,并展示解题过程。

4.巩固(10分钟)让学生独立解决一些基础的二元一次方程组问题,巩固所学知识。

5.拓展(10分钟)引导学生思考如何将实际问题转化为二元一次方程组,并灵活运用解题方法。

七年级二元一次方程组教案(必备6篇)

七年级二元一次方程组教案(必备6篇)

七年级二元一次方程组教案(必备6篇)七年级二元一次方程组教案第1篇【教学目标】知识目标:①使学生初步理解二元一次方程与一次函数的关系。

②能根据一次函数的图象求二元一次方程组的近似解。

能力目标:通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养学生初步的数形结合的意识和能力。

情感目标:通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发学生学习数学的兴趣。

重点要求:1、二元一次方程和一次函数的关系。

2、根据一次函数的图象求二元一次方程组的近似解。

难点突破:经历观察、思考、操作、探究、交流等数学活动,培养学生抽象思维能力,并体会方程和函数之间的对应关系,即数形结合思想。

【教学过程】一、学前先思师:请同学们思考,我们已经学过的二元一次方程组的解法有哪些?生:代入消元法、加减消元法。

师:请你猜测还有其他的解法吗?生:(小声议论,有人提出图象解法)师:看来的同学似乎已经提前做了预习工作,很好!那么对于课题“二元一次方程组的图象解法”,你想提什么问题?生:二元一次方程组怎么会有图象?它的图象应该怎样画?生:二元一次方程组的图象解法怎么做?师:同学们都问得很好!那你有喜欢的二元一次方程组吗?生:(比较害羞)师:看来大家比较害羞,那么请大家把各自喜欢的二元一次方程组留在心里。

让我们带着同学们提出的问题从二元一次方程开始今天的学习。

二、探究导学题目:判断上面几组解中哪些是二元一次方程的解?生:和不是,其余各组均是方程的解。

师:请在学案上的直角坐标系中先画出一次函数的图象,再标出以上述的方程的解中为横坐标,为纵坐标的点,思考:二元一次方程的解与一次函数图象上的点有什么关系?教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。

现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。

浙教版数学七年级下册2.3《解二元一次方程组》(第3课时)教学设计

浙教版数学七年级下册2.3《解二元一次方程组》(第3课时)教学设计

浙教版数学七年级下册2.3《解二元一次方程组》(第3课时)教学设计一. 教材分析《解二元一次方程组》是浙教版数学七年级下册第3课时的重要内容。

这部分内容是在学生已经掌握了二元一次方程的基础知识上,进一步探究如何解二元一次方程组。

本课时主要让学生了解解二元一次方程组的方法,以及如何运用这些方法解决实际问题。

教材通过具体的案例,引导学生掌握解二元一次方程组的基本步骤和技巧。

二. 学情分析学生在进入这一课时之前,已经学习了二元一次方程的基本概念和性质,对解一元一次方程有了初步的认识。

但学生在解二元一次方程组时,可能会遇到一些困难,如对齐、符号判断等。

因此,在教学中,需要引导学生总结解题规律,提高解题速度和正确率。

三. 教学目标1.知识与技能目标:使学生掌握解二元一次方程组的基本方法,能够熟练地运用加减消元法、代入消元法解二元一次方程组。

2.过程与方法目标:通过合作交流,让学生学会如何将实际问题转化为二元一次方程组,并运用解方程组的方法解决问题。

3.情感态度与价值观目标:培养学生勇于探索、克服困难的意志,增强小组合作意识,提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.教学重点:使学生掌握解二元一次方程组的基本方法,能够熟练地运用加减消元法、代入消元法解二元一次方程组。

2.教学难点:如何将实际问题转化为二元一次方程组,以及在不同情况下选择合适的解方程组的方法。

五. 教学方法采用问题驱动法、合作交流法、案例教学法等。

通过设置问题,引导学生主动探究;鼓励学生合作交流,分享解题心得;以具体案例为载体,使学生掌握解二元一次方程组的方法。

六. 教学准备1.准备相关案例和练习题,用于引导学生学习和巩固解二元一次方程组的方法。

2.准备课件,用于辅助教学。

七. 教学过程1.导入(5分钟)利用一个实际问题,引导学生思考如何将其转化为二元一次方程组。

例如,某商店同时出售两种商品,甲商品每件50元,乙商品每件30元,现有一笔钱,问如何选择购买商品才能使花费最接近总额的一半?2.呈现(10分钟)呈现一个具体的二元一次方程组案例,引导学生进行分析。

湘教版数学七年级下册《二元一次方程组》教学设计

湘教版数学七年级下册《二元一次方程组》教学设计

湘教版数学七年级下册《二元一次方程组》教学设计一. 教材分析《二元一次方程组》是湘教版数学七年级下册的教学内容,主要目的是让学生掌握二元一次方程组的概念、解法及其应用。

本节课的内容是学生学习一元一次方程的延伸和拓展,为后续学习更高级的方程和不等式打下基础。

教材通过丰富的例题和习题,引导学生掌握解二元一次方程组的方法,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了一元一次方程的知识,具备了一定的数学基础。

但部分学生对概念的理解不够深入,解题技巧和方法有待提高。

同时,学生对于实际应用题的解决能力较弱,需要老师在教学中加强引导和训练。

三. 教学目标1.了解二元一次方程组的概念,理解二元一次方程组的解及其性质。

2.学会用加减消元法、代入法解二元一次方程组。

3.能够运用二元一次方程组解决实际问题,提高解决问题的能力。

4.培养学生的逻辑思维能力、合作交流能力和创新意识。

四. 教学重难点1.重点:二元一次方程组的概念、解法及其应用。

2.难点:二元一次方程组的解的判断、加减消元法和代入法的运用。

五. 教学方法1.情境教学法:通过生活实例引入二元一次方程组,激发学生的学习兴趣。

2.引导发现法:引导学生发现二元一次方程组的解法,培养学生的探究能力。

3.合作学习法:分组讨论、交流解题方法,提高学生的合作能力。

4.实践操作法:让学生通过动手操作,加深对二元一次方程组解法的理解。

六. 教学准备1.教学PPT:制作包含教学内容、例题、习题的PPT。

2.教学素材:准备一些实际应用题,用于巩固和拓展学生的知识。

3.学习小组:将学生分成若干小组,便于合作交流。

七. 教学过程1.导入(5分钟)利用生活实例引入二元一次方程组,激发学生的学习兴趣。

如:某商店同时销售两种商品,一件商品售价100元,另一件商品售价120元。

若一件商品的利润是40元,另一件商品的利润是50元,问商店同时销售这两种商品时,每件商品的售价和利润分别是多少?2.呈现(10分钟)呈现二元一次方程组的概念,引导学生理解二元一次方程组的解及其性质。

七年级数学二元一次方程组解法教案(优秀6篇)

七年级数学二元一次方程组解法教案(优秀6篇)

七年级数学二元一次方程组解法教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!七年级数学二元一次方程组解法教案(优秀6篇)《二元一次方程与一次函数》教学设计这次漂亮的本店铺为亲带来了6篇《七年级数学二元一次方程组解法教案》,希望能够满足亲的需求。

二元一次方程组教案

二元一次方程组教案

二元一次方程组教案对于二元一次方程组的学习有一定的难度,这对于老师教学来说也是一个重点问题,小编整理了关于二元一次方程组教案,希望老师可以参考,制定相应的教学计划!教学建议一、重点、难点分析本节教学的重点是使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.难点是了解二元一次方程组的解的含义.这里困难在于从1个数值变成了2个数值,而且这2个数值合在一起,才算作二元一次方程组的解.用大括号来表示二元一次方程组的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的未知数,把它们的值都写出来才是问题的解答.这是克服这一难点的关键所在.二、知识结构本小节通过求两个未知数的实际问题,先应用学生以学过的一元一次方程知识去解决,然后尝试设两个未知数,根据题目中的两个条件列出两个方程,从而引入二元一次方程、二元一次方程组(用描述的语言)以及二元一次方程组的解等概念.三、教法建议1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.4.为了减少学习上的困难,使学生学到最基本、最实用的知识,教学中不宜介绍相依方程组如和矛盾方程组如等概念,也不要使方程组中任何一个方程的未知数的系数全部为0(因为这种数学中的特例较少实际意义)当然,作为特例,出现类似之类的二元一次方程组是可以的,这时可以告诉学生,方程(1)中未知数的系数为0,方程(1)也看作一个二元一次方程.教学设计示例一、素质教育目标(-)知识教学点1.了解二元一次方程、二元一次方程组和它的解的概念.2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式.3.会检验一对数值是不是某个二元一次方程组的解.(二)能力训练点培养学生分析问题、解决问题的能力和计算能力.(三)德育渗透点培养学生严格认真的学习态度.(四)美育渗透点通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和激情.二、学法引导1.教学方法:讨论法、练习法、尝试指导法.2.学生学法:理解二元一次方程和二元一次方程组及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础.三、重点难点疑点及解决办法(-)重点使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.(二)难点了解二元一次方程组的解的含义.(三)疑点及解决办法检验一对未知数的值是否为某个二元一次方程组的解必须同时满足方程组的两个方程,这是本节课的疑点.在教学中只要通过多举一系列的反例来说明,就可以辨析解决好该问题了.四、课时安排一课时.五、教具学具准备电脑或投影仪、自制胶片.六、师生互动活动设计1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.【注】二元一次方程组教案,仅供老师参考,具体情况应根据实际情况制定!初一数学一元一次方程相关链接》》》》一元一次方程教案一元一次方程的概念一元一次方程的解法一元一次方程应用题一元一次方程练习题。

七年级下册数学二元一次方程组教案

七年级下册数学二元一次方程组教案

七年级下册数学二元一次方程组教案教学目标:使学生掌握二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.使学生了解二元一次方程、二元一次方程组的解的含义,会检验一对数是不是它们的解.教学重点难点:重点:是学生认识到一对数必须同时满足两个二元一次方程,才是相应的二元一次方程组的解.掌握检验一对数是否是某个二元一次方程的解的书写格式.难点:理解二元一次方程组的解的含义.教与学互动设计创设情境,导入新课例:香蕉的售价是5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?学生思考自行解答,教师巡视.最后集体讨论解决方案.设买了香蕉x千克,那么买了苹果(9−x)千克.根据题意得:5x+3(9−x) = 33解方程,得:x = 3,9−x = 6答:小华买了香蕉3千克,苹果6千克.交流:此时复习一元一次方程的有关概念,“元”指什么?“次”指什么?教师:上面的问题还有其他的方法求解吗?(引入新课)想一想上面的问题还有其他的方法求解吗?(若学生想不到,教师要引导学生,要求的是两个未知数,能否设两个未知数列方程求解呢?让学生自己设未知数列方程.)设小华买了香蕉x千克,苹果y千克,根据题意得:针对学生列出的这两个方程,引入二元一次方程和二元一次方程组、二元一次方程、二元一次方程组的解的概念探究满足x+y = 9的值有哪些?请填入表中:教师:那么什么是二元一次方程组的解呢?学生讨论达成共识:二元一次方程组的解必须同时满足方程组中的两个方程.即:既是方程①的解又是方程②的解教师:二元一次方程的两个方程的公共解叫做这个二元一次方程组的解.例如:从方案一中我们知道x = 6,y = 3能使方程组中的每一个方程成立,所以我们把叫做二元一次方程组的解.(注意:二元一次方程组的解是成对出现的,要用大括号连接起来,表示“且”.)议一议将上面问题的各种方案进行对比,你有哪些想法?巩固提高例1 在方程2x−3y = 6中,(1)用含x的代数式表示y;(2)用含y的代数式表示x.[点拨]本题要求学生把二元一次方程化为用意个未知数的代数式表示另一个未知数的形式,为今后的代入消元打下基础.解:(1)y =x−2;(2)x = 3+y例2方程x+3y = 10在正整数范围内的解有________组,它们是________[点拨]本题考察二元一次方程的解,二元一次方程的解有无数个,但在特殊的情况下,有时也就是几组.答:有3组,分别为,,[备选例题]写出一个二元一次方程,使它的一个解为这样的方程唯一吗?[点拨]本题考查学生的发散思维能力,答案不唯一.解:不唯一;x+y = 8(2x−y = 13,x−y = 6等) 例3总结反思,拓展升华归纳二元一次方程定义二元一次方程组定义二元一次方程组的解的定义。

初中二元一次方程数学教案三篇

初中二元一次方程数学教案三篇

【导语】教案是教师为顺利⽽有效地开展教学活动,根据课程标准,教学⼤纲和教科书要求及学⽣的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学⽅法等进⾏的具体设计和安排的⼀种实⽤性教学⽂书。

©⽆忧考⽹准备了以下内容,供⼤家参考!篇⼀:应⽤⼆元⼀次⽅程组——鸡兔同笼 教学⽬标: 知识与技能⽬标: 通过对实际问题的分析,使学⽣进⼀步体会⽅程组是刻画现实世界的有效数学模型,初步掌握列⼆元⼀次⽅程组解应⽤题.初步体会解⼆元⼀次⽅程组的基本思想“消元”。

培养学⽣列⽅程组解决实际问题的意识,增强学⽣的数学应⽤能⼒。

过程与⽅法⽬标: 经历和体验列⽅程组解决实际问题的过程,进⼀步体会⽅程(组)是刻画现实世界的有效数学模型。

情感态度与价值观⽬标: 1.进⼀步丰富学⽣数学学习的成功体验,激发学⽣对数学学习的好奇⼼,进⼀步形成积极参与数学活动、主动与他⼈合作交流的意识. 2.通过"鸡兔同笼",把同学们带⼊古代的数学问题情景,学⽣体会到数学中的"趣";进⼀步强调课堂与⽣活的联系,突出显⽰数学教学的实际价值,培养学⽣的⼈⽂精神。

重点: 经历和体验列⽅程组解决实际问题的过程;增强学⽣的数学应⽤能⼒。

难点: 确⽴等量关系,列出正确的⼆元⼀次⽅程组。

教学流程: 课前回顾 复习:列⼀元⼀次⽅程解应⽤题的⼀般步骤 情境引⼊ 探究1:今有鸡兔同笼, 上有三⼗五头, 下有九⼗四⾜, 问鸡兔各⼏何? “雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94⾜,问雉兔各⼏何? (1)画图法 ⽤表⽰头,先画35个头 将所有头都看作鸡的,⽤表⽰腿,画出了70只腿 还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿 四条腿的是兔⼦(12只),两条腿的是鸡(23只) (2)⼀元⼀次⽅程法: 鸡头+兔头=35 鸡脚+兔脚=94 设鸡有x只,则兔有(35-x)只,据题意得: 2x+4(35-x)=94 ⽐算术法容易理解 想⼀想:那我们能不能⽤更简单的⽅法来解决这些问题呢? 回顾上节课学习过的⼆元⼀次⽅程,能不能解决这⼀问题? (3)⼆元⼀次⽅程法 今有鸡兔同笼,上有三⼗五头,下有九⼗四⾜,问鸡兔各⼏何? (1)上有三⼗五头的意思是鸡、兔共有头35个, 下有九⼗四⾜的意思是鸡、兔共有脚94只. (2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只; 鸡⾜有2x只;兔⾜有4y只. 解:设笼中有鸡x只,有兔y只,由题意可得: 鸡兔合计头xy35⾜2x4y94 解此⽅程组得: 练习1: 1.设甲数为x,⼄数为y,则“甲数的⼆倍与⼄数的⼀半的和是15”,列出⽅程为_2x+05y=15 2.⼩刚有5⾓硬币和1元硬币各若⼲枚,币值共有六元五⾓,设5⾓有x枚,1元有y枚,列出⽅程为05x+y=65. 三、合作探究 探究2:以绳测井。

浙教版数学七年级下册课件2.3解二元一次方程组(2)

浙教版数学七年级下册课件2.3解二元一次方程组(2)

7.解下列方程组: x+2y=8,
(1)3x-2y=4. 解:x3+ x-2y2=y=8, 4.②① ①+②,得 4x=12,解得 x=3. 把 x=3 代入①,得 3+2y=8,解得 y=52.
x=3, ∴原方程组的解为y=52.
3x+12y=8, (2)2x-12y=2. 解:3x+12y=8,①
5.方程组x3- x+y=y=17,的解为__xy_==__12_,___.
【解析】
x-y=1,① 3x+y=7.②
①+②,得 4x=8,解得 x=2.
把 x=2 代入①,得 y=1.
∴原方程组的解为xy==12.,
6.已知 x,y 满足方程组x2+x+3yy==3-,1,则 x+y 的值为_____1____. 【解析】 解方程组x2+x+3yy==3-.②1,① ①×2-②,得 5y=-5,解得 y=-1. 把 y=-1 代入①,得 x+3×(-1)=-1,解得 x=2. ∴x+y=2-1=1.
11.解下列方程组: 3(x-1)=y+5,
(1)5(y-1)=3(x+5).
解:原方程组可化为35xy--3y=x=8,20.①② ①+②,得 4y=28,解得 y=7. 把 y=7 代入①,得 3x-7=8,解得 x=5. ∴原方程组的解为xy==75.,
23u+34v=12, (2)45u+56v=175.
∴原方程组的解为xy==21,,
2.用加减消元法解二元一次方程组x2+x-3yy==41,②①时,下列方法中,无法消元 的是( D ) A.①×2-② B.②×(-3)-① C.①×(-2)+② D.①-②×3
3.已知二元一次方程组23xx+ -57yy= =1-3, 7,①②用加减消元法解方程组,正确的是 (C )

部编人教版七年级下册数学《二元一次方程组》教案

部编人教版七年级下册数学《二元一次方程组》教案

8.1.1 二元一次方程组(1)(3)你能给它取名吗?(4)你能给它下一个定义吗?含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.请判断下列各方程中,哪些是二元一次方程,哪些不是?并说明理由。

(1)2x+5y=10 (2) 2x+y+z=1 (3)x2+y=20(4)2x+1=0 (5) (6)2x+10xy =0在上面的方程x+y=22 和2x+y=40 中,X,Y的含义分别相同吗?X,Y 的含义分别相同.因而X,Y必须同时满足方程x+y=22 和2x+y=40把它们联立起来,得{x+y=22 2x+y=40结论:像这样把含有两个相同未知数的二元一次方程合在一起就组成了一个二元一次方程组。

判断下列方程组哪些是二元一次方程组?一元一次方程与二元一次方程组的对比表学习目标2:掌握二元一次方程组的解活动2满足方程x+y=22①且符合问题的实际意义的x 、y 的值有哪些?在一元一次方程中使方程两边的值相等的未知数的值叫一元一次方程的解,故可类推出使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

抛开实际意义,二元一次方程有无数个解.发现x=18,y=4是这两个方程的公共解,,把x=18,y=4叫做二元一次方程组的解,这个解通常记作一般地,二元一次方程组的两个方程的公共解,叫做这个二元一次方程组的解。

引,得出结论。

【教学提示】学生独立思考,然后再分组交流,教师深入小组,参与活动,关注、学生能否理解概念,并紧扣概念解决问题。

二元一次方程组有且只有一组解。

你能告诉大家如何检验它们的解吗?答:判断一对数是不是方程组的解,应把这对数值代入方程组里的每个方程,同时满足所有方程的一对未知数的值才是方程组的解.学习目标3:利用二元一次方程组解实际问题著名的“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”解:设鸡有x只,兔y只,根据题意,得三、巩固训练,熟练技能1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228423119...23754624x yx y a b xB C Dx y b c y x x y+=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.4【教学提示】根据一元一次方程的解的概念类比出二元一次方程的解的概念。

七年级数学下册《解二元一次方程组》教案、教学设计

七年级数学下册《解二元一次方程组》教案、教学设计
-布置课后作业,让学生运用所学知识解决实际问题,提高学生的应用能力。
-推荐相关阅读材料,拓展学生的知识视野,激发学生学习数学的兴趣。
6.关注个体差异,因材施教
-针对学生的不同水平,设计不同难度的教学任务,使每个学生都能在课堂上获得成就感。
-对于学习困难的学生,教师应给予个别辅导,帮助他们克服学习中的困难。
3.鼓励学生多练习,培养他们的耐心和细心,提高解题正确率。
4.教会学生合作交流的方法,提高团队协作能力,使学生在互动中共同成长。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握二元一次方程组的定义及其解法(代入法、加减运用所学知识解决实际问题。
3.培养学生合作交流、分析问题和解决问题的能力。
2.教学实施
(1)呈现情境,提出问题:让学生了解小明和小华的行程情况,引导学生思考如何求解他们相遇的时间与地点。
(2)学生思考:鼓励学生尝试用已有的数学知识(如一元一次方程)来解决这个问题。
(3)导入新课:引出本节课要学习的二元一次方程组的概念,告诉学生通过学习这个知识点,可以解决类似的问题。
(二)讲授新知
(3)实际应用:展示二元一次方程组在生活中的应用,如购物优惠、行程规划等。
(三)学生小组讨论
1.教学活动设计
本环节我将组织学生进行小组讨论,让学生在合作交流中巩固所学知识,提高解决问题的能力。
2.教学实施
(1)分组讨论:将学生分成若干小组,每组选择一个实际问题,尝试用二元一次方程组求解。
(2)分享交流:每个小组派代表分享自己的解题过程和答案,其他小组进行评价和讨论。
3.拓展延伸
-探究性问题:提出一个开放性的探究问题,如“如何求解三个未知数的方程组?”鼓励学生进行自主探究,培养其数学思维和创新能力。

七年级数学下册《二元一次方程组的应用》优秀教学案例

七年级数学下册《二元一次方程组的应用》优秀教学案例
1.采用小组合作的学习方式,培养学生的团队协作能力和沟通能力。
2.引导学生相互讨论、交流,共同解决二元一次方程组的问题,使学生在合作中学会倾听、尊重、理解和接纳他人。
3.教师要关注小组合作的过程,适时给予指导和鼓励,确保每个学生都能在合作中发挥自己的优势,提高学习效果。
(四)反思与评价
1.鼓励学生在学习过程中进行自我反思,总结自己的学习方法和经验,提高学习效率。
2.问题驱动的教ቤተ መጻሕፍቲ ባይዱ设计
案例中,教师以一系列具有挑战性和梯度的问题为导向,引导学生主动探究二元一次方程组的解法及应用。这种问题驱动的教学设计促使学生在解决问题的过程中,积极思考、合作交流,提高了学生的逻辑思维和问题解决能力。
3.小组合作的学习方式
本案例中,教师采用小组合作的学习方式,让学生在讨论、交流中共同解决问题。这种学习方式有助于培养学生的团队协作能力和沟通能力,同时也为学生提供了互相学习、取长补短的机会。
1.教师通过讲述一个关于学校篮球比赛的情景,如:“同学们,最近学校举行了一场篮球比赛,甲队和乙队进行了激烈的角逐。我们知道,甲队和乙队的得分之和是100分,甲队比乙队多得了20分。那么,你能算出甲队和乙队各自得了多少分吗?”由此引出本节课的主题——二元一次方程组的应用。
2.学生思考并尝试解决问题,教师适时引导学生运用数学知识来分析问题,为新课的学习做好铺垫。
(二)过程与方法
1.通过小组合作、讨论交流等方式,培养学生的团队协作能力和沟通能力。
2.引导学生通过观察、分析、归纳等思维过程,发现生活中的二元一次方程组问题,提高学生的数学思维能力。
3.教学过程中,注重启发式教学,鼓励学生独立思考,培养学生的创新精神和解决问题的能力。
4.教会学生总结解题方法,形成自己的解题思路,提高解题效率。

二元一次方程组教学设计(共7篇)

二元一次方程组教学设计(共7篇)

二元一次方程组教学设计(共7篇)第1篇:二元一次方程组教学设计《二元一次方程组》(自主课堂教学设计)学习内容:义务教育课程人教板七年级数学下册88—89页。

教学目标知识与技能:1、使学生了解二元一次方程的概念,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。

过程与方法:学会用类比的方法迁移知识,体验二元一次方程组在处理实际问题中的优越性。

情感、态度与价值观:通过对二元一次方程(组)的概念的学习,感受数学与生活的联系,感受数学的乐趣教学重点:二元一次方程(组)的概念及检验一对数是否是某个二元一次方程(组)的解。

教学难点:二元一次方程组的解的含义。

教学步骤:一、知识回顾1.什么叫做一元一次方程?解方程2X+3=5,X=2.2X+3Y=5是几元几次方程?二、指导自学—问题引领自学指导请认真看P.92—94的内容.思考:1、在P.92引例(篮球赛)中,你能用一元一次方程解吗?对于引例中的这两种解法:一种是设一个未知数,另一种是设两个未知数,哪种解法更好理解呢?:2.把两个二元一次方程合在一起,就形成一个二元一次方程组,是通过什么符号实现的?归纳二元一次方程(组)的概念。

3.如何检验一对数是否是某个二元一次方程(组)的解。

6分钟后,比谁能说出以上问题答案.三.学生自学学生按照自学指导看书,教师巡视,确保人人学得紧张高效.四.老师点拔:1.涉及二元一次方程(组)的概念问题时,要注意二元、一次,整式三方面;2.二元一次方程组的相同的字母它们所表示的意义一样。

并不是任意两个二元一次方程都能组成二元一次方程组。

(举例分析)3、二元一次方程组的解与一元一次方程的解它们有什么异同点?不同点:二元一次方程组的解是满足每一个二元一次的,并且是成对出现的解相同点:都是方程的解,代入方程都会使方程左右两边成立)五.检查自学效果自学检测题1、3x+2y=6,它有______个未知数,且未知数是___次,因此是_____元______次方程2、3x=6是____元____次方程,其解x=_____,有______个解,3x+2y=6,当x=0时,y=_____;当x=2时,y=_____;当y=5时,x=____(因此,使二元一次方程左右两边相等的______个未知数的值,叫作二元一次方程的解。

初中数学教案:二元一次方程组(精选8篇)

初中数学教案:二元一次方程组(精选8篇)

元一次方程组篇一第1课 5.1二元一次方程组(1)教学目的1、使学生二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

2、使学生了解二元一次方程、二元一次方程组的解的含义,会检验一对数是不是它们的解。

3、通过和一元一次方程的比较,加强学生的类比的思想方法。

通过“引例”的学习,使学生认识数学是根据实际的需要而产生发展的观点。

教学分析重点:(1)使学生认识到一对数必须同时满足两个二元一次方程,才是相应的二元一次方程组的解。

(2)掌握检验一对数是否是某个二元一次方程的解的书写格式。

难点:理解二元一次方程组的解的含义。

突破:启发学生理解概念。

教学过程一、复习1、是什么方程?是什么一元一次方程?一元一次方程的标准形式是什么?它的解如何表达?如何检验x=3是不是方程5x+3(9-x)=33的解?2、列方程解应用题:香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了9千克,付款33元。

香蕉和苹果各买了多少千克?(先要求学生按以前的常规方法解,即设一个未知数,表示出另一个未知数,再列出方程。

)既然求两种水果各买多少?那么能不能设两个未知数呢?学生尝试设两个未知数,设买香蕉x千克,买苹果y千克,列出下列两个方程:x+y=95x+3y=33这里x与y必须满足这两个方程,那么又该如何表达呢?数学里大括号表示“不仅……而且……”,因此用大括号把两个方程联立起来:这又成了什么呢?里面的是不是一元一次方程呢?这就是我们今天要学习的内容。

板书课题。

二、新授1、有关概念(1)给出二元一次方程的概念观察上面两个方程的特点,未知数的个数是多少,含未知数项的次数是多少?你能根据一元一次方程的定义给出新方程的定义吗?教师给出定义(见P5)。

结合定义对“元”与“次”作进一步的解释:“元”与“未知数”相通,几个元就是指几个未知数,“次”指未知数的最高次数。

二元一次方程和一元一次方程都是整式方程,只有整式方程才能说几元几次方程。

浙教版2022-2023学年数学七年级下册第2章二元一次方程组2

浙教版2022-2023学年数学七年级下册第2章二元一次方程组2

浙教版2022-2023学年数学七年级下册第2章 二元一次方程组2.4二元一次方程组的应用(1)【知识重点】1.当问题中所求的未知数有两个时,用两个字母来表示未知数往往比较容易列出方程. 2.一般地,应用二元一次方程组解决实际问题的基本步骤为: (1)理解问题(审题,搞清已知和未知,分析数量关系); (2)制定计划(考虑如何根据等量关系设元,列出方程组); (3)执行计划(列出方程组并求解,得到答案);(4)回顾(检查和反思解题过程,检验答案的正确性以及是否符合题意). 【经典例题】【例1】顺风旅行社组织200人到花果岭和云水涧旅游,到花果岭的人数比到云水涧的人数的2倍少1人.设到花果岭的人数为x 人,到云水涧的人数为y 人,根据题意可列方程组为()A .{x +y =200x =2y −1B .{x +y =200y =2x −1C .{x +y =200x =2y +1D .{x +y =200y =2x +1【例2】某工厂有26名工人,一个工人每天可加工800个螺栓或1000个螺帽,1个螺栓与2个螺帽配套,现要求工人每天加工的螺栓和螺帽完整配套且没有剩余.若设安排x 个工人加工螺栓,y 个工人加工螺帽,则列出正确的二元一次方程组为( )A .{x +y =261600x −1000y =0B .{x +y =26800x −2000y =0C .{x +y =263200x −1000y =0D .{x +y =211600x −2000y =0【例3】打折前,买50件A 商品和20件B 商品用了1300元,买30件A 商品和10件B 商品用了750元.打折后,买100件A 商品和100件B 商品用了2800元,问比不打折少花了多少钱?【基础训练】1.如图,用10块形状、大小完全相同的小长方形墙砖拼成一个大长方形,设每个小长方形墙砖的长和宽分别为xcm 和ycm ,则依题意可列方程组为( )A .{x +2y =25y =3xB .{x +2y =25x =3yC .{2x −y =25x =3yD .{2x +y =25y =3x2.盲盒近来火爆,这种不确定的“盲抽”模式受到了大家的喜爱,一服装厂用某种布料生产玩偶A 与玩偶B 组合成一批盲盒,一个盲盒搭配1个玩偶A 和2个玩偶B ,已知每米布料可做1个玩偶A 或3个玩偶B ,现计划用136米这种布料生产这批盲盒(不考虑布料的损耗),设用x 米布料做玩偶A ,用y 米布料做玩偶B ,使得恰好配套,则下列方程组正确的是( )A .{x +y =136x =3yB .{x +y =136x =2×3yC .{x +y =1363x =yD .{x +y =1362x =3y3.七年级一班有x 人,分y 个学习小组,若每组7人,则余下3人;若每组8人,则不足5人,求全班人数及分组数.正确的方程组为( )A .{7x =y −38x =y +5B .{7y =x +38x =y −5C .{7y =x +38y =x −5D .{7y =x −38y =x +54.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( )A .{7y =x +38y =x +5B .{7y =x +38y +5=xC .{7y =x −38y +5=xD .{7y =x −38y =x +55.《九章算术》中的“方程”一章中讲述了算筹图,如图1、图2所示,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与相应的常数项,图1表示的算筹图用我们现在所熟悉的方程组形式表述出来为{3x +2y =114x +3y =26,类似地,图2所示的算筹图我们可以表述为( )A .{2x +3y =233x +4y =32B .{2x +3y =233x +4y =37C .{11x +3y =233x +4y =32D .{3x +2y =234x +3y =326.一副三角板按如图所示的方式摆放,且∠1的度数是∠2的3倍,则∠2的度数为 .7.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm ,则每一个小长方形的面积为 cm 2.8.有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货 吨. 9.如图,周长为68cm 的长方形ABCD 被分成7个相同的矩形,长方形ABCD 的面积为 cm 2.10.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满.设大房间有x 个,小房间有y 个,则列出方程组为 .11.某工地调来72人参加挖土和运土,已知3人挖出的土1人恰好全部运走,怎样调配劳力才能使挖出来的土能及时运走且不窝工?12.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.13.A,B两地相距80km.一艘船从A出发,顺水航行4h到B,而从B出发逆水航行5h到A,已知船顺水航行、逆水航行的速度分别是船在静水中的速度与水流速度的和与差,求船在静水中的速度和水流速度.14.一支部队第一天行军4h,第二天行军5h,两天共行军89km,且第一天比第天少走1km,第一天和第二天行军的平均速度各是多少?15.如图,三个一样大小的小长方形沿“横-竖-横”排列在一个长为10,宽为8的大长方形中,求图中一个小长方形的面积.【培优训练】16.某班环保小组收集废旧电池,数据统计如下表.问1节5号电池和1节7号电池的质量分别是多少?设1节5号电池的质量为x克,1节7号电池的质量为y克,列方程组,由消元法可得x的值为(17.小明在拼图时发现8个一样大小的长方形恰好拼成一个大的长方形,如图1所示.小红看见了,说:“我也来试一试.“结果小红七拼八凑,拼成如图2那样的正方形,但中间留下了一个洞,恰好是边长为2mm的小正方形,则每个小长方形的长和宽分别为()A .10mm ,18mmB .18mm ,10mmC .10mm ,6mmD .6mm ,10mm18.上学年初一某班的学生都是两人一桌,其中34男生与女生同桌,这些女生占全班女生的35,本学年该班新转入4个男生后,男女生刚好一样多.设上学年该班有男生x 人,女生y 人,则列方程组为( )A .{x +4=y 34x =35yB .{x +4=y 35x =34yC .{x −4=y 34x =35yD .{x −4=y 35x =34y19.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具?设生产甲种玩具零件x 天,乙种玩具零件y 天,则有( )A .{x +y =6024x =12yB .{x +y =6012x =24yC .{x +y =602×24x =12yD .{x +y =6024x =2×12y20.某纸厂要制作如图的甲、乙两种无盖的小长方体盒子.该厂利用边角材料裁出了长方形和正方形两种纸片,其中长方形纸片的宽和正方形纸片的边长相等.现用150张正方形纸片和300张长方形纸片制作这两种小盒,恰好用完.设可做成甲、乙两种盒子各x 、y 个,根据题意,可列正确的方程组为 .21.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需 天.22.一艘轮船顺流航行时,每小时行32km ;逆流航行时,每小时行28km ,则轮船在静水中的速度是每小时行 km .(轮船在静水中的速度大于水流速度) 23.某眼镜厂有工人25名,每人每天平均生产镜架9个或镜片12片.为了使每天生产的镜架和镜片刚好配套,设x 名工人生产镜架,y 名工人生产镜片,则可列出方程组: .24.把长都是宽的两倍的1个大长方形纸片和4个相同的小长方形纸片按图①、图②方式摆放,则图②中的大长方形纸片未被4个小长方形纸片覆盖部分的面积为 cm 2.25.在某工程建设中,有A、B两种卡车搬运沙土.据了解,3辆A种卡车与2辆B种卡车一次共可搬运沙土38立方米,2辆A种卡车与3辆B种卡车一次共可搬运沙土42立方米,求每辆A种卡车和每辆B种卡车分别可搬运沙土多少立方米?26.2022年5月8日是“母亲节”,小明买了一束百合和康乃馨组合的鲜花送给妈妈,以表祝福.在买花过程中,爱思考的小明发现一个数学问题:3支康乃馨的价格比2支百合的价格多2元,买2支百合和1支康乃馨共花费14元.如果买一束百合和康乃馨组合的鲜花共11支,且百合不少于2支,那么怎样组合,能使费用支出最少?请你帮助小明解决这个数学问题.27.甲乙两人同时加工一批零件,前3小时两人共加工126件,后5小时中甲先花了1小时修理工具,之后甲每小时比以前多加工10件,结果在后5小时内,甲比乙多加工了10件.甲、乙两人原来每小时各加工多少件?28.2010年春季我国西南大旱,导致大量农田减产,如图所示是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的花生产量分别是多少千克?29.某班为充实图书角图书,在学习委员的倡议下进行了一次给班级捐书活动,受污染区域(阴影部分)记录了在相应捐书数目为N时的人数分布情况.本以下的同学平均捐书3.5本.问捐书4本和5本的各有多少人?30.如图,已知点A、点B在数轴上表示的数分别是-20、64,动点M从点A出发,以每秒若干个单位长度的速度向右匀速运动,动点N从点B出发,以每秒若干个单位长度的速度向左匀速运动.若点M、N同时出发,则出发后12秒相遇;若点N先出发7秒,则点M出发10秒后与点N相遇.动点M、N运动的速度分别是多少?31.为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如下表是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元.请问表中二档电价、三档电价各【直击中考】32.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( ) A .30 B .26 C .24 D .2233.“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为( ) A .{x +y =7,3x +y =17. B .{x +y =9,3x +y =17.C .{x +y =7,x +3y =17.D .{x +y =9,x +3y =17.34.上学期某班的学生都是双人桌,其中 14 男生与女生同桌,这些女生占全班女生的 15。

解二元一次方程组教案优秀9篇

解二元一次方程组教案优秀9篇

解二元一次方程组教案优秀9篇课前预习:篇一一、阅读教材P96-P98的内容二、独立思考:1、满足方程组的x的值是-1,则方程组的解是_____________.2、用代入法解方程组比较容易的变形是()、A、由①得B、由①得C、由得D、则得3、用代入消元法解方程以下各式正确的是()A、B、C、D、4、如果是二元一次方程,则的值是多少?二元一次方程篇二数学七年级下册《二元一次方程》数学教案一、教学目标:1、认知目标:1)了解二元一次方程组的概念。

2)理解二元一次方程组的解的概念。

3)会用列表尝试的方法找二元一次方程组的解。

2、能力目标:1)渗透把实际问题抽象成数学模型的思想。

2)通过尝试求解,培养学生的探索能力。

3、情感目标:1)培养学生细致,认真的学习习惯。

2)在积极的教学评价中,促进师生的情感交流。

二、教学重难点重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三、教学过程(一)创设情景,引入课题1、本班共有40人,请问能确定男女生各几人吗?为什么?(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)(2)这是什么方程?根据什么?2、男生比女生多了2人。

设男生x人,女生y人、方程如何表示?x,y的值是多少?3、本班男生比女生多2人且男女生共40人、设该班男生x人,女生y人。

方程如何表示?两个方程中的x表示什么?类似的两个方程中的y都表示?像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

4、点明课题:二元一次方程组。

(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)(二)探究新知,练习巩固1、二元一次方程组的概念(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

[让学生看书,引起他们对教材重视。

找关键词,加深他们对概念的了解、](2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。

初中数学七年级下册第2章二元一次方程组2.2二元一次方程组教学课

初中数学七年级下册第2章二元一次方程组2.2二元一次方程组教学课

二元一次 方程组
解法
数学方法:类比思想
试一试 判断下列各组是不是二元一次方程组:
① x+y=3 , ② x+y=3,
y+z=4 .
1
③ x +y=3,
x+5=2. ④ x + y=200,
x+y=2 .
y=x+10.
练一练
{ 二元一次方程组 x+2y=10, 的解是(3) . y=2x
{x=4,
(1) y=3
{x=3,
(2) y=6
{x=2,
(3) y=4
{x=4,
(4) y=2
2.把下列各组数的序号填入图中适当的位置.
x=1
x=-2

x1

2
x1

2

y=0
y=2
y 1
y 1
2

② ①③
方程x+y=0的解 方程组
x+y=0
的解
方程2x+3y=2的解
2x+3y=2
二元一 次方程 的解
变形
二元一 次方程
概念
概念
二元一次方 程组的解
注:二元一次方程组并不要求每个方程都是二元的, 如 2-x=2
2x+y=5 也是二元一次方程组.
方程的变形
已知方程3x+2y=10,用关于x的代数式表示y,
则y =_5_-_1_._5_x_.
分析:用关于x的代数式表示y,只要把 3x+2y=10的y看成“未知数”,而把字母x看成 是“常数”,解关于y的方程即可.
教学课件
数学 七年级下册 浙教版
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 解二元一次方程组
教学目标
1.会用代入法解二元一次方程组.
2.初步体会解二元一次方程组的基本思想――“消元”.
3.通过研究解决问题的方法,培养学生合作交流意识与探究精神.
重点难点
重点
用代入法解二元一次方程组.
难点
探索如何用代入法将“二元”转化为“一元”的消元过程.
教学设计
复习提问:
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
解:设这个队胜x 场,根据题意得
40)22(2=-+x x
解得x =18
则22-x =4
答:这个队胜18场,负4场.
新课:
在上述问题中,我们可以设出两个未知数,列出二元一次方程组,
设胜的场数是x ,负的场数是y , +y =22
2x +y =40
那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?可以发现,二元一次方程组中第1个方程x +y =22说明y =22-x ,将第2个方程2x +y =40的y 换为22-x ,这个方程就化为一元一次方程40)22(2=-+x x .
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数.这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想.
归纳:
上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.
例1把下列方程写成用含x 的式子表示y 的形式:
(1)3x -y =5(2)3x +2y -1=0
例2用代入法解方程组 x -y =3 ①
3x -8y =14②
例3根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g )两种产品的销售数量比(按瓶计算)为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?
归纳:用代入消元法解二元一次方程组的步骤:
(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.
(2)把(1)中所得的方程代入另一个方程,消去一个未知数.
(3)解所得到的一元一次方程,求得一个未知数的值.
(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.
布置作业
教学目标
知识与技能
1.掌握用“加减法”解二元一次方程组
2.体会解二元一次方程组中的“消元”思想.
过程与方法
经历利用加减消元法解二元一次方程组的过程,体会“化未知为已知”的化归思想.
情感、态度与价值观
在解方程的过程中,学会与他入合作,体会动手的乐趣和成功的喜悦.
重点难点
重点
正确运用“加减法”解二元一次方程组.
难点
灵活分析方程的系数特征.
教学设计
—、复习回顾
1.解二元一次方程的基本思想是什么?
2.用代入法解二元一次方程组的一般步骤是什么?
二、探究新知
1.出示方程组﹛②,①.2321635-=-=+y x y x
师:如何解此方程组?
生:可用代入消元法求解.
师:投影小亮的想法,指出这种整体代入消元法对本题方便易求,完成后,引导学生思考:
(1)这个方程组的未知数的系数有什么特点?
(2)根据你的发现,能否通过别的方法达到消元的目的?
生:思考、讨论,然后按自己的想法去解,去交流.
师:交流完成后,出示小红的想法,并通过求解验证小红的想法是正确的.
2.出示做一做
让学生独立完成,并让学生先分析应消掉哪一个未知数,怎样消.
师生对这里的消元过程作出总结概括:
可以将两个方程直接相加或相减,消去一个未知数,得到一个一元一次方程,前提条件是:两个方程组中同一未知数的系数相同或互为相反数.
3.引导学生探索.
如果仍想用加减消元法来解方程组,应怎样做?根据是什么?然后让学生自己去做.对学生的各种解法引导学生互评、自评,针对不同做法做出相应的评判.
师生共同总结消元过程并板书.
通过将方程组中两方程相加或相减,消去一个未知数,得到一元一次方程.通过求解一元一次方程,再求得二元一次方程组的解.这种解方程组的方法叫加减消元法,简称加减法.
三、巩固练习
出示教材练习.指定学生板演,生生互评.
四、课堂小结
如何用“加减法”达到消元的目的?
五、布置作业。

相关文档
最新文档