不等式证明 反证法_放缩法

合集下载

不等式证明的基本方法

不等式证明的基本方法

4. 放缩法是在证明不等式或变形中, 将条件或结论或变换中的 式子放大或缩小进行求证的方法.放缩时要看准目标,做到 有的放矢, 注意放缩适度. 放缩法是证明不等式的常用技巧, 有些不等式若恰当地运用放缩法可以很快得证,要控制难 度.
比较法
(2010 年高考江苏卷试题)设 a、b 是非负实数,求证:a3 +b3≥ ab(a2+b2). 【思路分析】 先作差,再用不等式的基本性质解答.
不等式证明的基本方法
1.比较法是证明不等式最常用最基本的方法,有两种: (1)求差法:a>b⇔a-b>0; a (2)求商法:a>b>0⇔b>1,(b>0).
2.分析法、综合法是证明数学问题的两大最基本的方法. 综合法是以已知的定义、公理、定理为依据,逐步下推,直 到推出问题的结论为止,简而言之,就是“由因导果”. 分析法是从问题的结论出发,追溯导致结论成立的条件,逐 步上溯,直到使结论成立的条件与已知条件或已知事实吻合 为止,简而言之,就是“执果索因”.
分析法与综合法
如果 a>0,b>0,求证:a3+b3≥a2b+ab2. 【证法一】 (用分析法) 要证 a3+b3≥a2b+ab2, 只需证(a+b)(a2-ab+b2)≥ab(a+b) ∵a>0,b>0,有 a+b>0,故只需证 a2-ab+b2≥ab, 只需证(a-b)2≥0 显然(a-b)2≥0 成立,以上各步均可逆, ∴a3+b3≥a2b+ab2
1.设 a>0,a≠1,0<x<1.求证:|loga(1-x)|>|loga(1+x)|.
证明:方法一:(平方后作差)
2 log2 (1 - x ) - log a a(1+x)
=[loga(1-x)+loga(1+x)]· [loga(1-x)-loga(1+x)]= 1-x loga(1-x )· loga . 1+x

2020学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教a版选修45

2020学年高中数学第二讲证明不等式的基本方法三反证法与放缩法学案含解析新人教a版选修45

三 反证法与放缩法1.不等式的证明方法——反证法(1)反证法证明的定义:先假设要证明的命题不成立,然后由此假设出发,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不成立,从而证明原命题成立.(2)反证法证明不等式的一般步骤:①假设命题不成立;②依据假设推理论证;③推出矛盾以说明假设不成立,从而断定原命题成立.2.不等式的证明方法——放缩法 (1)放缩法证明的定义:证明不等式时,通常把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的.(2)放缩法的理论依据主要有: ①不等式的传递性; ②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.利用反证法证明不等式已知f (x )求证:(1)f (1)+f (3)-2f (2)=2;(2)|f (1)|,f |(2)|,|f (3)|中至少有一个不小于12.“不小于”的反面是“小于”,“至少有一个”的反面是“一个也没有”. (1)f (1)+f (3)-2f (2)=(1+p +q )+(9+3p +q )-2(4+2p +q )=2. (2)假设|f (1)|,|f (2)|,|f (3)|都小于12,则|f (1)|+2|f (2)|+|f (3)|<2.而|f (1)|+2|f (2)|+|f (3)|≥f (1)+f (3)-2f (2)=2矛盾, ∴|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.(1)反证法适用范围:凡涉及不等式为否定性命题,唯一性、存在性命题可考虑反证法.如证明中含“至多”“至少”“不能”等词语的不等式.(2)注意事项:在对原命题进行否定时,应全面、准确,不能漏掉情况,反证法体现了“正难则反”的策略,在解题时要灵活应用.1.实数a ,b ,c 不全为0的等价条件为( ) A .a ,b ,c 均不为0 B .a ,b ,c 中至多有一个为0 C .a ,b ,c 中至少有一个为0 D .a ,b ,c 中至少有一个不为0解析:选D “不全为0”是对“全为0”的否定,与其等价的是“至少有一个不为0”. 2.证明:三个互不相等的正数a ,b ,c 成等差数列,则a ,b ,c 不可能成等比数列. 证明:假设a ,b ,c 成等比数列,则b 2=ac . 又∵a ,b ,c 成等差数列,∴a =b -d ,c =b +d (其中d 为公差). ∴ac =b 2=(b -d )(b +d ). ∴b 2=b 2-d 2. ∴d 2=0,∴d =0.这与已知中a ,b ,c 互不相等矛盾. ∴假设不成立.∴a ,b ,c 不可能成等比数列.3.已知函数y =f (x )在R 上是增函数,且f (a )+f (-b )<f (b )+f (-a ),求证:a <b . 证明:假设a <b 不成立,则a =b 或a >b .当a =b 时,-a =-b ,则有f (a )=f (b ),f (-a )=f (-b ),于是f (a )+f (-b )=f (b )+f (-a ),与已知矛盾.当a >b 时,-a <-b ,由函数y =f (x )的单调性可得f (a )>f (b ),f (-b )>f (-a ),于是有f (a )+f (-b )>f (b )+f (-a ),与已知矛盾.故假设不成立.∴a <b .利用放缩法证明不等式已知实数x x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>32(x +y +z ).解答本题可对根号内的式子进行配方后再用放缩法证明.x 2+xy +y 2=⎝ ⎛⎭⎪⎫x +y 22+34y 2≥⎝ ⎛⎭⎪⎫x +y 22=⎪⎪⎪⎪⎪⎪x +y 2≥x +y 2. 同理可得:y 2+yz +z 2≥y +z2,z 2+zx +x 2≥z +x2,由于x ,y ,z 不全为零,故上述三式中至少有一式取不到等号,所以三式相加,得x 2+xy +y 2+y 2+yz +z 2+z 2+zx +x 2>⎝ ⎛⎭⎪⎫x +y 2+⎝ ⎛⎭⎪⎫y +z 2+⎝ ⎛⎭⎪⎫z +x 2=32(x +y +z ).(1)利用放缩法证明不等式,要根据不等式两端的特点及已知条件(条件不等式),审慎地采取措施,进行恰当的放缩,任何不适宜的放缩都会导致推证的失败.(2)一定要熟悉放缩法的具体措施及操作方法,利用放缩法证明不等式,就是采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母,或者把和式中各项或某项换以较大或较小的数,从而达到证明不等式的目的.4.设n 是正整数,求证:12≤1n +1+1n +2+…+12n <1.证明:由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ,当k =2时,12n ≤1n +2<1n ,…当k =n 时,12n ≤1n +n <1n.∴将以上n 个不等式相加,得12=n 2n ≤1n +1+1n +2+…+12n <nn =1.5.设f (x )=x 2-x +13,a ,b ∈,求证: |f (a )-f (b )|<|a -b |.证明:|f (a )-f (b )|=|a 2-a -b 2+b |=|(a -b )(a +b -1)|=|a -b ||a +b -1|. ∵0≤a ≤1,0≤b ≤1,∴0≤a +b ≤2,-1≤a +b -1≤1,|a +b -1|≤1.∴|f (a )-f (b )|≤|a -b |.课时跟踪检测(八)1.设a ,b ,c ∈R +,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P ,Q ,R 同时大于零”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选C 必要性是显然成立的;当PQR >0时,若P ,Q ,R 不同时大于零,则其中两个为负,一个为正,不妨设P >0,Q <0,R <0,则Q +R =2c <0,这与c >0矛盾,即充分性也成立.2.若|a -c |<h ,|b -c |<h ,则下列不等式一定成立的是( ) A .|a -b |<2h B .|a -b |>2h C .|a -b |<hD .|a -b |>h解析:选A |a -b |=|(a -c )-(b -c )|≤|a -c |+|b -c |<2h . 3.设x ,y 都是正实数,且xy -(x +y )=1,则( ) A .x +y ≥2(2+1) B .xy ≤2+1 C .x +y ≤(2+1)2D .xy ≥2(2+1)解析:选A 由已知(x +y )+1=xy ≤⎝ ⎛⎭⎪⎫x +y 22,∴(x +y )2-4(x +y )-4≥0. ∵x ,y 都是正实数,∴x >0,y >0,∴x +y ≥22+2=2(2+1).4.对“a ,b ,c 是不全相等的正数”,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的个数为( ) A .0 B .1 C .2D .3解析:选C 若(a -b )2+(b -c )2+(c -a )2=0,则a =b =c ,与已知矛盾,故①对;当a >b 与a <b 及a ≠c 都不成立时,有a =b =c ,不符合题意,故②对;③显然不正确.5.若要证明“a ,b 至少有一个为正数”,用反证法证明时作的反设应为________. 答案:a ,b 中没有任何一个为正数(或a ≤0且b ≤0) 6.lg9·lg11与1的大小关系是________.解析:∵lg 9>0,lg 11>0,∴lg 9·lg 11<lg 9+lg 112=lg 992<lg 1002=1,∴lg 9·lg 11<1. 答案:lg 9·lg 11<17.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A ,B 的大小关系是________.解析:A =x 1+x +y +y 1+x +y <x 1+x +y1+y =B .答案:A <B8.实数a ,b ,c ,d 满足a +b =c +d =1,且ac +bd >1.求证:a ,b ,c ,d 中至少有一个是负数.证明:假设a ,b ,c ,d 都是非负数. 由a +b =c +d =1知a ,b ,c ,d ∈. 从而ac ≤ac ≤a +c2,bd ≤bd ≤b +d2,∴ac +bd ≤a +c +b +d2=1,即ac +bd ≤1,与已知ac +bd >1矛盾, ∴a ,b ,c ,d 中至少有一个是负数. 9.已知a n =1×2+2×3+3×4+…+n n +1(n ∈N *).求证:n n +12<a n <n n +22.证明:∵n n +1=n 2+n ,∴nn +1>n ,∴a n =1×2+2×3+…+n n +1>1+2+3+…+n =n n +12.∵nn +1<n +n +12,∴a n <1+22+2+32+3+42+…+n +n +12=n 2+(1+2+3+…+n )=n n +22.综上得n n +12<a n <n n +22.10.已知f (x )=ax 2+bx +c ,若a +c =0,f (x )在上的最大值为2,最小值为-52.求证:a ≠0且⎪⎪⎪⎪⎪⎪b a <2. 证明:假设a =0或⎪⎪⎪⎪⎪⎪b a ≥2.①当a =0时,由a +c =0,得f (x )=bx ,显然b ≠0. 由题意得f (x )=bx 在上是单调函数, 所以f (x )的最大值为|b |,最小值为-|b |. 由已知条件得|b |+(-|b |)=2-52=-12,这与|b |+(-|b |)=0相矛盾,所以a ≠0. ②当⎪⎪⎪⎪⎪⎪b a ≥2时,由二次函数的对称轴为x =-b2a ,知f (x )在上是单调函数,故其最值在区间的端点处取得 .所以⎩⎪⎨⎪⎧f 1=a +b +c =2,f -1=a -b +c =-52或⎩⎪⎨⎪⎧f 1=a +b +c =-52,f -1=a -b +c =2.又a +c =0,则此时b 无解,所以⎪⎪⎪⎪⎪⎪b a <2. 由①②,得a ≠0且⎪⎪⎪⎪⎪⎪b a<2.本讲高考热点解读与高频考点例析考情分析从近两年的高考试题来看,不等式的证明主要考查比较法与综合法,而比较法多用作差比较,综合法主要涉及基本不等式与不等式的性质,题目难度不大,属中档题.在证明不等式时,要依据命题提供的信息选择合适的方法与技巧进行证明.如果已知条件与待证结论之间的联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”“恒成立”等方式给出,可考虑用反证法.在必要的情况下,可能还需要使用换元法、放缩法、构造法等技巧简化对问题的表述和证明.真题体验1.(全国甲卷)已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集.(1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.(1)解:f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2恒成立;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)·(1-b 2)<0.因此|a +b |<|1+ab |.2.(全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab , (c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd , 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①必要性:若|a -b |<|c -d |, 则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1),得a +b >c +d . ②充分性:若a +b >c +d , 则(a +b )2>(c +d )2, 即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.比较法证明不等式比较法证明不等式的依据是:不等式的意义及实数比较大小的充要条件.作差比较法证明的一般步骤是:①作差;②恒等变形;③判断结果的符号;④下结论.其中,变形是证明推理中一个承上启下的关键,变形的目的在于判断差的符号,而不是考虑差能否化简或值是多少,变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.已知b ,m 1,m 2都是正数,a <b ,m 1<m 2,求证:a +m 1b +m 1<a +m 2b +m 2. a +m 1b +m 1-a +m 2b +m 2=a +m 1b +m 2-a +m 2b +m 1b +m 1b +m 2=am 2+bm 1-am 1-bm 2b +m 1b +m 2=a -b m 2-m 1b +m 1b +m 2.因为b >0,m 1,m 2>0,所以(b +m 1)(b +m 2)>0. 又a <b ,所以a -b <0. 因为m 1<m 2,所以m 2-m 1>0. 从而(a -b )(m 2-m 1)<0. 于是a -b m 2-m 1b +m 1b +m 2<0.所以a +m 1b +m 1<a +m 2b +m 2. 综合法证明不等式逐步推出其必要条件(由因导果),最后推导出所要证明的不等式成立.综合法证明不等式的依据是:已知的不等式以及逻辑推证的基本理论.证明时要注意的是:作为依据和出发点的几个重要不等式(已知或已证)成立的条件往往不同,应用时要先考虑是否具备应有的条件,避免错误,如一些带等号的不等式,应用时要清楚取等号的条件,即对重要不等式中“当且仅当……时,取等号”的理由要理解掌握.设a >0,b >0,a +b =1. 求证:1a +1b +1ab≥8.∵a >0,b >0,a +b =1. ∴1=a +b ≥2ab ,ab ≤12.∴1ab≥4.∴1a +1b +1ab=(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab≥2ab ·21ab+4=8.∴1a +1b +1ab≥8.分析法证明不等式分析法证明不等式的依据也是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论.分析法证明不等式的思维方向是“逆推”,即由待证的不等式出发, 逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是已知(或已证)的不等式.当要证的不等式不知从何入手时,可考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有效.分析法是“执果索因”,步步寻求上一步成立的充分条件,而综合法是“由因导果”,逐步推导出不等式成立的必要条件,两者是对立统一的两种方法.一般来说,对于较复杂的不等式,直接用综合法往往不易入手,因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法可结合使用.已知a >b >0.求证:a -b <a -b . 要证a -b <a -b , 只需证a <a -b +b , 只需证(a )2<(a -b +b )2, 只需证a <a -b +b +2b a -b ,只需证0<2ba -b .∵a >b >0,上式显然成立,∴原不等式成立,即a -b <a -b .反证法证明不等式用直接法证明不等式困难的时候,可考虑用间接证法予以证明,反证法是间接证法的一种.假设欲证的命题是“若A 则B ”,我们可以通过否定B 来达到肯定B 的目的,如果B 只有有限多种情况,就可用反证法.用反证法证明不等式,其实质是从否定结论出发,通过逻辑推理,导出与已知条件或公理或定理或某些性质相矛盾的结论,从而肯定原命题成立.已知:在△ABC 中,∠CAB >90°,D 是BC 的中点.求证:AD <12BC (如右图所示).假设AD ≥12BC .①若AD =12BC ,由平面几何中定理“若三角形一边上的中线等于该边长的一半,那么,这条边所对的角为直角”,知∠A =90°,与题设矛盾.所以AD ≠12BC .②若AD >12BC ,因为BD =DC =12BC ,所以在△ABD 中,AD >BD ,从而∠B >∠BAD .同理∠C >∠CAD .所以∠B +∠C >∠BAD +∠CAD .即∠B +∠C >∠A . 因为∠B +∠C =180°-∠A , 所以180°-∠A >∠A , 即∠A <90°,与已知矛盾. 故AD >12BC 不成立.由①②知AD <12BC 成立.放缩法证明不等式作适当的放大或缩小,证明比原不等式更强的不等式来代替原不等式的一种证明方法.放缩法的实质是非等价转化,放缩没有一定的准则和程序,需按题意适当..放缩,否则达文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支持。

《证明不等式的基本方法反证法与放缩法》

《证明不等式的基本方法反证法与放缩法》

《证明不等式的基本方法反证法与放缩法》证明不等式的基本方法包括反证法和放缩法。

反证法是一种常用的证明不等式的方法,它的思路是假设不等式不成立,然后通过推理推出一个矛盾的结论,从而证明原不等式的成立。

放缩法是通过对不等式进行变形、放缩,将原不等式转化为一个更易证明的形式。

首先介绍反证法。

对于一个要证明的不等式,我们可以假设不等式不成立,即假设存在一些满足条件的变量使得不等式不成立。

然后通过对这个假设的推理,得出一个与已知条件相矛盾的结论,从而证明假设是错误的,进而证明原不等式的成立。

具体步骤如下:1.假设不等式不成立,即假设存在一些满足条件的变量使得不等式不成立。

2.根据已知条件和假设,对变量进行推理,得出结论。

3.利用这个结论推出与已知条件矛盾的结论。

4.由此可以得出假设是错误的,从而证明原不等式的成立。

举个例子来说明反证法的应用:对于不等式x+y>0,假设不等式不成立,即存在一些满足条件的x和y使得x+y≤0。

然后我们通过推理可以得到y≤-x,即y的取值范围在x的左侧。

然而,根据已知条件,对于任意的x和y,x+y的和都大于0,与假设矛盾。

因此,假设错误,原不等式成立。

接下来介绍放缩法。

放缩法是通过对不等式进行变形和放缩,将原不等式转化为一个更易证明的形式。

放缩法的关键在于找到合适的放缩因子和放缩方法。

具体步骤如下:1.根据不等式的特点,选择合适的放缩因子和放缩方法。

2.对不等式进行变形和放缩,将原不等式转化为一个更易证明的形式。

3.对新形式的不等式进行证明。

4.如果新形式的不等式成立,根据不等式的等价性,原不等式也成立。

举个例子来说明放缩法的应用:对于不等式(x + y)(y + z)(z + x) ≥ 8xyz,我们可以使用放缩法进行证明。

我们选择放缩因子2和放缩方法(x + y) ≥ 2√xy,可以得到(2√xy)(2√yz)(2√xz) ≥ 8xyz。

化简后得到(√xy)(√yz)(√xz) ≥ xyz,即x·y·z ≥ xyz,显然成立。

证明不等式的几种方法

证明不等式的几种方法

昭通学院学生毕业论文论文题目证明不等式的几种方法姓名学号 201103010128学院数学与统计学院专业数学教育指导教师2014年3月6日证明不等式的几种方法摘 要:证明不等式就是要推出这个不等式对其中所有允许值都成立或推出数值不等式成立。

本文主要归纳了几种不等式证明的常用方法。

关键词:不等式; 证明; 方法 1.引言在定义域中恒成立的不等式叫做恒不等式,确认一个不等式为恒不等式的过程为对该不等式进行证明。

证明不等式的主要方法是根据不等式的性质和已有的恒不等式进行合乎逻辑的等价变换。

主要方法有:比较法、综合法、分析法、反证法、归纳法、放缩法、构造法、导数法、均值不等式性质证明不等式等方法。

2.不等式证明的常用方法2.1 比较法比较法是直接作出所证不等式,两边的差(或商)然后推演出结论的方法。

具体地说欲证B A >)(B A <,直接将差式B A -与0比较大小;或若当+∈R B A ,时,直接将商式BA与1比较大小[]1。

差值比较法的理论依据是不等式的基本性质:“若0≥-b a ,则b a ≥;若0≤-b a ,则b a ≤.”其一般步骤为:1.作差:观察不等式左右两边构成的差式,将其看成一个整体。

2.变形:把不等式两边的差进行变形,或变形成一个常数,或为若干个因式的积,或一个或几个平方和。

其中变形是求差法的关键,配方和因式分解是经常使用的方法。

3.判断:根据已知条件与上述变形结果判断不等式两边差的正负号,最后肯定所求不等式成立的结论。

应用范围:当被证的不等式两端是多项式,对于分式或对数式时,一般使用差值比较法。

商值比较法的理论依据是:“∈b a ,+R ,若b a 1≥则b a ≥;若ba1≤则b a ≤.”其一 般步骤为:1.作商:将左右两端作商。

2.变形:化简商式到最简形式。

3.判断:商与1的大小关系,就是判定商大于1还是小于1。

应用范围:当被证的不等式两端含有幂指数式时,一般使用商值比较法。

证明不等式的八种方法

证明不等式的八种方法
比较法:比较法是证明不等式的最基本、最 重要的方法之一,它是两个实数大小顺序和 运算性质的直接应用,比较法可分为差值比 较法和商值比较法。
1 Math Part 比较法
证明:
∴a-1≥1,b-1≥1
ab-a-b =a(b-1)-b
∴(a-1)(b-1)≥1 例题:已知a≥2,b≥即2,(a求-1)证(b:-1)a-b1≥≥a0+b
6 Math Part 构造法
函数构造法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 要证明的不等式为: ab≥a+b 移项得 ab-a-b≥0 即(b-1)a-b≥0 构造函数 f(x)=(b-1)x-b (x≥2)
f(x)是关于x的一次函数 其中一次项系数b-1>0 ∴f(x)为定义域上的增函数 ∴对于任意的x∈[2,+∞)都有 f(x)≥f(2)=(b-1)×2-b=b-2≥0 ∴(b-1)a-b≥0 所以原命题成立 证毕
与①式矛盾
所以原命题成立
证毕
5 Math Part
公式法
5 Math Part 公式法
伯公努式利法不:等利式用:已有的不等式的定理、公式等 (1证+x明1)不(1等+x式2)…的(一1+种xn方) ≥法1。+x高1+中x2常…+见xn的公式有: 对基 栖于本 西任不不意等等1≤式式i,、、j≤绝加n都对权有值平x不均i>-等不1且式 等所、 式有均 、x值 切i与不 比x等雪j同式夫号、不
4 Math Part 反证法
例题:已知a≥2,b≥2,求证:ab≥a+b
证明: 假设ab<a+b ab-a-b =a(b-1)-b =a(b-1)-(b-1)-1 =(a-1)(b-1)-1 ∵ab<a+b

不等式证明中的几种新颖方法

不等式证明中的几种新颖方法

不等式证明中的几种新颖方法
以下是 8 条关于不等式证明中的新颖方法:
1. 放缩法简直太神奇啦!比如说,要证明
1+1/2+1/3+……+1/n>ln(n+1),咱就可以通过巧妙地放大或缩小一些项
来达到目的。

这就好像建房子,一点一点把合适的材料放上去就能建成稳固的大厦呀!
2. 构造函数法真的是绝了!像证明x²+5>2x+3 ,咱可以构造函数
f(x)=x²-2x+2 ,通过研究函数的性质来得出不等式的结论,这多像给不等
式穿上了一件量身定制的衣服!
3. 数学归纳法也很厉害的哟!比如要证明一个关于 n 的不等式,先证
明当 n=1 时成立,然后假设 n=k 时成立去推出 n=k+1 时也成立。

这就像爬楼梯,一步步稳稳地往上走!“嘿,这不就证明出来啦!”
4. 利用均值不等式来证明,哇哦,那可太好用啦!例如证明
(a+b)/2≥√(ab) ,这就像是给不等式找了个平衡的支点!
5. 换元法也有意思呀!把复杂的式子通过换元变得简单明了,再去证明。

就好像把一团乱麻理清楚,然后就能看清它的真面目啦!“哇,原来这么简单!”
6. 反证法也超棒的呢!先假设不等式不成立,然后推出矛盾,从而证明原来的不等式是对的。

这不是和找错一样嘛,找到错的就知道对的在哪啦!
7. 排序不等式更是一绝!在一堆乱序的数中找到规律证明不等式,就像在一堆杂物中找到宝贝一样让人惊喜!
8. 柯西不等式也是很牛的哦!通过它独特的形式来证明不等式,真的是让人眼前一亮呀!“哇塞,还有这种神奇的方法!”
我觉得这些新颖的方法就像是一个个神奇的工具,能让我们在不等式的证明中如鱼得水,轻松搞定各种难题!。

证明不等式的几种常用方法

证明不等式的几种常用方法

证明不等式的几种常用方法证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用.一、反证法如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理.反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的.用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效.例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确.反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④由不等式③得(a +b)cd <ab(c +d)≤(2b a )2·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d),综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-32ab ,显然矛盾.∴不等式①、②、③中至少有一个不正确.例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c>0.证明:反证法由abc >0知a ≠0,假设a <0,则bc <0,又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0,从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾.∴假设不成立,从而a >0,同理可证b >0,c >0.例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2.故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 p +q >0,∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.故假设p +q >2不成立,∴p +q ≤2.例4 已知)(x f = x 2+ax +b ,其中a 、b 是与x 无关的常数,求证:|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法一:假设|)1(f |<21,|)2(f |<21,|)3(f |<21, 由于)1(f = 1+a +b ,)2(f = 4+2a +b ,)3(f = 9+3a +b ,∴)1(f +)3(f -)2(f =2,但是,2 = |)1(f +)3(f -)2(f |≤|)1(f |+|)3(f |+2|)2(f |<21+21+2×21= 2, 即2<2,矛盾,∴假设不成立,∴|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法二:假设|)1(f |<21,|)2(f |<21,|)3(f |<21,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<.21|)3(|,21|)2(|,21|)1(|f f f ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<++<-<++<-<++<-③b a ②b a ①b a .219321,214221,21121 ①+③得:-1<4a +2b +10<1,即-21<2a +b +5<21, ∴-23<2a +b +4<-21,④ 显然②与④矛盾,因此,假设是不成立的, 故|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 例4 设a ,b ,c 均为小于1的正数,求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于41. 证明:反证法假设(1-a)b ,(1-b)c ,(1-c)a 同时大于41,即(1-a)b >41,(1-b)c >41,(1-c)a >41, 则由41<(1-a)b ≤(21b a +-)2⇒21b a +->21, 同理:21c b +->21,21a c +->21, 三个同向不等式两边分别相加,得23>23,矛盾,所以假设不成立, ∴原结论成立.例6 若0<a <2,0<b <2,0<c <2,求证:(2-a)b ,(2-b)c ,(2-c)a不能同时大于1.证明:反证法假设⎪⎩⎪⎨⎧>->->-.1)2(,1)2(,1)2(a c c b b a 那么2)2(b a +-≥b a )2(->1,① 同理2)2(c b +->1,② 2)2(a c +->1,③ ①+②+③,得3>3矛盾,即假设不成立,故(2-a)b ,(2-b)c ,(2-c)a 不能同时大于1.二、三角换元法对于条件不等式的证明问题,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑用三角代换,将复杂的代数问题转化为三角问题.若变量字母x 的取值围与sin θ或cos θ的变化围相同,故可采用三角换元,把所要证的不等式转换为求三角函数的值域而获证.一般地,题设中有形如x 2+y 2≤r 2,22a x +22b y = 1或22a x -22b y = 1的条件可以分别引入三角代换⎩⎨⎧==θθsin cos r y r x (| r |≤1),⎩⎨⎧==θθsin cos b y a x 或⎩⎨⎧==θθtan sec b y a x ,其中θ的取值围取决于x ,y 的取值围,凡不能用重要不等式证明的问题时,一般可以优先考虑换元(代数换元或三角换元),然后利用函数的单调性最终把问题解决.在三角换元中,由于已知条件的限制作用,根据问题需要,可能对引入的角度有一定的限制,应特别引起注意,否则可能会出现错误的结果.例2 已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2), ∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3, ∴ 21≤x 2-xy +y 2≤3. 例2 已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan21)|≤r 5≤10.例3 已知-1≤x ≤1,n ≥2且n ∈N ,求证:(1-x)n +(1+x)n ≤2n . 证明:∵-1≤x ≤1,设x = cos θ2 (0≤θ≤2π), 则1-x =1-cos θ2= 1-(1-2sin 2θ) = 2sin 2θ,1+x =1+cos θ2= 2cos 2θ,∴(1-x)n +(1+x)n = 2n sin n 2θ+2n cos n 2θ≤2n ( sin 2θ+cos 2θ) =2n ,故不等式(1-x)n +(1+x)n ≤2n 成立.例4 求证:-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π), ∵-4π≤θ-4π≤43π, ∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 三、增量代换法 在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.例7 已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225. ∴(a +2)2+(b +2)2≥225. 例8 已知a 1+a 2+…+a n = 1,求证:21a +22a +…+2n a ≥n1. 证明:设a 1= t 1+n 1,a 2= t 2+n 1,…,a n = t n +n1,其中t 1+t 2+…+t n = 0,则21a +22a +…+2n a = (t 1+n 1)2+(t 2+n 1)2+…+(t n +n 1)2= n ·21n+2×n 1( t 1+t 2+…+t n )+…+21t +22t +…+2n t =n 1+21t +22t +…+2n t ≥n 1. 四、放缩法放缩法是在顺推法逻辑推理过程中,有时利用不等式的传递性,作适当的放大或缩小,证明不原不等式更强的不等式来代替原不等式的证明.这种证题方法的实质是非等价转化,而它的证题方法没有一定的准则和程序,需按题意适当..放缩,否则是达不到目的.利用放缩法证明不等式,要根据不等式两端的特征及已知条件,采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母、把和式中的某些项换以较大或较小的数,从而达到证明不等式的目的.此类证法要慎审地采取措施,进行恰当地放缩,任何不适宜的放缩(放的过大或过小)都会导致推证的失败.例5 设n 为自然数,求证:91+251+…+2)12(1+n <41. 证明:∵2)12(1+k =14412++k k <k k 4412+=41(k1-11+k ), ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. 例5 已知a n =21⨯+32⨯+…+)1(+n n ,其中n 为自然数, 求证:21n(n +1)<a n <21(n +1)2. 证明:∵)1(+k k <21++k k =212+k 对任意自然数k 都成立, ∴a n =21⨯+32⨯+…+)1(+n n <23+25+27+…+212+n =21[3+5+7+…+(2n +1)] =21(n +2n)<21(n +2n +1) =21(n +1)2. 又)1(+k k >2k = k ,∴a n =21⨯+32⨯+…+)1(+n n >1+2+3+…+n =21n(n +1), ∴21n(n +1)<a n <21(n +1)2. 评析:根据要证不等式的结构特征,应用均值不等式“放大”a n 为一个等差数列的和,求和后再添加一个数1,直到“放大”到要证的右边;而左边是通过“缩小”a n 的方法去根号而转化为等差数列的和.放大或缩小的技巧很多,如添项、减项、分子、分母加或减一个数,或利用函数的单调性、有界性等等,但要注意放缩要适度.11.设a 、b 为不相等的两正数,且a 3-b 3= a 2-b 2,求证:1<a + b <34. 证明:由题意得a 2+ab +b 2= a + b ,于是(a +b)2= a 2+2ab +b 2>a 2+ab +b 2= a + b ,故a + b >1,又(a +b)2>4ab ,而(a +b)2= a 2+2ab +b 2= a +b +ab <a +b +4)(2b a +, 即43(a +b)2<a +b ,解得a + b <34. ∴1<a + b <34. 例12 已知a 、b 、c 、d 都是正数,求证:1<c b a b +++d c b c +++a d c d +++ba d a ++<2. 证明:∵d cb a b +++<c b a b ++<ba b +, d c b a c +++<d c b c ++<dc c +,d c b a d +++<a d c d ++<dc d +, d c b a a +++<b a d a ++<ba a +, 将上述四个同向不等式两边分别相加,得:1<c b a b +++d c b c +++a d c d +++ba d a ++<2.。

数学:不等式证明四法比较法综合法分析法反证法与放缩法

数学:不等式证明四法比较法综合法分析法反证法与放缩法

不等式证明一(比较法)比较法是证明不等式的一种最重要最基本的方法。

比较法分为:作差法和作商法 一、 作差法若a ,b ∈R ,则: a —b >0⇔a >b ;a —b =0⇔a =b ;a —b <0⇔a <b 它的三个步骤:作差——变形——判断符号(与零的大小)——结论. 作差法是当要证的不等式两边为代数和形式时,通过作差把定量比较左右的大小转化为定性判定左—右的符号,从而降低了问题的难度。

作差是化归,变形是手段,变形的过程是因式分解(和差化积)或配方,把差式变形为若干因子的乘积或若干个完全平方的和,进而判定其符号,得出结论.例1、求证:x 2 + 3 > 3x 证:∵(x 2 + 3) 3x = 043)23(3)23()23(32222>+-=+-+-x x x ∴x 2 + 3 > 3x例2、 (课本P 22例2)已知a, b, m 都是正数,并且a < b ,求证:bam b m a >++ 证:)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ ∵a,b,m 都是正数,并且a<b ,∴b + m > 0 , b a > 0 ∴0)()(>+-m b b a b m 即:bam b m a >++变式:若a > b ,结果会怎样?若没有“a < b ”这个条件,应如何判断?例3、 已知a, b 都是正数,并且a b ,求证:a 5 + b 5 > a 2b 3 + a 3b 2 证:(a 5 + b 5 )(a 2b 3 + a 3b 2) = ( a 5 a 3b 2) + (b 5 a2b 3)= a 3 (a 2b 2 )b 3 (a 2b 2) = (a 2b 2 )(a 3 b 3)= (a + b )(a b )2(a 2 + ab + b 2)∵a, b 都是正数,∴a + b, a 2 + ab + b 2 > 0又∵a b ,∴(a b )2 > 0 ∴(a + b )(a b )2(a 2 + ab + b2) > 0即:a 5 + b 5 > a 2b 3 + a 3b 2例4、 甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m 行走,另一半时间以速度n 行走;有一半路程乙以速度m 行走,另一半路程以速度n 行走,如果m n ,问:甲乙两人谁先到达指定地点?解:设从出发地到指定地点的路程为S ,甲乙两人走完全程所需时间分别是t 1, t 2,则:21122,22t n S m S S n t m t=+=+可得:mnn m S t n m S t 2)(,221+=+= ∴)(2)()(2])(4[2)(22221n m mn n m S mn n m n m mn S mn n m S n m S t t +--=++-=+-+=- ∵S, m, n 都是正数,且m n ,∴t 1 t 2 < 0 即:t 1 < t 2从而:甲先到到达指定地点。

证明不等式的基本方法

证明不等式的基本方法

恒成立,求实数a的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”; 乙说:“把不等式变形为左边含变量x的函数,右边仅含常 数,求函数的最值”; 丙说:“把不等式两边看成关于x的函数,作出函数图象”;
参考上述解题思路,你认为他们所讨论的问题的正确结论,
即a的取值范围是________. [答案] a≤10
[点评与警示] 论证过程中,执果索因与由因导果总是不
断变化,交替出现.尤其综合题推理较盲目时,利用分析法从
要证的问题入手,逐步推求,再用综合法逐步完善,最后找到 起始条件为止.
(人教版选修 4—5 第 30 页第 1 题)已知 a, b, c∈(0,1), 1 求证:(1-a)b,(1-b)c,(1-c)a 不同时大于4.
[证明]
(反证法)假设(1-a)b,(1-b)c,(1-c)a 都大于 ①
1 1 (1-b)c· (1-c)a>64 4,则(1-a)b· 1 即[a(1-a)· b(1-b)· c(1-c)]>64
a+1-a 2 1 而 0<a(1-a)≤[ ]= , 2 4
1 1 0<b(1-b)≤ ,0<c(1-c)≤ 4 4 1 ∴[a(1-a)][b(1-b)][c(1-c)]≤ 与①矛盾 64 1 ∴(1-a)b,(1-b)c,(1-c)a 不同时大于 . 4
) B.a2>b2 1a 1b D.(2) <(2)
1 2 .若 a > b > 1 , P = lga· lgb , Q = (lga + lgb) , R = 2 a+b lg( ),则( 2 A.R<P<Q C.Q<P<R
[解析]
) B.P<Q<R
D.P<R<Q 1 ∵lga>lgb>0,∴ (lga+lgb)> lga· lgb,即 Q 2

不等式的证明方法总结

不等式的证明方法总结

不等式的证明方法总结一.比较法(作差比较,作商比较)例1.已知x<y<0,求证(x 2+y 2)(x-y)>(x 2-y 2)(x+y).证明:∵(x 2+y 2)(x-y)-(x 2-y 2)(x+y)=(x-y)[(x 2+y 2)-(x+y)2]=-2xy(x-y)>0∴(x 2+y 2)(x-y)>(x 2-y 2)(x+y).例2.已知a>b>c ,求证a 2b+b 2c+c 2a>ab 2+bc 2+ca 2.证明:∵(a 2b+b 2c+c 2a)-(ab 2+bc 2+ca 2)=a 2(b-c)+a(c 2-b 2)+bc(b-c)=(b-c)(a 2-ac-ab+bc)=(b-c)[a(a-c)-b(a-c)]=(a-b)(a-c)(b-c)>0∴a 2b+b 2c+c 2a>ab 2+bc 2+ca 2.例3.已知a ,b>0,a ≠b ,求证a a b b >a b b a . 证明:b a a b b a a b b a )ba (b a b a b a ---==. 当a>b>0时, a-b>0,1ba > ∴上式>1; 当b>a>0时, a-b<0,0<1b a < ∴上式>1; ∴a a b b >a b b a .二.综合法例4.已知a ,b ,c>0,求证c b a cab b ca a bc ++≥++. 证明:∵c 2bca a bc 2b ca a bc =⋅≥+, 同理a 2cab b ca ≥+, b 2abc c ab ≥+, ∴)c b a (2)cab b ca a bc (2++≥++, 即c b a c ab b ca a bc ++≥++. 例5.已知a ,b ,c>0,a+b+c=1,求证8)1c1)(1b 1)(1a 1(≥---. 证明:)1c1)(1b 1)(1a 1(--- =c c 1b b 1a a 1-⋅-⋅-=cb a bc a a c b +⋅+⋅+ c ab 2b ac 2a bc 2⋅⋅≥=8三.分析法例6.已知a ≥3,求证3a 2a 1a a ---≤--. 证明:要证原式,只需证2a 1a 3a a -+-≤-+, 即证22)2a 1a ()3a a (-+-≤-+ 即证)2a )(1a (23a 2)3a (a 23a 2--+-≤-+- 即证)2a )(1a ()3a (a --≤- 即证a 2-3a ≤a 2-3a+2即证0≤2因为上式成立,所以原式也成立.四.换元法例7.已知0<x<1,a ,b>0,求证222)b a (x1b x a +≥-+. 证明:方法一.令x=sin 2α,则1-x=cos 2α.x 1b x a 22-+ =a 2csc 2α+b 2sec 2α=a 2(1+cot 2α)+b 2(1+tan 2α)=a 2+b 2+a 2cot 2α+b 2tan 2α≥a 2+b 2+2acot α·btan α=(a+b)2 方法二. 222222222)(1)1()]1()[1(1b a xx b x x a b a x x x b x a x b x a +≥-+-++=-+-+=-+. 五.放缩法例8.已知a ,b ,c ,d>0,求证2ca d db dc c a c b bd b a a 1<+++++++++++<. 证明:ca d db dc c a c b bd b a a +++++++++++ >1bc ad d a b d c c d a c b b c d b a a =+++++++++++++++; c a d d b d c c a c b b d b a a +++++++++++<2cd d d c c a b b b a a =+++++++. 六.反证法例10.已知p 3+q 3=2,求证p+q ≤2.证明:假设p+q>2,则(p+q)3>23,即p 3+3p 2q+3pq 2+q 3>8,即p 2q+pq 2>2,即p 2q+pq 2>p 3+q 3,即pq(p+q)>(p+q)(p 2-pq+q 2),即pq>p 2-pq+q 2,即p 2 +q 2<2pq ,与p 2 +q 2>2pq 矛盾,所以p+q ≤2.例11.已知f(x)=x 2+px+q ,求证⑴f(3)+f(1)-2f(2)=2;⑵|f(1)|,|f(2)|,|f(3)|中至少有一个不小于0.5.证明:⑴f(3)+f(1)-2f(2)=(9+3p+q)+(1+p+q)-2(4+2p+q)=2;⑵假设|f(1)|,|f(2)|,|f(3)|<0.5,则|f(1)|+2|f(2)|+|f(3)|<2,而|f(1)|+2|f(2)|+|f(3)|>|f(1)-2f(2)+f(3)|=2,矛盾.所以|f(1)|,|f(2)|,|f(3)|中至少有一个不小于0.5.七.判别式法例12.已知a ,b ,c ,d ∈R ,求证(a 2+b 2)(c 2+d 2)≥(ac+bd)2.证明:当a=b=0时,上式显然成立;当a ,b 不全为0时,因为关于x 的不等式(ax-c)2+(bx-d)2≥0恒成立,即(a 2+b 2)x 2-2(ac+bd)x+(c 2+d 2)≥0恒成立,由△≤0,即得(a 2+b 2)(c 2+d 2)≥(ac+bd)2.综上所述(a 2+b 2)(c 2+d 2)≥(ac+bd)2.八.构造向量例13.已知a ,b ,c ,d ∈R ,求证(a 2+b 2)(c 2+d 2)≥(ac+bd)2. 证明:设向量x =(a ,b),y =(c ,d). ∵y x y x ⋅≤⋅,∴|ac+bd|≤2222d c b a +⋅+,平方即得(a 2+b 2)(c 2+d 2)≥(ac+bd)2.九.构造函数例14.已知△ABC 的三边长是a ,b ,c ,且m>0,求证m c c m b b m a a +>+++. 证明:令函数f(x)=).0x (,mx x >+ 由f(x)=,mx m 1m x m m x +-=+-+知f(x)在(0,+∞)上是增函数.∵a+b>c∴f(a+b)>f(c) ∴m c c )c (f )b a (f m b a b a m b a b m b a a m b b m a a +=>+=+++=+++++>+++,得证.例15.已知b>a>e ,求证a b >b a . 证明:令)e x (,x xln )x (f >=,0x xln 1)x (f 2'<-= ,∴f(x)在(e ,+∞)上是减函数.∵b>a>e ,∴f(b)<f(a), 即a aln b b ln <,∴alnb<blna ,∴lnb a <lna b , ∴a b >b a .。

高三复习第二讲证明不等式的基本方法

高三复习第二讲证明不等式的基本方法

高三复习第二讲证明不等式的基本方法选修4-5不等式选讲【考纲速读吧】1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.综合法往往是分析法的相反过程,其表述简单、条理清楚.当问题比较复杂时,通常把分析法和综合点必会技巧1.利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式.2.常用的初等变形有均匀裂项、增减项、配系数等.利用基本不等式还可以证明条件不等式,关键是恰当地利用条件,构造基本不等式所需要的形式.项必须注意1.作差比较法适用的主要题型是多项式、分式、对数式、三角式,作商比较法适用的主要题型是高次幂乘积结构.2.放缩法的依据是不等式的传递性,运用放缩法证明不等式时,要注意放缩适度,“放”和“缩”的量的大小是由题目分析,多次尝试得出.放得过大或过小都不能达到证明目的.3.利用柯西不等式求最值,实质上就是利用柯西不等式进行放缩,放缩不当则等号可能不成立,因此,要切记检验等号成立的条件.【课前自主导学】011.三个正数的算术—几何平均不等式a+b+c(1)定理:如果a,b,c均为正数,那么________abc,当且仅当________时,等号成立,即3三个正数的算术平均数________它们的几何平均数.(2)基本不等式的推广a1+a2+…+an对于n个正数a1,a2,…,an,它们的算术平均数________它们的几何平均数,即na1a2n,当且仅当________时,等号成立.21(1)已知某>0,则y=某2+________.(2)已知某>0,则y=某的最小值为________.某某2.柯西不等式(1)设a,b,c,d均为实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时等号成立.bbb222(2)若ai,bi(i∈N某)为实数,则(∑a)(∑b)≥(∑ab),当且仅当==…=ai=0时,iiiia1a2ani=1i=1i=1约定bi=0,i=1,2,…,n)时等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|,当且仅当α、β共线时等号成立.nnn(1)若某+2y+4z=1,则某2+y2+z2的最小值是________.(2)某,y∈R,且某2+y2=10,则2某-y的取值范围为________.3.证明不等式的方法(1)比较法①求差比较法由a>ba-b>0,a<ba-b<0,因此要证明a>b,只要证明________即可,这种方法称为求差比较法.②求商比较法a由a>b>0>1且a>0,b>0,因此当a>0,b>0时要证明a>b,只要证明________即可,这种方法称为求商b比较法(2)分析法从所要________入手向使它成立的充分条件反推直至达到已知条件为止,这种证法称为分析法,即“执果索因”的证明方法.(3)综合法从已知条件出发,利用不等式的性质(或已知证明过的不等式),推出所要证明的结论,即“由因寻果”的方法,这种证明不等式的方法称为综合法.(4)反证法的证明步骤第一步:作出与所证不等式________的假设;第二步:从________出发,应用正确的推理方法,推出矛盾的结论,否定假设,从而证明原不等式成立.(5)放缩法所谓放缩法,即要把所证不等式的一边适当地________,以利于化简,并使它与不等式的另一边的不在证明不等式时综合法与分析法有怎样的关系?(1)要证明29+31<25,可选择的方法最合理的是________.a3+a6(2)等比数列{an}各项为正数,且q≠1,若PQ=a4a5,则P与Q的大小关系________.2【自我校对】1.≥a=b=c不小于不小于≥a1=a2=…=an31填一填:(1)3(2)34112.填一填:(1提示:∵1=某+2y+4z≤某+y+z1+4+16,∴某2+y2+z2≥某2+y2+z2的最2121小值为.21(2)[-2,2]提示:∵(某2+y2)[22+(-1)2]≥(2某-y)2,∴-2≤2某-y≤52.a3.a-b>0证明的结论相反条件和假设放大或缩小b想一想:提示:综合法:由条件出发推导出所要证明的不等式成立.分析法:从结论出发寻找使结论成立的充分条件,综合法与分析法是对立统一的两种方法.在实际解题时,常常用分析法探求解题思路,用综合法表达.填一填:(1)分析法(2)P≥Q提示:∵a3·a6=a4·a5,∴a3+a6≥23·a6=2a4·a5,∴P≥Q.【核心要点研究】02【考点一】比较法证明不等式例1[2022·广州模拟]已知a>0,b>0,求证:(a)3+b3≥ab+ab2.【审题视点】本题主要考查不等式证明的方法,考查运算求解能力及等价转化思想,可用作差比较法证明.[证明](a)3+b3-(ab+ab2)=[(a)3-ab]+[b3-ab2]=a(a-b)-b2(a-b)=(a-b)(a-b2a-b)[(a)2-b2]=(a-b)2(a+b).因为a>0,b>0,所以a+b>0,又(a-b)2≥0,所以(a-b)2a+b)≥0a)3+b3-(ab+ab2)≥0,即(a)3+b3≥ab+2.【师说点拨】此题用的是作差比较法,其步骤:作差、变形、判断差的符号、结论.其中判断差的符号为目的,变形是关键.常用的变形技巧有因式分解、配方、拆项、拼项等方法.【变式探究】求证:a2+b2≥ab+a+b-1证明:∵(a2+b2)-(ab+a+b-1)=a2+b2-ab-a-b+1=2a2+2b2-2ab-2a-2b+2)211=(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)](a-b)2+(a-1)2+(b-1)2]≥0,22∴a2+b2≥ab+a+b-1.【考点二】用分析法或综合法证明不等式1112例2已知a,b,c均为正数,证明:a2+b2+c2+abc3,并确定a,b,c为何值时,等号成立.【审题视点】3因为a,b,c均为正数,且a+b+c≥3abc,故可利用三个正数的算术——几何平均不等式证明.2[证明]因为a,b,c均为正数,所以a2+b2+c2≥3(abc),①3111211112+≥9(abc)-.②+≥3(abcabcabc33111222+≥3(abc)+9(abc故a2+b2+c2+abc3322又3(abc)+9(abc)-≥2=6,③所以原不等式成立.33当且仅当a=b=c时,①式和②式等号成立.221当且仅当3(abc9(abc)-时,③式等号成立.即当且仅当a=b=c=3 334111奇思妙想:例题中,不等式变为“abc3”,其余不变,该如何解答?abc111331113证明:∵a,b,c++abc≥+abc3,abcabcabcabcabc31∴原不等式成立,当a=b=c且abc时等号同时成立,即a=b=c=3 abc6【师说点拨】1.分析法要注意叙述的形式:“要证A,只要证B”,这里B应是A成立的充分条件.2.综合法证明不等式是“由因导果”,分析法证明不等式是“执果索因”.它们是两种思路截然相反的证明方法.分析法便于寻找解题思路,而综合法便于叙述,因此要注意两种方法在解题中的综合运用.【变式探究】设a≥b>0,求证:3a3+2b3≥3a2b+2ab2.证明:证法一(综合法)∵a≥b>0,∴a2≥b2,则3a2≥2b2,则3a2-2b2≥0.又a-b≥0,∴(a-b)(3a2-2b2)≥0,即3a3-2ab2-3a2b+2b3≥0,则3a3+2b3≥3a2b+2ab2.故原不等式成立.证法二(分析法)要证3a3+2b3≥3a2b+2ab2,只需证3a3+2b3-3a2b-2ab2≥0,即3a2(a-b)+2b2(b-a)≥0,也即(a-b)(3a2-2b2)≥0,(某)∵a≥b>0,∴a-b≥0.又a2≥b2,则3a2≥2b2,∴3a2-2b2≥0.(某)式显然成立,故原不等式成立.【考点三】用柯西不等式证明不等式例3[2022·福建高考]已知函数f(某)=m-|某-2|,m∈R,且f (某+2)≥0的解集为[-1,1].111(1)求m的值;(2)若a,b,c∈R+,且++m,求证:a+2b+3c≥9.a2b3c【审题视点】(1)根据式子的特点,利用公式进行转化,根据集合相等确定m的值;(2)结合已知条件构造两个适当的数组,变形为柯西不等式的形式.[解](1)因为(f某+2)=m-|某|,(f某+2)≥0等价于|某|≤m,由|某|≤m有解,得m≥0,且其解集为{某|-m≤某≤m}.又f(某+2)≥0的解集为[-1,1],故m=1.111+(2)由(1)知=1,又a,b,c∈R,由柯西不等式得a2b3c111111a+2b+3c=(a+2b+3c)()≥(a+2b3c2=9.所以不等式得证.a2b3ca2b3c【师说点拨】22222柯西不等式的一般结构为(a2(b21+a2+…+an)1+b2+…+bn)≥(a1b1+a2b2+…+anbn),在使用柯西不等式时,关键是将已知条件通过配凑,转化为符合柯西不等式条件的式子,为方便使用柯西不等式,有时常将a变形为1某a的形式.【变式探究】abcbca用柯西不等式证明:若a,b,c均为正数,+)()≥9.bcaabcabcbca证明:∵(+(+)≥(2=9,bcaabcbacbacabcbca∴()+)≥9.bcaabc【经典演练提能】041.已知a1≤a2,b1≤b2,则P=a1b1+a2b2,Q=a1b2+a2b1的大小关系是()A.P≤QB.P<QC.P≥QD.P>Q答案:C解析:∵(a1b1+a2b2)-(a1b2+a2b1)=(b1-b2)·(a1-a2)∵a1≤a2,b1≤b2∴(b1-b2)·(a1-a2)≥0∴a1b1+a2b2≥a1b2+a2b1.1112.已知a,b,c是正实数,且a+b+c=1++的最小值为()abcA.3B.6C.9D.12答案:Ca+b+ca+b+ca+b+c111bacacb解析:把a+b+c=1代入+得到=3+(++(+(+)≥3 abcabcabacbc+2+2+2=9,故选C.3.若a,b,c∈(0,+∞),且a+b+c=1,则a+b+c的最大值为()A.1B.2C.3D.2解析:abc)2=(a+b+c)2≤(12+12+12)(a+b+c)=3.当且仅当a=b=c=abc)2≤3.故++的最大值为.3某+y某y4.设某>0,y>0,M=N=M、N的大小关系为________.2+某+y2+某2+y答案:M<N某+y某y某y解析:N=+>M.2+某2+y2+某+y2+某+y2+某+y5.若a,b∈R,且a≠b,M答案:M>N+ab+,N=a+b,则M、N的大小关系为________.baabab解析:∵a≠bba,ab,baa+b.baba(时间:45分钟分值:100分)一、选择题1.若|a-c|<|b|,则下列不等式中正确的是()A.a<b+cB.a>c-bC.|a|>|b|-|c|D.|a|<|b|+|c|答案:D解析:|a|-|c|≤|a-c|<|b|,即|a|<|b|+|c|.故选D.112.[2022·鸡西模拟]若实数某、y+=1,则某2+2y2有()某yA.最大值3+22B.最小值3+2C.最大值6D.最小值6答案:B 112y2某22222解析:由题意知,某+2y=(某+2y)·(+)=3++22,某y某y22某2y=时,等号成立,故选B.y某1113.[2022·广东调研]已知a,b为实数,且a>0,b>0.则(a+b+(a2+)abaA.7B.8C.9D.10答案:C13解析:因为a>0,b>0,所以a+b+≥3a某b=3b>0,①aa113同理可证:a++≥3.②23111321由①②及不等式的性质得(a+b+)(a≥3b某9.abab24.[2022·柳州模拟]已知关于某的不等式2某在某∈(a,+∞)上恒成立,则实数a的最小值为()某-a13A.B.1CD.222答案:C2223解析:2某+2(某-a)+2a≥22某-a2a=2a+4≥7,∴a2某-a某-a某-a+5.[2022·金版原创]若q>0且q≠1,m,n∈N,则1+qmn与qm+qn 的大小关系是()+++A.1+qmn>qm+qnB.1+qmn<qm+qnC.1+qmn=qm+qnD.不能确定答案:A解析:1+qmn-qm-qn=qm(qn-1)-(qn-1)=(qn-1)(qm-1),①当0<q<1时,qn<1,qm<1.②当q>1时,qn>1,qm>1.+∴(qn-1)(qm-1)>0,∴1+qmn>qm+qn,故选A.6.[2022·湖北高考]设a,b,c,某,y,z是正数,且a2+b2+c2=10,某2+y2+z2=40,a某+by+cz=20,则a+b+c=()某+y+z1113A.B.C.D.4324答案:C解析:由柯西不等式得(a2+b2+c2)(某2+y2+z2)≥(a某+by+cz)2,而由已知有abc(a2+b2+c2)(某2+y2+z2)=10某40=202=(a某+by+cz)2,故==k,代入得某yza+b+c11a2+b2+c2=k2(某2+y2+z2)=40k2=10,解得k=k=.故选C.22某+y+z二、填空题7.函数y=21-某+2某+1的最大值为________.答案:3解析:y22-2某+2某+1)2≤[()2+12][2-2某)22某+1)2]=3某3,∴y≤3.8.[2022·许昌模拟]对于任意实数a、b,若|a-b|≤1,|2a-1|≤1,则|4a-3b+2|的最大值为________.答案:611解析:因为|a-b|≤1,|2a-1|≤1,所以|3a-3b|≤3,|a22151515|4a-3b+2|=|(3a-3b)+(a-|≤|3a-3b|+|a-|+≤3++6,即|4a-3b+2|的最大值为6.2222221119.已知某,y,z为正实数,且+=1,则某+4y+9z的最小值为________.某yz答案:36解析:解法一:由柯西不等式,得111某+4y+9z=[某)2+(y)2+(3z)2]·[()2+(22]≥某yz111(某+y3z)2=36.当且仅当某=2y=3z时等号成立,此时某=6,y=3,z=2.所以当某=6,y=3,z=2时,某+4y+9z取得最小值36.111111解法二:∵+=1,∴某+4y+9z=(某+4y+9z)(+),某yz某yz4y9z某9z某4y4y某9z某9z4y即某+4y+9z=14+++≥14++22=36.某某yyzz某y某zyz(当且仅当某=2y=3z时取“=”),即某=6,y=3,z=2时,(某+4y+9z)min=36.故填36.三、解答题10.已知a>0,证明:a2+2≥a2.aa1111解:要证a22≥a+-2,只要证a2+2≥a++2,因为a>0,所以只要证aaaa1111(a2+2)2≥(a+2)2,即证a2+4+a2a2+4+2(a+,故只需证aaaaaa1111112a2+≥a+,即证a2+,而由基本不等式可知a2+成立.故a2-2≥a+2.211.[2022·正定模拟]设正有理数某是的一个近似值,令y=1.1+某(1)若某>3,求证:y3;(2)求证:y比某3.33+某3某-3某-32证明:(1)y-3=1+3==,1+某1+某1+某∵某>3,∴某3>0,而13<0,∴y<3.3-13-2-某3某-(2)∵|y-3|-|某3|=-|某-3|=|某-3|(-1)=|某-3|(,1+某1+某1+某∵某>03-2<0,|某-3|>0,∴|y3|-|某3|<0,即|y-3|<|某3|.∴y比某更接近于3.12.[2022·南昌调研]已知某+y>0,且某y≠0.某ym11(1)求证:某3+y3≥某2y+y2某;(2)如果+(+m的取值范围或值.y某2某y解:(1)∵某3+y3-(某2y+y2某)=某2(某-y)-y2(某-y)=(某+y)(某-y)2,且某+y>0,(某-y)2≥0,∴某3+y3-(某2y+y2某)≥0.∴某3+y3≥某2y+y2某.33某2-某y+y2某ym11m某+y(2)(ⅰ)若某y<0,则+)等价于=,y某2某y2某y某+y某y某2-某y+y2某+y2-3某y-3某y某3+y3又∵=<3,即<-3,∴m>-6;某y某y某y某y某+y3322某ym11m某+y某-某y+y(ⅱ)若某y>0,则≥(+≤=,y某2某y2某y某+y某y某2-某y+y22某y-某y某3+y3又∵≥1,即,∴m≤2.某y某y某y某+y综上所述,实数m的取值范围是(-6,2].。

例谈证明不等式的四种常用措施

例谈证明不等式的四种常用措施

=
cos2 a, a

(0,
π 2
)

æ è
x
+
1 x
öøæèç
y
+
1 y
ö
÷
ø
=
æ
ç
sin2
a
è
+
1 sin2a
öæ
֍
cos2
a
øè
+
1 cos2a
ö
÷
ø
=
sin4 a
+
cos4a - 2 sin2a 4 sin22a
cos2 a
+
2

( ) =
4 - sin2a 2 + 16 , 4 sin22a
(x)
=
(
cos sin
α β
)x
+
(
cos sin
β α
)x,
且x < 0,
α,β ∈
æ è
0,
π 2
öø,若
f (x) > 2, 求证:α + β >
π 2
.
证明:假设0
<
α
+
β

π 2
,
由α, β

(0,π2 )可得0
<
α

π 2
-
β

π 2


cos
α

cosæè
π 2
-
β
ö ø
=
sin
β
>
1)
=
2n2
+

不等式证明技巧

不等式证明技巧

不等式证明技巧
1. 比较法,这就像我们走路,要知道哪条路更近!比如证明 2x+3>
x+5,我们就把左边减去右边,看看是不是大于 0 就知道啦!
2. 分析法,哎呀呀,就像侦探破案一样,一步步找到证据来证明不等式!比如证明根号(x+1)>x,咱们就从结论往回推,找到能说明它成立的条件。

3. 综合法,这不就是把各种线索都放到一起嘛!比如说已知 a>b,b>c,
那咱就能直接得出 a>c 啦。

4. 放缩法,哈哈,就像把东西变胖或变瘦一样!比如要证明一个式子小于
1/2,咱可以把一些项放大一点,让它更容易看出来。

就好比证明 1/(n+1)!<1/2^n。

5. 反证法,哇哦,和别人争论的时候常用到呀,假设不对然后推出矛盾!例如证明不存在整数 x 让 x^2-2x-3=0 成立。

6. 数学归纳法,就像爬楼梯一样,先证明第一步能行,再假设第 n 步行然
后证明第n+1 步也没问题!像证明1+2+3+…+n=n(n+1)/2 就很适用呢。

7. 构造函数法,嘿,这就像给自己打造一个专属工具来解决问题!比如构造个函数来证明不等式 x^2+2x+2>0。

8. 换元法,相当于给问题换个包装呀!像证明(1+2^x)(1+3^x)≥4 ,咱可
以换个元来让它更简单明了。

9. 利用基本不等式,这可是个宝贝啊!举例来说,已知 x>0,y>0,要证
明x+y≥2 根号(xy) 是不是很常用!
我觉得呀,这些不等式证明技巧都超级实用,就像我们手里的武器,能帮我们攻克一个又一个难题!大家可得好好掌握它们呀!。

高二数学证明不等式的基本方法

高二数学证明不等式的基本方法
abcd. 即 ab cd
1 a b c d 2 abd bca cba dac
例4 已知a,b是实数,求证 a b a b . 1 ab 1 a 1 b
证明: 0 a b a b
ab

1
1
1
若 在 上 述 溶 液 中 再 添 加mkg白 糖, 此 时 溶 液 的 浓 度
增加到a m ,将这个事实抽象为数学问题,并给出证明. bm
解 : 可以把上述事实抽象成如下不等式问题:
已知a,b, m都是正数,并a b且,则 a m a bm b
解 : 可以把上述事实抽象成如下不等式问题:

a
a a
abcd abd ab
b
b b
abcd bca ab
c
c c
abcd cdb cd
d
d d
abcd dac cd
把 以 上 四 个 不 等 式 相 加得
abcd a b c d abcd abd bca cbd dac
abc 故 a2b2 b2c2 c2a2 abc
abc
三、反证法与放缩法
(1)反证法
先假设要证的命题不成立,以此为出发点,结合已知条 件,应用公理,定义,定理,性质等,进行正确的推理,得到 和命题的条件(或已证明的定理,性质,明显成立的事实 等)矛盾的结论,以说明假设不正确,从而证明原命题成 立,这种方法称为反证法.对于那些直接证明比较困难 的命题常常用反证法证明.
证明: 假设a,b,c不全是正数,即其中至少有一个不是正数, 不妨先设a 0,下面分a 0和a 0两种情况讨论. (1)如果a 0,则abc 0,与abc 0矛盾, a 0不可能. (2)如果a 0,那么由abc 0可得bc 0, 又a b c 0, b c a 0,于是ab bc ca a(b c) bc 0, 这和已知ab bc ca 0相矛盾. a 0也不可能. 综上所述a 0,同理可证b 0,c 0, 所以原命题成立.

反证法,放缩法,代换法证明不等式

反证法,放缩法,代换法证明不等式
a b c d 证明: + + + a+b+d b+c+a c+d +b d +a+c
a b c d > + + + =1 a+b+c+d a+b+c+d a+b+c+d a+b+c+d a b c d + + + a+b+d b+c+a c+d +b d +a+c
a b c d < + + + =2 a+b a+b c+d c+d
证明:假设 p + q > 2, 则 q > 2 − p ⇒ q 3 > (2 − p )3。
∴ p 3 + q 3 > p 3 + (2 − p )3 = 6 p 2 − 12 p + 8 = 6( p − 1) 2 + 2 ≥ 2,
即 p 3 + q 3 > 2,与已知矛盾。
3.已知 a + b + c > 0,ab + bc + ca > 0,abc > 0,求证: a > 0, > 0,c > 0。 b
再证左端不等式:
1 3 5 2n − 1 3 5 7 2n − 1 1 1 1 ⋅ ⋅ ⋅L ⋅ = ⋅ ⋅ ⋅L ⋅ ⋅ > > 2 4 6 2n 2 4 6 2n − 2 2n 2n 2n + 1
8.已知 a , b , c , d ∈ R +,求证: a b c d 1< + + + < 2。 a+b+d b+c+a c+d +b d +a+c

高中数学 第二讲 证明不等式的基本方法 2.3 反证法与

高中数学 第二讲 证明不等式的基本方法 2.3 反证法与

三反证法与放缩法知识梳理1.反证法先____________,以此为出发点,结合已知条件,应用公理,定义,定理,性质等,进行正确的推理,得到和命题的条件(或已知证明的定理,性质,明显成立的事实等) _________的结论,以说明_________不正确,从而证明原命题成立,我们称这种证明问题的方法为反证法.2.放缩法证明不等式时,通常把不等式中的某些部分的值_________或_________,简化不等式,从而达到证明的目的.我们把这种方法称为放缩法.知识导学1.用反证法证明不等式必须把握以下几点:(1)必须否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必须罗列出各种情况,缺少任何一种可能,反证法都是不完全的.(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证.否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实相违背等等.推导出的矛盾必须是明显的.(4)在使用反证法时,“否定结论”在推理论证中往往作为已知使用,可视为已知条件.2.放缩法多借助于一个或多个中间量进行放大或缩小,如欲证A≥B,需通过B≤B1,B1≤B2≤…≤B i≤A(或A≥A1,A1≥A2≥…≥A i≥B),再利用传递性,达到证明的目的.疑难突破1.反证法中的数学语言反证法适宜证明“存在性问题,唯一性问题”,带有“至少有一个”或“至多有一个”等字样的问题,或者说“正难则反”,直接证明有困难时,常采用反证法,下面我们列举一下常见的涉及反证法的文字语言及其相对应的否定假设.对某些数学语言的否定假设要准确,以免造成原则性的错误,有时在使用反证法时,对假设的否定也可以举一定的特例来说明矛盾,尤其在一些选择题中,更是如此.2.放缩法的尺度把握等问题(1)放缩法的理论依据主要有:①不等式的传递性;②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较;④基本不等式与绝对值不等式的基本性质;⑤三角函数的有界性等.(2)放缩法使用的主要方法:放缩法是不等式证明中最重要的变形方法之一,放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察.常用的放缩方法有增项,减项,利用分式的性质,利用不等式的性质,利用已知不等式,利用函数的性质进行放缩等.比如:舍去或加上一些项:(a+21)2+43>(a+21)2; 将分子或分母放大(缩小):,121,)1(11,)1(1122-+<+>-<k k kk k k k k k121++>k k k(k∈R ,k>1)等.典题精讲【例1】 (经典回放)若a 3+b 3=2,求证:a+b≤2.思路分析:本题结论的反面比原结论更具体,更简洁,宜用反证法. 证法一:假设a+b>2,a 2-ab+b 2=(a 21-b)2+43b 2≥0. 而取等号的条件为a=b=0,显然不可能,∴a 2-ab+b 2>0.则a 3+b 3=(a+b)(a 2-ab+b 2)>2(a 2-ab+b 2),而a 3+b 3=2,故a 2-ab+b 2<1.∴1+ab>a 2+b 2≥2ab.从而ab<1. ∴a 2+b 2<1+ab<2.∴(a+b)2=a 2+b 2+2ab<2+2ab<4. ∴a+b<2.这与假设矛盾,故a+b≤2.证法二:假设a+b>2,则a>2-b,故2=a 3+b 3>(2-b)3+b 3,即2>8-12b+6b 2,即(b-1)2<0,这不可能,从而a+b≤2.证法三:假设a+b>2,则(a+b)3=a 3+b 3+3ab(a+b)>8.由a 3+b 3=2,得3ab(a+b)>6.故ab(a+b)>2.又a 3+b 3=(a+b)(a 2-ab+b 2)=2,∴ab(a+b)>(a+b)(a 2-ab+b 2). ∴a 2-ab+b 2<ab,即(a-b)2<0. 这不可能,故a+b≤2. 绿色通道:本题三种方法均采用反证法,有的推至与假设矛盾,有的推至与已知事实矛盾.一般说来,结论的语气过于肯定或肯定“过头”时,都可以考虑用反证法.再是本题的已知条件非常少,为了增加可利用的条件,从反证法的角度来说,“假设”也是已知条件,因而,可考虑反证法. 【变式训练】 若|a|<1,|b|<1,求证:|1|abba ++<1. 思路分析:本题由已知条件不易入手证明,而结论也不易变形,即直接证有困难,因而可联想反证法. 证明:假设|1|abba ++≥1,则|a+b|≥|1+ab|, ∴a 2+b 2+2ab≥1+2ab+a 2b 2. ∴a 2+b 2-a 2b 2-1≥0. ∴a 2-1-b 2(a 2-1)≥0.∴(a 2-1)(1-b 2)≥0.∴⎪⎩⎪⎨⎧≤-≤-⎪⎩⎪⎨⎧≥-≥-.01,0101,012222b a b a 或 即⎪⎩⎪⎨⎧≥≤⎪⎩⎪⎨⎧≤≥.1,11,12222b a b a 或与已知矛盾. ∴|1|abba ++<1. 【例2】 (经典回放)已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a 不能同时大于41. 思路分析:“不能同时”包含情况较多,而其否定“同时大于”仅有一种情况,因此用反证法.证法一:假设三式同时大于41, 即有(1-a)b>41,(1-b)c>41,(1-c)a>41, 三式同向相乘,得(1-a)a(1-b)b(1-c)c>641.又(1-a)a≤(21a a +-)2=41.同理,(1-b)b≤41,(1-c)c≤41.∴(1-a)a(1-b)b(1-c)c≤641,与假设矛盾,结论正确.证法二:假设三式同时大于41,∵0<a<1,∴1-a>0,2141)1(2)1(=>-≥+-b a ba . 同理2)1(,2)1(a c c b +-+-都大于21. 三式相加,得2323>,矛盾.∴原命题成立.绿色通道:结论若是“都是……”“都不是……”“至少……”“至多……”或“……≠……”形式的不等式命题,往往可应用反证法,因此,可从这些语言上来判断是否可用此方法证明.【变式训练】 已知x>0,y>0,且x+y>2,求证:xy +1与y x+1中至少有一个小于2.思路分析:由于题目的结论是:两个数中“至少有一个小于2”情况比较复杂,会出现异向不等式组成的不等式组,一一证明十分繁杂,而对结论的否定是两个“都大于或等于2”构成的同向不等式,结构简单,为推出矛盾提供了方便,故采用反证法.证明:假设xy+1≥2,y x +1≥2.∵x>0,y>0,则1+y≥2x,1+x≥2y.两式相加,得2+x+y≥2(x+y),∴x+y≤2. 这与已知x+y>2矛盾. ∴y x +1与xy+1中至少有一个小于2成立. 【例3】 设n 是正整数,求证:21≤2111+++n n +…+21n<1. 思路分析:要求一个n 项分式2111+++n n +…+n21的范围,它的和又求不出,可以采用“化整为零”的方法,观察每一项的范围,再求整体的范围. 证明:由2n≥n+k>n(k=1,2, …,n),得n 21≤nk n 11<+. 当k=1时,n 21≤n n 111<+; 当k=2时,n 21≤nn 121<+;;……当k=n 时,n 21≤n n 111<+, ∴21=n n2≤2111+++n n +…+n 21<n n =1. 绿色通道:放缩法证明不等式,放缩要适度,否则会陷入困境,例如证明4712111222<+++n ,由k k k 11112--<,如果从第3项开始放缩,正好可证明;如果从第2项放缩,可得小于2,当放缩方式不同时,结果也在变化.放缩法一般包括:用缩小分母,扩大分子,分式值增大;缩小分子,扩大分母,分式值缩小;全量不少于部分.每一次缩小其和变小,但需大于所求;每一次扩大其和变大,但需小于所求.即不能放缩不够或放缩过头,同时要使放缩后便于求和. 【变式训练】 若n∈N +,n≥2,求证:21-n nn 111312111222-<+++<+ .思路分析:利用)1(11)1(12-<<+k k k k k 进行放缩.证明:∵)1(143132113121222+++⨯+⨯>+++n n n=(21-31)+(31-41)+…+(111+-n n )=21-11+n .又223121++…+21n <)1(1231121-++⨯+⨯n n =(121-)+(21-31)+…+(n n 111--)=1-n1,∴21-11+n <223121++ (21)<1-n 1.【例4】 (经曲回放)求证:||1||||||1||||b a b a b a b a +++≥+++.思路分析:利用|a+b|≤|a|+|b|进行放缩,但需对a,b 的几种情况进行讨论,如a=b=0时等. 证明:若a+b=0或a=b=0时显然成立. 若a+b≠0且a,b 不同时为0时,||||11||||||||11b a b a b a ++=+++=左边. ∵|a+b|≤|a|+|b|, ∴上式≤1+||||1||1b a b a b a +++=+.∴原不等式成立.绿色通道:对含绝对值的不等式的证明,要辨别是否属绝对值不等式的放缩问题,如利用|a|-|b|≤|a±b|≤|a|+|b|进行放缩,此问题我们可以算作放缩问题中的一类. 【变式训练】 已知|x|<3ε,|y|<6ε,|z|<9ε,求证:|x+2y-3z|<ε. 思路分析:利用|a+b+c|≤|a|+|b|+|c|进行放缩. 证明:∵|x|<3ε,|y|<6ε,|z|<9ε, ∴|x+2y -3z|=|1+2y+(-3z)|≤|x|+|2y|+|-3z|=|x|+2|y|+3|z| <3ε+2×6ε+3×9ε=ε. ∴原不等式成立. 问题探究问题:说明“语言的声音和它所表示的事物之间没有必然联系”.导思:直接去说明某件事情是正确的,有时很难说明原因或根据,因此,用反证法及其逻辑思维会显得较为简单. 探究:反证题:声音和事物的结合假如有什么必然联系,世界上所有的语言中表示同一事物的词的声音就应是相同的,后者显然不能成立,既然世界上表示同一事物的词的声音各不相同,可见语言的声音和所表示的事物之间是没有必然联系的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23 n
12 2 2 (kk 1 ),k N * k 2k kk 1
1111 23 n
2 [(10)( 21)(32)( nn1)]2n.
例4:巳知:a、b、c∈ R ,求证:
a 2 a b b 2a 2 a c c 2 a b c

解 a2 ab b2 a2 ac c2
(b a )2 3 a 2 (c a )2 3 a 2
2 22 证明:略. 说明:“至少”型命题常用反证法,由于其反面情况也只有一 种可能,所以属于归谬反证法.
(2)放缩法
证明不等式时,通过把不等式中的某些部分的值放大或 缩小,可以使不等式中有关项之间的大小关系更加明确 或使不等式中的项得到简化而有利于代数变形,从而达 到证明的目的,我们把这种方法称为放缩法.
long(n1)long(n1)long(n1)2long(n1)2
long(n22
1)2
log2n n2
2
1
∴n > 2时, lo n (n g 1 )lo n (n g 1 ) 1
不等式证明
复习 不等式证明的常用方法:
(1)比较法(2)综合法(3)分析法
新课 (1)反证法(2)放缩法
(1)反证法
先假设要证的命题不成立,以此为出发点,结合已知条 件,应用公理,定义,定理,性质等,进行正确的推理,得到 和命题的条件(或已证明的定理,性质,明显成立的事实 等)矛盾的结论,以说明假设不正确,从而证明原命题成 立,这种方法称为反证法.对于那些直接证明比较困难
1 1 1
ab
1
ab
|a|
b
1 1 1ab 1ab 1ab
ab
ab
.
1 a 1 b
法2: 0abab,
ab ab 11
1
1
1 ab 1 ab
1 ab
1 1
ab
1 a| | b 1 a b
|a| b
ab .
1a b 1a b 1 a 1 b
法3:函数的方法
例 3:求 证 : 2(n+1-1) <1+11...12n(nn*)
2
分析:设 | f (1) |,| f (2) |,| f (3) | 中没有一个大于或等于 1 , 2
观察: f (1) 1 p q, f (2) 4 2 p q, f (3) 9 3 p q 得: f (1) 2 f (2) f (3) 2 所以 2= | f (1) 2 f (2) f (3) | ≤| f (1) | 2 | f (2) | | f (3) | < 1 +2× 1 + 1 =2 这是不可能的,矛盾表明原结论成立。
通常放大或缩小的方法是不唯一的,因而放缩法具有 较在原灵活性;另外,用放缩法证明不等式,关键是放、 缩适当,否则就不能达到目的,因此放缩法是技巧性较 强的一种证法.
例 1:已 知 a,b,c,dR,求 证 1 a b c d 2
abd bca cdb dac
证明 : a , b , c , d 0 ,
的命题常常用反证法证明. (正难则反)
反证法主要适用于以下两种情形
(1)要证的结论与条件之间的联系不明显,直接由条件 推出结论的线索不够清晰;
(2)如果从正面证明,需要分成多种情形进行分类讨论 而从反面进行证明,只研究一种或很少的几种情形.
例1 已知x, y0,且x y2,
试证1x,1 y中至少有一个2.小于
又∵ a,b R*,∴ a b a b a b , am am abm abm abm
∴abc. am bm cm
课堂练习
1、当 n > 2 时,求证:lo n (n g 1 )lo n (n g 1 ) 1
证:∵n > 2 ∴lo n ( n g 1 ) 0 , lo n ( n g 1 ) 0
放缩法就是将不等式的
一边放大或缩小 , 寻找一个
中间量 , 如将 A 放大成 C ,即 A C , 后证 C B .常用的
放缩技巧有 :
(1)舍掉 (或加进 )一些项 ;
(2 )在分式中放大或缩小分 子或分母 ;
( 3 )应用基本不等式进行放 缩 .如
① (a 1 )2 3 (a 1 )2;
24
2

1 k2
k
(
1 k
1Байду номын сангаас
)
,
1 k2
1, k(k 1)
1 k
2
,
k k1
1 k
k 2 k 1 (以上 k 2 且 k N )
例2:已知a,b是实数,求证:
a+b
ab
.
1 ab 1 a 1 b
ab a b
法1:
1ab 1a 1b
证明:在 a b 0 时,显然成立.
当 a b 0时,左边
yx
证明
: 假设
1
x
1 ,
y
都不小于
2,
yx
即 1 x 2,且 1 y 2,
y
x
x , y 0 , 1 x 2 y , 1 y 2 x ,
2 x y 2(x y) x y 2,
这与已知条件 x y 2 矛盾 .
1 x 与 1 y 中至少有一个小于
2
y
x
例 4:已知 f ( x) x2 px q ,求证:| f (1) |,| f (2) |,| f (3) | 中 至少有一个不小于 1 .
24
24
(b a )2 2
abc
(c a )2 2
例 5: 已知函数 f ( x) x , x [0, ), (1)求证: f ( x) 在[0, ) 为增 1 x
函数;⑵△ABC
的三边长是
a,b,c,且
m
为正数,求证:
a
a m
b
b m
c cm
证明:⑴∵设 x1, x2 0, 且 x1 x2 ,则
x1 x2 0 ,1 x1 0 ,1 x2 0

f ( x1 )
f
( x2 )
x1 1 x1
x2 1 x2
(1
x1 x2 x1 )(1
x2 )
,∴
f (x1)
f
( x2 )
0,
∴ f (x) 在[0,) 为增函数.
⑵∵在△ABC 中有 a + b > c>0,∴ f(a + b)>f(c),即 a b c . abm cm
a
a a
abcd abd ab
b
b b
abcd bca ab
c
c c
abcd cd b cd
d
d d
abcd d ac cd
把以上四个不等式得相加
abcd a b c d abcd abd bca cbd dac
abcd. 即 ab cd
1 a b c d 2 abd bca cba dac
相关文档
最新文档