高分子材料研究方法.ppt
高分子材料研究方法
一各类有机化合物的基团特征频率(一)烷烃类基团吸收带位置(cm-1)—CH32960287014601380-CH2-292528501460785~720-CH(CH3)211701155-C(CH3)312501210-C(CH3)2-12151195注:对于-(CH2)n-,n=1,~775;n=2,~738;n=3,~727;n=4,~722(二)烯烃C-H键面外弯曲振动特征频率基团吸收带位置(cm-1)R-CH=CH21000~960和940~900R2C=CH2915~870反-RCH=CHR 990~940顺-RCH=CHR 790~650R2C=CHR 850~790(三)烯烃的红外吸收峰振动类别吸收带位置(cm-1)=C-H伸缩3100~3000=C-H弯曲1000~800=CH2弯曲885~855C=C伸缩1700~1600 (四)炔烃的红外吸收峰振动类别吸收带位置(cm-1)C-H伸缩~3300C-H弯曲645~615C C伸缩2250~2100(五)芳基化合物红外吸收峰振动类别吸收带位置(cm-1)芳基C-H伸缩3300~3000芳基C-C(四个峰)1600~1450芳基C-H弯曲900~690(六)苯基C-H键面外弯曲振动频率取代基位置吸收带位置(cm-1)单取代(2个峰)770~730710~690邻-二取代770~735间-二取代(3个峰)900~860810~750725~680对-二取代860~800(七)醇类和酚类基团吸收带位置(cm-1)O-H(游离)3650~3600O-H(形成氢键)3500~3200C-O 1250~1000(八)不同醇类的C-O伸缩振动化合物吸收带位置(cm-1)叔醇(饱和)~1150仲醇(饱和)~1100伯醇(饱和)~1050(九)羰基化合物的特征吸收位置羰基类型吸收峰位置(cm-1) 注释醛1735~1715 C=O伸缩2820,2720 =C-H伸缩酮1720~1710 C=O伸缩1100(脂肪),1300(芳香)C-C伸缩羧酸1770~1750 C=O伸缩(游离酸)1720~1710 C=O伸缩(二聚体)3580~3500 O-H伸缩(游离酸)3200~2500 O-H伸缩(二聚体)1300~1200 O-H弯曲(二聚体)1420 C-O伸缩(二聚体)羧酸盐1610~15501400酯1735 C=O伸缩1260~1160 C-O-C不对称伸缩1160~1050 C-O-C对称伸缩酸酐1820和1760 两峰间距~60cm-1酰卤~1800 C=O伸缩酰胺(游离)3500和3400 N-H伸缩1690 C=O伸缩1600 N-H弯曲酰胺(缔合)3350,3200几个峰N-H伸缩1650 C=O伸缩1640 N-H弯曲(十)腈类基团吸收带位置(cm-1)C N(脂肪族)~2250C N(芳香族)2240~2220(十一)胺的红外吸收峰振动类别吸收峰位置(cm-1)1.伯胺N-H伸缩(纯液体)3400~3250C-N伸缩1250~10202.仲胺N-H伸缩(纯液体)3300C-N伸缩1250~10203.叔胺C-N伸缩1250~1020。
高分子材料研究方法
高分子材料研究方法
高分子材料那可是现代科技的宝贝啊!研究高分子材料就像在探索一个神秘的魔法世界。
咱先说说研究的步骤吧。
首先得确定研究目标,你想想,要是连目标都不清楚,那不就像无头苍蝇一样乱撞嘛!然后收集各种相关的资料,这就好比打仗前要收集情报一样重要。
接着进行实验设计,可不能马虎,这一步要是错了,后面可就全乱套了。
实验的时候要仔细观察、记录数据,就像侦探在寻找线索一样。
最后分析数据得出结论,这可是最关键的一步呢!
注意事项也不少哦!实验设备一定要检查好,万一出了问题,那可就糟糕了。
实验环境也得控制好,不然结果可能不准确。
还有啊,数据记录一定要准确,这可关系到整个研究的成败呢!
说到安全性,那可不能掉以轻心。
高分子材料有些可能会有毒性,或者在实验过程中会产生危险的物质。
所以一定要做好防护措施,就像战士穿上铠甲一样。
稳定性也很重要啊,要是材料不稳定,实验结果怎么能可靠呢?
高分子材料的应用场景那可多了去了。
在医疗领域,可以用来制作人造器官、药物缓释材料等。
在电子领域,可以制作高性能的绝缘材料、显示屏等。
在环保领域,还能制作可降解的材料呢!优势也很明显啊,比如
重量轻、强度高、耐腐蚀等。
这不是超级厉害嘛!
举个实际案例吧,有一种高分子材料被用来制作防弹衣。
哇塞,这效果简直太棒了!它不仅能保护人们的生命安全,还很轻便,穿着舒服。
这就是高分子材料的实际应用效果啊!
高分子材料研究真的超有意义,能为我们的生活带来很多好处。
咱可得好好研究,让这些神奇的材料发挥更大的作用。
生物医学高分子材料课件
化学法
利用化学反应将药物与高 分子材料结合,如接枝共 聚法、药物嵌入聚合物网 络法等。
生物法
利用生物分子和生物过程 将药物与高分子材料结合 ,如抗体偶联法、基因载 体法等。
高分子药物载体的性能评价
安全性评价
主要包括急性毒性试验、长期毒 性试验、致畸致癌性试验等,以 确保药物载体对人体的安全性。
有效性评价
生物医学高分子 材料课件
汇报人: 日期:
目录
• 生物医学高分子材料概述 • 生物相容性高分子材料 • 生物降解性高分子材料 • 高分子药物载体 • 高分子组织工程支架材料 • 研究展望与挑战
01
生物医学高分子材料概述
定义与分类
生物医学高分子材料
指用于诊断、治疗、修复或替换人体组织或器官的材料。
分类
根据应用部位和功能,可分为生物惰性、生物活性、生物降 解和生物相容性高分子材料。
生物医学高分子材料的特性
生物惰性
指在体内稳定,不发生化学反应,无毒无害 。
生物降解
在体内可被分解为小分子,无害化排出体外 。
生物活性
具有诱发机体免疫反应的能力。
生物相容性
与人体组织相容,无排异反应。
生物医学高分子材料的应用
生物活性评价
检测支架材料是否具有促进 细胞生长和分化的生物活性 。
安全性评价
对支架材料进行安全性评估 ,包括急性毒性、慢性毒性 、致敏性等。
06
研究展望与挑战
新材料设计及制备技术展望
发展新的聚合反应
01
研究新的聚合反应,如活性聚合、基团转移聚合等,以实现高
分子材料的精确控制合成。
纳米技术和3D打印
骨骼系统
用于制作人工关节、骨板、骨 钉等。
高分子材料的性能与研究方法(ppt 28页)
料
医用高分子
概念:可应用于医药的人工合成(包括改性)的
高分子材料,不包括天然高分子材料、生物高分子 材料、无机(高分子)材料等在内。
分 类
基本:(1)、组织相容性:材料自身稳定性及于机 要求 体组织亲和性(容忍性),材料对集体的影
响; (2)、酶生物老化性:材料对人体复杂环境 的适应性(抗“体内老化”性) (3)、血液适应性:不凝血、不溶血、不改 变血液中的蛋白、不破坏血小板、不在引发 血栓形成等。
功能高分子材料
分类:(1)化学功能:感光高分子、氧化还原树脂、离子交
高
换树脂、高分子催化剂、光降解塑料、固体电介质等;
分
(2)物理功能:导电高分子、压电高分子、高分子极 驻体、旋光性高分子、磁记录高分子、荧光体等; (3)化学、物理复合功能:高分子吸附剂、絮凝剂、
子 发 光 板
表面活性剂、染料、稳定剂、高吸水材料等;
2、连锁聚合反应(链式聚合、链式反应): 单体被某种能量激活,是指链接到具有能量 的基团上,从而再激发另一个单体使之在连 接到这个增长的基团上,如此往复连成高分 子。包括自由基聚合与离子聚合。
4、高分子共混:多种高分子共混,形成有 特点的新的高分子材料。包括机械粉末共混、 溶液共混、乳液共混、熔融共混、化学反应 性共混等。
复合材料:以一种材料为基体(基体材料),另一
种材料为增强体(增强材料)组合而成的材料。 聚合物基复合材料通常以塑料或橡胶为基体,以纤维 为增强材料。
优势性能:强度高、力学性能好,抗疲劳性能好,
减震性能好,热变形温度高。
应用领域:
(1)航天航空(机翼、卫星天线、太阳能电池翼、大型运载火箭壳体等); (2)汽车工业(车身、受力构件、传动轴、发动机架及内部构件等); (3)化工、纺织、机械制造(化工设备、纺织机、复印机、高速机床等); (4)医学领域(医用X光机、矫形支架等)。
高分子材料(力学性能) ppt课件
三、粘弹性
§5.1 力学性能
三、粘弹性
§5.1 力学性能
2、动态粘弹性 (滞后)
• 滞后:一定温度下,受交变的应力,形变随时
间的变化跟不上力随时间的变化
应力周期性变化:σ=σ 0 Sin ω t 应变:ε =ε 0 Sin(ω t +δ )
落后一相位角
结果:产生滞后圈--能耗
(机械能(弹性能)--热能) ----力学损耗
如何§解5.决1 ?力学性能
1、特征
➢涂料涂装时流挂问题如何 解决?
1) 粘度大;分子量越大,粘度越大;分布越宽,粘度越大;
2) 流动机理:分子重心相对位移,是由链段的相继跃迁实 现的
3) 伴有高弹形变---具有粘弹性
现象:出口膨大、爬杆效应、融体破裂
一、高聚物的流动性 ???
§5.1 力学性能
4)是一假塑性流体:
运动单元高度取向(m 不为零)
1、拉伸过程 (非晶、结晶高聚物)
C 断裂:
脆性断裂:没有屈服,断裂面光滑;
§5.1 力学性能
四 屈服、强度与断裂
韧性断裂:出现屈服后的断裂,断裂面粗糙。
T < Tb 时: σB <σY ---脆性断裂
1、拉伸过程 (非晶、结晶高聚物)
2) 结晶高聚物的应力~应变曲线
1、拉伸过程 (非晶、结晶高聚物) §5.1 力学性能
四 屈服、强度与断裂
注意: • 使用时υ趋于很小---长期强度,其远远小于所测值 ,
例:PVC: σB(1000h)=1/2σB (测) • Tb、Tg测定时,是在一定时间尺度下,
( υ比较小,时间长) 实际受力时(特别是在冲击力时)往往υ很高, 例:PVC 的Tb= - 50度,T使> - 30 ~ -15度
第五章 有机高分子材料(共100张PPT)
数学模型,故测定的统计平均值互不相等,常见的相对分子质量
有数均相对分子质量、重均相对分子质量、黏均相对分子质量
等。
第二节 高分子的合成、结构与性能
1. 高分子的合成原理及方法
2. 高分子的结构和性能
一、 高分子的合成原理及方法
1. 高分子的合成原理
高功能化
对高分子功能的研究正在深度和广度上获得进展,从离子交
换开展到电子交换,又开展到各种高分子别离膜和高分子吸附
剂。从电绝缘体扩展到半导体、导体,甚至超导体。由电性能扩
展到光、磁、声、热、力等性能。从化学、物理性能扩展到了生
物性能。
复合化
高分子材料是结构复合材料的最主要的基体之一,以玻璃纤
➢ 60年代,是聚烯烃、合成橡胶、工程塑料、溶液聚合、配位聚合、 离子聚合的开展时期,形成了高分子全面繁荣的局面。
➢ 70年代,开展了液晶高分子。
➢ 70年代以后,主要提高产量、改进性能、开展功能等方面。
四、高分子材料的战略地位和开展趋势
1.高分子材料在国民经济和科学技术中的战略地位
材料是工业生产开展的根底,新材料的出现往往会给新技术带来划时代的 突破。高分子材料是材料领域中的后起之秀,它的出现带来了材料领 域的重大变革,从而形成了金属材料、无机材料、高分子材料和复合 材料多角共存的格局。
生。
智能化
智能材料使材料本身带有生物所具有的高级功能,例如具有 预知预告性、自我诊断、自我修复、自我增殖、认识识别能力、 刺激反响性、环境应答性等种种特性,对环境条件的变化能作出
符合要求的应答。
五、高分子材料的根本概念
1. 高分子的链结构
2. 高分子的聚合度及其计算
高分子材料研究方法--紫外可见吸收光谱 ppt课件
ppt课件
16
常用的是π→π*跃迁和n→π*,这两种跃迁都 需要分子中有不饱和基团提供π轨道。
n→π*跃迁与π→π*跃迁的比较如下:
π→π*
n→π*
吸收峰波长 与组成双键的
有关
原子种类基本无关
吸收强度 强吸收 104~105 弱吸收 <102
极性溶剂 向长波方向移动 向短波方向移动
ppt课件
O:
例:H C
H ppt课件
10
分子轨道有σ、σ*、π、 π*、n 能量高低σ<π<n<π*<σ*
σ* π*
n → σ* π→π* n→π*跃迁
n
π
能
σ→σ*
量
σ
ppt课件
11
主要有四种跃迁类型 跃迁所需能量为:
σ→σ* n→σ* π→π* n→π*
分子中电子的能级和跃迁
2
ppt课件
不同波长的光
ppt课件
L 4
A
图3-1 紫外可见吸收光谱示意图
末端吸收
最强峰
肩 峰
次强峰 峰谷
max
ppt课件
min
5
A
分析吸收曲线 可以看到:
1.同一浓度的 待测溶液对不 同波长的光有 不同的吸光度;
max
min
2. 对于同一待测溶液,浓度愈大,吸光度也愈大;
3. 对于同一物质,不论浓度大小如何,最大吸收峰所对应 的波长(最大吸收波长 λmax) 不变。并且曲线的形状也 完全相同。
CH3Br λmax=204nm
ppt课件
14
(3)π→π*跃迁
π电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁 所需能量比σ→σ*跃迁小,若无共轭,与n→σ*跃迁 差不多。200nm左右
高分子化学ppt幻灯片课件
02
高分子化合物结构 与性质
高分子化合物基本结构
链状结构
由长链分子组成,链上原子以共 价键连接,形成线性或支链结构。
网状结构
由三维空间的分子链交织而成,具 有高度的交联性和空间稳定性。
聚集态结构
高分子链在空间中的排列和堆砌方 式,包括晶态、非晶态、液晶态等。
高分子化合物聚集态结构
晶态结构
高分子化学ppt幻灯 片课件
目录
CONTENTS
• 高分子化学概述 • 高分子化合物结构与性质 • 高分子合成方法与反应机理 • 高分子材料制备与加工技术 • 高分子材料性能与应用领域 • 高分子化学前沿研究领域与展望
01
高分子化学概述
高分子化学定义与特点
定义
高分子化学是研究高分子化合物的 合成、结构、性能及其应用的科学。
维。
后处理
纺织加工
对初生纤维进行拉伸、 热定形、卷曲等后处理, 改善纤维的物理机械性
能。
将纤维加工成纱线、织 物等纺织品,满足服装、 家居用品等领域的需求。
05
高分子材料性能与 应用领域
塑料性能及应用领域
塑料主要性能
质轻、绝缘、耐腐蚀、易加工成型等。
应用领域
包装、建筑、汽车、电子电器、农业等。
发展趋势
高分子链在空间中规则排列,形 成晶体。晶态高分子具有优异的
力学性能和热稳定性。
非晶态结构
高分子链在空间中无规则排列, 呈现无序状态。非晶态高分子具
有较好的柔韧性和加工性能。
液晶态结构
介于晶态和非晶态之间的一种特 殊聚集态,高分子链在空间中呈 现一定程度的有序排列。液晶高 分子具有独特的光学、电学和力
高性能化、功能化、环保化。
《高分子物理》ppt课件
PART 03
高分子溶液性质与行为
REPORTING
高分子溶解过程及热力学
溶解过程的描述
高分子在溶剂中的溶解过程包括 溶胀、溶解两个阶段,涉及高分 子链的舒展和溶剂分子的渗透。
热力学参数
溶解过程中的热力学参数如溶解 度参数、混合焓、混合熵等,决 定了高分子与溶剂的相容性。
温度对溶解的影响
区别
高分子化学主要关注高分子的合成和化学反应,而高分子物理则更加关注高分子的结构和性质以及它们之间的关 系。此外,两者的研究方法也有所不同,高分子化学通常采用化学合成和表征的方法,而高分子物理则采用各种 物理手段和理论计算的方法。
PART 02
高分子链结构与形态
REPORTING
高分子链化学结构
可用于制造透明或半透明的制品,如透明塑料、有机玻璃等。
03
耐候性
高分子材料在户外环境下能够保持其光学性能的稳定,不易发生黄变、
老化等现象,因此适用于户外光学器件的制造。
耐热性、耐腐蚀性等其他性能
耐热性
高分子材料通常具有较好的耐热性,能够在高温环境下保持其物理和化学性质的稳定。这 使得高分子材料在高温工作环境中具有广泛的应用,如汽车发动机部件、电子电器部件等 。
特定的高分子结构、温度区间和浓度等。
液晶态性能
液晶态高分子具有优异的光学性能、力学性能(如高强度和高模量 )以及热稳定性等。
PART 05
高分子材料力学性能与增 强机制
REPORTING
拉伸、压缩、弯曲等力学性能
拉伸性能
高分子材料在拉伸过程中,经历弹性变形、屈服、应变硬化和断裂 等阶段,表现出不同的力学行为。
核磁共振法研究分子运动状态
高分子材料研究方法与测试技术教学课件PPT X射线衍射原理教学PPT
I
I’
2.1.2布拉格方程
1. 同一层晶面相邻原子反射线之间的光程差 如晶面A 上P原子和K原子散射线光程差: =QK-PR=PKcos-PKcos=0 同一层晶面相邻原子光程差为零---散射线相互加强
2. 相邻两层平行晶面上原子反射线之间的光程差。 由于X射线具有相当强的穿透能力,它可以穿透上万 个原子面,因此,我们必须考虑各个平行的原子面 间的‘反射’波的相互干涉问题。
2.1.2布拉格方程
可得布拉格方程:
2d'sin=n
为布拉格角,n 为衍射级数。 布拉格公式表达了发生衍射时所必须满足的基本条 件。
在n=1的情形下称为第一级反射,如果波1 ’和2 ’ 之间的波程差为波长的一倍;而1 ’和3 ’的波程差为波 长的两倍,…以此类推,我们可以认为,凡是在满足 布拉格公式的方向上的所有晶面上的所有原子散射波 的位相完全相同,共振幅互相加强。 在与入射线成2 角的方向上就会出现衍射线。而在其它方向的散射线 的振幅互相抵消,x射线的强度减弱或者等于零。
强度
200
220
面心立方NaCl的粉末衍射图
111
222 311
420 400
331
600,442
422 511,333
440 531
20 30
40
50
60
70 80
90 100
110
2
强反射的
入射角为 15°
入射X射线波长 第二级强反射
的入射角
根据布喇格公式
15° 2 × 2.82×10-10 × 15° 1.46×10-10 (m)
0.5177 31.18 °
例题:写出简单立方(a=0.3nm)的前三条线(即2 值最低的三条线),入射线为CuK (=0.154nm)
高分子材料ppt[完整版本]
•
1909年 美国人Leo Baekeland用苯酚与甲醛反应制造出第一种完全人工合成的塑料——酚醛树酯。
•
1920年 德国人Hermann Staudinger发表了“关于聚合反应”的论文提出:高分子物质是由具有相同化学结构
的单体经过化学反应(聚合),通过化学键连接在一起的大分子化合物,高分子或聚合物一词即源于此。
• 按高分子排列情况分类:结晶高聚物,非 晶高聚物。
完整编辑ppt
7
4. 性能介绍
• 高分子材料的结构决定其性能,对结构的控制 和改性,可获得不同特性的高分子材料。高分子 材料独特的结构和易改性、易加工特点,使其具 有其他材料不可比拟、不可取代的优异性能,从 而广泛用于科学技术、国防建设和国民经济各个 领域,并已成为现代社会生活中衣食住行用各个 方面不可缺少的材料。 很多天然材料通常是高 分子材料组成的,如天然橡胶、棉花、人体器官 等。人工合成的化学纤维、塑料和橡胶等也是如 此。一般称在生活中大量采用的,已经形成工业 化生产规模的高分子为通用高分子材料,称具有 特殊用途与功能的为功能高分子
子化学作为一门新兴学科建立的标志。
•
1935年 杜邦公司基础化学研究所有机化学部的Wallace H. Carothers合成出聚酰胺66,即尼龙。尼龙在1938年
实现工业化生产。
•
1930年 德国人用金属钠作为催化剂,用丁二烯合成出丁钠橡胶和丁苯橡胶。
•
1940年 英国人T. R. Whinfield合成出聚酯纤维(PET)。
天然橡胶。
•
1956年Szwarc提出活性聚合概念。高分子进入分子设计时代。
•
1971年S. L Wolek 发明可耐300℃高温的Kevlar。
《高分子材料进展》课件
生物降解高分子材料
生物降解高分子材料在体内可降解,如聚乳 酸、聚己内酯等,可用于药物载体和手术缝 合线等领域。
高分子材料的绿色化发展
要点一
可再生资源合成高分子材料
利用可再生资源合成高分子材料是绿色化学的重要方向, 如淀粉基塑料、纤维素基复合材料等。
要点二
环保型高分子材料
环保型高分子材料在生产过程中对环境影响较小,如水性 涂料、生物基塑料等,符合可持续发展要求。
光学性能与化学性能
总结词
高分子材料的光学性能和化学性能对于 其外观、耐久性和功能性至关重要。
VS
详细描述
光学性能主要包括透明度、光泽度和反射 率等,这些参数决定了材料在视觉上的表 现。化学性能包括耐腐蚀性、抗氧化性和 耐候性等,它们决定了材料在各种环境条 件下的稳定性和耐久性。
高分子材料的应用领域
合成方法与技术
自由基聚合
自由基聚合是一种常见的合成方法,通过引发剂产生自由基活性 种,引发单体聚合形成聚合物。
离子聚合
离子聚合是指通过离子键合形成聚合物的合成方法,包括阴离子聚 合和阳离子聚合两种类型。
配位聚合
配位聚合是一种定向聚合方法,通过过渡金属催化剂催化烯烃单体 进行聚合,形成具有特定立构规整性的聚合物。
智能化
高分子材料将逐渐实现智 能化,能够根据环境变化 进行自我调节和适应。
绿色化
环保意识的提高,高分子 材料的生产和使用将更加 注重环保和可持续发展。
高分子材料与其他学科的交叉融合
生物学
高分子材料与生物学的交 叉融合将产生更多生物医 用材料,如生物降解材料 、组织工程材料等。
物理学
高分子材料与物理学的交 叉融合将促进高分子材料 的结构和性能研究,提高 其稳定性和功能性。
高分子化学全套PPT课件
2024/1/28
33ቤተ መጻሕፍቲ ባይዱ
THANKS
感谢观看
2024/1/28
34
塑料原料选择与预处理
包括合成树脂、填料、增塑剂、稳定剂等原料的 选择及预处理方法。
塑料加工设备与模具
介绍塑料加工中常用的设备如注塑机、挤出机、 吹塑机等,以及模具的设计与制造。
ABCD
2024/1/28
塑料成型工艺
详细阐述注塑、挤出、吹塑、压延等成型工艺的 原理、特点及应用。
塑料制品质量控制与检测
分析塑料制品常见的质量问题,提出相应的控制 措施及检测方法。
2024/1/28
高分子溶液粘度
粘度与分子量关系,粘度测定 方法
高分子溶液流变性
剪切变稀和剪切增稠现象,触 变性
高分子溶液稳定性
高分子聚集和沉淀,稳定性影 响因素
18
高分子凝胶性质
凝胶形成过程
溶胶-凝胶转变,凝胶结构和性质
凝胶强度与韧性
交联度对凝胶强度影响,增强凝胶韧性的方法
凝胶溶胀与消溶胀
溶胀动力学和热力学,消溶胀过程
发展历程
从天然高分子到合成高分子,经历了 漫长的发展历程,现已成为化学领域 的重要分支。
2024/1/28
4
高分子化合物分类与特点
分类
根据来源可分为天然高分子和合成高分子;根据结构可分为线型、支链型和体 型高分子。
特点
高分子化合物具有相对分子质量大、分子链长、多分散性、物理和化学性质独 特等特点。
24
纤维制备与加工
纤维原料与分类
介绍天然纤维、化学纤维等原料 的来源、分类及性能特点。
纤维制品性能检测与应用
阐述熔融纺丝、湿法纺丝、干法 纺丝等纺丝工艺的原理及设备。
高分子研究方法热分析
偏光显微镜(POM)
观察高分子材料在升降温过程中的结晶形态和 熔融行为。
DSC分析
通过测量高分子材料在升降温过程中的热量变化,研究其结晶度、熔融温度和 熔融焓等。
交联度及固化反应动力学研究
凝胶含量测定
通过测量高分子材料在溶剂中不溶部分的质量分数,评价其交联度。
动态热机械分析法原理及设备
测量材料的动态力学响应。
产生交变应力或应变。
DMA设备主要由以下几部 分组成
设备
传感器 振荡器
动态热机械分析法原理及设备
温控系统
控制测试温度。
数据采集与处理系统
记录并分析测试结果。
动态热机械曲线解析与实例
曲线解析
DMA测试得到的曲线主要包括储能模量-温度曲线、损耗模量-温度曲线和损耗因子-温 度曲线。通过这些曲线,可以分析材料的玻璃化转变、结晶、交联等结构变化以及分子
通过热重分析可以确定聚合物的热稳定性, 了解其在不同温度下的分解行为,为聚合物 的加工和使用提供指导。
利用热重分析可以研究聚合物共混物的相容 性,通过比较不同组分的热失重行为,判断 共混物中各组分之间的相互作用。
聚合物老化研究
添加剂对聚合物性能的影响
热重分析可用于研究聚合物材料的老化行为, 通过比较老化前后样品的热失重曲线,了解 老化对聚合物结构和性能的影响。
氧化诱导期测定
要点一
氧化诱导时间(OIT)
通过测量高分子材料在特定温度和氧气压力下开始发生自动 催化氧化反应的时间,评价其抗氧化性能。
要点二
氧化诱导温度(OIT)
在恒定氧气压力下,测量高分子材料开始发生自动催化氧化 反应的温度,用于评价其在不同温度下的氧化稳定性。
高分子材料化学PPT课件
第19页/共140页
溶剂的选择
溶度参数相近原则 极性相似相溶原则 溶剂化原则
第20页/共140页
溶度参数相近原则
如何选择溶解高分子材料合适的溶剂是药物制剂中常 遇到的问题,如制备薄膜包衣液或制备控释膜,如何 来选择溶剂、应用何种不同性质的化合物来调节膜上 孔隙的大小,药物、溶剂和高分子的相容性如何等, 这就需要运用判断高分子溶解度及相容性的一般规律。 这些规律对聚合物的溶剂选择具有一定的指导意义。
?溶度参数相近原则极性相似相溶原则313溶剂的选择?极性相似相溶原则?溶剂化原则?如何选择溶解高分子材料合适的溶剂是药物制剂中常遇到的问题如制备薄膜包衣液或制备控释膜如何来选择溶剂应用何种不同性质的化合物来调节膜上孔隙的大小药物溶剂和高分子的相容性如何等这就需要运用判断高分子溶解度及相容性的一般规律
1
1 3
1 :2 1: 2
第23页/共140页
极性相似相溶原则
对于非晶态极性聚合物不仅要求溶剂的溶度参数与聚 合物相近,而且还要求溶剂的极性要与聚合物接近才 能使之溶解,如聚乙烯醇是极性的,它可溶于水和乙 醇中,而不溶于苯中。
第24页/共140页
溶剂化原则ຫໍສະໝຸດ 溶度参数相近的聚合物一溶剂体系,不一定都能很好
只能发生溶胀。 交联度越大,溶解度越小。 交联度可以用交联点密度表示。交联聚合物中交联链
的结构单元数Nc占总结构单元数N的分数,通常用q表 示。Q=Nc/N。
第9页/共140页
制备药用高分子溶液的方法
药用高分子材料大多呈粒状、粉末状,如果将其直接 置于良溶剂中,易于聚结成团,与溶剂接触的团块表 面的聚合物首先溶解,使其表面粘度增加,不利于溶 剂继续扩散进人颗粒内部。
第33页/共140页
高分子材料分析测试方法
光源发出的光被分束器分为两束,一束经反射到达动镜,另一束经 透射到达定镜。两束光分别经定镜和动镜反射再回到分束器,从而产生 干涉。动镜作直线运动,因而干涉条纹产生连续的变换。干涉光在分束 器会合后通过样品池,然后被检测器(傅立叶变换红外光谱仪的检测器 有TGS,DTGS,MCT等)接收,计算机处理数据并输出。
结构鉴定
傅里叶红外光谱
B.分辨率 红外光谱仪器的分辨率是指仪器对于紧密相邻的峰可分辨的最 小波长间隔,表示仪器实际分开相邻两谱线的能力,往往用仪器 的单色光带宽来表示,它是仪器最重要的性能指标之一,也是仪 器质量的综合反映。 仪器的分辨率主要取决于仪器的分光系统的性能。仪器的分辨 率主要影响光谱仪器获得测定样品光谱的质量,从而影响分析的 准确性,对于一台仪器的分辨率是否满足要求,这与待测样品的 光谱特征有关,有些物质光谱重叠、特征复杂,要得到满意的分 析结果,就要求较高的仪器分辨率。
结构鉴定
傅里叶红外光谱
(3)样品量的控制对谱图的影响: 在红外光谱实验中, 固体粉末样品不能直接压片, 必须用稀释剂稀释、
研磨后才能压片。稀释剂溴化钾与样品的比例非常重要, 样品太少不行, 样 品太多则信息太丰富而特征峰不突出, 造成分析困难或吸收峰成平顶。对于 白色样品或吸光系数小的样品, 稀释剂溴化钾与样品的比例是100:1; 对于 有色样品或吸光系数大的样品稀释剂溴化钾与样品的比例是150:1。
Raman散射与红外吸收方法机理不同,所遵守的选择定则也不同。 两种方法可以相互补充,这样对分子的问题可以更周密的研究。下图是 Nylon 66的Raman与红外光谱图
结构鉴定
激光拉曼散射光谱
品吸潮以外还有环境的潮湿和噪声。平滑是减少来自各方面因素所产生的 噪声信号, 但实际是降低了分辨率, 会影响峰位和峰强, 在定量分析时需特 别注意。 (2)基线校正:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C=S O=N- -N=N例:丙酮 λmax=280 nm n→π*跃迁比π→π*跃迁所需能量小,吸收波长长
16
常用的是π→π*跃迁和n→π*,这两种跃迁都 需要分子中有不饱和基团提供π轨道。
n→π*跃迁与π→π*跃迁的比较如下:
吸收强度大, ε在104~105范围内,强吸收
若有共轭体系,波长向 长波方向移动,相当于 200~700 nm。 含不饱和键的化合物发 生π→π*跃迁
C=O, C=C, C≡C
15
(4) n→π*跃迁
n电子跃迁到反键π* 轨道所产生的跃迁,这类 跃迁所需能量较小,吸收峰在200~400 nm左右。
π→π*
n→π*
吸收峰波长 与组成双键的
有关
原子种类基本无关
吸收强度 强吸收 104~105 弱吸收 <102
极性溶剂 向长波方向移动 向短波方向移动
17
2、 常用术语
发色团——含不饱和键的基团,有π键
含有不饱和键,能吸收紫外可见光,产生n→π* 或 π→π*跃迁的基团称为发色团.
助色团——含杂原子的饱和基团
第三章 紫外可见吸收光谱
Ultraviolet and visible spectrophotometry UV—Vis
1
§ 3-1 概述
定义:利用物质的分子或离子对紫外和可见光的吸 收所产生的紫外可见光谱及吸收程度对物质的组成、 含量和结构进行分析、测定、推断的分析方法。
应用:应用广泛——不仅可进行定量分析,还可利 用吸收峰的特性进行定性分析和简单的结构分析, 还可测定一些平衡常数、配合物配位比等。可用于 无机化合物和有机化合物的分析,对于常量、微量、 多组分都可测定。
含有未共用电子对的杂原 子(N、O、S、X)的饱和
化合物发生n→σ* 跃迁;
含-NH2 、-OH、-X 例:CH3OH λmax=184nm
CH3Br λmax=204nm
14
(3)π→π*跃迁
π电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁 所需能量比σ→σ*跃迁小,若无共轭,与n→σ*跃迁 差不多。200nm左右
(1)ε——吸光物质在特定波长和溶剂中的一个特 征常数 ,定性的主要依据。
(2) ε值愈大,方法的灵敏度愈高。
ε > 104
强吸收
ε = 103~104
较强吸收
ε = 102~103
中吸收
ε < 102
弱吸收
8
文献报道:紫外可见光谱的两个重要特征 max ε (希腊文,卡帕)
例:λmaxEt = 279 nm ε5012 lgε=3.7
σ→σ*跃迁所需能量很大,相当于远紫外的辐射能, <200nm。
饱和烃只能发生σ→σ*跃迁
例: CH4
λmax=125nm
C2H6 λmax=135nm
饱和烃类化合物作紫外可见吸 收光谱分析的溶剂
13
(2) n→σ* 跃迁 未共用电子对跃迁到反键σ* 轨道所产生的跃迁,
这 类 跃 迁 所 需 能 量 比 σ→σ* 跃 迁 小 , 200nm 左 右 (150~250nm) 吸收概率较小, ε在102~103范围内,中吸收
9
二、 紫外可见吸收光谱与分子结构的关系
(一 ) 有机化合物的紫外可见吸收光谱
1. 电子跃迁类型
紫外可见吸收光谱是由分子中价电子能级跃迁产生 的——这种吸收光谱取决于价电子的性质
电子类型:
形成单键的σ电子
C-H、C-C
形成双键的π电子
C=C、C=O
未成键的孤对电子n 电子 C=O:
.. ¨
O:
例:H C
不同波长的光
L 4
A
图3-1 紫外可见吸收光谱示意图
末端吸收
最强峰
肩 峰
次强峰 峰谷
max
min
5
A
分析吸收曲线 可以看到:
1.同一浓度的 待测溶液对不 同波长的光有 不同的吸光度;
max
min
பைடு நூலகம்
2. 对于同一待测溶液,浓度愈大,吸光度也愈大;
3. 对于同一物质,不论浓度大小如何,最大吸收峰所对应 的波长(最大吸收波长 λmax) 不变。并且曲线的形状也 完全相同。
特点:灵敏度高、准确度高、选择性好、操作方便、 分析速度快、应用范围广。
2
§3-2 紫外可见吸收光谱法的基本原理 一、紫外可见吸收光谱
ΔE电 = h 光 (200—800 nm)
激发态 基态
3
§3-2 紫外可见吸收光谱法的基本原理
吸收曲线
将不同波长的光透过某一固定浓度和 厚度的待测溶液,测量每一波长下待测溶 液对光的吸收程度(即吸光度),然后以 波长为横坐标,以吸光度为纵坐标作图, 可得一曲线。这曲线描述了物质对不同波 长的吸收能力,称吸收曲线或吸收光谱。
1-己烯 1.5-己二烯 1.3-己二烯 1.3.5-己三烯
一些本身在紫外和可见光区无吸收,但能使发色团 吸收峰红移,吸收强度增大的基团称为助色团。
长移与短移 ——向长波方向移动叫长移或红移
——向短波方向移动叫短移或蓝移
例:
λmax=254nm
ε =230
OH
λmax=270nm
ε =1250 2
18
吸收带—吸收峰在吸收光谱上的波带位置
(1)R 吸收带: n→π*跃迁
H
10
分子轨道有σ、σ*、π、 π*、n 能量高低σ<π<n<π*<σ*
σ* π*
n → σ* π→π* n→π*跃迁
n
π
能
σ→σ*
量
σ
11
主要有四种跃迁类型 跃迁所需能量为:
σ→σ* n→σ* π→π* n→π*
分子中电子的能级和跃迁
2
12
(1) σ→σ* 跃迁
成键σ电子跃迁到反键σ*轨道所产生的跃迁
6
(二)紫外可见光谱的特征
A
1. 吸收峰的形状及所在位置
——定性、定结构的依据
2. 吸收峰的强度——定量的依据
A = lgI0 / I= εcL ε:摩尔吸收系数
单色光 I0
I
单位:L . cm -1 . mol-1
L
7
ε的物理意义及计算
ε在数值上等于1mol/L的吸光物质在1cm光程中的 吸光度,ε = A/cL,与入射光波长、溶液的性质 及温度有关。
特点:a 跃迁所需能量较小,吸收峰位于
200~400nm
b 吸收强度弱, ε <102
(2)K 吸收带: 共轭双键中π→π*跃迁 特点:a 跃迁所需能量较R带大,吸收峰 位于210~280nm b 吸收强度强, ε 104 随着共轭体系的增长,K 吸收带长移,
210~700nm , ε增大。
19
例: