《分子间作用力和氢键》

合集下载

分子间作用力和氢键

分子间作用力和氢键

二、氢键: 氢键:
1.氢键的形成过程: 1.氢键的形成过程: 氢键的形成过程
在水分子中的O 在水分子中的O—H中,共用电子对强 烈的偏向氧原子, 烈的偏向氧原子,使得氢原子几乎成 裸露”的质子,其显正电性, 为 “裸露”的质子,其显正电性, 它能与另一个水分子中氧原子的孤电 子对产生静电作用,从而形成氢键。 子对产生静电作用,从而形成氢键。
分子间作用力
一、分子间作用力: 分子间作用力:
1.定义: 将分子聚集在一起的作用力. 1.定义: 将分子聚集在一起的作用力. 定义 2.实质: 静电作用,比化学键弱得多. 2.实质: 静电作用,比化学键弱得多. 实质 3.类型: 范德华力和Байду номын сангаас键 3.类型: 类型 4.存在: 4.存在: 存在 普遍存在分子间
作用粒子 化学键 分子间作用力 (范德华力 范德华力) 范德华力
作用力大小
意义 主要影响物质 的化学性质 主要影响物质的物 理性质( 沸点) 理性质(熔、沸点)
相邻原子 分子之间
大 小
巩固练习: 巩固练习:
1. 下列物质受热熔化时,不需要破坏化学键( CD) 下列物质受热熔化时,不需要破坏化学键( A. 食盐 B. 纯碱 C. 干冰 D. 冰
5.作用: 影响物质的熔、沸点、 5.作用: 影响物质的熔、沸点、溶解度 作用
氧气在水中的溶解度比氮气大, 例:氧气在水中的溶解度比氮气大,原因是 氧分子与水分子之间的范德华力大 6.影响因素 6.影响因素 : 结论:对于结构组成相似的物质,随着相对 结论:对于结构组成相似的物质, 分子质量的增大,范德华力增大,物质的、 分子质量的增大,范德华力增大,物质的、 沸点升高。 沸点升高。
形成条件: 2. 形成条件: 氢原子与非金属性强且原子半径小的非金 属元素原子, 属元素原子,如F、O、N原子 、 、 原子 表示方法: 3. 表示方法:

分子间作用力和氢键

分子间作用力和氢键

在大多数分子中,色散力是主要的,只有 在强极性分子中,取向力才占主导地位。
氢键( hydrogen bond ) 氢键
氢键是一个极性键中的氢原子与另一个 氢键 电负性大的原子(最常见的是F、O、N)之 间所形成的一种特殊的作用力。
A
H
B
形成氢键的条件: 形成氢键的条件: ① 有一个与电负性很大的原子A形成共价键的 氢原子; ② 有另一个电负性很大并且有孤对电子的原子 B。
H2O的结构与性质: 的结构与性质: 的结构与性质
非常规型氢键 (i) X—H……π氢键:在一个 氢键: 氢键 在一个X—H……π氢 氢 键中,π键或离域 键体系作为质子(H+) 键中, 键或离域π键体系作为质子( 键或离域 键体系作为质子 的接受体。由苯基等芳香环的离域π键形成 的接受体。由苯基等芳香环的离域 键形成 氢键, 的X—H……π氢键,又称为芳香氢键 氢键 (aromatic hydrogen bonds)。 )。
初赛基本要求
范德华力。氢键(形成氢键的条件、 范德华力。氢键(形成氢键的条件、氢 键的键能、 键的键能、氢键与分子结构及物理性质 关系。其他分子间作用力的一般概念。 关系。其他分子间作用力的一般概念。
分子间的力( 范德华力) 分子间的力 范德华力) 1、取向力(orientation force) 、取向力( 存在于已取向的极性 分子间的静电引力,称为 取向力(或定向力)。 取向力 取向力与分子偶极矩的 + 平方成正比,与热力学温度 C-F - −141℃ ℃
H3N-BH3 - −104℃ ℃
(2003全国)咖啡因对中枢神经有兴奋作用,其 全国)咖啡因对中枢神经有兴奋作用, 全国 结构式如下。常温下, 结构式如下。常温下,咖啡因在水中的溶解度 为2g/100g H2O,加适量水杨酸钠 , [C6H4(OH)(COONa)],由于形成氢键而增大咖 , 啡因的溶解度。 啡因的溶解度。请在附图上添加水杨酸钠与咖 啡因形成的氢键。 啡因形成的氢键。

无机化学-分子间作用力和氢键

无机化学-分子间作用力和氢键
分子间作用力对物质物理化学性质的影响
He、Ne、Ar、Kr、Xe从左到右原子半径(分子半径)依次增大,变形 性增大,色散力增强,分子间结合力增大,故b. p. 依次增高。可见,范 德华力的大小与物质的m. p.,b. p.等物理性质有关。
同类分子型物质熔、沸点比较
熔点/K
沸点/K
F2
53.6
85
Cl2
(1) 与电负性大且 r 小的原子 ( F,O, N ) 相连的 H ; (2) 在附近有电负性大,r 小的原子 ( F,O,N ) 。
4、 氢键的特点
(a)氢键存在饱和性和方向性 ➢ 氢键的饱和性指的是每一个 X—H 只能与一个Y原子形成氢键。 只是因为H的体积较小,当形成 X—H…Y 氢键后,X和Y原子电 子云的斥力使得其它极性分子很难靠近。(H的配位数一般为2) ➢ 氢键的方向性指的是Y原子与X—H形成氢键后, X—H…Y 尽 量位于一条直线上,这样可使X和Y原子距离最远,斥力最小。
CH3CH2CH3 b.p. -44.5℃
CH3CH2CH2CH3 b.p. -0.5℃
CH3CH2CH2CH2CH3 b.p. 36℃
●正戊烷、异戊烷和新戊烷三种异构体的相对分子质量相同, 色 散力随分子结构密实程度的增大而减小,导致沸点按同一顺序下降
CH3CH2CH2CH2CH3 b.p.36 ℃
总作用力
8.5 8.75 26.00 23.11 21.14 29.60 47.31
对大多数分子来说,以色散力为主 (除极性很大且存在氢键的 分子,如H2O外)
色散力的大小既依赖于分子的大小,也依赖于分子的形状
●丙烷、正丁烷和正戊烷均为直链化合物(忽略分子形状的影响 ), 色散力随分子体积的增大而增大, 导致沸点按同一顺序升高

分子间作用力和氢键课件

分子间作用力和氢键课件

离子间极化越强,核间距缩短 离子间极化越强,物质熔点、沸 点就越低 离子间极化越强,物质颜色越深
化学键与物质结构
晶体
内部的原子、分子、离子等质点有规则排列的一 类固体物质统称为晶体
离子晶体
原子晶体 晶 体
一般而言:三种晶体在熔点、沸点、硬度上有: 原子晶体 > 离子晶体 > 分子晶体
能够形成氢键的物质是很广泛的,如水、醇、 羧酸、无机酸、氨、胺、等。在生物过程中具有意义 的蛋白质、脂肪、糖等基本物质都含有氢键。
➢分子间氢键的形成可使物质的熔点和沸点显著 升高。
化合物
HF
沸点(℃) -19.9
HCl -85.0
HBr -66.7
HI -35.4
02:29
化学键与物质结构
➢ 氢键的形成对物质的溶解度有一定的影响。 在极性溶剂中,如果溶质分子和溶剂分子之
一个分子的HX与另一个分子中的Y(Y和X可以是 相同的元素)相结合而成的氢键叫做分子间氢键。
同一分子内部的X-H与Y相结合而成的氢键,叫做 分子内氢键。
02:29
化学键与物质结构
氢键的特点:
➢氢键具有方向性和饱和性。
方向性:
在形成分子间氢键时.X—H与Y在同 一直线上,这样成键可使X与Y的距离最远, 两原子电子云之间的斥力最小.所形成的 氢键最强,体系更稳定。
分子变形性越 大,色散力越

色散力发生在各种分子之间,并且是范德华力的主要形式。
02:29
化学键与物质结构
分子间力具有以下特性:
(1)它是存在于分子间的一种电性作用力。 (2)作用能的大小只有几个千卡/摩尔,比化学键 能(约为30-150千卡/摩尔)小一二个数量级。 (3)作用力的范围很小。三种分子间力都与分子间 距离的七次方成反比,即当分子稍为远离时,分 子间力迅速减弱。 (4)一般没有方向性和饱和性。 (5)在三种作用力中,色散力是主要的,诱导力通 常很小,只有少数极性较大(如水、氨)的分子之 间,取向力才占一定的比例或占优势。

分子间力氢键

分子间力氢键

【问题探究一】 问题探究一】
干冰气化现象是物理变化还是化学变化? 干冰气化现象是物理变化还是化学变化?
干冰气化过程中有没有破坏其中的 化学键? 化学键?
那为什么干冰气化过程仍要吸收能量呢? 那为什么干冰气化过程仍要吸收能量呢?
分子间作用力
分子间存在着将分子聚集在一起 的作用力,这种作用力称为分子间作 的作用力,这种作用力称为分子间作 用力又称为 又称为范德华力 用力又称为范德华力
I2 254 113.5 184.4
38 相对分 子量 熔点 -219.6 (℃) 沸点 -188.1 (℃)
熔沸点变 化趋势
熔沸点逐渐升高
卤族元素单质物理性质差异
三、分子间作用力
1。概念:分子间存在的将分子聚集在一起 。概念: 的作用力称为分子间作用力, 的作用力称为分子间作用力, 又称为范德华力。 又称为范德华力。 (1)存在:由分子构成的物质 )存在: (2)大小:比化学键弱得多。 )大小:比化学键弱得多。 2。意义:影响物质的熔沸点和溶解性等 。意义:影响物质的熔沸点和溶解性等 熔沸点 物理性质
分子间作用力 与氢键
水有三态变化: 水有三态变化:
吸热 吸热

放热

放热

0℃ 100℃
干冰升华、 硫晶体熔化、液氯汽化都要吸收能量。 干冰升华 、 硫晶体熔化 、 液氯汽化都要吸收能量 。 物质从固态转变为液态或气态, 物质从固态转变为液态或气态 , 从液态转变为气 为什么要吸收能量?在降低温度 增加压强时, 在降低温度、 态,为什么要吸收能量 在降低温度、增加压强时, C12、CO2等气体能够从气态凝结成液态或固态。 等气体能够从气态凝结成液态或固态。 这些现象给我们什么启示? 这些现象给我们什么启示

分子间力

分子间力

Compound
AgF
r+/r-
Crystalline type Coordination number
0.85 NaCl
6:6
AgCl
0.63 NaCl 6:6
AgBr
0.57 NaCl 6:6
AgI
0.51 ZnS 4:4
Compound
CuF
CuCl
CuBr
CuI
r+/r-
0.72
0.53
0.49
氢键(hydrogen band)
● 氢键存在的证明 氢键和分子间作用力一样,
也是很弱的力. 与同系物性质的不同就是
由氢键引起的.
The structure of ice
● 氢键的结构特点
rH
d
θ
X
Y
R
Represent of hydrogen bond
这种方向与富电子 氢化物中孤对电子占 据的轨道在空间的伸 展方向有关.
,Be2+离子半径最小,又是2电子构型,因此Be2+有很大的极化能 力,使Cl-发生比较显著的变形,Be2+和 Cl-之间的键有较显著的 共价性。因此BeCl2具有较低的熔、沸点。BeCl2、MgCl2、CaCl2的 熔点依次为410℃、714℃、782℃。
● 溶解度降低 离子极化使离子键逐步向共价键过渡,根据相似
● 偶极矩 (dipole moment, µ) 表示分子中电荷分布状况的物理量,定义为正、负电重心间的
距离与电荷量的乘积. 分子电偶极矩是个矢量. 对双原子分子而言
,分子偶极矩等于键的偶极矩;对多原子分子而言,分子偶极矩则
等于各个键的偶极矩的矢量和.
● 双原子分子的极性取决于键的极性。

氢键和分子间作用力

氢键和分子间作用力

氢键和分子间作用力
氢键是一种分子间作用力,通常以“H”表示。

它是由一个极性分子中的一个部分和另一个极性分子中的一个部分之间的反向电荷
吸引力。

这种作用力比分子间力更强,因此分子之间的距离更近。

氢键常常在生物分子中发现,如DNA和蛋白质。

DNA的双螺旋结构是通过氢键形成的。

在蛋白质中,氢键会影响蛋白质的三维结构,因此影响它们的功能。

氢键也在化学反应中发挥着重要作用。

例如,在酸碱反应中,氢键是质子转移的关键。

在酸碱反应中,酸中的氢离子(H+)从酸分子中转移到碱分子中,形成水分子。

这种转移是通过氢键实现的。

总之,氢键是一种重要的分子间作用力,它们在生物和化学领域都发挥着重要作用。

了解氢键的性质和作用可帮助我们更好地理解分子之间的相互作用,进而为我们的科学研究和工作提供基础。

- 1 -。

高一理化生分子间作用力和氢键极性分子和非极性分子

高一理化生分子间作用力和氢键极性分子和非极性分子
1. CF4与PF3具有相同的电子数(42个)和相对分子质 量(88), 但CF4的熔沸点均比PF3低, 为什么?
2. SiCl4沸点较高, 但SiH3Cl较低,为什么? 3. C60晶体的升华热为181.4kJ/mol, 比一般分子间
力数值大得多, 你认为原因是什么?
4. 解释在室温下, 从F2、Cl2、Br2、I2物体状态由气 态变成液态和固态的原因。
指分子、离子和原子的相对大小及离子的电价。
总之,分子的大小、形状和分子间的相互作 用是涉及到有机、药物合成、生物化学、表面科 学及分子光谱学等多种学科的、内容非常丰富、 应用极其广泛的课题之一。它既包含分子的几何 性质,又包含分子的电子性质。有些方面迄今尚 未认识清楚,有待深入揭示其本质。
练习题:
金属原子, 如:
Cl
Cl
Me Me N
Pt Me N Me
H
H
Cl
Cl
Pt
Cl
Cl
Me N
Me H
Br Me Pt N Me
(c)氢键对物质性质的影响
i. 物质的熔点和沸点
分子间生成氢键, 物质的熔点和沸点会上
升; 分子内形成氢键, 物质的熔点和沸点会降低。
例如,
NO2 OH
下面列出了某些分子分子间力的数值(kJ/mol):
分子 静电力 诱导力
色散力 总作用力
Ar
0.000 0.000
8.50
8.50
CO
0.003 0.008
8.75
8.75
HI
0.025 0.113 25.87
26.00
HBr 0.69 0.502 21.94
23.11
HCl 3.31

分子间作用力(范德华力、氢键)课件2022-2023学年下学期高二化学人教版(2019)选择性必修2

分子间作用力(范德华力、氢键)课件2022-2023学年下学期高二化学人教版(2019)选择性必修2

“—”表示共价键 , “…”表示形成的氢键(X、Y一般为N、O、F)。
教材:P57图2-25
O—H … O
不仅氟化氢分子之间、氨分子之间存在氢键, 而且它们跟水分子之间也存在氢键
类型
N—H … N 水分子间
NH3分子间 HF分子间
F—H … F 氨水中
HF水溶液中
1
2
O—H···O
N—H···N
F—H···F
23.11
HCl 36.5
21.14
(1)组成和结构相似的分子,相对分子质量越大,范德华力越大 (2)相对分子质量相同或相近时,分子的极性越大,范德华力越大
分子
CO N2
相对分子质量
28 28
分子的极性
极性 非极性
范德华力(kJ•mol-1)
8.75 8.50
6. 范德华力对物质性质的影响:
单质 F2 Cl2 Br2 I2
一、范德华力
1. 概念: 范德华(van der Waals)是最早研究分子间普 遍存在作用力(把分子聚集在一起的作用力)的科 学家,因而把这类分子间作用力称为范德华力。
2. 本质:分子间的一种静电作用
3. 特点:
(1)广泛存在于分子之间 (2)只有分子充分接近时才能体现 (3)范德华力一般没有方向性和饱和性。只要分子 周围空间允许,总是尽可能多的吸引其他分子。 (4)范德华力很弱,比化学键的键能小1~2数量级 (通常小10-100倍)大约只有几到几十 KJ•mol-1
的大小以五或六原子环 最稳定。分子内氢键可
这里的氢键,不属于分子间作用力,属 于分子内官能团之间的作用力。
以使分子更稳定。且分 子内氢键会削弱分子间 氢键形成.
9.氢键对物质物理性质的影响:

10--分子间作用力和氢键

10--分子间作用力和氢键

必修2第一章第三节化学键第三课时【学习目的】1、掌握分子间作用力含义与氢键的判断2、强化离子键和共价键的知识【学习重点】分子间作用力、氢键的应用【学习难点】氢键的判断【新知学习】一、化学键:1、定义:使离子或原子相结合的作用力称为化学键。

2、分类:、、3、离子键和共价键的比较:4、化学反应的实质:旧键的和新键的。

二、分子间作用力①概念:分子之间存在着一种把分子叫做分子间作用力,又称。

②强弱:分子间作用力比化学键,它主要影响物质的、等物理性质,化学键属分子内作用力,主要影响物质的化学性质。

③规律:一般来说,对于组成和结构相似的物质,越大,分子间作用力,物质的熔点、沸点也越。

④存在:分子间作用力只存在于由分子组成的共价化合物、共价单质和稀有气体的分子之间。

在离子化合物、金属单质、金刚石、晶体硅、二氧化硅等物质中只有化学键,没有分子间作用力。

三、氢键①概念:像、、这样分子之间存在着一种比的相互作用,使它们只能在较高的温度下才能汽化,这种相互作用叫做氢键。

②对物质性质的影响:分子间形成的氢键会使物质的熔点和沸点,这是因为固体熔化或液体汽化时必须破坏分子间的氢键,消耗更多的能量。

【注意】分子间作用力和氢键由于作用力较弱,都不属于化学键!四、知识整理1、离子键:使阴、阳离子结合成化合物的静电作用叫做离子键由离子键结合在一起的化合物叫离子化合物【离子键的存在范围】(1)、活泼金属与活泼非金属形成的化合物;(2)、活泼金属阳离子(或NH4+)与酸根离子之间;(3)、活泼金属阳离子与OH—之间;2、电子式:在元素符号周围用小黑点或小叉表示最外层电子数的式子叫电子式掌握NaCl/MgO/K2O/CaCl2/Na2O2/NH4Cl/NaOH 电子式的写法3、共价键:原子之间通过共用电子对所形成的相互作用,叫做共价键掌握NH3,CH4,CO2,N2,O2,HClO,H2O2电子式的写法4、极性键与非极性键同种非金属元素原子之间形成非极性共价键(非极性键,可存在于非金属单质和化合物中)不同种非金属元素原子之间形成极性共价键(极性键,只存在与化合物中)(1)、含有离子键的化合物一定是离子化合物(2)、含有共价键的化合物不一定是共价化合物注意离子化合物的形成过程与共价化合物的形成过程写法的不同。

第四讲分子间作用力和氢键

第四讲分子间作用力和氢键

键的极性与分子的极性 共价键有非极性键与极性键之分。由共价键构 建的分子有非极性分子与极性分子之分。 度量分子极性大小的物理量叫做偶极矩(m)。偶 极矩是偶极子的电量q和偶极子两极的距离l的乘积 (m=qXl)。
q+
l
q_
偶极子与偶极矩(m=qXl)
偶极矩m=0的共价键叫做非极性共价键;偶极矩 m≠0的共价键叫做极性共价键。偶极矩m=0的分子叫做 非极性分子;偶极矩m≠0的分子叫做极性分子。
在细胞内合成蛋白质过程中, 先是在细胞核中以DNA为模板,
通过“氢键”的“牵引”合成
RNA,然后由RNA在细胞质中 又通过“氢键”的“牵引”由 氨基酸合成蛋白质的一级结 构——多肽链。
蛋白质变性与分子内氢键
蛋白质变性与分子内氢键分不开。煮熟的鸡蛋孵不出 小鸡,这是蛋白质变性而失去生物活性的结果。蛋白质凭
范德华力和氢键是两类最常见的分子间力 化学键能: H–H 436 kJ/mol F–F 155 kJ/mol
O=O 708 kJ/mol
NN 945 kJ/mol >200kJ/mol 分子间作用力 <10 kJ/mol 氢键 10 –30 kJ/mol
Cl–Cl
243 kJ/mol
300 ~500pm
_ _ O O + O m=0 D
H
H C +
N _
m= D
色散力 相对于电子,分子中原子的位置相对固定,而分子 中的电子却围绕整个分子快速运动着。
于是,分子的正电荷重心 与负电荷重心时时刻刻不重合, 非极性分子 产生瞬时偶极。分子相互靠拢 _ _ 时,它们的瞬时偶极矩之间会 + + 产生电性引力,这就是色散力。 产生瞬时 色散力不仅是所有分子都有的 偶极 最普遍存在的范德华力,而且 _ + _ + 经常是范德华力的主要构成。

分子间力及氢键

分子间力及氢键

(5)分类: 分子间氢键: 分子内氢键: (6)存在
NaHCO3固体中的氢键 邻硝基苯酚 邻羟基苯甲醛 固体(HF)n中的氢键
氢键存在广泛,如蛋白质分子、H2O、NH3、HF、DNA、醇、 羧酸分子及结晶水合物等分子之间。 (7)氢键对物质性质的影响:①溶质分子和溶剂分子间形成氢键, 溶解度骤增。如氨气极易溶于水;②分子间氢键的存在,使物 质的熔沸点升高。③有些有机物分子可形成分子内氢键,则此 时的氢键不能使物质的熔沸点升高。 例:NH3、H2O、HF中由于存在氢键,使得它们的沸点比同族 其他元素氢化物的沸点反常地高。
分子间作用力
概念 物质分子之间普遍存在的一种相 互作用力,又称范德华力
氢键
由已经与电负性很强的原子形成 共价键的氢原子与另一个分子中 电负性很强的原子之间的作用力
共价键
原子间通过共用电子对所形成 的相互作用
分类 特征 作用 微粒 强度 比较 影响 强度 的因 ①随着分子极性和相对分子质量 的增大而增大②组成和结构相似 的物质,相对分子质量越大,分 无方向性、无饱和性 分子或原子(稀有气体)
I2 > Br2 > Cl2 > F2。
2.氢键 (1)定义:氢键是一种既可以存在于分子之间又可以存在于分子 内部的作用力。它比化学键 弱 ,比范德华力 稍强 。当氢 原子与电负性大的原子X以共价键结合时,H原子能够跟另一个 电负性大的原子Y之间形成氢键。 (2)形成条件 ①化合物中有氢原子,即氢原子处在X—H„Y其间。 ②氢只有跟电负性很大且其原子半径较小的元素化合后,才有 较强的氢键,像这样的元素有N、O、F等。 (3)氢键基本上还是属于静电作用,它既有 方向 性,又有 饱和 性。 (4)通常用X—H„Y表示氢键,其中X—H表示氢原子和X原子 以共价键相结合。氢键的键能是指X—H„Y分解为X—H和Y所 需要的能量。

高中化学选修3分子间作用力和氢键知识点总结

高中化学选修3分子间作用力和氢键知识点总结

高中化学选修3分子间作用力和氢键知识点总结一.分子间作用力1.定义:分子间存在着将分子聚集在一起的作用力,称分子间作用力。

分子间作用力也叫范德华力.2.实质:一种电性的吸引力.3.影响因素:分子间作用力随着分子极性.相对分子质量的增大而增大.分子间作用力的大小对物质的熔点.沸点和溶解度都有影响.一般来说.对于组成和结构相似的物质来说,相对分子质量越大,分子间作用力越强,物质的熔沸点也越高.4.只存在于由共价键形成的多数化合物,绝大多数非金属单质分子和分子之间.化学键是分子中原子和原子之间的一种强烈的作用力,它是决定物质化学性质的主要因素。

但对处于一定聚集状态的物质而言,单凭化学键,还不足以说明它的整体性质,分子和分子之间还存在较弱的作用力。

物质熔化或汽化要克服分子间的作用力,气体凝结成液体和固体也是靠这种作用力。

除此以外,分子间的作用力还是影响物质的汽化热、熔化热、溶解黏度等物理性质的主要因素。

分子间的作用力包括分子间作用力(俗称范德华力)和氢键(一种特殊的分子间作用力)。

分子间作用力约为十几至几十千焦,比化学键小得多。

分子间作用力包括三个部分:取向力、诱导力和色散力。

其中色散力随分子间的距离增大而急剧减小,一般说来,组成和结构相似的物质,分子量越大,分子间距越大,分子间作用力减小,物质熔化或汽化所克服的分子间作用力减小,所以物质的溶沸点升高。

化学键与分子间作用力比较化学键分子间作用力概念相邻的原子间强烈的相互作用物质分子间存在的微弱的相互作用能量较大很弱性质影响主要影响物质的化学性质主要影响物质的物理性质二.氢键-特殊的分子间作用力1.概念:氢键是指与非金属性很强的元素(主要指N、O、F)相结合的氢原子与另一个分子中非金属性极强的原子间所产生的引力而形成的.必须是含氢化合物,否则就谈不上氢键。

2.实质:氢键不是化学键,属于分子间作用力的范畴.但比普通分子间作用力要强得多.3.存在:水.冰.氨.无机酸.醇等物质能形成氢键.4.分类:分子内氢键和分子间氢键5.影响:分子间氢键的形成除使物质的熔沸点升高外,对物质的溶解度.硬度等也都有影响.6.表示法:用"X—H…Y"表示,且三原子要在一条直线上.X、Y与H构成分子。

第四章-分子结构——分子间的作用力、氢键、离子极化理论

第四章-分子结构——分子间的作用力、氢键、离子极化理论

由极性键构成的分子是否一定是极性分子?
由极性键构成的分子,分子是否 有极性,还与分子的空间构型有关。 若键的极性在分子中可相互抵消,则为非极性分子。 如:BF3、CH4、CCl4、CO2 •••等。 若键的极性在分子中不能相互抵消,则为极性分子。 如:NH3、H2O、PCl3、SO2 •••等。
(3)偶极矩(dipole moment)
因为18e 构型的阳离子容易变形,变形性:Hg2+ > Cd2+ > Zn2+ 。
(d) 对颜色的影响
——强的离子极化作用使晶体颜色加深
如,大多数硫化物为黑色。 P212 19 题, AgCl AgBr AgI 颜色加深;
CuF2(无色) CuCl2(黄棕色) CuBr2(棕黑) CuI2(不存在)
非极性分子被极化 后,产生诱导偶极 极性分子在电场的 诱导下,也能产生 诱导偶极,且总偶 极矩增大。
极性分子

µ
无外电场时

µ +∆µ
有外电场时
图4-51 外电场对分子极性的影响示意图
分子在外电场中(或正、负离子本身的电场中)发生变形,产生 诱导偶极的过程叫分子的极化。 即使没有外电场存在,在某一瞬间,分子的正电荷重心和负电 荷重心也会发生不重合现象,这时产生的偶极称瞬间偶极。
但范德华力是决定共价化合物的熔点、沸点高低、 溶解度大小等物理性质的一个重要因素。 分子间力的性质属于电学性质,分子间力的产生与分 子的极化有关。对于范德华力本质的认识是随着量子力学 的出现而逐步深入的。
范德华力一般包括三个部分:
取向力(极极):
永久偶极而产生的相互作用力。 诱导力(极非极,极极): 诱导偶极同极性分子的永久偶 极间的作用力叫做诱导力。 色散力(所有分子间均存在): 由于存在“瞬间偶极”而产生 的相互作用力。

化学人教版高中必修2《分子间作用力和氢键》教学设计

化学人教版高中必修2《分子间作用力和氢键》教学设计

《分子间作用力和氢键》教学设计晓妹昌河中学一、教材分析“分子间作用力和氢键”是人教版化学新教材“必修2”第一章第三节中“科学视野”栏目的教学容,主要是为了开拓学生视野,拓展知识面,提高学生学习兴趣而设置的。

对于此类容的教学,教师可作机动处理,因而在实际教学中,许多教师把它放弃或只作为学生课后阅读。

笔者认为应根据各校学生的实际状况,引导学生结合生活经验,生活实例和已掌握的知识,通过查阅有关资料,真正感悟分子间作用力和氢键的存在及其对物质物理性质的影响,同时要把握好难度,体现新教材的教学要求。

这正是新课程改革的精髓所在。

二、教学目标1 . 了解分子间作用力的概念及对物质的熔点、沸点等物性的影响。

2 .常识性介绍氢键及其对物质性质的影响。

三、重点、难点分子间作用力、氢键对物质的熔点、沸点等物性的影响三、教学过程【提问】Cl2、HCl是以什么键结合的?什么是极性键?什么是非极性键?用电子式表示其形成过程。

4么是分学?有哪些社员?水蒸气为什么会变成液态,液态水会变成冰?【讲述】分子间距离缩短,由无规则运动变有规则排列,说明分子间存在着作用力。

【板书】一、分子间作用力【板书】i.定义:把分子聚集在一起的作用力叫分子间作用力,乂称德华力【思考】在一盛有氢气的集气瓶中是否存在分子间作用力?【板书】2.由分子构成的物质分子间都存在着作用力,不同物质分子间作用力也不同。

【讲述】如:M沸点一196C、Q沸点一183C,即固态变气态所需能虽不同、分子间作用力越大,熔、沸点越高。

【设问】F2、Cl 2、、Brz、、I2的熔沸点如何变化?【板书】3.对组成相似的物质,相对分子质虽越大,分子间作用力越大,物质的熔沸点越高。

【思考】对于四氟化碳、四氯化碳、四漠化碳、四碘化碳,其熔沸点如 何变化?【板书】4.分子间作用力比化学键弱得多,不是化学键,所以由分子间作用力结合的物质熔点较底。

............ ..................................... ;、 ,/ • • rI 7 '—» / ▼ - — — — — ____ — - r I 7 I I / , r / r 7 ; 7 7 ▼ r / — ,-隹O如H — Cl 键能为431 kJ /mol ,而HCl 分子间作用力为 21 kJ*萋%1化学键的键能为 120—800kJ/mol ,分子间作用力每摩尔约几千 /mol【投影】 【练习】列物质受热熔化时,不需要破坏化学键的是(A.ISil 孝H 嘲好的思质,随福辅叩/勺号强,熔、沸点升高 (学生作出、"仁'任小3ANH 山 T 八、、- 应为一170C 以下)【讲述】【设问】【板书】 【板书】【讲述】氢键的形成增加了分子间作用力,所以沸点升高。

分子间作用力与氢键

分子间作用力与氢键
1、概念:氢核与带部分负电荷的非金属原子相互吸引而产生的 比分子间作用力稍强的作用力,称之为氢键。 2、氢键形成条件
3、氢键的表示方法
4、氢键对物质性质的影响
a.氢键的存在使得物质的熔点和沸点相对较高。
b.解释一些反常现象
①、根据元素周期律,卤素氢化物的水溶液均应为强酸性,但 HF表现为弱酸的性质,这是由于HF分子之间氢键的存在。
②、NH3在水中溶解度非常大的原因解析。
三、化学键与分子间作用力的比较
存在 化学键 原子间 离子间 强弱 强烈 影响范围 化学性质
分子间作用力
氢键
分子间
固态、液态 水分子间
较弱
较强物理性质物理性质 Nhomakorabea课堂练习 1,离子键、共价键、金属键、分子间作用力都是微粒间的作用力。 下列物质中,只存在一种作用力的是 ( B ) A.干冰 B.NaCl C.NaOH D.I2 E.H2SO4 )
氨气溶于水时,大部分NH3 与H2O以氢键(用…)表示 结合成NH3 ·H2O分子。根据氨水的性质可推知NH3 ·H2O 的结构式为( ) D
A.H │ N—H …O—H │ │ H H C. H │ H—N…O—H │ │ H H
B. H │ N — H …H — O │ │ H H D. H │ H—N…H—O │ │ H H
2,下列事实与氢键有关的是 (
B
A.水加热到很高的温度都难以分解 B.水结成冰体积膨胀,密度变小 C.CH4、SiH4、GeH4 、 SnH4的熔点随相对分子质量的增大而升高 D.HF、HCl、HBr、HI的热稳定性依次减弱 3,固体冰中不存在的作用力是(
A
)
A.离子键
B.极性键
C. 氢键

分子间作用力 氢键

分子间作用力 氢键

② 氢键只存在于固态、液态物质中,气态时无氢键。
4. 解释特殊现象 ①氢键的存在使得物质的熔点和沸点相对较高。 ②水结成冰时,为什么体积会膨胀。
③根据元素周期律,卤素氢化物的水溶液均应为强 酸性,但HF表现为弱酸的性质,这是由于HF分子之 间氢键的存在。
④氨气极易溶于水
H │ H—N…H—O │ │ H H
分子间作用力与氢键
一、分子间作用力 1.定义:把分子聚集在一起的作用力,也称范德华力 2.大小: 范德华力<<化学键 3.影响因素:组成和结构相似的物质,相对分子质量 越大,分子间作用力越大,物质的熔沸点越高 4.注意:分子内含有共价键的分子(如Cl2、CO2、 H2SO4等)或稀有气体(如He、Ne等)单原子分子之 间均存在分子间作用力。 5.解释现象:物态变化吸放热问题 相似相溶
二、氢键 1.定义:分子中与氢原子形成共价键的非金属原子, 如果该非金属原子(如F、O或N)吸引电子的能力很
强,其原子半径又很小,则使氢原予几乎成为“裸
露”的质子,带部分正电荷。这样的分子之间,氢
核与带部分负电荷的非金属原子相互吸引而产生的
比分子间作用力稍强的作用力,称之为氢键。
2. 大小:分子间作用力<氢键<化学键 3. 注意事项: ① 氢键的本质还是分子间的静电吸引作用。也可以把

课题1分子间的作用力--教案

课题1分子间的作用力--教案

《分子间的作用力和氢键》教案一、教材分析“分子间作用力和氢键”是人教版化学新教材“必修2”第一章第三节中“科学视野”栏目的教学内容,主要是为了开拓学生视野,拓展知识面,提高学生学习兴趣而设置的。

由于本节是继化学键存在于微观粒子之间微弱的作用力的内容较抽象,因此进行教学设计时充分利用教材提供的图、表等资料,借助多媒体等教学手段,化抽象为直观。

教学目标⑴知识与技能目标①了解分子间作用力的概念及对物质的熔点沸点等物理性质的影响②常识性介绍氢键及其对物质性质的影响。

⑵过程与方法目标①初步学习用微观的观念来学习化学。

②逐步增强观察能力,综合分析能力和抽象思维能力。

⑶情感态度价值观目标①体验从五彩缤纷的宏观世界步入充满神秘色彩的微观世界,激发学习化学的兴趣。

②通过对常见生活现象的了解,激发对事物的探究欲。

教学重、难点分子间作用力,氢键对物质熔点沸点等物理性质的影响教学方法类比法,讲授法。

教学材料教材,黑板,粉笔。

教学过程《分子间作用力和氢键》教学过程设计教学程序教师活动学生活动设计意图导入【PPT展示图】干冰的用途【提出问题】干冰用途的原理干冰升华是物理变化还是化学变化【生活常识】为是么冰会浮在水上,水结冰体积膨胀结合图,和生活常识,带着疑问走进新课创设良好的学习情境,激发学习的兴趣,激活学生思维。

提出问题引出课题我们知道一杯水中含有无数个水分子,而每个水分子是通过原子间形成化学键来组成的每个水分子间存在一种力将无数个水分子聚集在一起形成我们肉眼可观察到的水物质,而这种力就叫做分子间的作用力【板书】分子间的作用力:把分子聚集在一起的作用力叫做分子间的作用力(也叫范德华力)它不属于化学键比化学键弱的多,是一种微弱的相互作用,主要影响物质的熔点沸点等物理性质;而化学键主要影响物质的化学性质【板书】特点:主要影响物质的物理性质回忆已学知识:物质是由分子、原子等微粒构成;分子是原子或离子间通过化学键来形成……引导学生回顾已学知识点,为新知识分子间作用力作好承接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档