热敏电阻温度计的设计与安装设计方案

合集下载

热敏电阻温度计的设计实验

热敏电阻温度计的设计实验

热敏电阻温度计的设计实验简介热敏电阻温度计是一种测量温度的传感器,它利用材料的电阻随温度变化的特性来实现温度的测量。

本文将详细介绍热敏电阻温度计的设计实验方法和步骤。

实验目的通过设计热敏电阻温度计的实验,掌握以下知识和技能: 1. 了解热敏电阻的基本原理和特点; 2. 掌握热敏电阻的测量方法和电路连接; 3. 学会使用热敏电阻测量温度。

实验器材和材料下面是进行热敏电阻温度计设计实验所需的器材和材料: 1. 热敏电阻 2. 连接线3. 变阻器 4. 示波器 5. 温度源 6. 温度计(参考)实验步骤步骤一:热敏电阻的特性测试1.连接热敏电阻和示波器:将热敏电阻的两端分别连接到示波器的输入端口。

2.设置示波器的垂直和水平方向的刻度,使得能够清晰地观察到热敏电阻的电阻变化。

3.通过改变温度源的温度,观察示波器上显示的电阻变化情况。

4.记录不同温度下的热敏电阻的电阻值,并绘制温度和电阻之间的关系曲线。

步骤二:热敏电阻的电路连接1.根据热敏电阻的数据手册,确定热敏电阻的额定电阻值和温度系数。

2.选择合适的电阻和电路连接方式,以便实现温度测量的精度和稳定性。

3.进行电路连接,并使用万用表测量电路的电阻值,确保电路连接正确无误。

步骤三:热敏电阻温度计的标定1.使用温度计准确测量一个已知温度,例如室温。

2.将已知温度下热敏电阻的电阻值测量结果和温度计的测量结果进行比较,得到电阻值和温度的对应关系。

3.根据已知温度和热敏电阻的电阻值,得到热敏电阻的标定曲线。

步骤四:热敏电阻温度计的实际温度测量1.使用标定曲线,根据热敏电阻的电阻值计算出实际温度。

2.将热敏电阻的电阻值连接到电路中,通过电路输出的电压或电流来测量实际温度。

结论通过实验设计和实施,我们成功地制作了一个热敏电阻温度计,并了解了热敏电阻的基本原理和特点。

我们还学会了热敏电阻的测量方法和电路连接,并掌握了使用热敏电阻进行温度测量的技能。

这些知识和技能将在实际应用中发挥重要作用,为温度测量和控制提供了有力支持。

热敏电阻温度计的设计方案

热敏电阻温度计的设计方案

热敏电阻温度计的设计方案一、整体思路。

咱要做个热敏电阻温度计呢,就像给温度这个调皮的小怪兽做个探测器。

这个温度计的核心就是热敏电阻啦,它可神奇了,温度一变,它的电阻值就跟着变,就像个超级敏感的小卫士。

我们就利用这个特性,把温度这个看不见摸不着的东西转化成能看明白的数值,显示在屏幕上或者其他啥地方。

二、所需材料和工具。

1. 热敏电阻:这是咱的主角,就像电影里的超级英雄一样重要。

要选那种对温度变化反应灵敏的,不然这个温度计就成了个小迷糊,测不准温度啦。

2. 电源:得给这个小系统供电呀,就像给超级英雄补充能量一样。

可以是电池,方便携带,要是做个固定在某个地方的温度计,接个电源适配器也不错。

3. 微控制器(比如单片机):这就像是温度计的大脑,负责处理热敏电阻传过来的信号,把电阻值的变化换算成温度值。

它可聪明啦,能按照我们设定好的程序进行复杂的计算。

4. 显示屏:这是温度计的脸蛋,把温度值显示出来给我们看。

可以是液晶显示屏(LCD),清楚又节能;要是想酷一点,用个OLED显示屏,显示效果那叫一个酷炫。

5. 其他小零件:像电阻、电容这些小零件也不能少,它们就像是超级英雄身边的小助手,帮助电路稳定运行,保证各个部分能和谐共处。

6. 工具方面:电烙铁是必须的,用来焊接那些小零件,就像厨师用锅铲做菜一样熟练地把各个零件连接起来。

还有万用表,用来检测电路是否正常,就像医生给病人做检查一样,找出电路中的毛病。

三、设计步骤。

1. 电路设计。

把热敏电阻接入电路。

可以设计一个简单的分压电路,让热敏电阻和一个普通电阻串联,然后接到电源两端。

这样,随着温度变化,热敏电阻的电阻值改变,它两端的电压也会跟着变,就像跳舞的小伙伴,随着音乐(温度)改变步伐(电压)。

接着,把这个电压信号接到微控制器的模拟输入引脚。

微控制器就像一个好奇的小侦探,时刻准备着接收这个信号并进行分析。

2. 微控制器编程。

在微控制器里,我们要写程序啦。

这个程序就像给小侦探(微控制器)一本秘籍,让它知道怎么根据接收到的电压值算出温度。

用NTC热敏电阻设计制作体温计

用NTC热敏电阻设计制作体温计

用NTC热敏电阻设计制作体温计设计制作体温计需要以下步骤:1.了解NTC热敏电阻的原理和特性:NTC热敏电阻是一种随温度变化而变化阻值的电阻器件。

随着温度升高,NTC热敏电阻的阻值会逐渐减小。

这种特性可以用来测量温度。

2.确定设计参数:首先,确定设计的温度范围。

然后,选择合适的NTC热敏电阻,其阻值应在所选温度范围内变化适当。

一般来说,常见的NTC热敏电阻有10K欧姆和100K欧姆等。

3.进行电路设计:根据所选的NTC热敏电阻和测量范围,设计一个合适的电路。

一种简单的电路方案是将NTC热敏电阻与一个固定的电阻器组成一个电压分压电路,并将其输出连接到一个模拟电压输入引脚。

好的设计应该考虑到温度的准确性、响应速度和电路可靠性等方面。

4.制作电路原型:根据设计的电路图,制作一个原型电路板。

可以使用普通的白板、面包板或PCB进行制作。

在制作过程中,要确保电路连接正确且紧凑。

5.进行实验验证:将体温计放入不同温度下进行测试,并记录每个温度下的电压输出。

校准温度和电压之间的关系。

为了提高准确性,可以使用一个标准温度测量设备进行参考。

6.编写程序:根据电路输出的电压值和预先校准的数据,编写一个程序来计算和显示温度值。

可以使用微控制器或单片机等进行编程。

7.制作外壳和显示:将电路和显示装置封装在一个合适的外壳中,使其便于使用。

可以选择液晶显示器、数码管或LED等显示温度值。

总结:设计制作体温计需要了解NTC热敏电阻的原理和特性,确定设计参数,进行电路设计,制作电路原型,实验验证,编写程序以及制作外壳和显示。

通过这个过程,就可以设计制作出一个简单但准确的体温计。

热敏电阻温度计的设计

热敏电阻温度计的设计

热敏电阻温度计的设计热敏电阻温度计的设计一、引言温度是测量各种物理和化学过程的关键参数。

热敏电阻温度计由于其出色的精度、快速响应和稳定性,在温度测量领域具有广泛的应用。

本文将详细介绍热敏电阻温度计的设计原理、结构、以及在实际应用中的注意事项。

二、设计原理热敏电阻温度计基于热电效应原理。

在导体中,自由电子因温度变化而产生热运动,产生电流。

这种现象被称为热电效应。

热敏电阻温度计利用这种效应来测量温度。

1.热电阻材料热敏电阻材料应具有高电阻率、良好的温度系数、稳定的物理和化学性质、以及可接受的响应时间。

常用的热敏电阻材料包括铜、镍、钴等。

2.测温原理热敏电阻的阻值随温度变化而变化。

通过测量电阻值的变化,可以确定温度的变化。

为了获得准确的温度读数,需要将电阻的变化转化为电压或电流的变化,再通过一定的算法进行计算。

三、设计结构热敏电阻温度计主要包括以下几个部分:1.热敏电阻热敏电阻是温度计的核心部件,负责感应温度的变化。

2.测量电路测量电路用于测量热敏电阻的电阻值,并将电阻值的变化转换为电压或电流的变化。

常用的测量电路包括惠斯通电桥和恒流源电路。

3.数据处理单元数据处理单元接收来自测量电路的信号,通过一定的算法处理数据,得出温度读数。

4.显示单元显示单元用于显示测得的温度读数。

四、实际应用及注意事项1.安装位置热敏电阻应安装在被测物体表面或内部,以减小误差。

对于移动或旋转的物体,应选择合适的安装位置,以避免因运动产生的误差。

2.绝缘要求为避免误差,热敏电阻与测量电路之间应具有良好的绝缘。

绝缘材料的选择应考虑被测物体的环境条件,如湿度、压力等。

3.校准为了确保准确的温度读数,热敏电阻温度计应定期进行校准。

校准过程中,应使用已知标准温度的参考物体对温度计进行校准。

4.稳定性检测长时间使用后,热敏电阻可能会出现老化现象,导致温度读数的不准确。

因此,应定期对热敏电阻进行稳定性检测,以保证测得的温度读数的准确性。

5.环境因素环境因素如湿度、压力、光照等可能影响热敏电阻的温度读数。

热敏电阻温度计的设计 实验报告

热敏电阻温度计的设计 实验报告

大连理工大学大 学 物 理 实 验 报 告实验名称 热敏电阻温度计的设计教师评语实验目的与要求:(1) 掌握电阻温度计测量温度的基本原理和方法。

(2) 设计和组装一个热敏电阻温度计。

主要仪器设备:稳压电源, 自制电桥盒(如右下图所示), 直流单臂电桥箱和热敏电阻感温原件等。

实验原理和内容: 热敏电阻温度计的工作原理由于热敏电阻的阻值具有随温度变化而变化的性质, 我们可以将热敏电阻作为一个感温原件, 以阻值的变化来体现环境温度的变化。

但是阻值的变化量以直接测量的方式获得可能存在较大的误差, 因此要将其转化为一个对外部条件变化更加敏感的物理量; 本实验中选择的是电流, 通过电桥可以将电阻阻值的变化转化为电流(电压)的变化。

电桥的结构如右图所示, R1、R2、R3为可调节电阻, Rt 为热敏电阻。

当四个电阻值选择适当时, 可以使电桥达到平衡, 即AB 之间(微安表头)没有电流流过, 微安表指零; 当Rt 发生变化时, 电桥不平衡, AB 间有电流流过, 可以通过微安表读出电流大小, 从而进一步表征温度的变化。

成 绩教师签字当电桥不平衡时, 可以描绘成如右侧的电路图。

根据基尔霍夫定律和R1=R2的条件, 能够求得微安表在非平衡状态下的电流表达式:ttg ttcd g R R R R R R R R R U I ++++-=331322)21(式中, Ucd 为加载在电桥两端的电压, Rg 为微安表头的内阻值。

可以见到, 为使Ig 为相关于Rt 的单值函数, R1、R2、R3和Ucd 必须为定值, 而其定制的大小则决定于以下两个因素: 1) 热敏电阻的电阻-温度特性。

2) 所设计的温度计的测温上限t1和测温下限t2。

步骤与操作方法: 1. 温度计的设计(1) 测出所选择的热敏电阻Rt-t 曲线(或由实验室给出)。

(2) 确定R1、R2、R3的阻值。

具体方法如下:该实验中, t1=20℃,t2=70℃, 对应R t -t 曲线可以得到R t1和R t2; Rg 由实验室给出, U cd 取值为1.3V , 由微安表面板上可读出I gm =50μA 。

利用型热敏电阻设计温度计

利用型热敏电阻设计温度计

3
三、实验原理
热敏电阻的阻值具有随温度变化而变化的性质
我们可以将热敏电阻作为一个感温原件以阻值的变化来体现环境温度的变化。但是阻值的 变化量以直接测量的方式获得可能存在较大的误差,因此要将其转化为一个对外部条件变 化更加敏感的物理量;本实验中选择的是电流,通过电桥可以将电阻阻值的变化转化为电 流(电压)的变化
为了减小温度测量误差,需要对NTC热敏电阻进行温度补偿。一种常见的温度补偿方法是使用一个电阻网 络和一个稳定的电源电压,通过改变电阻网络中的电阻值来补偿NTC热敏电阻的电阻-温度特性
具体原理为:在NTC热敏电阻电路中,将NTC热敏电阻与一个固定的电阻串联,并以稳定的电源电压为电 路供电。当电路中有电流通过时,根据欧姆定律,电阻越大,电流越小。通过改变串联电阻的取值,可 以调整整个电路的总电阻值,从而得到所需要的电流值
PART 4
四、实验步骤
4
四、实验步骤
测出所选择的热敏电阻Rt-t曲线(或由实验室给出) 将NTC热敏电阻和一个固定电阻串联进电路中,在基准温度下, 使用DHT-2型热学实验仪测量NTC热敏电阻的电阻值,并记录下 来 在其他温度下,同样使用DHT-2型热学实验仪测量NTC热敏电阻 的电阻值,然后使用串联电阻网络调整整个电路的总电阻值 使电流值保持在基准温度时的电流值,这样就实现了温度补偿, 使得NTC热敏电阻在不同温度下表现出稳定的电阻值 总之,NTC热敏电阻温度补偿原理是通过改变串联电阻的取值, 调整整个电路的总电阻值,使得NT样可以减小温度测量误差,提高测量精度
2.了解电阻的温度特性和伏安 特性
4.提高设计、创新能力
PART 2
二、实验仪器
2
二、实验仪器
实验所需仪器
DHT-2型热学实验仪、NTC热敏电阻、直流稳压电源(电压调节范围0-30V两路输出) 、电阻箱(阻值调节范围0-99999.9Ω、额定功率0.25W)、微安表、万用表、导线

用热敏电阻改装温度计的设计方案 广东第二师范学院

用热敏电阻改装温度计的设计方案 广东第二师范学院

数据处理
原始数据:(用Excel进行数据记录和整理)
化作春风守护你
数据处理
数据处理
本设计使用软件Matlab 绘制R-T曲线,运用 最小二乘法进行曲线拟合。 最小二乘法(又称最小平方法)是一种数 学优化技术。 它通过最小化误差的平方和寻找数据的最 佳函数匹配。 利用最小二乘法可以简便地求得未知的数 据,并使得这些求得的数据与实际数据之 间误差的平方和为最小 。
确定校正曲线
相对误差分析
现以两次实验数据验证本设计的精确度。
相对误差1= |(T标-T实)|/ T标= (4342.7)/43= 0.698% 相对误差2=|(T标-T实)|/ T标= (69.3-69)/69= 0.435%
改进空间
1使用刻度更加准确的水银温度计,水银温度计达 到0.1℃的定标值,更加准确。 2 采用DS18B20数字温度传感器作为检测单元, 测温范围 -55℃~+125℃,固有测温误差精确到 0.5℃。 3 采用可编程器件,如CPLD,FPGA或者微处理 器芯片,如STC89C51单片机作为中央处理器, LCD或LED作为可视化数据输出单元,可同步、 直观地显示出当前液体温度值。
测温原理简介
热敏电阻原理 热敏电阻具有负的电阻温度系数的元件,电阻值 随温度的升高而下降,这是因为热敏电阻有半导 体制成,在这些半导体内部,自由电子数目随温 度的升高增加的很快,导电能力很快增强,虽然 原子振动也会加剧并阻碍电子的运动。但这样作 用对导电性能的影响远小于电子被释放而改变导 电性能的作用,所以温度上升会使电阻下降。 这样我们就可以测量电桥平衡时通过桥路的电流 大小来表征温度的高低。
设计目标
用热敏电阻改装的温度计, 准确测量0℃~ 100℃液体的 实时温度。

用热敏电阻改装温度计

用热敏电阻改装温度计

用热敏电阻改装温度计
那么如何使用热敏电阻来制作温度计呢?下面我们就来简单介绍一下。

1.选择合适的热敏电阻
选择热敏电阻时,需要根据所需的测量精度、测量范围和使用环境等因素来确定,一般来说,热敏电阻的阻值随温度的变化而变化,因此,需要选择符合测量温度范围的热敏电阻。

2.设计电路
制作热敏电阻温度计时,需要将热敏电阻连接到电路中,一般使用电桥电路来实现温度的测量,这种电路可以通过测量电桥的输出电压来获取热敏电阻的阻值变化,从而计算出温度的值。

另外,为了减小电桥的温漂,可以使用一个参考电阻来对热敏电阻进行校准,使得输出电压更加稳定。

3.制作电路板
将电路设计好之后,需要将电路制作到电路板上,然后进行焊接和组装,注意确认焊接的质量和接触情况,避免出现虚焊、短路等问题。

4.调试和测试
在制作完成后,需要进行调试和测试,将温度变化范围内的温度进行测量,并记录输出的电压和计算出的温度值,进行精度和稳定性的测试,并进行调整。

总之,使用热敏电阻改装温度计,需要对热敏电阻、电路设计、制作和调试等方面有一定的技术基础,只有这样才能保证制作出高精度、高质量的温度计。

热敏电阻测量温度的设计

热敏电阻测量温度的设计

热敏电阻测量温度的设计利用NTC 热敏电阻测量温度1前言热敏电阻有很多应用,比如在家用豆浆机、电饭锅等中的温度控制电路都有使用。

热敏电阻有两种,阻值与温度分别成正、负相关的热敏电阻分别叫PTC 热敏电阻和NTC 热敏电阻。

本文主要对用NTC 热敏电阻测量温度的电子温度计的设计和制作进行说明。

一、设计思路1、粗测2此方法利用伏安法来测量电阻,再代入R-T 函数中得到I-T 函数,从而直接利用电流表来读出温度。

①R-T 函数3T= 616.57R -0.072165 或 R= 0.072165-57.616T ②确定电流表的量程与精度考虑因素:电流表可用的表盘范围以及电流表的最大允许电流。

若使用 1.5V 的电池,由于热敏电阻的阻值大约为1.24k Ω-78.5k Ω(对应温度373K-273K ),故电源内阻忽略不计。

由于所购的100μA 的电流表内阻大约为4700Ω(用万用电表测得),最大电流为100微安。

易计算得,应用10000Ω的定值电阻作为限流电阻。

经测量,当温度为373K 时,电阻大约为1.24k Ω,由欧姆定律可以得到电流大约为93.23μA ;同理,温度为273K 时,电阻大约为78.5k Ω,电流大约为16.16μA 。

由这些数据,可以看出,这种方法可利用的电流表范围较大,且均不超过额定电流范围,故其是一种可行的方法。

相对于重画表盘,查表4的方法来读数会更便捷。

③其他方法计算可以发现,使用电流表粗测,精度有限,因此需要找到一种更精确的方法。

首先,如果使用电压表进行读数,那么这种方法的电压表示数表达式较前一种方法复杂许多。

并且通过对其表达式对温度求二阶导数5,可以得出示数在298K 至318K 之间较为精准,但是在低温区和高温区误差大,因此这种方法可行性低。

④得到I-T 函数确定了粗测的方法之后,计算I-T 函数。

由上述粗测的步骤,我们可以通过闭合电路欧姆定律来计算由得将其代入R-T 函数,消去R ,对温度单位进行转化,得到I-T 函数6:1NTC 热敏电阻,即随温度升高,电阻降低的热敏电阻 2 具体内容见以下原理部分3 I-T 对应表见“使用说明书”4该函数仅限于我们所使用的NTC 电阻,函数温度单位:开尔文K ;电阻单位:欧姆Ω5 通过求导计算,U-T 函数的二阶导数增减不定,可以得出其变化率在273-293K 范围内变化较大 6温度单位为℃,电流单位为A ,经过万用电表测量,所用的电池的电动势为1.485V G T U R R R I =++G T U R R R =--IT= 273-)14850-485.1(57.6160.072165-I⑤粗测所需元件确定温度计的思路之后,需要考虑所需元件。

用NTC热敏电阻设计制作体温计

用NTC热敏电阻设计制作体温计

西北工业大学设计性基础物理实验报告班级:姓名:日期:用NTC热敏电阻设计制作体温计一、实验目的1、测定NTC热敏电阻与温度的关系;2、设计制作一个数字体温计(温度范围35-42℃)二、实验仪器(名称、型号及参数)NTC热敏电阻可调直流稳压电源(0-5V)数字万用表单刀双掷开关导线FD-WTC-D型恒温控制装置2X-21型电阻箱2个三、实验原理NTC负温度系数是一种利用半导体材料制成的体积小巧的电阻,为避免热敏电阻自身发热所带来的影响,流过热敏电阻的电流不能超过300微安。

由于热敏电阻随温度变化比金属电阻要灵敏得多,因此被广泛用于温度测量,温度控制以及电路中温度补偿、时间延迟等。

为了研究热敏电阻的电阻温度特性,常用电路如图1所示:R t=(R1/U1)*U t四、实验内容与方法1.测量不同温度t下NTC热敏电阻的阻值R(1)设计实验方案,画出实验电路图如图1,不断改变环境温度t,利用公式R t=(R1/U1)*U t计算出不同温度t下NTC的阻值。

(2)列表记录数据,用最小二乘法求出R与1/t之间的关系2.设计数字体温计如图2电路图所示,根据第一问中得到的R与1/t之间的关系,取35℃与42℃为边界,联立解出R1和R2。

计算各元件的数值,使数字电压表的mV示数即为温度示数。

根据设计的电路图搭建数字温度计,进行调试:(1)测量不同温度时,数字体温计的电压示数,并绘制校准曲线;(2)根据校准曲线,对设计的电路进行改进,使误差不超过1℃。

五、实验数据记录与处理(列表记录数据并写出主要处理过程)不同温度下的NTC阻值数据记录表格(R1=10000Ω U=)t/℃313233343536373839404142U1/VU t/V经过线性拟合b= a= r=所以回归方程为:R=*1/当T=35和42时,解方程组4770R2/(R1+R2+R t)=35 解R1= 得R2=Ω调整R2,获得较为准确的体温计(此时R1=Ω R2=Ω)校准后误差在摄氏度以内。

热敏电阻温度特性及热敏电阻温度计的设计

热敏电阻温度特性及热敏电阻温度计的设计

热敏电阻温度特性及热敏电阻温度计的设计热敏电阻是对温度变化表现出非常敏感的一种半导体电阻元件,它能测量出温度的微小变化,并且体积小,工作稳定,结构简单。

因此,它在测温技术、无线电技术、自动化和遥控等方面都有广泛的应用。

利用热敏电阻作为感温元件,并且配有温度显示装置的温度仪表称为热敏电阻温度计。

热敏电阻能把温度信号变成电信号,从而实现了非电量的测量。

值得提出的是,电量测量是现代测量技术中最简便的测量技术,不仅测量装置简单、造价低、灵敏度高、而且容易实现自动化控制,是测量技术的一个重要的发展趋势。

【实验目的】1.研究热敏电阻的温度特性2.进一步掌握非平衡电桥电路原理及应用3、了解负温度系数热敏电阻的温度特性4、设计和安装一台热敏电阻温度计,并对这台温度计的测量误差进行测试和评价【实验原理】内容1 热敏电阻的温度特性1、测量原理热敏电阻的基本特性是它的温度特性,许多材料的电阻随温度的变化而发生变化,纯金属和许多合金的电阻随温度增加而增加,它们具有正的电阻温度系数。

另外像炭、玻璃、硅和锗等材料的电阻随温度的增加而减小,具有负的电阻温度系数。

在半导体中原子核对价电子的约束力要比金属中大,因而自由载流子数少,故半导体的电阻率较大而纯金属的电阻率较小。

由于半导体中载流子数目是随着温度的升高而按指数规律急剧增加,载流子越多,导电能力越强,电阻率就越小,因此半导体热敏电阻的阻值随着温度的升高电阻率将按指数规律减少。

如温度由︒-C 100变至︒+C 400时,由铂丝材料制成的电阻,其阻值变化10倍左右;而热敏电阻的阻值在上述温度变化相同的情况下变化可达到710倍。

实验表明,在一定温度范围内,半导体材料的电阻率ρ和绝对温度T 的关系可表示为:T b e a 0=ρ其中0a 、b 为常数,仅与材料的物理性质有关。

由欧姆定律得热敏电阻的阻值:b T b T ae S L e a S L R ===/0ρ(1) 上式中令SL a a 0= 、S 、L 分别为热敏电阻的横截面积和电极间的距离。

基于热敏电阻的温度计设计

基于热敏电阻的温度计设计

Hefei University温度计设计报告基于热敏电阻的温度计设计引言热敏电阻是一种敏感元件,其特点是电阻随温度的变化而显著变化,因而能直接将温度的变化转换为电量的变化,也就是说能将温度信号转化为电信号,从而实现了非电量的测量。

热敏电阻一般是用半导体材料制成的温度系数范围约为:(-0.003~+0.6)/℃。

热敏电阻的温度系数有正有负,因此分成PTC热敏电阻和NTC热敏电阻两类。

NTC热敏电阻是以锰、钴、镍铜和铝等金属氧化物为主要原料,采用陶瓷工艺制成。

这些金属氧化物都具有半导体性质。

近年来还有用单晶半导体如碳化硅等材料制成的(国产型号 MF91~MF96)负温度系数热敏电阻器。

NTC热敏电阻做为温度传感器具有体积小,结构简单,灵敏度高,并且本身阻值大,一般在102~105之间,不需要考虑引线长度带来的误差,易于实现远距离测量和控制。

NTC热敏电阻的测温范围较宽,特别适用于-100~300℃之间的温度测量。

NTC热敏电阻在工作温度范围内,其阻值随温度增加而显著减小,大多用于测温和控温,可以制成流量计和功率等。

一、 实验原理1、负温度系数热敏电阻的温度特性统计理论指出,热敏电阻的电阻值与温度的关系为:Rt = A ·exp B /T ,其中A 、B —半导体有关的常熟(理论分析和实验结果表明,B 值随温度略有变化,但在一般工作温度范围内近似为常数;B 值越大,阻值随温度的变化越大); T 表示热力学温度。

t 表示摄氏温度,且T =273.15+t ;Rt —在摄氏温度为t 时的电阻值,随温度上升,其电阻值呈指数关系下降(如图一)。

图1 负温度系数热敏电阻的温度特性 图2 非平衡电桥 图3 热敏电阻温度计的温度与电流特性T2、非平衡电桥电桥是一种用比较法进行测量的仪器。

所谓非平衡电桥,是指在测量过程中电桥是不平衡的。

桥路上的电流不为零,桥路上的电路的大小与电源电压,桥臂电阻有关。

利用非平衡电桥进行测量时,应具体选定,除待测电阻外其他电阻的阻值以及电源电压,这样待测电阻Rt与桥路上的电流Ig 就有唯一对应的关系,确定Rt-Ig的关系的过程,即为非平衡电桥的定标。

物理实验报告热敏电阻温度计的设计安装和使用

物理实验报告热敏电阻温度计的设计安装和使用

物理实验报告热敏电阻温度计的设计安装和使用热敏电阻温度计的设计安装和使用XXX(XXX 大学XX 学院 XX XX 114044)摘要:用半导体热敏电阻作为传感器,设计制作一台测温度范围在20-70℃的半导体温度计,利用“非平衡电桥”的电路原理来实现对温度的测量,并依据实验数据画出了t —I g 的定标曲线。

关键词:NTC 热敏电阻;非平衡电桥;温度计;定标曲线中图分类号:0447 文献标识码: A 文章编号:引言热敏电阻是一种敏感元件,其特点是电阻随温度的变化而显著变化,因而能直接将温度的变化转换为电量的变化,也就是说能将温度信号转化为电信号,从而实现了非电量的测量。

热敏电阻一般是用半导体材料制成的,温度系数范围约为:(-0.003 — +0.6)/℃。

热敏电阻的温度系数有正有负,因此分成PTC 热敏电阻和NTC 热敏电阻两类。

NTC 热敏电阻是以锰、钴、镍、铜和铝等金属氧化物为主要原料,采用陶瓷工艺制成。

这些金属氧化物都具有半导体性质。

近年来还有用单晶半导体如碳化硅等材料制成的(国产型号 MF91—MF96)负温度系数热敏电阻器。

NTC 热敏电阻作为温度传感器具有体积小,结构简单,灵敏度高,并且本身阻值大,一般在102—105之间,不需考虑引线长度带来的误差,易于实现远距离测量和控制。

NTC 热敏电阻的测温范围较宽,特别适用于 -100—300℃之间的温度测量。

NTC 热敏电阻在工作范围内,其组织随温度增加而显著减小,大多用于测温和控温,可以制成流量计和功率计等。

它在自动化、无线技术、测温计术等方面都有广泛应用。

1.实验原理1.1负温度系数热敏电阻的温度特性统计理论指出,热敏电阻的电阻值与温度的关系为:R t =A ·expTB ,其中A 、B —半导体材料有关的常数(理论分析和实验结果表明,B 值随温度略有变化,但在一般工作温度范围内近似为常数;B 值越大,阻值随温度的变化越大):T —热力学温度,t 表示摄氏温度,且T=273.15+t ;R t —在摄氏温度为t 时的电阻值。

用热敏电阻改装温度计.(DOC)

用热敏电阻改装温度计.(DOC)

用热敏电阻改装温度计.(DOC)热敏电阻是一种精密测量温度的元件,因其结构简单、测量稳定,已经广泛应用于各种领域中。

本文将介绍如何利用热敏电阻改装温度计。

一、热敏电阻测温原理热敏电阻的电阻值随温度的变化而变化,因此可以利用热敏电阻的电阻变化来测量温度。

当热敏电阻发生温度变化时,其电阻值的变化量可以通过电桥法来测量。

一般而言,电桥法的测量精度高、测量稳定性好,适用于各种温度测量场合。

二、改装温度计的步骤1.选取合适的热敏电阻首先需要根据所需测量的温度范围和精度要求选取合适的热敏电阻。

通常情况下,热敏电阻的电阻值变化率与温度呈线性关系,因此可以考虑选取具有稳定的特性曲线的热敏电阻。

2.确定电路连接方式接下来需要确定电路的连接方式,一般而言,热敏电阻需要通过电桥法来进行测量。

电桥法中,热敏电阻和标准电阻两者串联在同一电路中,可形成电桥电路,使电桥平衡时的电压差即为热敏电阻的电阻值变化。

3.设计电路图在确定电路连接方式后,就需要设计相应的电路图。

一般而言,电路图包括电源、热敏电阻、标准电阻和电桥等部分,需要合理分配电路元件的位置和连接方式。

4.安装电路元件安装电路元件是电路组装的重要步骤之一。

在安装过程中,需要注意不同元件的连接方式、不同元件之间的间距、位置等因素。

5.测试电路安装完成后,需要进行电路测试。

可用信号发生器产生一定频率的信号,通过闸流器将信号输入电路中,并测量电路的输出波形,进而得出电路的频率特性、灵敏度等参数,以检验电路的工作状态。

1.改装成本较低与传统的温度计相比,利用热敏电阻改装温度计的成本较低。

因为热敏电阻的制造成本较低,且更便于集成和组装。

2.测量精度更高热敏电阻提供更高的测量精度和性价比,可应用于各种领域,如工业自动化、环境监测、医疗设备、航空航天等领域中。

3.使用寿命长热敏电阻的使用寿命长,基本上不会因使用寿命到期而失效。

同时,可以通过热敏电阻结构的优化来提高其使用寿命。

四、总结热敏电阻是一种常见的温度测量元件,具有测量精度高、测量稳定等优势。

热敏电阻温度计设计安装和使用

热敏电阻温度计设计安装和使用

02
热敏电阻温度计的设计
设计原则与流程
准确性
热敏电阻温度计的设计应确保测量结果的准 确性,误差应在可接受的范围内。
响应速度
为了满足快速测量的需求,设计应优化热敏 电阻的响应速度。
稳定性
设计应考虑热敏电阻的稳定性,以确保温度 计在使用过程中的可靠性。
尺寸与重量
在满足性能要求的前提下,应尽量减小温度 计的尺寸和重量,以便于安装和使用。
热敏电阻的选择与匹配
根据测量范围选择热敏电阻类型
根据所需测量的温度范围,选择合适的热敏电阻类 型。
匹配精度
选择具有适当精度的热敏电阻,以满足测量需求。
考虑环境因素
在选择热敏电阻时,应考虑环境因素如温度、湿度、 压力等对其性能的影响。
电路设计及补偿措施
01
02
03
信号放大与处理
设计适当的信号放大与处 理电路,以提高温度测量 结果的准确性。
A 清洁安装表面
在安装过程中,确保安装表面干净、 无尘,以避免影响测意事项
在安装过程中,应注意避免损坏热敏电阻 温度计的探头和接口,同时注意安全操作, 避免触电等意外情况。
连接导线
按照热敏电阻温度计的接口规格,将导线 正确连接到温度计上,并确保连接牢固。
安装后的调试与校准
01
检查安装是否正确
度测量。
04
热敏电阻温度计的使用
使用前的准备
确认测量范围
根据实际需要测量的温度范围,选择合适的热敏电阻 温度计。
检查外观
确保温度计外观完好,无破损或裂纹。
校准
如有必要,对温度计进行校准,以确保测量准确性。
使用方法与操作步骤
安装热敏电阻
将热敏电阻安装在温度计的适当位置, 确保连接牢固。

热敏电阻温度计的设计安装和使用

热敏电阻温度计的设计安装和使用

大学物理实验热敏电阻温度计的设计安装和使用指导教师:***作者姓名:***学号:***学院:***热敏电阻温度计的设计安装和使用作者:**指导教师:**摘要:利用热敏电阻作为感温元件,并且配有温度显示安装的温度测量仪表称为热敏电阻温度计。

热敏电阻能把温度信号变成电信号,从而实现了非电量的(电测法)测量。

本实验通过利用热敏电阻作为感温元件与非平衡电桥法相结合来共同设计和安装一台热敏温度计,并对这台温度计的测量误差进行简要的测试和评价。

而在现代测量技术中,电量测量是最简单的测量技术,不仅测量装置简单、造价低、灵敏度高、而且容易实现自动测量和自动控制,是测量技术的一个重要发展趋势。

关键字:热敏电阻 非平衡电桥 温度计 校准 替代法一、 实验原理1.负温度系数热敏电阻的温度特性热敏电阻按其温度特性可分为正温度系数型、负温度系数型及开关型三大类。

其中负温度系数热敏电阻器主要是以有半导体性质的金属氧化物为原料,采用陶瓷工艺制成的,当温度低时,载流子数目少,因此阻值高;温度高时,载流子数目剧增,因此阻值剧下降,如右图。

其方程可表示为:T BT Ae R (1)式中的A 、B 是与材料有关的常数。

由式(1)看出,R t 是T 的单值函数,只要测出电阻的R t 的变化就能推测出温度T 的变化。

2.非平衡电桥非平衡电桥电路如图1-1所示,当R 1=R 2及R 3=R t 时,电桥平衡,G 值为零。

如果R t 的阻值发生变化,则电桥的平衡条件被破坏,G 中就有电流通过,指针发生偏转,偏转越大,说明R t 变化也越大。

根据桥路的基尔霍夫方程,可知在R 1、R 3、R g 及U cd 恒定条件下,I g 的大小唯一由R t 来决定,因而有可能根据G 的偏转的大小来直接指示的温度的高低。

图1-13.热敏电阻温度计的实验电路T如图1-2所示,温度计的实验电路图与图1-1所示的原理图相比有三点不同:(1) 增加一个发光二极管LED ,作为电源指示,它的工作电压为2~3V 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验设计方案
物理实验教学中心制表
课外开放实验设计方案
图1 负温度系数热敏电阻的温度特性图2 非平衡电桥
、非平衡电桥
电桥是一种用比较法进行测量的仪器。

所谓非平衡电桥,是指在测量过程中
桥路上的电流的大小与电源电压、
应具体选定,除待测电阻外其他电阻的
图3 热敏电阻温度计的实验电路图图4 定标曲线
如图3所示的温度计的实验电路与图所示的原理图相比有三点不同:
(1) 增加一个二级管LED,作为电源指示,它的工作电压为1.3V;
(2) 检流计G换成微安表头因为检流计只能作为平衡指示器,不能提供读;
扳至“校”时,温度计处于“校准
2。

相关文档
最新文档