模电知识点

合集下载

模电100个知识点

模电100个知识点

模电100个知识点总结1.在常温下,硅二极管的门槛电压约为 0.5V ,导通后在较大电流下的正向压降约为约为 0.7V ;锗二极管的门槛电压约为锗二极管的门槛电压约为 _0.1_V ,导通后在较大电流下的正向压降约为_0.2_V 。

2、二极管的正向电阻、二极管的正向电阻 小小 ;反向电阻;反向电阻;反向电阻 大大 。

3、二极管的最主要特性是二极管的最主要特性是 单向导电性单向导电性单向导电性 。

PN结外加正向电压时,PN结外加正向电压时,扩散电流扩散电流扩散电流 大于大于 漂移电流,耗尽层漂移电流,耗尽层漂移电流,耗尽层 变窄变窄变窄 。

4、二极管最主要的电特性是、二极管最主要的电特性是 单向导电性单向导电性单向导电性 ,稳压二极管在使用时,稳压二,稳压二极管在使用时,稳压二极管与负载并联,稳压二极管与输入电源之间必须加入一个 电阻电阻电阻 。

5、电子技术分为模拟电子技术和数字电子技术两大部分,其中研究在平滑、连续变化的电压或电流信号下工作的电子电路及其技术,称为 模拟模拟模拟 电子技电子技术。

术。

6、PN 结反向偏置时,PN 结的内电场结的内电场 增强增强增强 。

PN 具有具有 具有单向导电具有单向导电具有单向导电 特特性。

性。

7、硅二极管导通后,其管压降是恒定的,且不随电流而改变,典型值为 0.7 伏;其门坎电压V th 约为约为 0.5 0.5 0.5 伏。

伏。

伏。

8、二极管正向偏置时,其正向导通电流由其正向导通电流由 多数多数多数 载流子的载流子的载流子的 扩散扩散扩散 运动形成。

运动形成。

9、P 型半导体的多子为型半导体的多子为 空穴空穴空穴 、、N 型半导体的多子为型半导体的多子为 自由电子自由电子自由电子、、本征半导体的载流子为体的载流子为 电子—空穴对电子—空穴对电子—空穴对 。

1010、因掺入杂质性质不同,杂质半导体可为、因掺入杂质性质不同,杂质半导体可为 空穴(空穴(空穴(P P ) 半导体和半导体和半导体和 电子(电子(电子(N N ) 半导体两大类。

模电基础知识总结

模电基础知识总结

模电基础知识总结模拟电子技术(模电)是电子工程的重要基础学科,它研究的是电子元件与电路的工作原理和运行规律。

掌握模电的基础知识对于电子工程师来说至关重要。

本文将对模电的基础知识进行总结,希望能给读者提供一些帮助。

一、电路基础知识在学习模电之前,我们首先需要掌握一些电路的基础知识。

电路是电子工程中最基本的组成单元,它由电源、电阻、电容、电感等元件组成。

在电路中,电流和电压是重要的物理量。

电流表示电子在电路中的流动情况,而电压表示电子在电路中的能量转换。

二、放大器放大器是模电中一类重要的电子元件。

放大器的作用是将输入信号放大,以便输出信号具有较高的幅度。

常见的放大器有三种基本类型:电压放大器、电流放大器和功率放大器。

放大器有许多重要的性能指标,如增益、输入电阻、输出电阻等。

学习模电的过程中,我们需要熟悉这些性能指标的定义和计算方法。

三、滤波器滤波器是模电中用于剔除或改变信号中某些频率分量的电路。

滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种类型。

在实际应用中,我们经常需要使用滤波器来对信号进行处理。

了解滤波器的原理和性能对于电路设计至关重要。

四、振荡器振荡器是一种能够产生连续波形信号的电路。

在模电中有两种常见的振荡器:正弦波振荡器和方波振荡器。

振荡器的核心是一个反馈回路,该回路会使得输入信号被放大,并且以振荡的形式反馈给输入端。

振荡器在通信系统、计算机等领域有广泛的应用,掌握振荡器的原理和设计方法是模电学习的重要内容。

五、运算放大器运算放大器(Operational Amplifier)是模电中一种重要的集成电路。

它具有高增益、高输入阻抗和低输出阻抗的特点,在模拟电路中有广泛的应用。

运算放大器可以用于各种电路设计,如放大器、积分器、微分器和比较器等。

学习运算放大器的工作原理和应用是模电学习的核心内容。

六、模电实验模电实验是巩固和应用所学知识的重要环节。

通过实验,我们可以观察电路的实际运行情况,提高动手实践的能力。

模电知识点总结

模电知识点总结

模电知识点总结1. 电路基本原理电路是电子技术的基础,它是由电阻、电容和电感等元件组成的。

在模拟电子技术中,我们经常需要分析和设计各种电路。

因此,了解电路基本原理是学习模拟电子技术的第一步。

电路分析包括欧姆定律、基尔霍夫定律、节点电压法和网孔电流法等。

这些原理是分析电路的重要工具,可以帮助我们理解电路中各个元件之间的关系。

2. 放大器放大器是模拟电子技术中的重要部分,它的作用是放大电压或电流信号。

放大器包括各种类型,例如运放放大器、电子管放大器和功率放大器等。

学习放大器的原理和特性可以帮助我们设计各种类型的放大器电路。

在实际应用中,放大器经常用于音频放大、信号处理和通信系统等领域。

3. 滤波器滤波器是模拟电子技术中的重要部分,它的作用是通过滤波器电路来处理信号中的不同频率成分。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

了解滤波器的原理和特性可以帮助我们设计滤波器电路以及实现信号处理和分析等功能。

4. 模拟信号处理电路模拟信号处理电路是模拟电子技术的核心内容,它包括各种模拟信号处理和传输电路。

常见的模拟信号处理电路包括模拟加减法器、积分器、微分器、比较器和信号发生器等。

了解这些电路的原理和特性可以帮助我们设计各种模拟信号处理系统和仪器。

5. 模拟数字转换模拟数字转换(ADC和DAC)是模拟电子技术中的重要部分,它的作用是将模拟信号转换为数字信号或将数字信号转换为模拟信号。

了解ADC和DAC的原理和特性可以帮助我们设计各种模拟数字转换电路以及实现数字信号处理和传输等功能。

总之,模拟电子技术是电子工程中的一个重要分支,它在通信、音频、视频和医疗等领域都有广泛的应用。

通过学习模拟电子技术的知识点,我们可以掌握电子技术的基本原理和技能,为未来的工作和研究打下良好的基础。

希望以上总结的知识点能对学习模拟电子技术的朋友们有所帮助。

模电知识点总结讲义

模电知识点总结讲义

模电知识点总结讲义第一部分:基本概念1. 电子元件电子元件是指能处理信息的基本部件,包括电阻、电容、电感、二极管、晶体管等。

- 电阻:用于限制电流或降低电压的元件。

- 电容:用于储存电荷或储存能量的元件。

- 电感:用于储存磁场能量或阻碍电流变化的元件。

- 二极管:用于整流、开关、放大等功能的元件。

- 晶体管:用于放大、开关、稳压等功能的元件。

2. 电路电路是由电子元件连接而成的路径,用于传输电流或信号。

- 直流电路:电流方向不变的电路。

- 交流电路:电流方向时而正时而负的电路。

- 数字电路:用于处理数字信号的电路。

- 模拟电路:用于处理模拟信号的电路。

3. 电路分析电路分析是指根据电路中元件的特性和连接关系,计算电压、电流等参数的过程。

- 基尔霍夫定律:电路中各节点的电流代数和为零。

- 欧姆定律:电流与电压成正比,电阻是电压和电流的比值。

- 诺顿定理:任意线性电路均可用一个等效的电压源和串联电阻来替代。

- 戴维南定理:任意线性电路均可用一个等效的电流源和并联电阻来替代。

4. 信号处理信号是指传输信息的载体,信号处理是对信号进行增强、滤波、调制等操作的过程。

- 放大器:用于增强信号幅度的电路。

- 滤波器:用于去除或增强特定频率的电路。

- 调制器:用于将低频信号调制到高频载波上的电路。

第二部分:放大器1. 放大器类型- 基本放大器:包括共射、共集、共底极等类型。

- 差分放大器:用于抑制共模信号的放大器。

- 电压跟随器:用于输出跟随输入信号的放大器。

2. 放大器设计- 选型:根据放大器的功率、频率、噪声等性能要求选择适当的器件。

- 偏置:通过电阻、电容等元件来设置放大器工作点。

- 反馈:通过串联或并联的电阻、电容等元件来控制放大器的增益、带宽等性能。

3. 放大器应用- 信号放大:用于将传感器输出的微弱信号放大到可测量范围。

- 信号传输:用于增强信号以便传输到远处或驱动加载。

第三部分:滤波器1. 滤波器类型- 低通滤波器:允许低频信号通过,阻断高频信号。

模电笔记知识点总结

模电笔记知识点总结

模电笔记知识点总结一、模拟信号处理1. 模拟信号与数字信号模拟信号是指信号的数值是连续变化的,可以用连续的数学函数表示。

数字信号是指信号的数值是离散的,需要经过模数转换才能表示成数值输出。

模拟信号处理的目的是将模拟信号转换为数字信号,或者将数字信号转换为模拟信号。

2. 采样与保持采样是指将连续的模拟信号按照一定的时间间隔进行取样,得到一系列的离散数值。

保持是指在采样之后,保持所获得的信号值,直到下一次采样。

3. 模拟信号重构模拟信号重构是指将数字信号重新转换为模拟信号。

通常通过数字到模拟转换器(DAC)来实现。

4. 模拟信号滤波模拟信号滤波是指对模拟信号进行频率特性的调整,滤除不需要的频率成分,以及放大需要的频率成分。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

5. 模拟信号调制模拟信号调制是指将模拟信号转换为相应的调制信号,以便在传输和处理中更容易应用。

常见的模拟信号调制方式包括调幅调制(AM)、调频调制(FM)和调相调制(PM)。

二、放大器设计1. 放大器的基本原理放大器是一种电路,它可以放大输入信号的幅度,并输出相应的放大信号。

放大器的核心原理是利用晶体管或运算放大器等电子器件的非线性特性,实现信号的增益。

放大器的设计目标通常包括增益、带宽、输入/输出阻抗、噪声等方面的考虑。

2. 放大器的分类放大器可以根据其工作方式、频率响应等特性进行分类。

比较常见的放大器包括运算放大器、差分放大器、共模抑制放大器、功率放大器等。

3. 放大器的频率特性放大器的频率特性是指放大器对不同频率信号的响应。

常见的频率特性包括通频带、截止频率、增益带宽积等。

4. 放大器的非线性失真非线性失真是指放大器输出信号与输入信号之间存在非线性关系,导致输出信号不完全等于输入信号。

常见的非线性失真包括谐波失真、交调失真等。

5. 放大器的稳定性放大器的稳定性是指当放大器输出端负载发生变化时,放大器是否能够保持稳定的工作状态。

模电知识点识点总结

模电知识点识点总结

模电知识点识点总结一、电路分析电路分析是模拟电子技术中的基础知识点,它涉及到电路的基本元件、电路定律、戴维南定理、诺顿定理、等效电路、交流电路分析等内容。

在电路分析中,学生需要掌握电路元件的特性和参数,熟练掌握欧姆定律、基尔霍夫电压定律、基尔霍夫电流定律等基本定律,能够准确分析电路中的电压、电流和功率等参数。

二、放大电路放大电路是模拟电子技术中的重要内容之一,它是指通过放大器将输入信号放大的过程。

学生需要掌握放大器的基本分类、放大器的基本参数、放大器的频率特性等知识,理解放大器的工作原理,能够设计各种类型的放大电路。

三、模拟信号处理模拟信号处理是模拟电子技术中的核心内容之一,它涉及到模拟信号的获取、处理、传输和存储等过程。

学生需要掌握模拟信号的采样定理、量化处理、模拟信号滤波等知识,能够设计模拟信号处理系统,提高模拟信号处理的质量和效率。

四、模拟滤波器设计滤波器是模拟电子技术中的重要内容之一,它是指用于对信号进行滤波处理的电路。

学生需要掌握滤波器的分类、滤波器的性能指标、滤波器的设计方法等知识,能够设计各种类型的模拟滤波器,提高信号的质量和准确性。

五、集成电路设计集成电路设计是模拟电子技术中的核心内容之一,它涉及到集成电路的设计原理、工艺流程、器件制造等一系列内容。

学生需要掌握集成电路的基本结构、工作原理、设计方法等知识,能够设计各种类型的集成电路,提高集成电路的性能和可靠性。

总之,模拟电子技术是电子工程中非常重要的一门课程,它涉及到电路分析、放大电路、模拟信号处理、模拟滤波器设计、集成电路设计等方面的知识。

学生在学习模拟电子技术的过程中,需要注重理论与实践相结合,通过实验和项目设计来提高自己的技能水平,从而更好地应用模拟电子技术知识解决实际问题。

模电必考知识点总结

模电必考知识点总结

模电必考知识点总结一、基本电路理论1. 电路基本定律欧姆定律、基尔霍夫定律、电路中的功率计算等基本电路定律是模拟电子技术学习的基础,了解和掌握这些定律对于学习模拟电子技术是非常重要的。

2. 电路分析了解如何对电路进行简化、等效电路的转换、戴维南定理和诺依曼定理等电路分析的基本方法。

3. 电路稳定性掌握电路的稳定性分析方法,包括如何对直流放大电路和交流放大电路进行稳定性分析。

4. 传输线理论了解传输线的基本特性,包括传输线的阻抗、反射系数、传输线的匹配等知识。

二、放大电路1. 二极管放大电路了解二极管的基本特性和放大电路的设计原理,包括共射放大电路、共集放大电路和共基放大电路等基本的二极管放大电路。

2. 晶体管放大电路了解晶体管放大电路的基本原理和设计方法,包括共射放大电路、共集放大电路和共基放大电路等基本的晶体管放大电路。

3. 放大电路的频率响应了解放大电路的频率响应特性,包括截止频率、增益带宽积等相关知识。

4. 反馈电路掌握反馈电路的基本原理和分类,了解正反馈和负反馈电路的特点和应用。

三、运算放大电路1. 运算放大器的基本特性了解运算放大器的基本特性,包括输入输出阻抗、放大倍数、共模抑制比等相关知识。

2. 运算放大器的电路应用了解运算放大器在反馈电路、比较电路、滤波电路、振荡电路等方面的应用,掌握运算放大器的基本应用方法。

四、滤波器电路1. RC滤波器和RL滤波器了解RC滤波器和RL滤波器的基本原理、特性和应用,包括一阶和二阶滤波器的设计和性能分析。

2. 增益电路和阻抗转换电路掌握增益电路和阻抗转换电路的设计原理和方法,了解它们在滤波电路中的应用。

3. 模拟滤波器设计了解低通滤波器、高通滤波器、带通滤波器和带阻(陷波)滤波器的设计方法和特性,掌握模拟滤波器的设计技巧。

五、功率放大电路1. BJT功率放大电路了解晶体管功率放大电路的基本原理和设计方法,包括类A、类B、类AB和类C功率放大电路的特点和应用。

模电 知识点总结

模电 知识点总结

模电知识点总结一、基本概念1. 电路元件:模拟电子技术的基本元件包括电阻、电容、电感、二极管、晶体管等。

其中,电阻用于限制电流,电容用于储存电荷,电感用于储存能量,二极管用于整流、开关等,晶体管用于放大、开关等。

2. 信号:在模拟电子技术中,信号是指随时间或空间变化的电压或电流。

常见的信号形式有直流信号、交流信号、脉冲信号等。

3. 放大器:放大器是模拟电子技术中的重要元件,用于放大输入信号的幅度。

常见的放大器有运放放大器、晶体管放大器等。

4. 滤波器:滤波器是用于选择特定频率范围内的信号,常用于滤除噪声、提取特定频率成分等。

5. 调制解调:调制是将基带信号调制到载波上,解调是将载波信号解调还原为基带信号。

调制解调技术是模拟电子技术中的重要应用之一。

二、基本电路1. 电阻电路:电阻是最基本的电路元件之一,常用于限制电流、调节电压和波形、分压等。

常见的电阻电路包括电压分压电路、电流分压电路、电阻网络等。

2. 电容电路:电容是能存储电荷的元件,常用于滤波、积分、微分等。

常见的电容电路包括RC电路、LC电路、多级滤波器等。

3. 电感电路:电感是储存能量的元件,常用于振荡器、磁耦合放大器等。

常见的电感电路包括RLC电路、振荡电路、滤波器等。

4. 滤波器电路:滤波器是用于选择特定频率范围内的信号的电路,常用于滤除杂散信号、提取特定频率成分等。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器、陷波滤波器等。

5. 放大器电路:放大器是用于放大电压、电流信号的电路,常用于信号调理、传感器信号放大、运算放大器电路等。

常见的放大器电路包括运算放大器电路、放大器电路、多级放大器电路等。

6. 混频器电路:混频器是用于将两路信号进行混频得到中频信号的电路,常用于调频收音机、超外差接收机等。

常见的混频器电路包括倍频器电路、调频接收机电路、超外差接收机电路等。

7. 调制解调电路:调制解调电路是用于调制解调信号的电路,常用于调制解调的通信系统、调幅收音机、调频收音机等。

模电知识点复习总结

模电知识点复习总结

模电知识点复习总结模拟电子技术(模电)是电子工程中的重要基础学科之一,主要研究电路中的电压、电流以及能量的传输和转换。

下面是我对模电知识点的复习总结:一.基础知识1.电路基本定律:欧姆定律、基尔霍夫定律、电压分压定律、电流分流定律、功率定律。

2.信号描述与频域分析:时间域与频域的关系。

傅里叶级数和傅里叶变换的基本概念和应用。

3.理想放大器:增益、输入/输出电阻、输入/输出阻抗的概念和计算方法。

4.放大器基本电路:共射、共集、共基放大器的特点、电路结构和工作原理。

二.放大器设计1.放大器的参数:增益、输入/输出电阻、输入/输出阻抗。

2.放大器的稳定性:稳态稳定性和瞬态稳定性。

3.放大器的频率响应:截止频率、增益带宽积、输入/输出阻抗对频率的影响。

4.放大器的非线性失真:交趾略失真、交调失真、互调失真等。

5.放大电路的优化设计:负反馈、输入/输出阻抗匹配、增益平衡等。

三.运算放大器1.运算放大器的基本性质:增益、输入阻抗、输出阻抗、共模抑制比。

2.电压放大器:非反转放大器、反转放大器、仪表放大器、差分放大器。

3.运算放大器的应用电路:比较器、积分器、微分器、换相器、限幅器等。

4.运算放大器的非线性失真:输入失真、输出失真、交调失真等。

四.双向可调电源1.双向可调电源的基本原理:输入电压、输出电压和控制信号之间的关系。

2.双向可调电源的电路结构:移相电路、比较器、反相放大器、输出级等。

3.双向可调电源的控制方式:串行控制和并行控制。

五.滤波器设计1.常见滤波器类型:低通、高通、带通和带阻滤波器。

2.滤波器的频率响应特性:通频带、截止频率、衰减量。

3.滤波器的传输函数:频率选择特性、阶数选择。

4.滤波器的实现方法:RC、RL、LC和电子管等。

六.可控器件1.二极管:理想二极管模型、二极管的非理想特性、二极管的应用。

2.可控硅:双向可控硅、单向可控硅、可控硅的触发电路和应用。

3.功率晶体管:NPN、PNP型功率晶体管的特性参数、功率放大电路设计。

模电知识点总结笔试

模电知识点总结笔试

模电知识点总结笔试一、基础理论知识1. 电子学基础(1)电子学的基本概念:电子、电荷、电流、电压等。

(2)半导体物理学:半导体材料的性质、PN结的特性等。

2. 电路基础(1)电路分析方法:基尔霍夫定律、戴维南定理、叠加原理等。

(2)电路中的元件:电阻、电容、电感等实际应用。

二、模拟信号处理1. 信号与系统(1)信号的分类:连续信号、离散信号、周期信号、非周期信号等。

(2)系统的分类:线性系统、非线性系统、时变系统、时不变系统等。

2. 模拟滤波(1)滤波器的分类:低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

(2)滤波器的设计:巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等。

三、放大电路1. 放大器的基本概念(1)放大器的分类:按输入输出信号类型分为模拟放大器和数字放大器。

(2)放大器的性能参数:增益、带宽、输入阻抗、输出阻抗等。

2. 放大电路设计(1)基本放大电路:共射放大器、共集放大器、共基放大器等。

(2)放大电路稳定性分析:稳定性条件、负反馈、电容耦合等。

四、信号发生与调制1. 信号发生器(1)基本信号源:RC震荡器、LC震荡器、晶体振荡器等。

(2)信号源的稳定性分析:频率稳定度、振幅稳定度、相位噪声等。

2. 调制技术(1)调制原理:调频、调幅、调相等基本调制方式的原理和特点。

(2)调制电路设计:频率调制电路、幅度调制电路、相位调制电路等。

五、反馈电路1. 反馈的基本概念(1)反馈电路的分类:正反馈、负反馈。

(2)反馈电路的性能:增益稳定、带宽拓展、非线性失真降低等。

2. 反馈网络设计(1)反馈网络结构:电流负反馈、电压负反馈。

(2)反馈网络应用:放大电路、振荡器、滤波器等反馈电路的设计。

六、运算放大器1. 运算放大器的特性(1)运算放大器的基本原理:差分输入、单端输出、大增益、高输入阻抗等。

(2)运算放大器的理想模型:无输入偏置电流、无输入偏置电压等。

2. 运算放大器的应用(1)运算放大器在电路中的基本应用:比较器、积分器、微分器等。

模电知识集锦

模电知识集锦

模电知识集锦1、差模:大小相等、极性相反。

共模:大小相等、记性相同。

2、差分放大电路的四种接法:双端输入、双端输出双端输入、单端输出单端输入、双端输出单端输入、单端输出3、直接耦合的优缺点:缺点:静态工作点之间相互影响,易产生“零点漂移”。

优点:1)具有良好的低频特性,可放大变化缓慢的信号。

2)小容量电容3)价格便宜4、理想运放工作在线性区的特性:1)“虚短”U +=U- 2)”虚断”I+=I-理想运放工作在非线性区的特性:”虚断”I+=I-5、集成运放的两个输入端:同相输入端反相输入端6、交流电——直流电电源变压器整流电路滤波电路稳压电路7、第一级选择差分放大电路的原因是克服“零点漂移”。

8、多级放大电路的耦合方式:直接耦合阻容耦合变压器耦合光电耦合9、三种接法的比较:共射电路:既能放大电流又能放大电压共集电路:只能放大电流共基电路:只能放大电压10、集成运放电路的组成输入级中间级输出级偏置电路11、波形之间的相互转化:方波——三角波积分电路三角波——方波微分电路正玄波——余弦波积分电路12、三角波发生电路组成:滞回比较器积分电路13、正弦波振荡电路的组成:放大电路选频电路正反馈网络稳幅环节14、1)直流负反馈:稳定静态工作点。

2)电压串联负反馈:减少放大电路从信号源索取电流。

3)电压并联负反馈:实现电流——电压转换4)电压串联负反馈:输入稿、输出电压稳定。

5)电流串联负反馈:实现电压——电流转换。

15、自激振荡条件:AF=-116、正弦波振荡条件:AF=1。

模电基础知识

模电基础知识

模电基础知识在电子工程领域,模拟电子(简称模电)是研究模拟信号处理的学科。

模拟信号是连续变化的信号,与数字信号相对,后者是离散的。

模电基础知识涵盖了许多关键概念和组件,以下是对这些基础知识的概述。

1. 模拟信号与数字信号模拟信号是指在时间上连续变化的信号,例如声音波形、温度变化等。

数字信号则是离散的,由一系列的数值组成,常用于计算机和通信系统中。

2. 基本电子组件模电中常用的基本电子组件包括电阻、电容、电感、二极管、晶体管和运算放大器。

这些组件在电路中扮演着不同的角色,如电阻用于限制电流,电容用于储存电荷,电感用于储存磁能。

3. 半导体材料半导体材料如硅和锗是制造电子器件的基础。

它们的特性介于导体和绝缘体之间,可以通过掺杂来改变其电导率,从而制造出二极管、晶体管等电子器件。

4. 二极管二极管是一种只允许电流单向流动的半导体器件。

它由一个PN结组成,具有整流作用,常用于电源整流和信号检波。

5. 晶体管晶体管是另一种半导体器件,可以作为开关或放大器使用。

它由三个层组成,分别是发射极、基极和集电极。

晶体管的类型包括双极型晶体管(BJT)和金属氧化物半导体场效应晶体管(MOSFET)。

6. 运算放大器运算放大器是一种具有高输入阻抗和低输出阻抗的放大器,广泛应用于信号放大、滤波和信号处理。

理想运算放大器的输入阻抗无穷大,输出阻抗为零。

7. 反馈反馈是将输出信号的一部分送回输入端的过程。

根据反馈信号与输入信号的关系,可以分为正反馈和负反馈。

负反馈通常用于稳定系统,而正反馈则用于振荡器等应用。

8. 滤波器滤波器是一种用于选择性地通过特定频率信号的电路。

根据通过的信号类型,滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

9. 振荡器振荡器是一种产生周期性信号的电路。

它可以通过正反馈机制产生稳定的振荡。

常见的振荡器类型包括RC振荡器、LC振荡器和晶体振荡器。

10. 电源电路电源电路是为电子设备提供稳定电压和电流的电路。

模拟电路知识点总结

模拟电路知识点总结

模拟电路知识点总结一、模拟电路的基本概念模拟电路是处理连续变化的电信号的电子电路。

与数字电路处理离散的数字信号不同,模拟电路中的信号在时间和幅度上都是连续的。

这些信号可以是电压、电流或者其他物理量,如声音、光线等。

在模拟电路中,常见的元件包括电阻、电容、电感、二极管、三极管等。

电阻用于限制电流和分压;电容用于存储电荷和滤波;电感用于储存能量和滤波;二极管具有单向导电性,常用于整流和稳压;三极管则可以作为放大器或开关使用。

二、放大器放大器是模拟电路中的重要组成部分,其作用是将输入的小信号放大到所需的幅度。

常见的放大器有共射极放大器、共集电极放大器和共基极放大器。

共射极放大器具有较大的电压增益和电流增益,但输入电阻较小,输出电阻较大。

共集电极放大器的输入电阻较大,输出电阻较小,电压增益接近于 1 但具有电流放大作用。

共基极放大器具有较高的频率响应和较小的输入电容,常用于高频放大电路。

放大器的性能指标包括增益、输入电阻、输出电阻、带宽等。

增益表示放大的倍数,输入电阻影响信号源的负载,输出电阻影响放大器对负载的驱动能力,带宽则决定了放大器能够有效放大的信号频率范围。

三、反馈反馈在模拟电路中用于改善放大器的性能。

反馈分为正反馈和负反馈。

正反馈会使系统不稳定,但在某些特定情况下,如正弦波振荡器中会被使用。

负反馈则可以减小增益的波动、提高线性度、扩展带宽、降低噪声等。

负反馈的类型有电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈。

通过选择不同类型的负反馈,可以根据具体需求调整放大器的性能。

四、集成运算放大器集成运算放大器(简称运放)是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。

它通常由差分输入级、中间放大级和输出级组成。

运放可以构成各种功能的电路,如比例放大器、加法器、减法器、积分器、微分器等。

在使用运放时,需要考虑其电源、输入输出范围、失调电压和失调电流等参数。

五、滤波器滤波器用于选择或抑制特定频率范围内的信号。

电子技术模拟电路知识点总结

电子技术模拟电路知识点总结

电子技术模拟电路知识点总结一、模拟电路基础概念模拟电路处理的是连续变化的信号,与数字电路处理的离散信号不同。

在模拟电路中,电压和电流可以在一定范围内取任意值。

这是理解模拟电路的关键起点。

二、半导体器件1、二极管二极管是最简单的半导体器件之一,具有单向导电性。

当正向偏置时,电流容易通过;反向偏置时,电流极小。

二极管常用于整流电路,将交流转换为直流。

2、三极管三极管分为 NPN 型和 PNP 型。

它具有放大电流的作用,通过控制基极电流,可以实现对集电极电流的控制。

三极管在放大电路中应用广泛。

3、场效应管场效应管分为结型和绝缘栅型。

它是电压控制型器件,输入电阻高,噪声小,常用于集成电路中。

三、基本放大电路1、共射放大电路共射放大电路具有较大的电压放大倍数和电流放大倍数,但输入电阻较小,输出电阻较大。

2、共集放大电路共集放大电路又称射极跟随器,电压放大倍数接近 1,但输入电阻高,输出电阻小,具有良好的跟随特性。

3、共基放大电路共基放大电路具有较高的频率响应和较好的高频特性。

四、集成运算放大器集成运算放大器是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。

1、理想运算放大器特性具有“虚短”和“虚断”的特点。

“虚短”指两输入端电位近似相等,“虚断”指两输入端电流近似为零。

2、运算放大器的应用包括比例运算电路、加法运算电路、减法运算电路、积分运算电路和微分运算电路等。

五、反馈电路反馈可以改善放大器的性能。

1、正反馈和负反馈正反馈会使系统不稳定,但在某些特定情况下,如正弦波振荡器中会用到。

负反馈能稳定放大倍数、改善频率特性等。

2、四种反馈组态电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈,它们对电路性能的影响各不相同。

六、功率放大电路功率放大电路的主要任务是向负载提供足够大的功率。

1、甲类、乙类和甲乙类功率放大电路甲类功放效率低,但失真小;乙类功放效率高,但存在交越失真;甲乙类功放则是介于两者之间。

模拟电路知识点总结资料

模拟电路知识点总结资料

模拟电路知识点总结资料一、基本概念1. 电路:由电阻、电容、电感等基本元件组成的系统。

根据信号类型,电路可分为模拟电路和数字电路。

2. 模拟电路:能够处理连续变化的信号的电路。

模拟电路中的信号是连续的模拟波形,可以以任意时间间隔改变其数值。

3. 数字电路:只能处理离散的信号的电路。

数字电路中的信号是由0和1组成的脉冲波形,只在规定的时间点改变其数值。

二、基本元件1. 电阻:用于限制电流的流动,常用于控制信号的幅度和输出阻抗。

2. 电容:用于存储电荷,通常用于滤波、隔直、积分等功能。

3. 电感:用于存储磁能,通常用于滤波、隔交、微分等功能。

4. 二极管:用于实现电流的单向导通,可以作为整流器、开关等。

5. 晶体管:用于放大和控制电流,可以作为放大器、开关等。

三、基本电路1. 放大器:用于放大输入信号的幅度,常见的有运放放大器、晶体管放大器等。

2. 滤波器:用于滤除不需要的频率成分,常见的有低通滤波器、高通滤波器、带通滤波器等。

3. 比较器:用于比较两个信号的大小,常见的有比较器、振荡器等。

四、基本分析方法1. 直流分析:分析电路在稳态直流条件下的性能,通常用节点法、网孔法等进行分析。

2. 交流分析:分析电路在交流条件下的性能,通常用复数分析、频域分析等进行分析。

3. 时域分析:分析电路在时间域内的性能,通常用微分方程、积分方程等进行分析。

4. 非线性分析:分析电路中的非线性元件对性能的影响,通常需要用仿真软件进行分析。

五、常用工具和软件1. 万用表:用于测量电路中的电压、电流、电阻等参数。

2. 示波器:用于观测电路中的信号波形,可以分析信号的频率、幅度、相位等。

3. 信号发生器:用于产生各种形式的信号,可以用于测试电路的响应特性。

4. 仿真软件:如Multisim、Protues等,用于构建电路模型,进行电路仿真分析。

六、常见电路应用1. 放大器:用于音频放大、射频放大等。

2. 滤波器:用于音频滤波、射频滤波等。

模电基础知识

模电基础知识

模电基础知识目录一、模电概述 (2)二、模电基础知识 (2)1. 电路基本理论 (4)1.1 电路的基本概念 (5)1.2 欧姆定律与功率公式 (6)1.3 直流电路与交流电路 (7)2. 电子元器件 (8)2.1 电阻、电容、电感等被动元件 (9)2.2 二极管、晶体管等主动元件 (10)2.3 集成芯片与模块 (12)3. 信号与系统 (13)3.1 信号的概念及分类 (14)3.2 系统的基本概念 (16)3.3 信号传输与处理 (17)三、模电技术及应用领域 (19)1. 模电技术基础 (20)1.1 模数转换与数模转换 (21)1.2 放大、滤波、振荡等基础技术 (23)1.3 电路设计与调试 (24)2. 模电应用领域 (26)2.1 通信领域应用 (27)2.2 音频/视频领域应用 (28)2.3 自动化控制领域应用 (29)四、模电实验与项目实践 (31)1. 模电实验基础 (32)1.1 实验仪器介绍及使用方法 (33)1.2 实验设计与操作步骤 (34)1.3 实验数据分析与总结 (35)2. 模电项目实践 (36)2.1 项目选题及需求分析 (37)2.2 项目方案设计与实践过程介绍 (39)2.3 项目成果展示与评估 (39)五、模电技术发展趋势与挑战 (40)一、模电概述模拟电子技术(Analog Electronics)是电子工程领域的一个重要分支,主要研究模拟信号的生成、处理、传输和测量。

与数字电子技术相比,模拟电子技术主要处理连续变化的信号,如电压、电流等,而不是离散的数字信号。

在模拟电子技术中,基本的元件包括电阻、电容、电感、二极管和晶体管等。

这些元件通过电路设计组合在一起,形成各种复杂的模拟电路。

模拟电路可以对输入信号进行放大、滤波、调制、解调等多种操作,从而实现信号的处理、变换和传输等功能。

模拟电子技术在许多领域都有广泛的应用,如通信、音频处理、图像处理、自动控制等。

(完整版)模电知识总结

(完整版)模电知识总结

第一部分半导体的基本知识二极管、三极管的结构、特性及主要参数;掌握饱和、放大、截止的基本概念和条件。

1、导体导电和本征半导体导电的区别:导体导电只有一种载流子:自由电子导电半导体导电有两种载流子:自由电子和空穴均参与导电自由电子和空穴成对出现,数目相等,所带电荷极性不同,故运动方向相反。

2、本征半导体的导电性很差,但与环境温度密切相关。

3、杂质半导体(1)N型半导体——掺入五价元素(2)P型半导体——掺入三价元素4、PN结——P型半导体和N型半导体的交界面在交界面处两种载流子的浓度差很大;空间电荷区又称为耗尽层反向电压超过一定值时,就会反向击穿,称之为反向击穿电压5、PN结的单向导电性——外加电压正向偏置反向偏置6、二极管的结构、特性及主要参数(1)P区引出的电极——阳极;N区引出的电极——阴极温度升高时,二极管的正向特性曲线将左移,反向特性曲线下移。

二极管的特性对温度很敏感。

其中,Is为反向电流,Uon为开启电压,硅的开启电压——0.5V,导通电压为0.6~0.8V,反向饱和电流<0.1μA,锗的开启电压——0.1V,导通电压为0.1~0.3V,反向饱和电流几十μA。

(2)主要参数1)最大整流电流I:最大正向平均电流2)最高反向工作电流U:允许外加的最大反向电流,通常为击穿电压U的一半3)反向电流I:二极管未击穿时的反向电流,其值越小,二极管的单向导电性越好,对温度越敏感4)最高工作频率f:二极管工作的上限频率,超过此值二极管不能很好的体现单向导电性7、稳压二极管在反向击穿时在一定的电流范围内(或在一定的功率耗损范围内),端电压几乎不变,表现出稳压特性,广泛应用于稳压电源和限幅电路中。

(1)稳压管的伏安特性(2)主要参数1)稳定电压U:规定电流下稳压管的反向击穿电压2)稳定电流I:稳压管工作在稳定状态时的参考电流。

电流低于此值时稳压效果变坏,甚至根本不稳压,只要不超过稳压管的额定功率,电流越大稳压效果越好。

模电常见知识点总结

模电常见知识点总结

模电常见知识点总结一、基本概念1. 电压、电流、功率:电压是电势差,单位是伏特;电流是电荷在单位时间内通过导体的数量,单位是安培;功率是单位时间内能量的转化率,单位是瓦特。

2. 电路元件:电路元件主要包括电阻、电容和电感。

电阻是电流对电压的阻碍作用,单位是欧姆;电容是储存电荷的能力,单位是法拉;电感是存储磁场能量的元件,单位是亨利。

3. 信号处理:模拟信号是连续的信号,可以采用模拟电子技术进行处理。

模拟信号的处理包括滤波、放大、混频等操作。

4. 放大器:放大器是一种能够增加信号幅度的电路,通常包括运放放大器、功率放大器等类型。

5. 混频器:混频器是一种能够将两个不同频率的信号进行混合的电路,主要用于调频、调相和倍频等应用。

6. 滤波器:滤波器可以根据频率特性对输入信号进行滤波,主要包括低通滤波器、带通滤波器和高通滤波器等。

7. 稳压器:稳压器是一种能够在负载变化时保持输出电压稳定的电路,主要包括线性稳压器和开关稳压器。

8. 模拟信号的采样与保持、量化与编码:在数字信号处理中,要将模拟信号转换为数字信号,需要进行模拟信号的采样与保持、量化与编码等操作。

二、基本电路分析方法1. 基尔霍夫定律:基尔霍夫定律是电路分析中的重要方法之一,包括基尔霍夫电流定律和基尔霍夫电压定律。

2. 节点分析法和支路分析法:节点分析法和支路分析法是电路分析中常用的两种方法,用于求解电路中的电压和电流。

3. 物理尺解法:物理尺解法是一种将电路问题转化为几何问题进行求解的方法,通常用于分析长线搭接、三角形回路等特殊电路。

4. 电压源法和电流源法:电压源法和电流源法是一种简化复杂电路的方法,适用于求解电路中的等效电阻和电流分布。

5. 理想变压器:理想变压器是一个重要的电路模型,可以通过它来求解电路中的电压和电流。

6. 交流电路分析:交流电路分析是模拟电子技术中的重要内容,包括交流电路中的阻抗、功率、相位等内容。

7. 电路的频率响应:电路的频率响应是指电路对不同频率信号的响应情况,可以通过传递函数或频率特性曲线来描述。

模电基本知识点总结

模电基本知识点总结

模电基本知识点总结一、基本电子元件在模拟电子技术中,常用的基本电子元件包括电阻、电容、电感和二极管、晶体管等。

下面我们来介绍一下这些基本电子元件的特性和应用。

1. 电阻电阻是用来限制电流的一种电子元件,它的电阻值用欧姆(Ω)来表示。

电阻的大小取决于材料的电阻率和尺寸。

在实际电路中,电阻通常用来分压、限流、接地等。

电阻的连接方式有串联和并联两种。

2. 电容电容是用来存储电荷的一种电子元件,它的容量用法拉得(F)来表示。

电容的存储能力取决于材料的介电常数和结构。

在实际电路中,电容通常用来滤波、隔直、储能等。

电容的连接方式有串联和并联两种。

3. 电感电感是用来储存能量的一种电子元件,它的电感值用亨利(H)来表示。

电感的大小取决于线圈的匝数和磁芯的材料。

在实际电路中,电感通常用来滤波、隔交、振荡等。

电感的连接方式有串联和并联两种。

4. 二极管二极管是一种非线性元件,它的特性是只允许电流单向通过。

二极管的主要作用是整流、限流、反向保护等。

常见的二极管有硅二极管、锗二极管、肖特基二极管等。

5. 晶体管晶体管是一种半导体器件,它主要有三个端子:发射极、基极和集电极。

晶体管有两种类型:NPN型和PNP型。

晶体管可以作为信号放大、开关、振荡等。

常见的晶体管有通用型晶体管、场效应晶体管、双极型晶体管等。

二、放大器放大器是模拟电子电路中起放大作用的重要器件,其作用是放大输入信号的幅度,以便驱动负载。

根据放大器的工作方式和放大电路的结构,放大器大致可以分为三类:电压放大器、电流放大器和功率放大器。

1. 电压放大器电压放大器是将输入信号的电压放大到较大的幅度,以便驱动负载。

常见的电压放大器有共射放大器、共集放大器、共源放大器等。

这些电压放大器基本上由晶体管、耦合电容、电阻等元件组成。

2. 电流放大器电流放大器是将输入信号的电流放大到较大的幅度,以便驱动负载。

常见的电流放大器有共基放大器、共漏放大器、共栅放大器等。

这些电流放大器基本上由晶体管、耦合电容、电阻等元件组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一些电子设备在常温下能够正常工作,但当温度升高时,性能就可能不稳定,产生这种现象的主要原因,是电子器件的参数受温度影响而发生改变。温度升高时,静态工作点移近饱和区,使输出波形产生严重的饱和失真。
单管共集电路(射极跟随器)的特点:①电压放大倍数小于1但接近1,输出电压与输入电压极性相同。②输入阻抗高③输出阻抗低④有电流放大作用,也有功率放大⑤输出与输入隔离效果好。
集成运放,是具有高放大倍数的集成电路。它的内部是直接耦合的多级放大器,整个电路可分为偏置电路、输入级、中间级、输出级三部分。输入级采用差分放大电路,输入电阻高以消除零点漂移和抑制干扰;中间级一般采用共发射极电路,以获得足够高的电压增益,其作用是提高运算放大器的电压放大倍数;输出级一般采用互补对称功放电路,以输出足够大的电压和电流,其输出电阻小,负载能力强。偏置电路为各级提供合适的静态工作电流。
内电场的方向是:N区指向P区,其作用是阻止多子扩散、促进少子漂移。
在PN结上外加一个正向电压,正极接P区,称为正向偏置。反之称为反向偏置。
外电场对内电场的作用:正向削弱,反向增强。对电荷区的影响:正向变窄。
PN结的单向导电性。
正向偏置:多子的扩散加强,形成较大的正向电流。反向偏置:少子的漂移加强,但只能形成很小的反向电流
外电场对内电场的作用:正向削弱,反向增强。对电荷区的影响:正向变窄。
PN结的单向导电性。
正向偏置:多子的扩散加强,形成较大的正向电流。反向偏置:少子的漂移加强,但只能形成很小的反向电流
双极型三极管在放大区的条件:内部条件:发射区高掺杂,基区很薄,集电极面积宽;外部条件:发射结正偏,集电结反偏。
载流子的运动:多子扩散,少子漂移。两者分别受浓度和温度的影响。
扩散运动:由于载流子的浓度差而产生的运动。漂移运动:载流子在电场的作用下而产生的运动。
在同一片半导体基片上,用不同的掺杂工艺使其一边形成P型半导体,另一边形成N型半导体,则在两种半导体的交界面将形成PN结。PN结是多子扩散和少子漂移达到动态平衡的结果。
双极型三极管在放大区的条件:内部条件:发射区高掺杂,基区很薄,集电极面积宽;外部条件:发射结正偏,集电结反偏。
(NPN:Uc>Ub>Ue) 温度上升10°C,Ic升高(Icbo增加一倍,Iceo=(1+β)Icbo).
截止区:发射结和集电结反偏。饱和区:发射结和集电结正偏。导通电压:死区电压:
扩散和漂移这一对相反的运动最终达到动态平衡,使空间电荷区的宽度不再变化,即形成了PN结(空间电荷区)。由于空间电荷区内缺少可以自由运动的载流子,所以又称为耗尽层。
内电场的方向是:N区指向P区,其作用是阻止多子扩散、促进少子漂移。
在PN结上外加一个正向电压,正极接P区,称为正向偏置。反之称为反向偏置。
扩散运动:由于载流子的浓度差而产生的运动。漂移运动:载流子在电场的作用下而产生的运动。
在同一片半导体基片上,用不同的掺杂工艺使其一边形成P型半导体,另一边形成N型半导体,则在两种半导体的交界面将形成PN结。PN结是多子扩散和少子漂移达到动态平衡的结果。
扩散和漂移这一对相反的运动最终达到动态平衡,使空间电荷区的宽度不再变化,即形成了PN结(空间电荷区)。由于空间电荷区内缺少可以自由运动的载流子,所以又称为耗尽层。
Ai=Uo/Ui (电压放大倍数,输出电压与输入电压之比)Ri=Ui/Ii(输入电阻,描述放大电路对信号源索取电流的大小)
Ro(输出电阻,表征放大电路带负载的能力)
一、集成运放的电路结构特点1.直接耦合 2.差动放大作输入级 3.采用电流源4.采用复合管 5.用复杂电路实现高性能的放大电路,因为电路复杂并不增加制作工序。
集成运放输入输出有四种组态,双出的好。
理想集成运放的特点:输入阻抗无穷大,输入电流为零;失调电压为零;开环电压放大倍数:Avo无穷;输入阻抗无限高;输出阻抗低到0;无限宽的带宽增益;宽输入电压从0到无限;无噪声;无失真;无温度漂移
理想运放的特点:差模电压放大倍数(Aud)无穷大;共模抑制比(Kcmrr)无穷大;输入电阻无穷大;输出电阻=0;输入偏置电流Iib=0;输入失调电流Iio= 0;输入失调电压为0;无限宽的带宽增益(Fh)。
差模信号:两个输入信号大小相等、在输入端极性相反。
Kcmrr=|Aud/Auc|(共模抑制比,差动放大器抑制共模的能力) Kcmrr=20Log|Aud/Auc|单位:分贝
集成运放,是具有高放大倍数的集成电路。它的内部是直接耦合的多级放大器,整个电路可分为偏置电路、输入级、中间级、输出级三部分。输入级采用差分放大电路,输入电阻高以消除零点漂移和抑制干扰;中间级一般采用共发射极电路,以获得足够高的电压增益,其作用是提高运算放大器的电压放大倍数;输出级一般采用互补对称功放电路,以输出足够大的电压和电流,其输出电阻小,负载能力强。偏置电路为各级提供合适的静态工作电流。
运放不加反馈称为开环,此时的电压放大倍数称为开环增益。常用分贝表示20Log|Audo|。
引入反馈的原则:1稳定静态工作点引入直流负反馈2;改善交流性能引入交流负反馈;3稳定输出电压引入电压负反馈;4稳定输出电流引入电流负反馈;5增大输入电阻引入串联负反馈;6减小输入电阻引入并联负反馈。
自激振荡的条件是:AF=—1,幅度条件是:|AF|=1,相位条件是:argAF=Ψa+ψf=+(2n+1)π(所有AF上均有小黑点)。
本征半导体中存在数量相等的两种载流子,即“电子空穴对”。
半导体的导电能力取决于载流子的浓度,但本征激发产生的载流子浓度很低。
本征半导体中载流子的浓度决定因素:材料本身性质和温度(呈指数关系)。温度越高,载流子的浓度越高,本征半导体的导电能力越强。
杂质半导体:在本征半导体中掺入微量的杂质,会使半导体的导电性能发生显著的变化。
杂质半导体:在本征半导体中掺入微量的杂质,会使半导体的导电性能发生显著的变化。
其原因是掺杂后的半导体,某种载流子的浓度会大大增加。
使自由电子浓度大大增加的杂质半导体称为N(加入,少子是空穴,杂质越多,自由电子越多,导电能力越强),使空穴浓度大大增加的杂质半导体称为P(+3价受主原子)型半导体(空穴型半导体)。
单管共集电路(射极跟随器)的特点:①电压放大倍数小于1但接近1,输出电压与输入电压极性相同。②输入阻抗高③输出阻抗低④有电流放大作用,也有功率放大⑤输出与输入隔离效果好。
Ai=Uo/Ui (电压放大倍数,输出电压与输入电压之比)Ri=Ui/Ii(输入电阻,描述放大电路对信号源索取电流的大小)
Ro(输出电阻,表征放大电路带负载的能力)
载流子的特点:多子扩散,少子漂移
常温下,由于热激发使一些价电子获得足够的能量而脱离共价键的束缚,成为“自由电子”,同时在原来的共价键中留下一个空位,称为“空穴”。
本征半导体中存在数量相等的两种载流子,即“电子空穴对”。
半导体的导电能力取决于载流子的浓度,但本征激发产生的载流子浓度很低。
本征半导体中载流子的浓度决定因素:材料本身性质和温度(呈指数关系)。温度越高,载流子的浓度越高,本征半导体的导电能力越强。
集成运放输入输出有四种组态,双出的好。
理想集成运放的特点:输入阻抗无穷大,输入电流为零;失调电压为零;开环电压放大倍数:Avo无穷;输入阻抗无限高;输出阻抗低到0;无限宽的带宽增益;宽输入电压从0到无限;无噪声;无失真;无温度漂移
理想运放的特点:差模电压放大倍数(Aud)无穷大;共模抑制比(Kcmrr)无穷大;输入电阻无穷大;输出电阻=0;输入偏置电流Iib=0;输入失调电流Iio= 0;输入失调电压为0;无限宽的带宽增益(Fh)。
(NPN:Uc>Ub>Ue) 温度上升10°C,Ic升高(Icbo增加一倍,Iceo=(1+β)Icbo).
截止区:发射结和集电结反偏。饱和区:发射结和集电结正偏。导通电压:死区电压:
放大电路放大的本质是:能量的控制和转换。前提是:保征。单管共发射极放大电路,基极偏置电路的作用是:隔直通交。
其原因是掺杂后的半导体,某种载流子的浓度会大大增加。
使自由电子浓度大大增加的杂质半导体称为N(加入+5价杂质施主原子)型半导体(电子型半导体,多子是自由电子,少子是空穴,杂质越多,自由电子越多,导电能力越强),使空穴浓度大大增加的杂质半导体称为P(+3价受主原子)型半导体(空穴型半导体)。
载流子的运动:多子扩散,少子漂移。两者分别受浓度和温度的影响。
负反馈对放大电路的影响:串联负反馈使Ri增大,并联使之减小;电压负反馈使Ro减小。
正弦振荡平衡条件:|AF|=1,相位条件是:argAF=Ψa+ψf=+2nπ,起振条件是|A|>3,Rf>2R
电容三点式,优点:输出波形好,接近于正弦波;因晶体管的输入输出电容与回路电容并联,可适当增加回路电容提高稳定性;工作频率较高。缺点:调整频率困难,起振困难。
电感三点式,优点:起振容易,调整方便。缺点:输出波形不好;在频率较高时,不易起振。
三点式电路的判断:射同余反。
功放分类:甲类(输入信号在整个周期类都有电流流过三极管),乙类(只有半个周期Ic>0),甲乙类(有半个以上周期Ic>0)
直流电源的组成:电源变压器—整流电路—滤波器---稳压电路,
作用:电源变压器—降压;整流电路—把交流电变为单方向的直流电,但是其幅值变化很大,我们把这种直流电叫脉动大的直流电;滤波电路—把脉动大的直流电处理为平滑的脉动小的直流电;稳压电路—得到稳定的直流电。
运放不加反馈称为开环,此时的电压放大倍数称为开环增益。常用分贝表示20Log|Audo|。
引入反馈的原则:1稳定静态工作点引入直流负反馈2;改善交流性能引入交流负反馈;3稳定输出电压引入电压负反馈;4稳定输出电流引入电流负反馈;5增大输入电阻引入串联负反馈;6减小输入电阻引入并联负反馈。
相关文档
最新文档